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Abstract
Images are essential in biomedical research. Following the development of fast imaging

techniques, large amounts of data are routinely acquired and automated image analysis

has become unavoidable. This work focuses on a common image analysis problem, image

classification. While automated classification using machine-learning usually relies on mea-

surements ("features") extracted from an isolated region of interest in the image, I. Goldberg

et al. proposed a classification algorithm, WND-CHARM, in which features are computed on

the whole image thereby avoiding segmentation. WND-CHARM exhibited impressing results

on a range of different data, but was only used in a few studies so far.

In this project we created a WND-CHARM-inspired algorithm where features extraction

is carried out in the popular image analysis software CellProfiler. We kept the core idea of

WND-CHARM but designed a more reliable and user-friendly method. In order to build our al-

gorithm in an optimal way we analyzed the various “steps” of WND-CHARM and benchmarked

our new method against WND-CHARM on a collection of datasets. We further explored its

potential by applying it to real-life biological data. It was first tested on examples of high-

throughput cell-based assay data and yielded excellent results. We then used our algorithm to

classify tissue images and obtained satisfying classification accuracy. Finally we applied it to

harder datasets to investigate its efficiency on a wide range of cases.

We proposed a new whole image-based classification algorithm having the same advan-

tages as WND-CHARM: (i) the ability to capture various morphological aspects of the image,

making it efficient on many types of data, and (ii) the absence of requirement for segmentation.

Our classifier was shown to perform as well as its predecessor while being easier to use. By

showing its efficiency on some application examples, we aimed to make whole-image based

classification more accessible to the biomedical research community.
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1 Introduction

1.1 General Information

Many different research projects in biology and medicine rely on information contained in

images. From confocal microscopy to MRI or from time-lapse microscopy to computed to-

mography scan, an amazing number of imaging modalities are available today for biomedical

research. With the advent of high-throughput methods in biomedical research, large amounts

of image data can be available in a limited time. However, these large image datasets might

not be analyzable "by hand" for time or financial reasons. Automated image analysis using

Machine Learning has therefore become a requirement for many biomedical research labs in

order to extract information out of the rapidly expanding amount of acquired data.

The focus of this Master’s thesis is an image classification algorithm called WND-CHARM

(Weighted Neighbor Distances using a Compound Hierarchy of Algorithms Representing

Morphology). In this chapter, we first give an introduction to the general principles of Machine

Learning, describe WND-CHARM, and finally explain how this relates to the actual project.

1.1.1 Classification

Classification (or pattern recognition) is a subproblem of Machine Learning that can be

defined as the process through which a machine learns to identify an ensemble of features

(called a "pattern") and discriminates inputs with different patterns, assigning a "class" to

each input. Two steps are usually required to build a classifier: a training step followed by a

validation step, after which the classifier can be used to classify unknown inputs (Fig. 1.1). A

classifier can be trained using either "supervised" or "unsupervised" learning, the latter lying

out of the scope of this project.

When the inputs are images, the pattern recognized by the classifier is usually composed of a

collection of features extracted from the image. These features are numerical values describing

the image and are obtained through different image processing algorithms. They range from
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Chapter 1. Introduction

simple features e.g. the mean value or the variance of the image, to more complex ones e.g. the

resultant image after applying a particular filter. The most common paradigm when working

on biological images is to first segment the objects of interest in the image to isolate them from

background, and then to extract features from these objects (Fig. 1.2). Unfortunately, accurate

object segmentation is often non-trivial and is likely to be the bottleneck that constrains the

quality of an analysis since an inaccurate segmentation yields inaccurate results. In addition,

designing a segmentation algorithm might require significant expertise, and is often beyond

the skills of a biologist. Tools like the open-source software CellProfiler ([9] and [31]) can help

in this task, but the segmentation process remains a technically difficult step which is hard to

generalize.

Figure 1.1: Overview of supervised classification. Images obtained from [2].

Figure 1.2: Object-based approach for classification. Images obtained from [2].

2



1.1. General Information

Training

When supervised learning is used to train a classifier, the training set is composed of inputs

from known classes (i.e. "labels"). These inputs are fed into the classifier to serve as a basis

for further classification of unknown data. A learning algorithm is then applied to allow the

classifier extracting information out of the training set and learning from it. Many different

learning algorithms exist, but we limit this introduction to the description of the one most

closely related to the project, called k-Nearest Neighbors (k-NN). In k-NN the classifier assigns

the class to the unknown input that is mostly represented among the k training set samples

closest to it. The parameter k is a positive integer number making the classifier more (if k is

small) or less (if k is big) sensitive to noise in the distribution of the classes. Fig. 1.3 illustrates

k-NN classification for a simple case where only two features and two classes are considered:

the unknown input (in black) would be assigned to class B for k=3.

Validation

In order to assess the efficiency of a classifier, a validation (also called testing) step is performed

after the training. The validation consists of providing known inputs to the classifier, and

then comparing the output of the classifier to the actual class of the input. The results consist

of a score (percentage) for the efficiency of the classifier, and a confusion matrix (Fig. 1.4)

summarizing the performance of the classifier on each class. The diagonal of the confusion

matrix contains the number of items assigned to the correct class, while the off-diagonal

items are the number of wrongly classified elements. The efficiency of the classifier is usually

computed as a mean of the values in the diagonal.

When training a classifier, a big training set is usually preferred in order to allow the classifier

to be more accurate, and a reasonable amount of data should be available for subsequent

validation. However, in practice sparse annotated data is usually available for the training and

validation steps. To address this problem, a method called k-fold cross-validation is commonly

used. K-fold cross-validation is performed as follows: first the training set is randomly split

in k subsets containing the same number of data (that is a fraction of 1
k of the entire dataset),

then k-1 of these subsets are used for training and the remaining subset is left for testing. This

procedure is repeated k times, using each different k subsets for validation.

3



Chapter 1. Introduction

Figure 1.3: Illustration of k-nearest neighbors (k-NN) classification algorithm. Samples from
two different classes (stars and rounds) are represented in a 2-dimensions features space. The
unknown sample (square) is classified by looking at the most represented class among its
k-nearest neighbors. k is here set to 3, and the three closest samples are therefore the elements
reached by the three dashed circles.

Figure 1.4: Description of a confusion matrix.

1.2 WND-CHARM

WND-CHARM (Weighted Neighbor Distances using a Compound Hierarchy or Algorithms

Representing Morphology) is a classification algorithm proposed in 2008 by Ilya Goldberg et

al. at the National Institute of Aging at the NIH ([38] and [46]). As opposed to an image-based

classifier as described in Fig. 1.2, WND-CHARM computes features on the whole image hence

no object segmentation step is required, as shown in Fig. 1.5. As segmentation might be a

tedious and time-taking task depending on the images, an algorithm that bypass segmentation

4



1.2. WND-CHARM

by extracting features on a per image basis would allow for a substantial gain in time and efforts

required to setup an image-based assay. Using image data instead of object data is, of course,

a simple and straightforward idea. Difficulty stems from the choice of features to extract

from the image. The segmentation step required to measure object properties ensures that all

features to be computed capture actual information. However, when extracting measurements

on the whole image, everything is captured and there is no way to focus on particular elements

of the image. The key is then to design an algorithm able to capture enough useful properties

of the image to overcome the lack of object-based information, yielding results that compare

to the ones obtained with an algorithm using per-object features. We will refer throughout

this work to the classification method as "WND", and to the feature vector as "CHARM".

1.2.1 Algorithm

The main steps of WND-CHARM are more or less the same as for any classical classifier. First

features need to be extracted from the image to form a feature vector that will describe the

image. WND-CHARM uses a feature vector composed of 1025 elements that fall into four main

categories: high contrast features, polynomial decompositions, pixel statistics, and textures,

all extracted from gray-scale images (i.e. if the input is an RGB image, the color information

is not used). The High Contrast Features category contains information about the elements

that compose the image, such as edges and shapes. The Textures category contains some well-

known texture descriptors such as the Haralick ([21]) and the Tamura ([52]) texture features.

The Pixel Statistics group is composed of information about pixel values distribution over the

image, such as histograms with various number of bins and statistical moments. Finally the

Polynomial Decompositions category is built by generating a polynomial that approximates

pixels values up to a given error such as the Zernike or the Chebyshev polynomials, and whose

coefficients describe the image. A complete list of the different features contained in the

feature vector can be found in Table 1.1. A mathematical definition of each of these elements

can be found in [38].

5



Chapter 1. Introduction

Figure 1.5: "WND-CHARM-like" whole-image based classification. Images source: [2].

Table 1.1: Elements of the CHARM feature vector.

Fig. 1.6 summarizes how the feature vector is constructed; these features are extracted from

the original image as well as from transforms of the image and from compound transforms

(transforms of transforms) of the image. The Fourier Transform, Wavelet Transform, Cheby-

shev Transform and composition of these transforms are used to give additional "higher level"

descriptions of the image content.

6



1.2. WND-CHARM

Figure 1.6: Construction of WND-CHARM feature vector. Source: [38].

