
LECTURE NOTES ON SOBOLEV SPACES
FOR CAMBRIDGE CENTRE FOR ANALYSIS

WILLIE WAI-YEUNG WONG

0.1. References. Before we start, some references:
• D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second

order, Springer. Ch. 7.
• L. Evans, Partial differential equations, American Math. Soc. Ch. 5.
• M. E. Taylor, Partial differential equations I, Springer. Ch. 4. (Note: this

presentation is based on heavy doses of Fourier analysis and functional
analysis.)

• H. Triebel, Theory of function spaces, Birkhauser. Ch. 2.
• R. Adams, Sobolev Spaces, Academic Press.

0.2. Notations. We will work in R
d .

p′ : given p ≥ 1 a real number, we define p′ to be the positive real number
satisfying p−1 + (p′)−1 = 1; p′ is called the Hölder conjugate of p

Ω: open set in R
d

∂Ω: the boundary of Ω, Ω̄ \Ω
∂α : partial derivative of multi-index α. α = (α1, . . . ,αd) ∈ (N0)d , with norm
|α| =

∑
αi . ∂α = ∂α1

1 ·∂
αd
d

Ω1 bΩ2: there exists a compact set K such that Ω1 ⊂ K ⊂Ω2
Dα : weak derivative (see §1.3) of multi-index α
suppf : for a function f , this denotes the support set, i.e. the set on which
f , 0

C(Ω): continuous functions taking value in the reals defined on Ω (though
most of what we say will be valid for functions taking value in a Hilbert
space)

C(Ω̄): the subset of C(Ω) consisting of functions that extend continuously to
∂Ω

C0(Ω): the subset of C(Ω̄) consisting of functions which vanish on ∂Ω
Ck(Ω): functions f such that ∂αf ∈ C(Ω) for every |α| ≤ k. k is allowed to be∞

(in which case f is smooth) or ω (in which case f is analytic). Analogously
we define Ck(Ω̄) and Ck0(Ω) (note that the set Cω0 (Ω) contains only the zero
functions)

Ckc (Ω): subset of Ck(Ω) such that suppf bΩ

Lp(Ω),Lploc(Ω): Lebesgue spaces (see §1.1)

W k,p(Ω),W k,p
loc (Ω),W s,p

0 (Ω): Sobolev spaces (see §1.4)
‖ · ‖p: Lp norm (see §1.1)
‖ · ‖p,k : W k,p norm (see §1.4)

Version rev149 of 2011-04-21 01:50:23 +0100 (Thu, 21 Apr 2011).

1
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1. Basic Definitions

In this first part Ω can be taken to be any open subset of Rd . Throughout dx
will be the standard Lebesgue measure. By a measurable function we’ll mean a
representative of an equivalence class of measurable functions which differ on Ω

in a set of measure 0. Thus sup and inf should be mentally replaced by esssup and
essinf when appropriate.

1.1. Lebesgue spaces. For∞ > p ≥ 1, Lp(Ω) denotes the set of p-integrable mea-
surable functions, with norm

(1) ‖u‖p;Ω =


∫
Ω

|u|p dx


1/p

.

If u takes values in some normed linear space, then | · | will be the Banach
space norm.

For p =∞, L∞(Ω) denotes the essentially bounded functions

(2) ‖u‖∞;Ω = sup
Ω

|u| .

For 1 ≤ p ≤∞, the spaces Lp(Ω) are Banach spaces. The space L2(Ω) is a Hilbert
space, with inner-product

(3) 〈u,v〉 = 〈u,v〉0;Ω =
∫
Ω

uv dx .

If u,v take values in a Hilbert space H with norm 〈·, ·〉H, then the integrand
should be replaced by

∫
Ω

〈u,v〉H d(x). In particular, if they are complex valued,

the integrand should be ūv.

For the sake of completeness, let me recall the definitions of Banach and Hilbert
spaces. Let V be a linear space over R.

With the obvious substitutions, you can also do over C

A norm | · | on V assigns to elements of V nonnegative real numbers, such that
for v,w ∈ V :

(1) |v| ≥ 0, with equality iff v = 0;
(2) |sv| = |s| |v|, for any scalar s ∈R;
(3) |v +w| ≤ |v|+ |w| (triangle ineq.)

The pair (V , | · |) is called a normed linear space. We can define a metric on (V , | · |) by
d(v,w) = |v −w|.

Exercise 1. Check that d(v,w) is indeed a metric.

Then we can use the usual notion of convergence in metric spaces. If the normed
linear space (V , | · |) is complete as a metric space, that is, all Cauchy sequences
converge, then we say (V , | · |) is a Banach space. That the Lp norms are in fact
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norms follows easily from property of the Euclidean absolute value, and Hölder’s
inequality (6) below.

Exercise 2. Prove that Lp(Ω) is a Banach space. That is, show that if ui ∈ Lp(Ω) are
a sequence of functions satisfying ‖ui − uj‖p;Ω → 0 as i, j →∞, then there exists
u ∈ Lp(Ω) such that ui → u.

Now let V be an R-linear space again. An inner product on V is a map V ×V →R

denoted by 〈·, ·〉, satisfying
(1) 〈v,w〉 = 〈w,v〉;
(2) 〈av + bw,x〉 = a〈v,x〉+ b〈w,x〉 for all a,b ∈R;
(3) 〈v,v〉 ≥ 0, with equality iff v = 0.

We call the pair (V ,〈·, ·〉) an inner product space or pre-Hilbert space.

If V were over C, the symmetric property needs to be replaced by Hermitian,
and the linearity needs to become sesquilinearity.

Exercise 3. Writing ‖v‖ =
√
〈v,v〉 on an inner product space (V ,〈·, ·〉), show that

• |〈v,w〉| ≤ ‖v‖ ‖w‖ (Schwarz)
• ‖v +w‖ ≤ ‖v‖+ ‖w‖ (Triangle)
• ‖v +w‖2 + ‖v −w‖2 = 2‖v‖2 + 2‖w‖2 (Parallelogram identity)

This implies that every inner product space is a normed linear space.

If the induced norm is complete, we say an inner product space is a Hilbert space.

In some texts a Hilbert space is also required to be separable: that there
exists a countable subset of vectors {v1,v2, . . .} whose linear space is dense in
V ; this will in particular imply the Hilbert space has a countable orthonormal
basis. While the spaces we encounter in this note are all, in fact, separable, we
will not make this assumption.

Exercise 4. Check that (L2(Ω),〈·, ·〉0;Ω) is an inner product space. Check that the
inner product defined in (3) indeed leads to the norm defined in (1). Therefore by
Exercise 2, L2 is a Hilbert space.

Recall Young’s inequality: let a,b be positive real numbers, and p ≥ 1 real, then

(4) ab ≤ a
p

p
+
bp
′

p′
≤ ap + bp

′
.

The special case p = p′ = 2 is known as Cauchy’s inequality. By replacing a→ εa
and b→ ε−1b, we also get the interpolated version of Young’s inequality

(5) ab ≤ εpap + ε−p
′
bp
′
.

