P2P, DSV, and Other Products
frem the Complexity Factory

Willy: Zwaenepoel
EPFL

(til

Impact of Research

* Not so great
= Many research ideas have lost out
= Many non-research developments won out

Impact of Research

* Not so great

= Many research ideas have lost out

= Many non-research developments won out
« Why/Is that?

= \We make things too complex

= Note: not: things are too complex

Impact of Research

* Not so great
= Many research ideas have lost out
= Many non-research developments won out
« Why/Is that?
= \We make things too complex
= Not: things are too complex
« Why?
= Publishing/reviewing pushes us to complexity

Apolegies, Caveats and Excuses

« Jralk Is rather polemic in nature
... things are saidi a little crassly.

« Now: a dean — intellectual life prohibited

= “lhere was once a dean who was so dumb,
that ether deans actually started noticing It”

P2P

« Peer-to-peer
* No (central) server

« Easier to operate, maintain, scale, make
more reliable ...

« Started as an application

« Propesed as an infrastructure for a large
number of applications

Research on P2P

« Concentrated largely on DHT's

« Log(n) access

« Chord, Pastry, ...

« Applications: backup, streaming, ...

he Problem with P2P

« \Veny little application; ether than illegal file
sharnng

Reality Check

« [ffwe have learned anything about
distributed computing over the last 25
years, It IS that anything distributed Is
harder than anything centralized

Reasons for Distribution

« You cannot handle it in one place
= Perfermance — controelled replication
= Availability — controlled replication

« Geographicall distribution
= Google!
« |llegality — P2P
= From Napster to Gnutella, Kazaa, ...
= ‘Raw” traffic numbers are high
= Much ofi It static
= Could be handled by conventional replication (?)

Difficulties for P2P

« Harnd te find anything

« Harnd to make anything secure
= Open invitation to attack
= Actively used by RIAA (pollution attacks)

« Harnd to write anything

Advantages for P2P Research

« Complex to find anything
« Complex tormake anything secure
« Complex to write anything

Advantages for P2P Research

« Complex to find anything
« Complex tormake anything secure
« Complex to write anything

« Complexity begets papers
« P2P = Paper-to-Paper

here are Applications

« [Lange file multicast

« Can be handled by very simple techniques
= BitTorrent

« |t should worry us that these come from
non-research corners of the world!

DSV

« Distributed shared memory
« Parallellcemputing on clusters

« Distributed memories abstracted as a
single shared memory

« Easier to write programs
« Usually by page faulting
« TreadMarks (ParallelTools)

Reality Check

* Clusters are only suitable for coarse-
grained parallel computation

« A fortiori true for DSM

Problems with Eine-Grained DSV

« ExXpensive synchronization

« Expensive fine-grained data sharing

= Smaller than a page
« [False sharing (can be solved)
« True sharing

Advantages for DSM Research

« Complex fine-grain synchroenization

« Complex fine-grain data sharing
« Compliler, language, runtime, ...

« Complexity begets papers ...

TreadMarks

* (Almost) every paper or grant for research
on fine-grain DSM was accepted

* (Almost) every paper or grant for research
0N coarse-grained DSM was rejected

« [t turns out that for real applications a page
IS not large enough!

Coearse-grain Applications

« [Large (Independent) units of computation

« [Large chunks of data
= 1 page = 4k
= Not very large at all
= Page faulting brings in one page at a time
= Message passing brings inwhole data segment at a
time (> page)
« Can be and was done with DSM
= Increase page size ()
« Compller support

CompetitionIs Message Passing

« MPIF(Message Passing Interface)
« Low abstraction

« No room; for complexity fabrication
« As a result more successful

« |t should worry us that MPI did not come
from distributed systems research but from
inear algebral

Server Performance

« At the beginning of the Internet boom,
senver performance was badly lagging
« Multithreaded or multiprocess servers
= Context switching
= Locking
« Two types of selutions

=« Exokernel
= Event-driven servers

Event-Driven Servers

« Events
= Incoming request, i/o completion, ...