The second step of the algorithm is a selection of the elements of the features vector to reduce

the dimensionality of the feature space. Since the features vector is composed of so many

different elements, we expect it to be partly composed of noisy or non-informative features

that fail to give exploitable information on the image and that should therefore be discarded. A

weight based on the Fischer Discriminant score ([3]) is computed for each feature as described

in Eq. 1.1, where T f is the mean of the values of feature f in the whole dataset, T f ,c the mean

of the values of the feature f in class c only, σ2
f ,c the variance of feature f among all samples

of class c, and N the total number of classes.

W f =
∑N

c=1

(
T f −T f ,c

)2

∑N
c=1σ

2
f ,c

· N

N −1
(1.1)

Feature weight can thus be understood as the ratio of variance of class means from the pooled

mean to the mean of the within-class variance [38]. The variances of the features among

each class are computed after the feature values have been normalized between 0 and 1. In

WND-CHARM’s C++ code, values are normalized in the [0,100] interval instead of [0,1].

Following this weighting step, 35% of the features with lowest weights (i.e. the least informative

ones) are discarded by setting their weight to zero. The remaining 65% of the features that

best discriminate the image classes are used for the actual classification. The 35% threshold

for weight selection is selected empirically based on observations with several classification

problems [38]. In the actual implementation of the algorithm the default threshold value is set

7



Chapter 1. Introduction

to 15% [46].

For the classification step, a modified version of the k-nearest neighbor classifier that includes

features weights is used. The similarity s(x,c) from feature vector x to class c is described as Eq.

1.2, where Tc is the training set for class c, t a feature vector contained in Tc , |Tc | the number

of training samples of class c, |x| the length of feature vector x, W f the weight of feature f ,

x f the value of image feature f in vector x, t f the value of image feature f in vector t , and

p is an exponent empirically set to -5 in [38]. The parameter p modulates the importance

of elements in the training set as a function of their similarity to vector x; its value dampens

the contribution of training samples that are very different from x. As the dissimilarity grows

bigger, its contribution becomes smaller to the power p for increasingly negative values of p.

s(x,c) =
∑

t∈Tc

[∑|x|
f =1 W 2

f

(
x f − t f

)2
]p

|Tc |
(1.2)

The similarity between x and class c is the average of all weighted similarities elevated to the

power p from the feature vector x to any feature vector belonging to class c . When an unknown

feature vector x is presented to the classifier, the similarity to each class c is computed and

the vector is assigned to the closest class, i.e. the class to which it has the maximal similarity.

The difference between this Weighted Neighbor Distance (WND) and the traditional k-NN

approach is that WND gives a weighted distance from a vector x to all elements in the training

set and therefore each of these elements play a role in the actual classification and are weighted

by their information content, while in k-NN only k elements in each class equally influence

the classification result.

Finally, the classifier performance was validated using a different method than k-fold cross-

validation: instead of randomly splitting the dataset into k parts, using one for validation while

training with the remaining k-1, WND-CHARM’s method was to use a random 25% of the data

in each class for validation after training on the remaining 75% in each class. We will refer to

this method as "save 25%" for the remainder of this work.

1.2.2 Performances & Pitfalls

WND-CHARM was tested on several datasets composed of biological, textural, and facial im-

ages and obtained surprisingly good results with classification accuracies as they outperform

application-specific classifiers, for instance on biological datasets as shown in Table 1.2. The

authors suggest that this impressive performance is due to the large feature vector used and

the feature selection step. These results are encouraging given that they were obtained without

any segmentation step on the original image WND-CHARM therefore seems to be a promising

algorithm that could be used for a wide range of applications ranging from biomedical image

analysis to face recognition. Unfortunately, the only available version of WND-CHARM is a

C++ implementation that requires the installation of many libraries and that can only be run

in command line. WND-CHARM has surprisingly only been cited in a very few papers even

8



1.3. Project

Table 1.2: Comparison of WND-CHARM accuracy versus classic classifiers. Source: [38].

through it is described as performing better than the traditional algorithms, probably partly

due to its non-user friendly implementation. As command line programs can be difficult

to handle for people without training in information technology, designing an easier-to-use

implementation could allow the full potential of the algorithm to be better exploited.

Some criticism can be formulated against WND-CHARM as the implementation choices are

not really supported in [38] and [46]. Concerning the feature extraction, the composition of

the feature vector given little justification and analysis, in spite of the fact that some of its

elements are quite difficult to interpret at the image level, and the thresholding of the features

weights is empirical. The classification and validation steps can also be discussed: the WND

method looks like a simple k-NN-like algorithm with empirical parameters, and the "save

25%" method is an uncommon and potentially biased way of validating the results.

1.3 Project

As this algorithm might hold a great potential that remains mostly unused due to the com-

plexity of the existing implementation, this project’s core aim was to implement a WND-

CHARM-like algorithm in Python, and to integrate it into the widely used open-source soft-

ware CellProfiler ([9], [31], and [27]) to make it more user-friendly and more easily accessible to

researchers. This project was supported by Ilya Goldberg, the original author of WND-CHARM,

who would like image-based classification algorithms to be more widely used. In order to

make sure we fulfilled this objective our first goal was to obtain comparable results with our

implementation as the ones described in [38]. We also aimed to make an analysis of the

original WND-CHARM to better understand the way it operates, and to ultimately be able to

propose a new WND-CHARM-inspired algorithm that performed equally well or better, and

that keeps WND-CHARM’s strengths while correcting its weaknesses therefore addresses most

of the issues of the original implementation described above.

1.3.1 Implementation

Instead of translating the existing WND-CHARM’s code from C++ to Python, our goal was to

keep the global idea of Ilya Goldberg’s algorithm to create a new WND-CHARM-like classifica-

tion algorithm. The new version would also contain features extracted on a whole-image basis

(the primary strength of WND-CHARM), but the identity of the features would not necessarily

be the same as we thought that the aspects captured by features (textures, edges, etc.) were

more important than each particular feature definition. The classification algorithm and

9



Chapter 1. Introduction

validation methods could also be modified according to the conclusions of our analysis on the

original WND-CHARM.

1.3.2 Application

While developing our WND-CHARM-inspired implementation in CellProfiler we tried to

reproduce the results from Ilya Goldberg’s original paper, and we therefore first ran our

implementation of the algorithm on the datasets used in [38] and [46]. Once we were confident

in the fact our implementation was efficient, we presented some examples of applications

in real-life cases. The additional datasets we used for the application part are thoroughly

described in the Materials and Methods section of this thesis.

10



2 Materials and Methods

This Master’s thesis was hosted by the Imaging Platform/Carpenter Lab. The Imaging Plat-

form focuses on the development of methods to automate the analysis and extraction of

the multitude of information contained in biological images, and is a world leader in this

domain. Automation of image analysis became a major concern in biomedical research as

high-throughput imaging techniques developed, yielding amounts of data that cannot be

processed manually. Surprisingly only few laboratories around the world are fully devoted to

developing tools for image analysis, and it is therefore a great opportunity to be able work in

Anne Carpenter’s Lab.

The researchers at the Imaging Platform are mostly Computer Science-oriented and con-

centrate their effort in three topics: software development, data mining and image assay

development. The group benefits from the experience of each of its staff scientists, and from

the unique dual training of the lab’s Principal Investigator (Anne Carpenter, Ph.D) in both

Cell Biology and Image Processing. Their most important work includes CellProfiler and

CellProfiler Analyst, two open-source software packages dedicated to high-throughput image

analysis ([9], [31], [27]).

2.1 Materials

Since our work was essentially computer-based, we will describe in this section the computa-

tional tools and resources we used to obtain the results to be presented.

2.1.1 CellProfiler and CellProfiler Analyst

CellProfiler (CP, [9], [31], and [27]) is a unique tool that allows scientists to perform advanced

image analysis even in the absence of extensive computer vision skills. Image processing

steps are organized in a user-friendly "pipeline", and the various operations on images can be

performed by simply adding "modules" to the pipeline. The very simple interface (Fig. 2.1)

makes the software easy to use, as the various parameters required by the different image
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analysis algorithms are listed and described in a comprehensive manner. For all these reasons

CellProfiler became a widely used tool in biological research and accumulated more than 382

citations in September 2011.

While CellProfiler allows extraction of a vast amount of data from the images, CellProfiler

Analyst (CPA, [25]) encompasses the second part of the analysis: data mining. Using the same

kind of simple interface as CellProfiler, CellProfiler Analyst gives a way to perform advanced

statistical analysis and screenings on huge datasets. Apart from their well-designed inter-

faces these two software packages are also famous for being free and open-source, therefore

potentially allowing every researcher with programming skills to design their own modules.

Aside from CellProfiler and CellProfiler Analyst the group also developed the Broad Bioimage

Benchmark Collection (BBBC, [2]), a database of image sets that can be used to test and

validate methods for image analysis.

Figure 2.1: CellProfiler user interface.