Using Young’s inequality we can prove Hölder’s inequality

(6)
∫
Ω

uv dx ≤ ‖u‖p;Ω‖v‖p′ ;Ω

when the right hand side is well defined.
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Proof. The inequality is homogeneous in scaling of u and v. Therefore it suffices to
prove for ‖u‖p = ‖v‖p′ = 1. Write∫

Ω

uv dx ≤
∫
Ω

|u| |v| dx ≤
∫
Ω

|u|p

p
+
|v|p′

p′
dx

≤ 1
p
‖u‖pp;Ω +

1
p′
‖v‖p

′

p′ ;Ω =
1
p

+
1
p′

= 1

�

This homogeneous scaling trick is very useful in analysis of partial differen-
tial equations.

Hölder’s inequality is very useful for deriving facts about the Lp spaces. First we
define the localised Lebesgue spaces: a function u is said to be in Lploc(Ω) if for every
open set Ω′ bΩ, u ∈ Lp(Ω′).

Consider the functions on R given by |x|−α . These functions are not in any
Lebesgue spaces, because for pα ≤ 1, it decays too slowly at infinity, while for
pα ≥ 1, it blows up too fast at the origin. The localised spaces allows one to
distinguish divergences at the boundary of Ω, and singularities in the interior
of Ω. Also note that the local Lebesgue spaces are not normed spaces.

Proposition 1. (1) Lq(Ω) ⊂ Lp(Ω) if q ≥ p and |Ω| <∞; (2) Lp(Ω)∩Lq(Ω) ⊂ Lr (Ω) if
p ≤ r ≤ q.

Note that point (1) in particular implies that Lqloc(Ω) ⊂ Lploc(Ω) for p < q and any
Ω.

Proof. What we will prove are slightly stronger, quantitative versions of the above
statements. For the first claim, let χΩ be the characteristic function of Ω, i.e.
χΩ(x) = 1 if x ∈Ω and 0 otherwise. Let u ∈ Lq(Ω). Observe

‖u‖pp;Ω =
∫
Ω

|u|p dx =
∫
Ω

χΩ|u|p dx

(by Hölder) ≤ ‖χΩ‖1/(1− pq );Ω‖u
p‖q/p;Ω

= |Ω|1−
p
q ‖u‖pq;Ω

and so we have

(7) ‖u‖p;Ω ≤ |Ω|
1
p−

1
q ‖u‖q;Ω

which proves the claim. For the second statement, we write

‖u‖rr;Ω =
∫
Ω

|u|λr |u|(1−λ)r dx = ‖uλr‖p/(λr);Ω‖u(1−λ)r‖q/(1−λ)r;Ω
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for 0 ≤ λ ≤ 1 and 1
r = λ

p + 1−λ
q . Noting that if p ≤ r ≤ q, one can always find such a λ,

we have

(8) ‖u‖r;Ω ≤ ‖u‖λp;Ω‖u‖
1−λ
q;Ω

and proving the claim. �

The first property above tells us that, after localising, higher Lp norms control
lower ones, and in particular, higher Lp norms have more regularity, or that
they are less singular. The second property tells us that one can harmonically
interpolate between higher and lower Lp spaces to get something in between.

Remark 2. The Hölder inequality can be iterated to obtain that, if
m∑
i=1

(pi)−1 = 1, then

∫
Ω

f1f2 · · ·fm dx ≤
m∏
i=1

‖fi‖pi ;Ω

The localisation above can be interpreted as a cut-off by the characteristic func-
tion χΩ. There are other ways to achieve localisation; a very useful one is to use
polynomial weights.

Exercise 5. Let Lps (Rd) denote the Lebesgue space with s weight: that is, f ∈ Lps (Rd)
iff

∫
|f (x)|p(1 + |x|s)p dx <∞. Show that Lqs (Rd) embeds continuously into Lp(Rd)

if and only if q > p and s > 1
p −

1
q . (Hint: ⇐ follows from judicious application of

Hölder inequality;⇒ follows by considering functions of the form |x|−t(1 + |x|r )−1.)

Hölder’s inequality can also be used to obtain the following useful inequality.

Lemma 3 (Minkowski’s inequality). Let u(x,y) be a measurable function defined on
R
d1 ×Rd2 , where x ∈ Rd1 and y ∈ Rd2 . Then provided both sides of the inequality are

finite, we have, for 1 ≤ q ≤ p <∞,

(9)


∫
R
d2


∫
R
d1

|u(x,y)|q dx


p/q

dy


1/p

≤


∫
R
d1


∫
R
d2

|u(x,y)|p dy


q/p

dx


1/q

.

Remark 4. Note that the “p =∞” case in the above inequality is trivially true.

Proof. Note that by replacing u by |u|q, it suffices to prove the inequality for q = 1.
The case p = q = 1 is then just Fubini’s theorem. For p > 1, let

S(y) :=
∫
R
d1

|u(x,y)| dx

we re-write

S(y)p =
∫
R
d1

|u(z,y)| dzS(y)p−1 .
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In this notation,∫
R
d2

S(y)p dy =
∫
R
d2

∫
R
d1

|u(z,y)| dzS(y)p−1 dy

(Fubini) =
∫
R
d1

∫
R
d2

|u(z,y)|S(y)p−1 dy dz

(Hölder) =
∫
R
d1


∫
R
d2

|u(z,y)|p dy


1/p

dz ·


∫
R
d2

S(w)(p−1)p′ dw


1/p′

.

Now, (p −1)p′ = p by definition. So we have that, dividint both sides by a suitable
factor of

∫
S(w)p dw, that

∫
R
d2

S(y)p dy


1−1/p′

≤
∫
R
d1


∫
R
d2

|u(z,y)|p dy


1/p

dz

precisely as claimed. �

1.2. Friedrichs mollifiers, regularisation. Now we discuss a systematic way to
approximate Lp functions by smooth ones, due to K. O. Friedrichs.

Definition 5. A Friedrichs mollifier, or an approximation to the identity, is a non-
negative function ψ in C∞c (B) (where B = B1(0) is the ball of radius 1 about the
origin in R

d) satisfying the condition that
∫
R
d

ψ dx = 1.

A standard example of a mollifier is the function

ψ(x) =

cexp
(

1
|x|2−1

)
|x| ≤ 1

0 |x| ≥ 1

with c chosen so that the total integral of ψ is 1.
Now consider the expression for δ > 0 defined by convolution

(10) uδ(x) =
1
δd

∫
Bδ(x)

ψ(
x − y
δ

)u(y) dy .

The right hand side of (10) is well-defined if u is defined, and integrable, on Bδ(x).
We can treat it as a sort of weighted average over the small ball. Now, suppose
u ∈ Lp(Ω). By Proposition 1, u ∈ L1

loc(Ω). So for δ > 0, as long as dist(x,∂Ω) > δ,
uδ(x) is well-defined. Furthermore, using the property of the convolution, we see
that for any Ω′ bΩ with dist(Ω′ ,∂Ω) > δ, we have uδ ∈ C∞(Ω′). Also if u ∈ Lp(Rd)
has compact support on R

d , then uδ ∈ C∞c (Rd).

Exercise 6. Verify that for u ∈ Lp(Rd), uδ is also p-integrable. (Hint: by using
Tonelli’s theorem, it reduces to checking measurability of u(x − y) on R

d ×Rd .)

The importance of the mollifier is not just that it smooths out a function, but that
it also approximates it as δ→ 0. Heuristically, as δ→ 0 the expression δ−dψ(x/δ)
approaches the Dirac delta function, and so uδ→ u. To make it precise:
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Lemma 6. For u ∈ Lp(Ω), p <∞, then uδ→ u in Lp(Ω) as δ→ 0.