« Single thread, event loop

« Event handler per event

= Straight code (no blocking)

= At end:

« nonblocking or asynchronous i/o
« create (hand-made) continuation

Advantages

« No multithreading
= No context switching
= No locking (at least en uniprocessor)

« Control over order of event handling
= Not bound by OS scheduler

Flash

« Most pepular event-driven \WWeb server
« Combined multithreaded / event-driven
« Many: follew-ons

« IMimic Networking

Reality Check

* |t’s too complex

« Maype Ph.D.s can figure it out

* Your average industry programmer cannot
« Actually, most Ph.D.s can’t either

« Many: (expensive) bugs

How: the Problem was Solved

* Linux O(1) thread scheduler

« Linux futex
= User-level locking
= No overhead If no contention

« Benefits of event-driven remain
« But too small to warrant complexity

How: the Problem was Solved

« TThe main servers are all process-based or
thread-based (Apache, MySQL)

* |t should worry: us that these servers did
not come out of research!

RPainfull ©bservations (1)

« Most of the strong research trends have
not feund muehi application

* Non-research designs have won out
« Has to do with this fabricated complexity

RPainfull ©bservations (2)

« Has to do with; publishing/reviewing
= Simple papers tend to get rejected
= Complex papers tend to get in

Your Average Review Form

« Novelty

« Excitement
« Wiiting

« Confidence

Some Questions to Add?

« Does the added functionality justify the
INcrease in complexity?

« Does the performance improvement justify
the increase in complexity?

« Could'this system be maintained by an
albove-average programmer in industry?

« Does this paper simplify a known solution
to a worthwhile problem?

Some: Likely' Review Comments

* « Incremental »

* <« Engineering »
« « Nething new »
* « Boring »

It IS Possible

« \irtual machines

* Provide simple solutions to real problems
= Server consolidation
= Migration

Virtual Machines

« \irtual machine monitor

« \VVIVIM provides a number of VMs
s |IBM VM
= VIVI\Ware

= Xen
* Open-source
« Paravirtualization (VM ~ machine)

Provenance

* DISCO: a very complex OS for SMPs

« \/VIWWare:

« Simplified to Linux/\AWindows en one machine
= Precise virtualization on x86 very complex

« Xen

= Paravirtualization to improve performance and
decrease complexity
« VMM less complex
» Guest OS (slightly) more complex
« Performance better (?)

e Way: ofi All Trechnology.

« All technoelogy.
= Becomes more complex on the inside
= Becomes less complex on the outside

« Example: car, Windows (?!)

« Not sure It fully applies to software
= Most complex systems ever built

= Rare example of discrete complex system
= Maybe we are over the limit already

Nonetheless

« Suceess = Interfaces defined early?

« \/ery successiul systems
= Apache, MySQL, MPI;, VMWare, Xen
= |Interfaces stable (few iterations)
= Internal complexity grew

« |Less successful systems
= DSM, event-driven
= |Interfaces unstable, complexified

Standandization (1?2)

« |lam afraid some of It IS necessary
* Eind a way threugh publishing system

Other People’s Advice

« [ampson: « Keep It simple »
= lrue, but somewhat impractical
« Einstein: « Everything should be as

simple as pessible, but no more than
that »

= Implement functionality at the right interface
= Keep interfaces stable

Lessons

* Brute force often (not always) works

« Our publishing and reviewing system
pushes us In the opposite direction

More Lessons

« [t Is the Interface, stupid
« TThe implementation can be complex

« TThe Interface has to be simple and stable

AN

&
§ —

/
i'

/
|

/

e
f—

JlE—
L

/

/)

e

i]
gimEnnyange =
TIC S =

Y [B, bt

= I -

5

omise behind the Symante
Center Foundation. Thanks to the Veritas cross-platform heritage, thi 4 software infrastructure s
supports virtually every major operating em, database, application and ge hardware asset in your data
. It's reduced complexity. It's comprehensive protection. It's the smartest move you can make. Tour the
ata Center Foundation at ymantec.com/datacenter

3

NYT, June 26, 2006

=4

=4

[hank you
- e

\'

.
\'7