As CellProfiler is composed of modules and pipelines the first question we asked ourselves was

how to embed our WND-CHARM-like algorithm into CellProfiler. Two different options were

considered for the features extraction step: either creating a module called WND-CHARM that

would encapsulate the whole feature extraction process, or creating a pipeline composed of

different modules for the extraction of the many measurements required to build the features

vector. The main advantage of the first option is be that the user would be blind to the

feature extraction process that could seem to be complicated and confusing. As explained

before WND-CHARM uses a lot of different features obtained through several more or less

complex image processing steps which might intimidate less experienced users. Hiding all this
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process into a simple module to be used as a black box would therefore have the advantage of

making the algorithm look simple to the user while it is actually not: this is the way the C++

implementation of WND-CHARM was designed. On the other hand, the second option offers

greater modularity and thus flexibility: if the user thinks that for some reason there is no need

to compute some features, if the user wants to add more features or change parameters, there

would be the possibility to remove modules out of the pipeline, to introduce new ones or to

modify existing modules settings. In this situation the parameters for each module would

all be visible to the user, which would give the opportunity to easily fine tune and refine the

analysis depending on the dataset. We finally opted for the second option as we thought

the ability to add, remove or modify modules would be highly valuable and contribute to

an improved user-friendliness. The second choice we had to make was how to organize the

classification step. CellProfiler Analyst offers the possibility to interactively train a classifier,

whereas CellProfiler is not initially designed to perform image classification. One option

was be to design the classification step as a CellProfiler module. The overall WND-CHARM

algorithm implemented in CellProfiler would therefore be composed of two steps: first for the

training the user would run a pipeline composed of a series of modules for feature extraction

followed by a module for training and validation that would output a "classifier file". The

actual classification would then be performed in another pipeline composed of the feature

extraction steps and of a classification step that requires as input the classifier file produced

after training. The second option was be to leave the classification step out of CellProfiler,

either including it in CellProfiler Analyst or leaving it as a standalone Python executable. This

question is still debated, and no final decision has been made at the time we write this thesis.

As an implementation choice was not settled we decided to keep the classification step as

a separate Python script in the meantime such that it can easily be included in CP or CPA if

needed.

2.1.2 Python

CellProfiler and CellProfiler Analyst are both written in Python, a high-level programming

language that can be interpreted in many different operating systems. All the code created to

implement our classifier was therefore written in Python to make it suitable for integration in

CellProfiler. The overall process of image classification is currently split in two parts (feature

extraction and training/validation). First a list of features is extracted from images using

CellProfiler, which is then fed into a Python script for training and validation.

Features Extraction

We hypothesize that it is more the "per image" analysis rather than the actual features used

that gives WND-CHARM its analysis power and we therefore assumed that any other whole-

image-based feature vector composed of judiciously chosen elements should give good results.

We also found very interesting the idea of having features "groups" as in WND-CHARM (High

Contrast Features, Polynomial decompositions, Pixels statistics, etc.), so we decided to try to
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create a vector that would retain this idea and be composed of the same "groups", but not

necessarily of the same elements inside each group. Since many different modules exist in

CellProfiler our first goal was to establish a list of the features we could obtain using the already

existing modules, and then to compare this list with the list of features used by WND-CHARM.

The feature groups missing from CellProfiler but used in WND-CHARM would give us leads

for implementing new modules. Since we thought that the real interest of WND-CHARM

does not rely on the exact nature of the features used but rather on the fact the features are

computed on the whole image rather than on segmented objects, we started by implementing

a "WND-CHARM-like" pipeline that would extract as many features on the whole image as

possible using only existing CellProfiler modules, and analyzed these first results. If the results

happened to be not satisfying, we would iteratively refine the pipeline by implementing new

modules until results would be good enough. Another reason that helped us decide using this

incremental implementation approach instead of directly implementing all the features from

WND-CHARM is that we thought it could give us the chance to find a "sufficient" subset of

features that yields good classification results. It could give us the opportunity to design a

feature vector that would neither be too big (with too many features, some hardly ever actually

used) nor too small (with too few features to allow for good classification results).

As already mentioned in the Introduction the CHARM vector is composed of features extracted

from the original image, but also from transforms and compound transforms of the image.

There is therefore a kind of "hierarchy" in the vector. Features are extracted from several

"levels" (raw image, transforms and compound transforms) that are increasingly complex and

abstract. If it is straightforward to connect features values to the actual image content when

they are extracted on the raw image, it is however more subtle to understand what they mean

when computed in a transformed domain, and it becomes even tougher to make conclusions

when features are extracted from a compound-transformed image: higher features "levels"

are generally harder to interpret. As an example if one sees that edge features have high values,

one can easily look at the original image and observe that it is very "edgy". Similarly one

could link high values at high frequencies in the Fourier transformed image to the presence

of many details in the original image. However strong signals in the Fourier Transform of a

Chebyshev Transform are much harder to connect to aspects of the original image. Aside from

features groups, our other axis of exploration was therefore features levels: we implemented

our CHARM-like feature vector by incrementally adding more representatives of features

"groups", and in parallel by incrementally adding more features "levels". Our goal was to

gather results for these different features vectors versions in order to understand how added

complexity impacted on classification efficiency. We used the following nomenclature to

describe our different features vectors: each version is labeled as vY.X. Y ranges from 1 to

3 and indicates features "levels" included in the vector as shown in Fig. 2.2: 1 is the lowest

level containing features computed on the raw image only, 2 contains all elements from 1 and

an added level of complexity with features extracted from transformed images, and 3 is the

highest level that contains 1, 2 and features extracted from compound transforms of the image.

The second index, X, takes the values of 1 or 2 and corresponds to different features sets: 1 uses
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only the Fourier and Wavelet transforms in addition to the initial features set from CellProfiler

(composed of edge statistics, Gabor textures and Haralick textures), while 2 works with the full

set of transforms (Chebyshev, Fourier and Wavelet) and contains Chebyshev statistics, Tamura

textures and more statistical moments as well as the features available in CellProfiler.

Figure 2.2: Hierarchical features levels.

The initial pipeline (called v0 in our nomenclature as it serves as a reference) that we designed

in CellProfiler extracts a vector of 125 features from the image. These features come from

the original image (1), the result of a Prewitt gradient filtering of the original image using

the EnhanceEdges module (2), and the three results of applying global Otsu thresholding on

the original image with 2-class thresholding, 3-class thresholding with pixels in the middle

intensity class assigned to the foreground, and 3-class thresholding with pixels in the middle

intensity class assigned to the background (3, 4, and 5) using the ApplyThreshold module.

Nineteen global image statistics are extracted on a subset or all of the five images using

CellProfiler’s MeasureImageQuality module (Percent maximal and percent minimal on (1),

maximum intensity on (1) and (2), mean intensity, standard intensity and total intensity on all

five images). Finally 104 texture statistics plus 2 Gabor features are extracted from the original

image using CellProfiler’s MeasureTexture module (measures on two texture scales in all four

directions, measures on 4 texture scales in all four directions, and Gabor features using four

angles). Since in the WND-CHARM procedure only the 15% strongest features are taken into

account for classification, only 19 features out of the 125 were used in this case versus 154

out of the 1025 contained in the CHARM vector. It is important to notice the difference in the

absolute size of the subset of features used for classification between our implementation and

the original one: we have in our case roughly 6 times fewer features available to discriminate

between the different classes. v0 was our reference vector since it represents what we can

obtain if we want to do whole-image classification using only modules already available in

CellProfiler’s current release.
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The second versions also contained only lower-level features, i.e. features extracted on the raw

image, and we therefore called them v1.1 and v1.2 following our nomenclature. v1.1 consists

of the 125 features from v0 plus the result of four histogram binning of the image with various

numbers of bins (3, 5, 7 and 9) from a new module called Histograms, yielding a total of 149

features. v1.2 is at the same features level as v1.1, but contains more new modules: a Moments

module that computes the first four statistical moments of the image and a Tamura module

that extracts three Tamura features (contrast, coarseness and directionality, described in the

appendices) as well as a 3-bins histogram of coarseness for a total of 159 features. These two

vectors are still very simple as only 22 and 24 features are left after thresholding.

The next versions v2.1 and v2.2 include another level of complexity: they contain all the

features present in the v1.X versions plus features extracted from transforms of the image. v2.1

is composed of 421 features: the 149 features present in v1.1 plus the features from the Mea-

sureTexture module, the histograms from the Histograms module, and most measurements

from the MeasureImageQuality module (Maximum, minimum, percent maximum, percent

minimum, variance and total intensity) computed on the Wavelet and Fourier transform of

the image. The second version, v2.2, contains 661 features and is constructed in the same

way as v2.1: it contains the 159 elements from v1.2 extracted on the original image, plus

features (all elements from MeasureTexture, Histograms, Tamura and Moments, and selected

measurements from MeasureImageQuality) computed on the Fourier, Wavelet, and this time

also Chebyshev transform of the image. Some more features are also computed using this last

transform: the new HistogramCheby module computes the "Chebyshev statistics" defined as a

32-bins histogram of the coefficients of the Chebyshev transform of the image. The Chebyshev

statistics are also computed on the Fourier transform of the image, yielding the so-called

"Chebyshev-Fourier statistics". When thresholded using the 15% limit, v2.1 therefore has 63

elements left for classification while v2.2 benefits from 99 features. With these two vectors

we are getting closer to the scale at which WND-CHARM operates with its 125 features after

thresholding.