Proof. In the case where Ω ,Rd , we extend u trivially by setting u = 0 outside Ω.
Then u ∈ Lp(Rd). Since ‖uδ−u‖p;Ω ≤ ‖uδ−u‖p;Rd , it suffices to show the convergence
for Ω = R

d .

‖uδ −u‖p =
(∫ ∣∣∣∣∣∫ (u(x − δy)−u(x))ψ(y) dy

∣∣∣∣∣p dx
)1/p

(Minkowski’s inequality) ≤
∫
ψ(y)

(∫
|u(x − δy)−u(x)|p dx

)1/p

dy

(Hölder) ≤ sup
|y|≤δ
‖u(· − y)−u‖p

That the right hand side of the last inequality ↘ 0 as δ → 0 can be checked by
using the fact that the continuous functions with compact support are dense in Lp

for any 1 ≤ p <∞. �

As a corollary, we have that the smooth functions are dense inside Lp(Ω).

Exercise 7. Find a counterexample to Lemma 6 in the case p =∞.

1.3. Weak derivatives. First recall the formula for integrating by parts. Let u ∈
C |α|(Ω), and φ ∈ C |α|0 (Ω), then we have∫

Ω

(∂αu)φ dx = (−1)|α|
∫
Ω

u(∂αφ) dx .

Using this formula we can define a generalised notion of derivatives.

Definition 7. Let u be locally integrable in Ω. Then a locally integrable function
v is said to be the αth weak derivative of u, written v = Dαu, if for every function
φ ∈ C |α|0 (Ω), we have

(11)
∫
Ω

vφ dx = (−1)|α|
∫
Ω

u(∂αφ) dx .

Note that when the weak derivative Dαu exists, it is defined only up to a set of
measure zero. So any point-wise statements to be made about Dαu is understood
to only hold almost surely.

Definition 8. A locally integrable function u is said to be k-times weakly differen-
tiable if for all |α| ≤ k, the weak derivative Dαu exists.

Observe that a Ck function is automatically k-times weakly differentiable, the
classical derivatives being representatives of the equivalence class of weak deriva-
tives.

Exercise 8. (Derivatives and mollifiers commute.) Let u ∈ L1
loc(Ω), and assume

Dαu exists. Prove that for x ∈Ω and δ > 0 such that dist(x,∂Ω) > δ, we have

(12) ∂αuδ(x) = (Dαu)δ (x) .

Exercise 9. (Approximation theorem for weak derivatives.) Let u,v ∈ L1
loc(Ω), then

v =Dαu if and only if ∃ a sequence (um) of C∞(Ω) functions such that um→ u and
∂αum→ v in L1

loc(Ω).
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By the approximate theorem, most of classical differential calculus can be repro-
duced for weak derivatives. For example, the product rule

D(uv) = (Du)v +u(Dv)

holds for every pair of weakly differentiable functions u,v as long as uv and
(Du)v + u(Dv) are both L1

loc. Similarly, the chain rule holds: let u ∈ L1
loc(Ω) be

weakly differentiable, let y = y(x) be a C1 coordinate change Ω′ → Ω, and let
f ∈ C1(R) with f ′ bounded. Then (1) the function v = u ◦ y is weakly differentiable

on Ω′, with Dv =Du ∂y∂x ; (2) the function f ◦u is weakly differentiable on Ω, with
D(f ◦ u) = f ′(u)Du. For more details on the differential calculus, please refer to
Evans or Gilbarg-Trudinger.

1.4. Sobolev spaces. We begin straight with the definition.

Definition 9. The notation W k,p(Ω) is the Sobolev space of differentiability k and
integrability p. It consists of functions u which are k-weakly differentiable, such
that Dαu ∈ Lp(Ω) for all |α| ≤ k.

The Sobolev spaces W k,p(Ω) are Banach spaces with the norm

(13) ‖u‖p,k;Ω =


∫
Ω

∑
|α|≤k
|Dαu|p dx


1/p

.

Observe that the space W 0,p(Ω) is just Lp(Ω). In the case that p = 2, we also
introduce the notation Hk(Ω) = W k,2(Ω). These L2-Sobolev spaces are Hilbert
spaces under the inner product

(14) 〈u,v〉k =
∫
Ω

∑
|α|≤k

DαuDαv dx .

These L2 Sobolev spaces will be used heavily in Mihalis’ class; one particular
reason is that Hilbert space techniques are very powerful in demonstrating
existence of solutions to partial differential equations, another is that for hy-
perbolic PDEs, L2-based spaces are the only ones in which we can do inductive
arguments.

The localised versions of these spaces are defined analogously to the case of
Lebesgue spaces. There are two more variants of the Sobolev spaces that are
commonly used.

Definition 10. The spaces W̊ k,p(Ω) (similarly H̊k(Ω)) are the homogeneous Sobolev
spaces. They consist of k-times weakly differentiable functions u such that Dαu ∈
Lp(Ω) for |α| = k.

Definition 11. The spaces W k,p
0 (Ω) (similarly Hk

0 (Ω)) are the closure of Ck0(Ω)
under the Sobolev norm (13).
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The W̊ k,p spaces are not Banach spaces; the defining condition does not give
a norm, it merely gives a semi-norm. For example, two functions in Ck that
differ by a constant are the “same size” under this semi-norm. We can “mod
out” this ambiguity by requiring that the representatives we consider has mean
0 over Ω, as long as |Ω| <∞.

A common reason to consider the homogeneous Sobolev spaces is that, if
the domain Ω = R

d , it has nice scaling properties. See §2.6.

Remark 12. TheW k,p andW k,p
0 spaces are generally not equal, except when Ω = R

d .

Using the approximation theorem for weak derivatives and the commutation
relation, we see immediately that for u ∈W k,p(Ω), the mollified ∂αuδ → Dαu as
δ→ 0 in Lploc(Ω). Here we derive a global approximation.

Theorem 13. The subspace C∞(Ω)∩W k,p(Ω) is dense in W k,p(Ω), for p <∞.

Proof. Let Ωi be an approximation of Ω by compactly included subsets; that is,
Ωi bΩi+1, ∪iΩi = Ω, and Ωj = ∅ for j ≤ 0. Let ηj be a partition of unity subordinate
to the covering {Ωj+1 \Ωj−1}. For u ∈W k,p(Ω), and for any ε > 0, using the result
mentioned before the statement of the theorem, we can choose a sequence of δj
such that the following are satisfied:

δj < dist(Ωj+1,∂Ωj+3)∥∥∥∥(ηju)δj − ηju
∥∥∥∥
p,k;Ω

≤ ε

2j+1

Let v =
∑

(ηju)δj . By the definition of partition of unity, and the first condition
above, we have that at each x ∈Ω, only finitely many terms in the infinite sum is
non-zero. So v ∈ C∞(Ω) by construction. Furthermore, using the triangle inequality

‖u − v‖p,k;Ω ≤
∑∥∥∥∥(ηju)δj − ηju

∥∥∥∥
p,k;Ω

≤ ε

and we obtain the approximation. �

In view of the Density Theorem 13, Definitions 9 and 11 can be re-written to have
the Sobolev spaces defined as the completion of C∞(Ω) and C∞c (Ω) respectively in

theW k,p(Ω) norm. Note that in the case Ω = R
d , the spacesW k,p andW k,p

0 coïncide,
and thus C∞c (Rd) is dense also in W k,p(Ω).

1.5. Difference quotients. The classical partial derivative is defined, for a smooth
function u, as

∂iu(x) = lim
h→0

u(x+ hei)−u(x)
h

.

For considering weak derivatives, we use a similar idea called difference quotients.

Definition 14. Given a unit vector v and some measurable function u, the h-
translate of u in the direction of v is denoted as τhvu, and is defined by

τhvu(x) = u(x+ vh) .
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Definition 15. For a measurable function u, the difference quotient of u in the
coordinate direction ei of length h , 0 is the measurable function denoted by ∆hi u and
defined by

∆hi u =
τheiu −u

h
.

Exercise 10. Derive the product rule for ∆hi .

The key point of this construction, unlike that of the weak derivative, is that for
an arbitrary locally integrable u, ∆hi u always exists and is locally integrable, whereas
Diu may not be defined. The two notions, however, are intimately connected.

Proposition 16. Let u ∈ W 1,p(Ω). Then ∆hu ∈ Lp(Ω′) for any Ω′ b Ω with h <
dist(Ω′ ,∂Ω). That is,

‖∆hu‖p;Ω′ ≤ ‖Du‖p;Ω .

Proof. By a density argument, if suffices to prove the inequality for u ∈ C1(Ω),
since it is clear that ∆huδ = (∆hu)δ. Notice that the restriction to Ω′ is so that the
difference quotient is well-defined.

For continuously differentiable functions, the difference quotient can be written
as

∆hi u(x) =
1
h

h∫
0

∂iu(x+ tei) dt .

Now using the first part of Proposition 1, we have

|∆hi u(x)| ≤ 1
h

h∫
0

|∂iu(x+ tei) dt ≤ 1
h1/p


h∫

0

|∂iu(x+ tei)|p dt


1/p

.

So integrating in Lp(Ω′) we have

‖∆hi u‖
p
p;Ω′ ≤

1
h

h∫
0

‖τ tei∂iu‖
p
p;Ω′ dt ≤ 1

h

h∫
0

dt‖∂iu‖
p
p;Ω

and the desired inequality follows. �

The implication is also allowed to run the other way.

Proposition 17. Let u ∈ Lp(Ω) for 1 < p < ∞. If there exists some constant K such
that for all Ω′ bΩ and 0 < h < dist(Ω′ ,∂Ω), we have ‖∆hu‖p;Ω′ ≤ K , then u is weakly
differentiable and ‖Du‖p;Ω ≤ K .

Proof. Let hm ↘ 0 be an arbitrary decreasing sequence, and Ωm ↗ Ω such that
dist(Ωm,∂Ω) > h. Then since ‖∆hmu‖p;Ωm

≤ K , we have that for each direction ei
there exists vi ∈ Lp(Ω) such that the weak convergence

∆
hm
i u ⇀ vi

in Lp(Ω′) holds for all Ω′ bΩ, with ‖vi‖p;Ω ≤ K . In particular, this implies that for
any φ ∈ C1

c (Ω), ∫
Ω

φ∆hmi u dx→
∫
Ω

φvi dx .
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For m sufficiently large, hm < dist(suppφ,∂Ω), so we can “integrate by parts”:∫
Ω

φ∆hmi u dx =
1
hm


∫
Ω

φτhmei u dx−
∫
Ω

φu dx


=

1
hm


∫
Ω

uτ−hmei φ dx−
∫
Ω

φu dx


= −

∫
Ω

u∆−hmi φ dx .

Since φ is classically differentiable, taking the limit hm→ 0 gives convergence∫
Ω

φ∆hmi u dx→−
∫
Ω

u∂iφ dx .

So ∫
Ω

φvi dx = −
∫
Ω

u∂iφ

for all φ ∈ C1
c (Ω), so vi =Diu. �

2. Imbedding Theorems and Friends

In this second part, when we write Ω, it always denotes a bounded, connected,
and open subset of Rd . Some results in the sequel pertains to the domain being R

d

itself; they will be clearly marked as such.
In the following we will only work with Sobolev spaces that vanish on the

boundary of Ω (for the domain being R
d , this condition is trivial). Quite a few of

the theorems presented below will not be true in general if we consider W k,p(Ω)
associated to arbitrary Ω. This failure is usually due to our inability to arbitrarily
extend a W k,p function across ∂Ω in general. In the cases where ∂Ω has nice
regularity properties (external cone condition, differentiability), these theorems
can usually be salvaged. The reader is advised to consult the comprehensive volume
of Adams for these cases.

2.1. Gagliardo-Nirenberg-Sobolev inequality. The Gagliardo-Nirenberg-Sobolev
inequality is an inequality for the domain being R

d .

Theorem 18 (Gagliardo-Nirenberg-Sobolev). For u ∈ C∞c (Rd), for any 1 ≤ p < d,
there exists a constant C depending only on p and d such that

(15) ‖u‖ dp
d−p ;Rd

≤ C‖∂u‖p;Rd

Note that by density, the above inequality extends to u ∈W k,p(Rd). And by the
interpolation inequality in Proposition 1, this implies that (since dp/(d − p) > p) for
any p ≤ q ≤ dp

d−p , there is a continuous embedding W 1,p(Rd)→ Lq(Rd).

Proof. First we reduce it to the case where p = 1. Let v = (u2)γ for γ > 1
2 . Then

|∂v| = 2γ(u2)γ−1|u∂u|, and notice that for u ∈ C1, ∂v = 0 when u→ 0: so v ∈ C1
c (Rd).
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Using the density of C∞c ⊂ C1
c , we assume the theorem holds for v with p = 1, that

is,
‖v‖ d

d−1 ;Rd ≤ C1,d‖∂v‖1;Rd .

Plugging in the definition we have

‖u2γ‖ d
d−1 ;Rd ≤ 2γC1,d‖u2γ−2u∂u‖1;Rd ≤ 2γC1,d‖u2γ−2u‖p′ ;Rd ‖∂u‖p;Rd

using Hölder inequality again. Then we solve

2γd
d − 1

= (2γ − 1)p′ =⇒ 2γ = p
d − 1
d − p

.

When we plug it in we have

‖u‖2γdp
d−p ;Rd

≤ pd − 1
d − p

C1,d‖u‖
2γ−1
dp
d−p ;Rd

‖∂u‖p;Rd .

Cancelling out the redundant factors leads us to (15) as desired.
It remains to prove the inequality for the case p = 1. Observe that for each

1 ≤ i ≤ d,

|u(x)| ≤
xi∫
−∞

|∂iu(x1, . . . ,xi−1, y,xi+1, . . . ,xd)| dy

so we can write

|u(x)|
d
d−1 ≤


d∏
i=1

xi∫
−∞

|∂iu| dyi


1
d−1

.