Finally versions v3.1 and v3.2 contain all the elements present in v2.1 and v2.2 respectively as

well as elements extracted from compound transforms. Everything extracted on the transforms

from level 2 is computed as well on the Fourier transform of the available transformed images.

v3.1 hence features the Fourier transform of the Wavelet transform, while v3.2 contains the

Fourier transform of the Wavelet transform as well as the Fourier transform of the Chebyshev

transform. As in level 2, v3.1 does not contain the Tamura, Moments and HistogramCheby

modules while v3.2 does. The resulting v3.1 is composed of 557 elements and v3.2 contains 953

features. After thresholding, v3.1 is composed of 83 features and v3.2 of 143 elements. The last

version, v3.2, is mostly similar to the CHARM vector in the way it is built even though it does

not contain the exact same elements. Table 2.1 describes the composition of this CHARM-like

vector we designed.
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Table 2.1: Elements of the CHARM-like feature vector. Shaded regions indicate features only
present in versions vY.2.

For the interested reader a description of the CellProfiler modules is available in CellProfiler’s

help interface, and a mathematical description of the new features and transforms mentioned

above can be found in the appendices.

We designed our feature extraction pipelines to yield two outputs (as comma separated value

text files, or csv): a "labels" file containing two columns (a unique identifier for each image

and the class of the image), and a "data" file containing N+1 columns, where N is the number

of features extracted from the image, plus one column containing the image identifier.

Classification

As explained before we implemented the classification part as an independent Python script

since we did not decided yet whether it should be included in CellProfiler as a module or not.

An instance of the classifier can be trained by calling a train function from our script and

then validated using a cross-validation method. Our code takes as inputs the data file and

associated labels files obtained after running the features extraction pipeline in CellProfiler.

Several options are available for the analysis: confusion matrices summarizing the validation

steps can be displayed and the number of times validation is repeated can be selected by the

user. The user also have the possibility to chose which classification algorithm to use. We of

course implemented WND as described in [38], but we found it important to add other options

as we were not fully satisfied with this algorithm for the reasons explained in the Introduction.

In our code validation methods that automatically split the training set into a test set and
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validation set are available such that the raw output files from CellProfiler can be directly

used without the need to manually split them into a training set and a validation set. We

implemented two different validation methods from which the user can choose: the standard

k-fold cross-validation, and WND-CHARM’s "save 25%" method which randomly chooses

75% of the images in each class to compose the training set and uses the rest as the validation

set. The output after the desired number of training-validation runs is a text file containing a

record of the input settings (input files and parameters), a list of the features with the 15% best

weights actually used for classification (if WND is used) as well as the classification accuracy

(mean of the diagonal elements of the confusion matrix, in percents) for each run. Finally

the mean, median and standard deviation of classification efficiencies over all runs are also

reported.

A classifier can be similarly trained and tested with Goldberg’s C++ implementation of WND-

CHARM using a train function and then tested using a test method. Unlike our version of

the algorithm, the C++ WND-CHARM performs both feature extraction and classifier training

together in a "black box", and the path to the folder containing the whole image dataset is

given as an input to the program. The output is an HTML report containing classification

accuracies, lists of top 15% features, and confusion matrices for each validation runs. More

details on the original C++ implementation can be found in [46].

Our implementation also features the possibility to classify tiled images. Tiling was so far

performed in MATLAB, but a module could be implemented in CellProfiler to give the user the

opportunity to automatically tile large input images at the beginning of the features extraction

pipeline. There are several reason why one might want to chop down images from a dataset

into equally-sized tiles. First for instance when working with very crowded cell images tiling

could be used as a naive segmentation step ([48]). One could also use tiling to increase the

size of the training/validation set with the drawback that the features extracted from images

created by chopping a large image into tiles have a high risk of being correlated. Finally, tiling

could be used to simplify and speed up the analysis of very high resolution images as the

execution time of some features extraction algorithms depend on image size. In this case

the goal is to extract features on each image tile, but to output only one classification result

for the big image composed of all tiles. In this situation the user can use the tiling option

of our implementation that assigns a class to each image tile separately, finds out the most

represented class among all tiles and outputs a classification result for the large original image.

2.1.3 Analysis Softwares

In order to perform our analysis of WND-CHARM we used several analysis softwares besides

our Python script. We used Mathworks’ well known software MATLAB ([34]) and the open-

source integrated development environment RStudio ([43]) for the open-source programming

language for statistical computing R ([41]). Since each software has its advantages and draw-

backs we wanted to be able to use the most convenient solution for each experiment we made.
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In order to be able to move from one program to another and make conclusions using data

coming from these different platforms we needed to make sure outputs from these programs

were all comparable. We therefore ran similar experiments using Python, MATLAB and R

which results are presented in the appendices. We observed that all these methods yielded

similar results when performing a similar task, therefore we used in confidence the most

appropriate option between Python, MATLAB and R depending on the task we wanted to

perform.

2.1.4 Computing Resources

Since accurate measures of classification efficiency are based on statistics we had to run a

reasonably large number of tests on every dataset we used, using both WND-CHARM C++

version and ours, and therefore needed the appropriate computational power. Our Python

implementation can be executed on various operating systems since Python interpreters are

available for MacOS, Windows and Unix. We were able to launch the various tests that will be

described in the Methods section below on the Broad’s Linux computer cluster using Load

Sharing Facility (LSF), a software that allows distribution of computing resources. The original

C++ version was both available as a compiled executable (.exe) and as source code, and were

hence able to recompile the source code and execute it on the Linux cluster as well. We also

extensively used of the Windows Virtual Machine service provided by the Broad Institute for

all the experiments that needed a user interface.

2.2 Methods

We describe in this section all the theory and setups related to the experiments we performed.

All corresponding results are presented in the Results section.

Our main goal in this work was to propose a classification algorithm based on WND-CHARM

that would keep its core idea, namely the facts that features are extracted on the whole image,

and that the feature vector is composed of many different features "groups" and "levels", but

differ in its weaker aspects. It would also be designed to be more "user-friendly" as being part

of CellProfiler. We first carried out a complete analysis of the original WND-CHARM algorithm.

Our lines of inquiry concerned every steps of WND-CHARM: the CHARM features vector, the

WND classification method, and finally the "save 25%" validation, as described in Fig. 2.3.

By investigating the different "weaknesses" we identified in WND-CHARM we wanted to be

able to find arguments supporting our new algorithm that should be better understood and

characterized.
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Figure 2.3: Plan of WND-CHARM analysis.

Our work was organized in three big parts. The first one was the WND-CHARM analysis that

aimed to help us building a new "WND-CHARM-inspired" classification algorithm. Then

followed an analysis of this new algorithm to make sure it was at least as powerful or better as

its "parent", and to explore the possibility of making more improvements. Finally this new

algorithm was used on real-case datasets to show some applications where the method we

developed could be used.

As the WND-CHARM C++ code was made to be used as a black box we could not easily use it to

perform experiments. For this reason we extracted the CHARM feature vector computed in the

C++ implementation and re-implemented the WND classifier and the "save 25%" validation

method in Python. In this way we were able to fully separate features extraction, classification

and validation, so we could vary each parameter independently. For instance we could keep

the classification method fixed and use different features vectors versions to be compared with

CHARM, or conversely we could use the CHARM vector but vary the classification method.

We first ran some calibration tests to make sure our re-implementation in Python was correct:

we used the same experimental settings as in [38] and compared paper results, reproduced

results using the C++ implementation, and results using the CHARM vector and our Python

re-implementation of the classification and validation steps.

Before gathering any data with our implementation of WND, we also ran what we called

"significance tests" on the reference data from [38] (described later in this chapter). While

usual validation tests produce a measure of the classification efficiency of an algorithm on

a given dataset, our significance tests compared the efficiency of a classifier to that of a

distribution of classifiers trained on scrambled data (i.e. "random" classifiers). This allowed us

setting a baseline for what "good" classification efficiency means: our goal is to be significantly

better than the results obtained using the random classifier. Significance tests hence consist of
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randomizing class labels in the training set to create a random classifier. Since class labels are

assigned randomly, no common feature pattern should emerge from features extracted from

the images in each class and the elements saved for validation should therefore be assigned to

a random class at the validation step. These significance tests are a way to show that a good

classifier’s accuracy is obtained by really discriminating between classes using the elements

in the features vector rather than by chance. When classifying random data on an N-class

problem, the classifier is expected to have an average accuracy of 1
N . However this is not

always the case, for example if the dataset is biased by having different number of images per

class. In this case the random classification probability can be modified. Our significance tests

hence also allowed making sure our datasets were nicely set up in addition to providing us

with a reference measure for classification efficiency.

By training a large number of these random classifiers we could experimentally obtain a

reference distribution to compute an empirical p-value for the actual classification result.