We want to integrate both sides over R
d , and use the iterated Hölder inequality

(see Remark 2). To do so we first notice that

∫
R


d∏
i=1

xi∫
−∞

|∂iu| dyi


1
d−1

dxj =
∫
R

∏
i,j

xi∫
−∞

|∂iu| dyi


1
d−1

︸                    ︷︷                    ︸
(d−1) × Ld−1


xj∫
−∞

|∂ju| dyj


1
d−1

︸               ︷︷               ︸
1 × L∞

dxj

and

sup
xj


xj∫
−∞

|∂ju| dyj


1
d−1

=


∫
R

|∂ju| dyj


1
d−1

and that by taking the Ld−1 norm of the other terms, we can pass the integral inside∥∥∥∥∥∥∥∥∥∥

xi∫
−∞

|∂iu| dyi


1
d−1

∥∥∥∥∥∥∥∥∥∥
d−1;−∞<xj<∞,j,i

=


xi∫
−∞

∫
R

|∂iu| dxj dyi


1
d−1

.

So we finally arrive at the inequality

∫
R
d

|u|
d
d−1 dx ≤


d∏
i=1

∫
R
d

|∂iu| dx


1
d−1
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or

‖u‖ d
d−1 ;Rd ≤


d∏
i=1

∫
R
d

|∂iu| dx


1
d

.

Now, applying the arithmetic-geometric-mean inequality, we get

‖u‖ d
d−1 ;Rd ≤

1
d

∑
i

‖∂iu‖1;Rd =
1
d
‖∂u‖1;Rd

as claimed. And thus we’ve proven the theorem with C = p(d−1)
d(d−p) . �

Remark 19. For dimension d = 1, if the derivative of a function is absolutely
integrable, the function is absolutely continuous and bounded. In other words, we
have

‖u‖∞;R ≤ ‖∂u‖1;R .

For higher dimensions, the end-point case of p = d is not true. The easiest coun-
terexample is constructed via the Fourier transform (see Remark 20 below).

The Gagliardo-Nirenberg-Sobolev theorem can be iterated. The easiest way to
remember the exponents is perhaps the following observation:

(16)
(
dp

d − p

)−1

= p−1 − d−1 .

And so if you are willing to lose k derivatives, you have

‖u‖ dp
d−kp ;Rd

≤ Cp,d,k
∑
|α|=k
‖∂α‖p;Rd

for any u ∈ C∞c (Rd).

Remark 20 (Counterexample to L∞ endpoint Sobolev). Let us focus now in the
case of L2-Sobolev spaces Hk . We will see that in the case 2k = d, we do not have
the embedding Hk ∈ L∞. Using the fact that the Fourier transform acts on L2 by
isometry (i.e. Plancherel’s theorem that

∫
|f |2 dx =

∫
|f̂ |2 dξ), we see that the space

Hk is equivalently characterized as all L2 functions u such that∫
R
d

(1 + |ξ |2)k |û(ξ)|2 dξ <∞ .

Now let
û(ξ) =

1
(1 + |ξ |2)k log(2 + |ξ |2)

.

û is clearly in L2 for k > d
4 , and thus is the Fourier transform of some L2 function.

And similarly (1 + |ξ |2)k/2û is in L2 if k > d
2 . For 2k = d,∫

R
d

1
(1 + |ξ |2)k[log(2 + |ξ |2)]2

dξ ≤ C1 +C2

∞∫
1

r−1(logr)−2 dr ,

by converting to polar coordinates, and using that the function is smooth in the
ball of radius 1. Noting that d

dr (logr)−1 = −r−1(logr)−2, we have that u represents a
function in Hk(Rd) for 2k = d.
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On the other hand, using the definition of the inverse Fourier transform, u(0) =∫
û dξ. A polar coordinate change shows that the right hand side is bounded below

by some constant times
∞∫
1

(r logr)−1 dr, but with the antiderivative of (r logr)−1 being

loglog r, the integral diverges. This is why we say that the Gagliardo-Nirenberg-
Sobolev inequality diverges logarithmically as kp→ d.

As remarked earlier, Gagliardo-Nirenberg-Sobolev inequality only holds for
the precise Lebesgue exponent stated; one can get a range of exponents from
interpolation on unbounded domains. On bounded domains, we can use the first
part of Proposition 1 and remove the lower bound of p ≤ q. The following in
particular implies Poincaré’s inequality.

Corollary 21 (Sobolev inequality). For bounded open domain Ω ⊂ R
d , we have

W
k,p
0 (Ω)→ Lq(Ω) if 1 ≤ q ≤ dp

d−kp <∞. More precisely, for u ∈W k,p
0 (Ω) and q as above,

‖u‖q;Ω ≤ C
∑
|α|=k
‖Dαu‖p;Ω .

Proof. This follows from Theorem 18, the density of C∞c (Ω) in W k,p
0 (Ω), and Propo-

sition 1. �

In general, any inequality which trades differentiability for integrability is
called a Sobolev or Sobolev-type inequality in the literature. Note that the trade
is one-way. One cannot generally sacrifice integrability to gain differentiability,
as locally integrability functions need not have a well-defined weak derivative.

2.2. Morrey’s inequality. Thus far we have considered the embedding theorems
for kp < n. What happens when kp > n? We know that when kp = n there is a
logarithmic divergence, but often this type of divergences form a boundary between
two different regimes. (For example, the function 1/x diverges logarithmically
under integration, but is the boundary between “locally integrable” and “integrable
except for local defects”.) Indeed, for kp > n there is a different class of estimates,
historically attributed to Morrey. Here we will prove a slightly weakened version,
originally due to Sobolev.

Theorem 22 (Morrey-Sobolev). For u ∈ C∞c (Rd), then there exists a constant C de-
pending on p and d such that

(17) sup |u| ≤ C|suppu|
1
d −

1
p ‖∂u‖p;Rd

if p > d ≥ 2.

That the support of u comes into play is natural. By rescaling the spatial
variables, we can make the support larger and larger while making the function
“flatter and flatter”, and at the same time keeping the maximum of u unchanged.
So without the suppu term, we can make the right hand side as small as we
want, while keeping the left hand side fixed, contradicting the inequality.
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Proof. Perform the rescaling where u′(x) = u(λx), then ∂u′(x) = λ(∂u)(λx). And

‖∂u′‖p = λ1− dp ‖∂u‖p. On the other hand |suppu′ | = λ−d |suppu|, so the inequality
to prove is invariant under rescaling of the spatial variables. Therefore it suffices
to prove the inequality for functions u such that |suppu| = 1. Furthermore, by
rescaling u→ λu, we see that the inequality is also invariant, and so we can assume
‖∂u‖p = 1. It then suffices to show that there exists some constant C depending on
p and d such that sup |u| ≤ C under these assumptions.

Now observe that p > d ≥ 2, so p′ = p
p−1 < d

′ = d
d−1 ≤ 2. Fix γ > 1, we first make

use of the Gagliardo-Nirenberg-Sobolev inequality

‖|u|γ‖d′ ;Rd ≤ γ‖|u|γ−1∂u‖1;Rd .

Applying Hölder inequality to the right hand side, we get

‖u‖γ
γd′ ;Rd

≤ γ‖u‖γ−1
(γ−1)p′ ;Rd

‖∂u‖p;Rd ,

where, by our assumption, the last factor in the right hand side is 1. Now, since
(γ − 1)p′ ≤ γp′ , and that u is supported on a set of measure 1, we can use the first
part of Proposition 1 and arrive at

‖u‖γd′ ;Rd ≤ γ1/γ‖u‖
1− 1

γ

γp′ ;Rd

Now take η = d′/p′ > 1 and set γ = ηk . For k > 0, we have

‖u‖ηkd′ ;Rd ≤ ηk/η
k
‖u‖

1− 1
ηk

ηk−1d′ ;Rd
.