With 10’000 random classifiers, the empirical p-value was computed as follows:

p-value = count(eff(rdm) ≥ eff(true))

10000
(2.1)

where eff(rdm) is the classification efficiency for a random classifier, eff(true) the classification

efficiency of the true classifier, and count(eff(rdm)≥ eff(true)) the number of times the relation-

ship eff(rdm)≥ eff(true) is satisfied among all the 10’000 elements in the distribution of random

classification efficiencies. We ran two series of significance tests using our implementation:

first using 10-fold cross-validation, and then using the "save 25%" method.

2.2.1 WND-CHARM Analysis

As described before WND-CHARM can be seen as a three-steps algorithm. First features are

extracted to build the CHARM vector composed of 1025 elements extracted from the original

image and from transforms of the image. Then these features are weighted using Fisher scores,

ranked, and the features corresponding to the 15% best weights are used to train a classifier

based on a k-NN-like algorithm using weights. Finally the performance of the algorithm is

validated using the "save 25%" method where 25 random percent of the data in each class

are saved to constitute the test set while the rest is used as a training set. We could formulate

interrogations regarding any of these steps, so we decided to analyze each of them separately.

Features Extraction

Feature Vector Content The CHARM vector can be decomposed in many different features

"groups", or in its three different features "levels" as explained in the Materials section. This

overall construction appeared to us to be judicious and powerful as having these features

groups allows the algorithm to perform well on a wide range of different data. A feature

vector capturing a wider range of morphological aspects of the image will indeed make the
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approach more general as it is able to detect which image properties differ between classes

on a wide range of different data. In spite of this we did not wanted to simply re-implement

the whole CHARM vector for two reasons. We wanted first to investigate how the presence

of different groups and levels impacted on classification results. Then if we found out that

all these groups and levels were actually useful, our hypothesis was that their presence was

more important than their actual composition. In other words, our guess was that we could

build a CHARM-like vector with the required groups and levels, but not necessarily the same

elements present in the original CHARM.

Our first experiment was to split the CHARM vector into features groups. We ended up with

eight different groups for all the elements of the CHARM vector described in [38]: Cheby-

Hist (Chebyshev and Chebyshev-Fourier statistics - 128 features), Moments (288 features),

Textures (Haralick, Gabor and Tamura texture features - 211 features), Edges (28 features),

ImageFeatures (Object statistics - 34 features), Histograms (144 features), Radon (48 features),

and Zernike (144 features). Then for each of our reference datasets we ran eight classification

experiments using each time the CHARM vector minus one of the eight groups as a features

vector. In this way we could see how the absence of each of these features groups impacted on

classification accuracy. For this experiment we kept the other parameters fixed. We ran our

experiments in MATLAB, used WND as classification method and 10-fold cross-validation for

the validation method as "save 25%" was not available in this software. In order to obtain a

robust estimate of classification efficiency, the accuracy should always be measured in several

runs with different training and validation sets. For this reason all the results obtained using

the 10-fold cross-validation method result from the average of 10 training and testing runs.

We then carried out the same experiment for features levels. This time we separated the

CHARM vector in three groups corresponding to unique elements in each of the three features

levels such that these three groups were non-overlapping: v1’ corresponds to v1 and contains

elements computed in the raw image only, v2’ corresponds to v2-v1 and hence only keeps fea-

tures extracted from the transforms (Fourier, Wavelet and Chebyshev), and as v3’ amounts to

v3-v2-v1 there remains only measurements computed on the compound transforms (Fourier-

Wavelet and Fourier-Chebyshev). We gathered three classification results for each reference

dataset using the CHARM vector minus one of the three levels, each time using a different one.

The classification algorithm and validation method remain unchanged, and the results were

again averaged over 10 training-testing rounds.

Finally after investigating the importance of each features groups and levels, we wanted to test

our CHARM-like vectors extracted using CellProfiler and described earlier in the Materials

section. These different versions were built incrementally by adding features levels and groups

to make sure we were not building an unnecessarily big vector while good results could have

been obtained with a smaller one. We ran 100 classification rounds using WND and the "save

25%" validation and averaged the results to get a robust estimate of classification accuracy for

each of the reference datasets and each of our CHARM-like features vectors. We could hence

compare the performance of our different versions versus the original CHARM.
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Feature Vector Interpretation We mentioned before that while features extracted from the

original image can be easily related to morphological properties of the image, it becomes quite

hard to understand which properties are captured when dealing with compound transforms.

It seems that these "higher order" features are actually helpful for classification, so we wanted

to try to understand better which role they played and what they meant by formulating an

hypothesis and designing experiments to test it. Our hypothesis to explain the role of the

higher level features in the CHARM vector was the following: we supposed that the features

extracted from compound transforms did not really capture morphological elements in the

image, but simply increased the dimensionality of the feature space. Indeed in some cases the

distribution of the different classes in features space can be interwoven and very difficult to

separate, but when lifted to a higher dimension space the separation becomes much easier. In

order to test this hypothesis, we used two methods that relies on this principle: the Linear and

Radial Basis Functions (RBF) kernel Support Vector Machine ([54] and [55]) and the Random

Fourier Features ([42]).

Support Vector Machines (or SVM) are a family of powerful and mathematically well-defined

classification algorithms using statistical learning theory and employed for many different

applications. Since what was of interest for us was not really the mathematical details behind

SVM classification but rather the implications for the features space when working with SVM,

we give here a brief description of the situation and let the reader refer for further information

and mathematical demonstrations to a very good online tutorial ([8]), a book ([13]) and a

website referencing most of the information regarding SVM ([28]).

In the classical Linear SVM algorithm a cost function involving Support Vectors is minimized

in order to find the optimal plane that best linearly separates classes distributions. Finding this

optimal plane amounts to maximizing the margin between classes, defined as the distance

between the closest elements from each class and the separation plane. The Support Vectors

design these critical elements lying closest to the discrimination plane between classes. In

SVM, the classification rule is a function of the Support Vectors as these samples are the most

difficult to classify. SVM is usually defined for 2-class problems, and can be generalized to

N-class classification tasks by performing N-1 "one-against-all" classification steps. Linear

SVM is thus "just another linear classifier". SVM theory however also propose a solution

for non-linearly separable problems using "the kernel trick" ([1]). Sometimes when dealing

with data that cannot be separated by a line, it might be useful to project them onto a higher

dimensional space. By mapping the features vectors of a non-linearly separable problem

into a non-linear space one might end up with a linearly-separable problem in the higher

dimension space and be back to the linear problem as schematically described in Fig. 2.4.

23



Chapter 2. Materials and Methods

Figure 2.4: Example of simplification of classes separation in high dimensional space. The
linear separation plane in the higher dimensional space corresponds to a non-linear discrimi-
nation function (a circle) in the original space.

The key element in Nonlinear SVM is therefore the mapping, a functionΦwhich takes as input

a features vector and transform it in another vector containing many more dimensions. Classes

can then be linearly separated in the new non-linear features space. The mapping function

is in practice hardly used as it has a huge dimensionality, making it very inconvenient to

compute. The trick is that by using some algebra it is possible to rewrite the SVM decision rule

(or the optimization function) in a way that involves the dot product ofΦ instead ofΦ itself. A

new function K (x , y) =Φ(x)·Φ(y) called the kernel function can therefore be defined and used

to compute the non-linear mapping implicitly. Two extremely widely used kernel function

are the Radial Basis Functions kernel (RBF kernel) defined as K (x , y) = exp−γ||x − y ||2, and

the Gaussian Radial Basis Functions kernel (Gaussian-RBF kernel) formulated as K (x , y) =
exp− ||x−y ||

2σ2 Both of these kernels correspond to a mapping in an infinite dimension space. As

an example, the effect of the Gaussian-RBF can be explained with Fig. 2.5: this kernel acts by

adding a Gaussian bump around each data point.

Figure 2.5: Effect of Gaussian-RBF kernel on data.

We hence decided to classify the lower level features only using RBF SVM and to compare this

result to the whole CHARM vector classified using Linear SVM. If we obtained similar results,

we could still hypothesize that the presence of the higher level features merely amounts to map

the lower level features into a higher dimension space. We could also investigate if classifying

the whole CHARM vector using Linear or RBF SVM yields similar results. If our hypothesis was

true, then the CHARM vector should not benefit a lot from the RBF kernel since it already had

a lot of dimensions.

Random Fourier Features is an algorithm proposed in 2007 by Rahimi and Recht ([42]) which
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allows creating an explicit finite-dimension mapping approximating kernels corresponding to

infinite-dimension mappings. First it requires a shift invariant kernel, i.e. a kernel function

satisfying K (x , y) = K (x − y). The Fourier Transform ∈Rd of the kernel is computed, and an

arbitrary D number of independent and identically distributed samples w1, ..., wD are drawn

from it. D elements b1, ...,bD are also sampled from the uniform distribution ∈R on [0,2π]. The

randomized feature map z(x) is finally constructed using Random Fourier Bases cos(w ′x +b)

with w ∈ Rd and b ∈ R, and is defined as Eq. 2.2 with the following relation to the kernel:

z(x)′z(y) ≈ K (x − y).

z(x) ≡
√

2

D
[cos(w ′

1x +b1)...cos(w ′
D x +bD )]′ (2.2)

D is hence finite while the dimension of the mapping corresponding to K (x − y) might be

infinite. If the Gaussian-RBF kernel is used we therefore simply have to sample the Gaussian

distribution to get w1, ..., wD since the Fourier Transform of a Gaussian is a Gaussian with

inverse variance. Using the Random Fourier Features followed by Linear SVM hence amounts

to increase the dimensionality of the features space and then classifying using a linear classifier.

If this gives us results that compare to Linear SVM on the CHARM vector, we could argue that

the higher level features from the CHARM vector amount to these Random Fourier Features

and are only adding dimensions.

With these tools in hands, we can summarize the experiments we did to test our hypothesis as

follows. We used here the same nomenclature as before: v1’ corresponds to the features of the

CHARM vector computed on the original image only (first level).

1. RBF-SVM on v1’ versus Linear-SVM on CHARM: if RBF-SVM on v1’ allows us to obtain

similar results as Linear-SVM on CHARM, our hypothesis cannot be rejected.

2. RBF-SVM on v1’ versus RBF-SVM on CHARM: if RBF-SVM on CHARM and v1’ gives us

again somehow comparable results, our hypothesis cannot be rejected. In addition, we

expect results obtained using RBF-SVM and Linear-SVM on CHARM to be comparable.

3. Linear-SVM and Random Fourier Features on v1’ versus Linear-SVM on CHARM: if we

can compete with Linear-SVM/CHARM results using Linear-SVM and Random Fourier

Features on v1’, then we could say that the compound transforms features are no better

than Random Fourier Features. In other words, we could conclude that they amount to

an approximation of the Gaussian Radial Basis Functions in finite space.

We used RStudio in order to perform this analysis. 10-fold cross-validation was used for

validation as "save 25%" is not a standard method and was therefore not available in R. The

results were averaged over 10 rounds of classification.

"Top 15%" Features In WND-CHARM, after features are extracted and weights are computed

for each features, weights are ranked and a threshold is set such that all features with weights
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below this threshold are ignored and only the best are used for classification. The threshold

value was set to 15% in the publicly available version of the algorithm. Since we performed

several runs of classification with different training and test sets in our experiments, the 15%

features subset used for classification was not necessarily always the same. We wanted to

investigate the nature of this 15% "top features" subset in two ways: its composition and its

stability.

In order to analyze the top subset composition we extracted from the WND-CHARM HTML

reports the lists of features used for classification on each of our reference datasets. We wanted

to be able to check whereas subsets of features recur among the different datasets, again to

make sure that there were no unique features subset that would be sufficient to provide good

results. Since what interested us most was not which specific feature was highly ranked but

rather which groups of features seemed to play an important role, we did not conduct an

analysis of the occurrence of each particular feature among the top 15%, but rather observed

the occurrence of each group in this subset. We expected that all the different groups would

appear to be important as our reference datasets were composed of images of very different

nature (face recognition, cell images, ...).

The second aspect we wanted to investigate was the stability of this top subset. As explained

already in order to obtain a robust estimate of classification efficiency we usually run several

training-validation rounds and then use the mean of the results as a measure of accuracy. We

therefore wanted to observe whether the subset that played a role in classification was stable

over these different runs, or if the top features varied a lot depending on the composition of

the training set. This subsets had to be reasonably stable for a particular dataset if we wanted

to be able to draw hypothesis on which features were important by looking at the top features

subset of one classification experiment.

In order to assess the stability of our feature selection algorithm, we measured two correlation

metrics based on [26]. First the Tanimoto distance measuring how similar is the content of

features subsets s and s′ from different classification rounds. This metrics is defined in Eq.

2.3 where |s| stands for the number of elements (or cardinality) or subset s, and |s ∩ s′| is the

number of elements in common (or intersection) between subsets s and s′.

SS(s, s′) = 1− |s|+ |s′|−2|s ∩ s′|
|s|+ |s′|− |s ∩ s′| (2.3)

The numerator therefore measures how much elements are unique to each subset, while the

denominator measures how much elements are present in total. Subtracting this fraction to

one ensures that subsets that are very similar will get a high score (since the numerator will

tend to zero) while subsets very dissimilar will get low scores. A score of 1 indicates that s and

s′ are identical, while a score of 0 indicates that no elements are shared between s and s′.

We also computed the Pearson’s correlation coefficient measuring the similarity between
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feature weights wi in different classification rounds, defined as Eq. 2.4.

SW (w, w ′) =
∑

i (wi −µw )(w ′
i −µw ′)∑

i (wi −µw )2 ∑
i (w ′

i −µw ′)2 (2.4)

Pearson’s coefficient gives a measure of the correlation of the weights, and gives results in the

interval [−1,1], where 1 (resp. -1) indicates perfect correlation (resp. perfect anticorrelation),

and 0 indicates an absence of correlation.

Each of these two metrics gave us a NxN matrix for N runs of classification experiment. These

matrices are symmetric with respect to the diagonal, so in order to analyze them it was

sufficient to look only at the upper or the lower triangle. In the ideal case of a totally stable

subset we would obtain a Tanimoto distances and a Pearson’s coefficients matrices full or

ones. We implemented these measurements in Python and computed them for a 100-runs

classification experiment in each of our reference datasets.

Classification

The second step of WND-CHARM, the actual classification, is using the WND algorithm

described in the Introduction, which is basically a modified version of the k-Nearest Neigh-

bors algorithm where every points in the training set are considered and where features are

weighted. Since this approach was quite simple we wanted to investigate how classification

accuracy was impacted by changing the classification algorithm but keeping the CHARM

vector. Another advantage that a more standard classification algorithm would have over

WND is that it would be better defined and characterized. WND indeed contains empirical

parameters and doesn’t have nice mathematical properties as most usual classification algo-

rithms do. We therefore tried to switch from WND to two classical classification methods: the

traditional k-Nearest Neighbors, and the Linear Discriminant Analysis (LDA) coupled with

Principal Components Analysis (PCA) as a pre-processing step.

k-Nearest Neighbors We already described k-Nearest Neighbors (k-NN, [17] and [11]) when

mentioning WND in the introduction, and will here briefly recall its principle. k-NN is one of

the simplest classification method and is often used as a first try when little is known about the

data distribution. When an unknown sample is presented to the k-NN classifier, the distance

from the new sample to each point in the training set is computed. The unknown sample is

assigned to the class that is the most represented among its k nearest neighbors.

The parameter k in k-NN controls how the classifier is sensitive to noise. An example is shown

in Fig. 2.6: the square data point to be classified seem to be more likely to belong to the stars

distribution when we look at the whole dataset. However if k is set to be smaller of equal to

two, the square will be classified as belonging to the rounds distribution because of the round

outlier. If a bigger value of k is used, for instance k=3, the classifier is more robust and won’t be

influenced by noisy data points. For each of our reference datasets we therefore performed a
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parameter exploration with a wide range of k values to be able to get the best possible results

using k-NN. We ran these experiments in MATLAB using the CHARM vector and averaged the

results of 10 rounds of 10-fold cross-validation.

Figure 2.6: Effect of the k parameter in k-NN on the robustness of the classifier to noise in
data.

Principal Components Analysis - Linear Discriminant Analysis The second classifier we

tested is also a very standard method, but more refined than k-NN: Linear Discriminant Analy-

sis, or LDA ([16]). LDA finds a lower-dimensional projection of the data such that the vaiance

inside each class is small while the variance between classes is large, i.e. such that classes are

compact and well-separated. The output of LDA applied to N classes are N-1 discriminant

vectors perpendicular to the separation planes between classes. The classification rule is then

a linear combination of these vectors. Unfortunately LDA alone doesn’t work very well when

the number of features is much larger that the amount of samples, that is when the dimension-

ality of the features space is too big for two reasons ([56]): first the estimate of the covariance

matrix will most certainly be singular rendering the traditional discriminant rule inapplicable,

and secondly the classification rule might become overly long and difficult to interpret as it

is a combination of many different vectors. For these reasons a dimension reduction step is

usually performed before applying LDA. In spite of this it is in general still useful to compute

a larger set of features than what will actually be use after dimension reduction such that a

wider variety of morphological aspects of the image can be captured, making the approach

more general ([45]). The weighting and subsequent thresholding applied in WND-CHARM

is an example of dimension-reduction method. A very commonly used and mathematically

well characterized method for dimension reduction is Principal Components Analysis, or PCA

([39] and [22]). We therefore decided to use PCA as a pre-processing step and then LDA for

classification. We will give a brief review of the principles behind PCA and LDA. We do not
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aim here to fully re-demonstrate these two algorithms but rather to highlight the essential

elements required to understand them.