For the base case k = 0 we use the Gagliardo-Nirenberg-Sobolev inequality again,
together with Hölder’s inequality to get

‖u‖d′ ;Rd ≤ ‖∂u‖1;Rd ≤ |suppu|1−1/p‖∂u‖p;Rd = 1 .

And so iterating, we have

‖u‖ηkd′ ;Rd = ‖u‖ηkd′ ;suppu ≤ η
∑
jη−j = C(p,d) .

Lastly we apply the fact that

(18) lim
p→∞

 1
|Ω|

∫
Ω

|u|p dx


1/p

= sup
Ω

|u|

for any bounded domain Ω, we have that

sup |u| = sup
suppu

|u| ≤ C

as claimed. �

Exercise 11. Prove (18).

In Theorem 22, we see that the fact u has compact support is essentially used.
This means that only knowing the derivative of a function is p-integrable does
not guarantee the function itself is bounded. A simple example is obtained by
considering u(x) = (1 + |x|)1/3 in one dimension. It has one derivative that is Lp

integrable for all p ≥ 2, but it is not a bounded function.
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However, all is not lost! If we also know that the function itself is in Lp, we
can “break the scaling” and get control on boundedness. In the proof we will also
see an illustration of the useful technique in harmonic/functional analysis called
optimisation.

Corollary 23. For u ∈ C∞(Rd) and p > d, there exists a constant C depending on p and
d such that

(19) sup |u| ≤ C‖u‖
1− dp
p;Rd
‖∂u‖

d
p

p;Rd
.

Proof. Let t > 0 be arbitrary, and denote by Ωt the set {|u| > t}. Let v be the function
such that v = 0 outside Ωt and v = |u| − t on Ωt . Clearly v ∈W 1,p

0 (Ωt). Using that
u is smooth, v = ±u ∓ t on each of the connected components of Ωt . Therefore
‖∂v‖p;Ωt

≤ ‖∂u‖p;Rd . Observe that

sup |u| ≤ t + sup |v| .

Applying Theorem 22 we get

sup |v| ≤ C|Ωt |
1
d −

1
p ‖∂v‖p;Ωt

.

We can estimate the size of Ωt using the Lp-weak-Lp estimate (also known as
Chebyshev’s inequality or Markov’s inequality) which states that

|Ωt | ≤
1
tp
‖u‖p

p;Rd
.

Thus we arrive at

sup |v| ≤ Ct1−
p
d ‖u‖

p
d −1

p;Rd
‖∂u‖p;Rd

which implies

(20) sup |u| ≤ t
(
1 +Ct−

p
d ‖u‖

p
d −1

p;Rd
‖∂u‖p;Rd

)
.

We now optimise by choosing t as a function of ‖u‖p;Rd and ‖∂u‖p;Rd . In particular
we can choose t such that the term inside the parenthesis in (20) is a constant: we
set

C‖u‖
p
d −1

p;Rd
‖∂u‖p;Rd = t

p
d .

This implies that

sup |u| ≤ 2C
d
p ‖u‖

1− dp
p;Rd
‖∂u‖

d
p

p;Rd

as claimed. �

Corollary 24. (1) For p > d, the inclusion W 1,p
0 (Ω)→ C(Ω̄) is continuous. (2) Simi-

larly the inclusion W k,p
0 (Ω)→ Cl(Ω̄) for 0 ≤ l < k − d/p. (3) If u ∈W k,p(Rd), then for

any Ω with compact closure we have u ∈ Cl(Ω) if 0 ≤ l < k − d/p.

Exercise 12. Prove Corollary 24. (Hint: for x,y ∈Ω′ bΩ, consider the function
v(y) = ψ(y)(u(y)−u(x)) where ψ(y) ∈ C∞c (Ω) and ψ(y) = 1 on Ω′ . By letting |Ω′ | and
|suppv| ↘ 0 one can recover continuity from Theorem 22.)
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2.3. Product estimates. By putting together the Hölder inequality and the Sobolev
inequalities, we get

Theorem 25 (Sobolev product estimates). Let u1 ∈W k1,p1(Rd) (or W k1,p1
0 (Ω)) and

u1 ∈ W k2,p2(Rd) (W k2,p2
0 (Ω)). Then u1 · u2 ∈ W k,p(Rd) (W k,p

0 (Ω)), whenever k ≤
min(k1, k2) and

(21)
1
p
− k
d
>

1
p1
− k1

d
+

1
p2
− k2

d
.

In other words, there exists a constant C = C(k1, k2, k,p1,p2,p,d) such that for any
u1,u2 ∈ C∞c (Rd),

‖u1u2‖p,k;Rd ≤ C‖u1‖p1,k1;Rd ‖u2‖p2,k2;Rd .

Proof. (Hereon C stands for a constant that may change line by line, but only
depends on the parameters specified above.) By the product rule for differentiation,

∂α(u1u2) =
∑
β+γ=α

∂βu1∂
γu2 .

So using the triangle inequality

‖u1u2‖p,k;Rd ≤
∑
|β+γ |≤k

‖∂βu1∂
γu2‖p;Rd .

For a pair (β,γ), we note that

‖∂βu1∂
γu2‖p;Rd ≤ ‖∂βu1‖r;Rd ‖∂γu2‖q;Rd

where p−1 = q−1 + r−1 by Hölder. Using Sobolev inequality,

‖∂βu1‖r;Rd ≤ C‖u‖p1,k1;Rd

when k1 > |β| and q−1 > p−1
1 −

k1−|β|
d . So

‖∂βu1∂
γu2‖p;Rd ≤ C‖u1‖p1,k1;Rd ‖u2‖p2,k2;Rd

whenever
1
p
>

1
p1
−
k1 − |β|
d

+
1
p2
−
k2 − |γ |
d

≥ 1
p1
− k1

d
+

1
p2
− k2

d
+
k
d

as claimed. �

A direct consequence is

Corollary 26. The spaces W k,p for kp > d are algebras, i.e. if u1,u2 are in W k,p, so is
the product u1 ·u2.

2.4. Rellich-Kondrachov compactness. The continuous inclusion of one Banach
space B1 into another B2 is said to be compact if the image of the unit ball in B1
is precompact in B2. That is, for every sequence {fk} ⊂ B1 with ‖fk‖B1

≤ 1, there
exists a subsequence which is Cauchy in B2. Compactness is particularly useful
for variational problems: to minimize a functional, one is led to study a minimizing
sequence. A suitable compactness result allows one to state that the minimizing
sequence actually converges, though often in a less regular space (which is not as
bad as it sounds, since quite often, especially in elliptic situations, we can gain back
the regularity once we have a weak solution).
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For a function space defined over subsets of Rd , there are generally three ways
for compactness to fail, which are all related to the symmetries of Rd :

(1) divergence in scale;
(2) divergence in physical support; and
(3) divergence in frequency support.

The divergence in physical support is easiest to illustrate. Consider u a function
with support contained within the ball of radius 1. Then for any translation
invariant norm on R

d (any non-weighted Sobolev or Lebesgue norm will be one
such), the sequence of functions um(x) = u(x+ 4me1) is bounded, but has no Cauchy
subsequence. This is because the supports of um,un for m , n are disjoint, so
‖um −un‖ = 2‖u‖ , 0.

On compact/bounded sets, a sequence cannot run off to infinity. But with a
proper rescaling we can still have infinitely many functions with disjoint support
fitting in the set. A classic example is given when Ω = (0,1) ⊂R. In L1(Ω), consider
the sequence of functions

um(x) = 2mχ(2−m,2−m+1)(x)

with ‖um‖1;(0,1) = 1. This sequence has again disjoint supports and thus contains
no Cauchy subsequence. Another example is given by the failure of the Sobolev

embedding W̊ 1.p
0 (Ω)→ L

dp
d−p (Ω) to be compact.

Lemma 27. The Sobolev embedding W̊ 1,p
0 (Ω)→ L

dp
d−p (Ω) is not compact.

Proof. Since Ω is open, it contains some metric ball. Without loss of generality, we
assume it contains the unit ball B about the origin. Take a function u in C∞c (B) such
that u = 1 on the ball of radius 1/2. The functions in the sequence

um(x) = 2m( dp −1)u(2mx)

can be shown by explicit computation to all have the same norms

‖um‖ dp
d−p ;B

= ‖u‖ dp
d−p ;B

, ‖∂um‖p;B = ‖∂u‖p;B .

So this is a bounded sequence in W̊ 1,p
0 (Ω).

On the other hand, we can compute

‖um −un‖ dp
d−p ;B

= ‖u|m−n| −u‖ dp
d−p ;B

≥
(
2|m−n|(

d
p −1) − 1

)(
2−d−|m−n|d |B|

) d−p
dp

≥ 21− dp
(
1− 21− dp

)
|B|

d−p
dp

and so the sequence admits no Cauchy subsequence. �

Remark 28. Had we examined instead the imbedding W 1,p
0 (Ω) → Lq(Ω) where

q < dp
d−p , we would’ve found that the above scaling construction leads to um→ 0 in

Lq.

The divergence in frequency support is similar to the divergence in physical
support, except for a conjugation via the Fourier transform. Here I’ll merely given
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an example. By Proposition 1, we have a continuous inclusion Lq(Ω)→ Lp(Ω) is
p < q.

Lemma 29. The inclusion Lq(Ω)→ Lp(Ω) is not compact. 1

Proof. Using that Ω is open, without loss of generality, we assume that the cube
[0,1]d bΩ. Consider the functions

um(x) =

sin(2πmx1) x ∈ [0,1]d

0 x < [0,1]d

where are bounded on Ω and hence bounded in any Lq.
On the other hand, the interpolation inequality gives us

‖um −un‖22;Ω ≤ ‖um −un‖1;Ω‖um −un‖∞;Ω ≤ 2‖um −un‖1;Ω .

While

‖um −un‖22;Ω =
∫

[0,1]d

u2
m +u2

n − 2umun dx =

1∫
0

sin(2πmy)2 + sin(2πny)2 dy = 1 .

So the sequence has no Cauchy subsequence in L1(Ω), and hence no Cauchy subse-
quence in Lp(Ω) for any p. �

So much for negative results. Here we’ll give one positive result due to Rellich
in the p = 2 case and Kondrachov in general.

Theorem 30 (Rellich-Kondrachov lemma). On a bounded open set Ω, the non-
endpoint Sobolev imbeddings

W
1,p
0 (Ω)→ Lq(Ω)

where q < dp
d−p is compact.

Proof. It suffices to prove it for q = 1. Then since the inclusion W 1,p
0 (Ω)→ L

dp
d−p (Ω)

is continuous, we get compactness for all 1 ≤ q < dp
d− by Hölder interpolation

(Proposition 1).
Let A be the unit ball in W 1,p

0 (Ω); fix δ > 0, ψ a mollifier, and let Aδ ⊂ C∞c (Rd)
be its corresponding regularisation {uδ |u ∈ A} (extend u outside Ω by 0). First we
show that Aδ is uniformly close to A in L1(Ω).

‖u −uδ‖1;Ω =
∫
Ω

∣∣∣∣∣∣∣∣∣
∫
R
d

ψ(z) (u(x)−u(x − δz)) dz

∣∣∣∣∣∣∣∣∣ dx

≤ sup
|z|≤δ
‖u(· − z)−u‖1;Rd

using the same argument as in the proof of Lemma 6. But now we observe that
using the difference quotient techniques of Proposition 16, we have that

sup
|z|≤δ
‖u(· − z)−u‖1;Rd ≤ sup

h<δ
h‖∆hu‖1;Rd ≤ δ‖Du‖1;Ω .

1I thank Denis Serre for this example.
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The last term on the right hand side is bounded by δ|Ω|1−1/p from Proposition
1 and that A is the unit ball in W 1,p

0 (Ω). Therefore it suffices to show that Aδ is
precompact for every δ > 0.

To do so we note that

|uδ(x)| ≤ δ−d
∫

Bδ(x)

ψ(
x − y
δ

)|u(y)| dy ≤ δ−d supψ‖u‖1;Ω

and

|∂uδ(x)| ≤ δ−d−1
∫

Bδ(x)

∣∣∣∣(∂ψ)(
x − y
δ

)u(y)
∣∣∣∣ dy ≤ δ−d−1 sup |∂ψ|‖u‖1;Ω .

Therefore Aδ is a bounded, equicontinuous subset of C(Ω̄), and thus precompact
in C(Ω̄) by Arzelà-Ascoli Theorem. Therefore Aδ is precompact in L1(Ω). �

Exercise 13. Show that the imbedding of W 1,p
0 (Ω)→ Cl(Ω) for 0 ≤ l < 1 − d

p of
Corollary 24 is compact. (Hint: it suffices to show that the image of the unit ball is
equicontinuous; this follows from the fact that in Theorem 22 there is a |Ω| term.)

2.5. Trace theorems. In the study of partial differential equations, we often need
to consider the boundary value problem, where the restriction of a function u in our
Sobolev space to ∂Ω is required to take certain prescribed values. In the case where
u is classical, this restriction operation is not a problem. But in the case where u
is a measurable function, as the boundary of an open set has measure 0, one can
always freely modify u on that boundary. In this section we try to make sense of
this trace of a measurable function onto a positive codimension submanifold.

The main trace theorem is a combination of the Gagliardo-Nirenberg-Sobolev
Theorem 18 and the Morrey-Sobolev Theorem 22.

Theorem 31. For u ∈ C∞c (Rd), consider its restriction u(M) onto a co-dimension n
hyperplane M for 0 ≤ n ≤ d. Then there exists some constant C = C(p,q,k,d,n) such
that

(22) ‖u(M)‖q;M ≤ C‖u‖p,k;Rd

whenever

(23) k > d

(
1
p
− 1
q

)
+
n
q
.

Proof. Write R
d = R

n
x ×Rmy , where the subscripts denote the variables we will use.

In other words, we write u ∈ C∞c (Rd) = u(x,y), where x ∈Rn and y ∈Rm. Consider
the following C∞c (Rnx) function

v(x) = ‖u(x, ·)‖q;Rmy .

By the Gagliardo-Nirenberg-Sobolev inequality we have that

v(x) ≤ C‖u(x, ·)‖
1−mk ( 1

p−
1
q )

p;Rmy
‖∂kyu(x, ·)‖

m
k ( 1

p−
1
q )

p;Rmy
≤ C‖u(x, ·)‖p,k;Rmy

for p ≤ q ≤ mp
m−kp .