PCA As mentioned earlier, PCA is a dimension reduction method and can therefore be used

as a pre-processing step before doing LDA. For a data matrix X with M data (rows) and N

features (columns), the goal of PCA is to reduce the features space to P dimensions where

P << N by re-expressing the data as a linear combination of the vectors of the X matrix (i.e. the

features). The principal components (PC) are chosen in order to form an orthonormal basis.

When doing PCA one makes two assumptions: linearity, and that the information content is

proportional to the variance, or in other words that low-variance features correspond to noise.

PCA therefore tries to maximize information over noise by keeping directions with largest

variance and throwing away more constant ones. It looks for a rotation that would align with

axis of maximal variance in the original data

The covariance matrix of data X is defined up to a constant as Eq. 2.5 where X T indicates the

transpose of matrix X.

ΣX ≡ X X T (2.5)

ΣX is a square and symmetric NxN matrix where the diagonal elements are the variance of

each features and the off-diagonal values the covariance of each pairs of features in X. Since

PCA looks for uncorrelated variables and maximal variance, it searches for a ΣX̃ that would be

zero everywhere except in diagonal. The algorithm can hence be summarized as follows: find

A in X̃ = AX , where X is MxN, A MxM, and X̃ MxN, such that ΣX̃ = X̃ X̃ T is diagonal. The rows

of A will then be the PC of X. Using this and Eq. 2.5, we obtain Eq. 2.6.

ΣX̃ = X̃ X̃ T = (AX )(AX )T = AX X T AT = A(X X T )AT = AΣX AT (2.6)

By selecting A to be composed of eigenvector ofΣX in rows, i.e. A ≡ E T whereΣX = EDE T with

E the eigenvectors matrix (in columns) and D the eigenvalues diagonal matrix, we obtain a

diagonal ΣX̃ as desired. Indeed since it can be demonstrated that A−1 = AT , Eq. 2.7 is verified.

ΣX̃ = AΣX AT = A(E T DE)AT = A(AT D A)AT = (A AT )D(A AT ) = (A A−1)D(A A−1) = D (2.7)

Intuitively, the first PC is the normalized direction where the variance is maximal. The second

PC is found by looking for the axis of second maximal variance, but it must be perpendicular to

the first one since PCA vectors should form an orthonomal basis. The same process is repeated

until N vectors are found. The PC then correspond to the eigenvectors of the covariance matrix

of X, ΣX , and the i-th diagonal value of ΣX̃ corresponds to the variance of X along the i-th

principal component.

In our case we use PCA to reduce the dimension of the features space while keeping enough

variance. A threshold in percent is then set as the amount of variance in the original data to
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be preserved. Since the diagonal elements λi of ΣX̃ correspond to the amount of variance

in the untransformed space, the constrain defined as "keep C percent of the variance in the

original data" translates to "find the minimal p such that
∑p

i=1λi∑N
i=1λi

> C " where p=1,...,N. The

vectors associated to these p λi are the PC to use such that the desired amount of variance is

conserved. PCA can also be defined using Singular Value Decomposition instead of eigenvalue

decomposition, yielding a more general solution that can be used in the case where the

covariance matrix is not diagonalizable. A SVD derivation of the algorithm can be found in

[49].

LDA LDA makes the assumptions that class distributions follow normal laws of mean µi and

covariance matrix Σi . It also assumes that all class covariance matrices have full rank and are

equal (i.e. homoscedatic). LDA aims to maximize the ratio of interclass variance to intraclass

variance, yielding to maximal separability. It is usually described as a two class problem and

generalized to C classes by reapplying the 2-classes rule to each pair of classes. The intraclass

variance Σi for each class i is computed as Eq. 2.8 where x i , j is the j-th element and µi the

mean of class i. The interclass variance Σ is defined as Eq. 2.9.

Σi =
∑

j
(x i , j −µi )(x i , j −µi )T , i = 1,2 (2.8)

Σ= (µ2 −µ1)(µ2 −µ1)T (2.9)

The ratio of the variation between classes to the total variation inside classes is maximized as

defined in Eq. 2.10 where u is a unitary vector designing the subspace onto which the data

will be projected as y = u ·x . It can be shown ([30]) that the optimal solution is defined as Eq.

2.11.

max
u

uTΣu

uT (Σ1 +Σ2)u
(2.10)

u = (Σ1 +Σ2)−1(µ2 −µ1) (2.11)

The classification rule hence becomes Eq. 2.12 where C is a constant threshold and x an input

of unknown class.

(Σ1 +Σ2)−1(µ2 −µ1) · x <C (2.12)

LDA therefore traces between each pair of classed (i, j) an hyperplane perpendicular to u. If

the vector x to be classified is on one side of the plane, it is classified as class i, otherwise as

class j. The offset of the plane is defined by C.
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All of our data were center and scaled along the columns in order to bring back all measure-

ments to a common scale before doing PCA. As it was the case for parameter k in k-NN, we

ran for each of our reference datasets parameter exploration experiments with a range of

different C values, where C is the percentage of variance to be kept in PCA-transformed space.

Usual values of C range from 95 to 99%. We ran these experiments in MATLAB, using the

CHARM vector and averaging the results over 10 rounds of 10-fold cross-validation. We also

implemented the use of PCA and LDA in Python using functions from the freely available

scikit-learn Python library ([40]).

Validation

As explained before we implemented both the k-fold cross-validation and for the sake of

comparison also WND-CHARM’s "save 25%" method. We had a few concerns regarding this

"save 25%" method. First we suspected it might give us over-optimistic results due to the fact

the training set is built by taking the same proportion of samples from each class, which is quite

an optimistic setup. In k-fold cross-validation the k splits of the data are built regardless of the

classes, and it might therefore happen that a split does not contain all classes, or conversely

that a split contains an entire class. The second aspect that did not convinced us was that the

variance of the classification accuracy between classification runs was very large with "save

25%" compared to k-fold. Finally k-fold is a standard method widely used for validation and

should therefore be preferred over "save 25%".

In order to investigate the differences between these two validation methods we ran a serie of

experiments for each of the reference datasets in which we kept the CHARM vector and the

WND classifier as in the original algorithm, but changed the validation method. We averaged

the results over 100 runs of classification using "save 25%" for the validation, and 10 runs

using 10-fold cross-validation. We chose to gather results on ten times more runs for "save

25%" than for 10-fold as the result obtained after one run of 10-fold cross-validation is already

an average over 10 training-testing runs. We performed these experiments using our Python

implementations of the two validation methods.

When using k-fold cross-validation the choice of the value of k is a very debated question.

A value of 10 is most generally arbitrarily chosen, and in other cases it is suggested to use

a value of k such that the number of samples per class is a multiple of k. Large values of k

tend to have very long computation time and large variance, but give a less biased estimate of

the actual accuracy as the size of the training set tends to be closer to the full dataset (since

the splits are smaller). We compared the usual 10-fold with the "save 25%" method, but also

wanted to separately investigate the effect of adapting k to the nature of the dataset. We tried

to adapt the value of k to the number of images per class such that we would be confident in

the fact enough representative of each class have the possibility to be in each split. Following

suggestions from our colleagues we used "formula" 2.13 in order to find an optimal k for each

reference dataset, where #Images per Class represents the number of images for a particular
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class.

k ≤ minclasses(#Images per Class)

5
(2.13)

In this way the number of samples per class is at least 5 times bigger than k (5 was chosen

arbitrarily) such that we do not have more splits that samples per class. This does not ensures

us that we have an equal proportion of representatives from each class in each split, or that

there is a representative at all from each class in each split. It is just a way to make sure we do

not split the data in a way that it wouldn’t even be possible to have samples from each class

in each splits. We ran again two series of 10 runs of k-fold cross-validation for each of our

reference datasets, once using the usual k = 10 and then using k = kmax .

2.2.2 A New "WND-CHARM-like" Algorithm

Using the results from the various steps of WND-CHARM we were able to create a new WND-

CHARM-inspired algorithm that we called "PCA-LDA-CHARM-like". Our new algorithm is

composed of the feature vector v3.2 described in the Material section which contains 953

features. Its construction is inspired from CHARM in the sense that it contains the same kind

of features "groups", and it is built in a hierarchical way using elements computed on the

original image, on transforms, and on transforms of transforms of the image. PCA is used for

dimension reduction such that 98% of the variance present in the original data distribution is

conserved. Classification is performed using Linear Discriminant Analysis, followed by 10-fold

cross-validation for validation. A flowchart of our algorithm as compared to WND-CHARM is

shown in Fig. 2.7.

Figure 2.7: Comparison of the original WND-CHARM and our new PCA-LDA CHARM-like
algorithm.

As a first step we needed to do some experiments to validate our new algorithm. First we ran

twice on each reference dataset 100 rounds of classification using "save 25%" for validation

and 10 rounds with 10-fold cross-validation using our Python code. The first time we used

WND-CHARM, and the second time PCA-LDA-CHARM-like. We could in this way compare

the results of our method versus WND-CHARM’s for each validation method and make sure
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the algorithm we propose was as powerful as the one it was inspired from.