Similarly we use Corollary 23 of the Morrey-Sobolev inequality on x, and have

|v(x)| ≤ C‖v‖p,l;Rnx
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if lp > n. Chaining the two estimates together and differentiating under the integral
sign, we have that

sup
∈Rnx
‖u‖q;Rmy ≤ C̃‖u‖p,j;Rd

whenever

j > d(
1
p
− 1
q

) +
n
q
.

�

By a density argument this implies the continuous imbedding W k,p(Rd) →
Lq(M), and similarly W k,p

0 (Ω)→ Lq(M ∩Ω), for almost every hyperplane M. One
can similarly generalize this to traces where M can be any compact smooth sub-
manifold of Rd ; it suffices to use a partition of unity argument, and the fact that M
can be covered by finitely many balls and in each ball there exist a diffeomorphism
with bounded first k derivatives bringing M to a hyperplane. We leave such natural
generalisations to the reader.

Notice that if we set the Lebesgue integrability the same on both sides (p = q),
we see that for each drop in dimension one trades “a little more than” 1/p degree
of differentiability. This “little more” can be removed in some cases. We give an
example below whose proof is based on the Fourier isometry of L2.

Theorem 32. Let u ∈ C∞0 (Rd), and u(M) again, its trace onto a co-dimension n hyper-
plane. Then if j > 0, we have

‖u(M)‖2,j;M ≤ C‖u‖2,j+ n
2 ;Rd .

Proof. By rotation and translation, we can assume that M is the plane x1, . . . ,xn = 0.
Write û for the full Fourier transform of u on R

d , and ũ for the Fourier transform
of u(M) on M. The Fourier inversion formula gives

ũ(ξn+1, . . . ,ξd) =
∫

ξ1,...,ξn

û(ξ1, . . . ,ξd) dξ .

We use the short hand η = (ξ1, . . . ,ξn) and ζ = (ξn+1, . . . ,ξd). So

‖u(M)‖22,j;M =
∫

(1 + |ζ|2)j |ũ(ζ)|2 dζ

=
∫

(1 + |ζ|2)j
∣∣∣∣∣∫ û(η,ζ) dη

∣∣∣∣∣2 dζ

=
∫

(1 + |ζ|2)j
(∫

(1 + |η + ζ|2)j+
n
2 |û|2 dη

)(∫
(1 + |η + ζ|2)−j−

n
2 dη

)
dζ

Consider the last term in the right hand side. Writing t2 = 1 + |ζ|2 and r2 = |η|2/t2,
we have ∫

(1 + |η + ζ|2)−j−
n
2 dη =

∫
(1 + |η|2 + |ζ|2)−j−

n
2 dη

= t−2j
∫

(1 + r2)−j−
n
2 dωn−1rn−1 dr

= ct−2j
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where c = c(n,j) is finite whenever j > 0. Plugging this back in we have directly

‖u(M)‖22,j;M ≤ c
�

(1 + |η + ζ|2)j+
n
2 |û|2 dη dζ = c‖u‖2,j+ n

2 ;Rd .

�

Examining the proof, we see that the failure of the embedding in the case j = 0 is,
again, given by a logarithmic divergence. Thus we have the continuous embedding

Hk(Rd)→H j (Rd−n)

when k − j ≥ n
2 and j ≥ 0 except the case where both equalities are satisfied.

2.6. Numerology. In this last section we re-visit the scaling property and use it to
obtain a quick heuristic for checking whether a proposed inequality is reasonable.
Consider the function u : Rd →R as a map between two vector spaces. The scaling
symmetry of a vector space induces two types of scaling on u. The first is the
magnification of the source vector space

u(x) 7→ u(λx)

and the second is the amplification of the target vector space

u(x) 7→ κu(x) .

In the following, the phrase “v is a scaling of u by factor (λ,κ)” will mean the
replacement v(x) = κu(λx).

Each homogeneous Sobolev space W̊ k,p(Rd) has, associated to it, a natural scaling
law L = L(λ,κ), which we define as

Definition 33. The natural scaling law L = L(λ,κ) associated to W̊ k,p(Rd) is the
function satisfying

‖Dkv‖p = L‖Dku‖p
whenever v is a (λ,κ)-scaling of u.

For a fixed k,p,d, the set {(λ,κ) ∈ R2
+|L(λ,κ) = 1} is called the set of invariant

scalings of W̊ k,p(Rd). This notion of the scaling law and the invariant scalings can
be extended to other homogeneous function spaces.

We can compute explicitly what L is for Sobolev spaces. First

Dkv(x) = κλkDku(λx) .

So taking the pth power and integrating,∫
|Dkv|p dx = κpλkp

∫
|Dku|pλ−d dy .

So the scaling law is

L(k,p,d)(λ,κ) = κλk−
d
p .

Now, how do we use this scaling law? Suppose we are asked to check whether
one Sobolev space embeds continuously into another, which boils down to checking
whether an inequality of the form

‖Dk2u‖p2;Rd2 ≤ C‖Dk1u‖p1;Rd1
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is plausible with some constant depending only on C = C(k1, k2,p1,p2,d1,d2). What
we do is consider the (λ,κ) scaling v of u: if this inequality holds for u, then by
definition

1

L(k2,p2,d2)
‖Dk2v‖p2;d2

≤ C

L(k1,p1,d1)
‖Dk1v‖p1;d1

.

Now consider the invariant scaling set for k2,p2,d2. Solving for κ we get κ = λ
d2
p2
−k2 .

Then the restriction of L(k1,p1,d1) to this set becomes

L = λ
d2
p2
−k2+k1−

d1
p1 = λc .

So if c , 0, by choosing a scaling corresponding to either a really large or really
small λ, we can make the right hand side arbitrarily small, while fixing the left
hand side to be constant size, and thus obtaining a contradiction. Hence a necessary
condition for a embedding of one homogeneous Sobolev space into another is the equality
of their scaling laws.

Let us test this on the trace theorem of the previous section. Then d1 = d,
d2 = d − n, k1 = k, p1 = p, k2 = 0, p2 = q. Then a homogeneous embedding will
require

d −n
q

+ k − d
p

= 0

or

k = d(
1
p
− 1
q

) +
n
q

precisely the logarithmically divergent end-point case which we disallow. (Notice
that insofar as scaling laws are concerned, log(x) ∼ x0.)

For another example we can look at the interpolated Sobolev inequality. Suppose
we want

‖u‖q;Rd ≤ C‖u‖1−tp;Rd ‖∂
ku‖t

p;Rd

the scaling law of the left hand side is invariant when κ = λd/q. The right hand side
has scaling by

(L(0,p,d))1−t(L(k,p,d))t = κλ−(1−t) dp λt(k−
d
p )

so scaling invariance requires

d
q

+ tk − d
p

= 0

which tells us that the interpolation exponent must be

0 ≤ t =
d
k

(
1
p
− 1
q

) ≤ 1

(which was used in the proof of Theorem 31), and gives us precisely the range of
admissible Sobolev inequalities (as long as q <∞).

This last example here also demonstrates how one is to treat embedding inequal-
ities with non-homogeneous Sobolev spaces: instead of considering ‖u‖p,k;Rd , we
should consider the interpolation ‖u‖1−t

p;Rd
‖∂ku‖t

p;Rd
which will have a homogeneous

scaling law, while also be roughly equivalent to the inhomogeneous Sobolev norm.
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