After making sure our PCA-LDA-CHARM-like algorithm was valid we decided to perform some

more experiments to identify how we could improve even more the performances we could

get with it. We re-used the different features vectors we designed when testing WND-CHARM

and evaluated the performance of each version using PCA-LDA. In this way we wanted to

make sure the version we selected based on results using WND was the optimal solution for

PCA-LDA as well. We then focused on trying different classification methods. We used R to

gather results using our CHARM-like vector v3.2, three rounds of 10-fold cross-validation, and

several different classifiers: k-NN, PCA-LDA, LDA and other dimension reduction methods,

Penalized LDA, Random Forests and SVM. As k-NN, PCA-LDA and SVM were already explained

previously in this chapter, we only give here a description of the two remaining classification

methods.

LDA and other Dimension Reduction Methods As explained when describing LDA, this

algorithm fails when working with a feature space of too many dimensions, and a dimension

reduction step is therefore needed. We chose to use PCA, but other ways of reducing the

number of dimensions exist. What we tested here consists of removing highly correlated

features and features with a near-zero variance. In order to remove highly correlated features

we first compute a correlation coefficient for each pair of features and obtain a NxN correlation

coefficient matrix for a M samples of N features dataset. We then look at all pairs of features

having a correlation coefficient higher than a threshold that we set to 0.9. For these pairs,

we compute the mean correlation over all other features pairs, and the feature of the pair

having the biggest mean correlation is excluded from the set. R contains a method that detects

features with a variance close to zero that might cause trouble. A feature is considered as

having a near-zero variance when it meets two conditions: first it only takes a small number

of different values across the different samples (i.e. there are only a few unique values), and

then the ratio of frequencies for the two most represented values is large. Two thresholds are

set to determine when these conditions are met. Using these preprocessing steps we could

make sure we would end up being able to use LDA.

Penalized LDA Penalized LDA or pLDA ([56]) is a new method published in 2011 and avail-

able as part of the caret package in R ([29]). It is basically a modification of LDA such that it

includes an implicit dimension reduction method. The idea of pLDA is to penalize the discrim-

inant vectors with a penalty function, and then to use only the highest n < N −1 penalized

vectors, where n is arbitrarily chosen and N is the dimensionality of the feature space. The

penalized function used in the R implementation is the L1 norm, such that features that vary

a lot within each class get a higher penalty. A threshold can be set on the penalties such that

the final decision rule only contains a subset of the features.
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Random Forests Random Forests (RF, [6]) differs in its nature from the other algorithms we

tested. It belongs to a family of methods called "ensemble classifiers" which consist of creating

a collection of models to classify data with the best possible accuracy. When training RF, a set

of data is first drawn from the original dataset, and a tree is constructed by randomly selecting

a subset of features at each node and using the most powerful ones to make a decision. When

the first tree is fully grown, another subset is drawn again (with replacement) from the initial

set of data, and a new tree is built following the same method. This operation is repeated as

many times as there are different classes in the training set to yield multiple decision trees,

hence creating a "forest". For classification, a sample is simply presented to the forest and

assigned to the class that is most represented in the outputs of all the trees. We wanted to try

this methods for several reasons. The fact we are dealing with a potentially very large features

vector often requires a dimension reduction step as it was the case for LDA, but RF has the

advantage of containing an implicit feature selection procedure with the random sampling

of the features at each node. For this reason the algorithm performs equally well depending

on the size of the dataset. Unlike the weighting-thresholding process in WND-CHARM, the

feature selection procedure in RF also has the advantage of keeping all the features so each

of them can potentially play a role in classification. Last but not least, this method has the

reputation of obtaining very accurate results. We used the caret package that uses the R

implementation ([32]) or the algorithm.

2.2.3 Datasets

We gathered results on several different kind of datasets. Some of them were used for com-

parison purpose with the original WND-CHARM while others were chosen in order to show

potential application fields of our method. We give a brief description of the nature and

content of each of these datasets and explain why they were of interest.

Reference Datasets

What we called "reference datasets" are seven datasets of very different nature that were

used to test WND-CHARM in [38]. We used these images for the whole of our analysis of

WND-CHARM since they allowed us comparing our results with the ones presented in [38].

They contain various images ranging from biomedical to face recognition in order to show

that the algorithm is efficient on a wide range of data. All these sets were composed of black

and white tif images.

Faces Images The AT&T ([44]) and the Yale ([18]) datasets are two face-recognition image

sets. In both cases the classes correspond to different human subjects, and in each class

samples are images of the same person taken at different orientation (full-face or profile

pictures), different illumination settings, with different facial expressions, and with different

elements hiding the face (glasses, beard, etc.). The AT&T dataset is composed of 92x112 pixels
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images separated in 40 classes with 10 images per class. The Yale image set contains 15 classes

with 11 320x243 pixels tif images per class. This kind of dataset is typical for benchmarking

face recognition algorithms.

Textures Images The Brodatz texture dataset ([7]) is a collection of pictures of various tex-

tures. There are 111 different textures in total which constitute the different classes. Each of the

111 big texture images are chopped down into 16 tiles of 160x160 pixels to yield a total number

of 1776 images. The Brodatz dataset is widely used as a reference to test new algorithms as it

presents a wide range of different textures that can be found in nature.

Biological Images Three biological datatsets are present in this group: the Chinese Hamster

Ovaries (CHO) ([4]), the Pollen ([15]), and the HeLa dataset ([5]). The CHO is composed of

fluorescence microscope images labeled with five components targeting different intracellular

organelles (Golgi apparatus, DNA, lysosomes, nucleoli and tubulin) which constitute the

five classes. Each of these classes are populated by different number of 512x382 or 512x512

pixels images for a total of 327 images. The HeLa dataset is built in a similar way: its 8 classes

corresponds to antibodies or dyes staining different organelles and cellular components.

The 689 images in the dataset are 382x283 tif fluorescence microscope images non-evenly

split between the different classes. The ability to automatically identify components inside

the cell can be of use for many different biological applications, for instance for localizing

a fluorescently tagged protein, which can help discovering unknown proteins and genes

functions. Finally the Pollen dataset is composed of 630 very small 25x25 pixels images

acquired using phase contrast and evenly split in 7 classes corresponding to seven different

kind on Pollen grains. This dataset is fairly easy to classify and usually requires only a very

small amount of processing time due to the small size of its images.

Object Images The COIL-20 dataset [35] is composed of pictures of 20 different random

objects ranging from toys to kitchenware. Each object was photographed 72 times yielding

128x128 images with different orientations or different illumination settings. The fact it is

composed of objects of very different nature makes classification relatively easy. While the

Brodatz database is widely used to measure the ability to make a distinction between classes

based on textures, the COIL-20 is a classical set used to assess an algorithm’s robustness to

illumination and orientation changes.

The content of these seven datasets is summarized in Table 2.2.
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Table 2.2: Description of each reference dataset’s content.

Dataset Number of classes Total number of images

AT&T 40 400

Brodatz 111 1776

CHO 5 327

COIL-20 20 1440

HeLa 8 689

Pollen 7 630

Yale 15 165

IICBU Datasets

The IICBU ([47]) is a collection of biological images datasets put together by the NIH to serve

as a benchmarking suite for new biological images analysis algorithm. This serie of datasets

has also been used in [46]. Since it is composed of sets that cover a wide range of biological

applications and since reference results using the original WND-CHARM were available we

used these data to verify our algorithm. All these images were black and white tif files.

High-throughput Screens Two datasets in the IICBU serie are part of high-throughput

screens: the RNAi and the Binucleate datsets. The Binucleate dataset is a two classes problem

where the goal is to discriminate cells from the fly D. Melanogaster composed of two or only

one nucleus. Each class is composed of 20 1280x1024 pixels fluorescence microscope images

acquired at 60x where DAPI is used to label the DNA and hence highlights cell nucleus. No

manual quality control has been made on these data since images were acquired automatically

in a high-throughput setting. Polynucleated cells usually indicate a problem in the cell cycle

and can therefore be the phenotype of interest when working with compounds suspected to af-

fect cytokinesis. This kind of setup could for instance be found in cancer research experiments

where researchers screen for drugs interfering with cell division. The second high-throughtput

dataset, RNAi, is composed of fluorescence microscope images acquired automatically with

a 60x objective. These images feature D. Melanogaster cells where several genes have been

knocked-down using RNAi, and which have been stained with DAPI. The 10 classes correspond

to ten genes targeted by selected RNAi, and each contain 20 1024x1024 pixels images. Even

though the classificaton problem is similar as in Binucleate, the images from the RNAi dataset

are much more difficult to classify as the differences between phenotypes are more subtle.

Classifying cell phenotypes automatically from high-throughput data as it is the case in these

two datasets is a recurring problem in biological image analysis.

Liver Images Liver Aging, Liver Gender CR and Liver Gender AL are different sets involving

mouse liver brightfield microscopy images coming from a NIH-based project called the Atlas
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of Gene Expression in Mouse Aging. All RGB data were obtained using a 40x objective and

were subsequently transformed into grey-levels images in MATLAB. The 1388x1040 images

represent sections of liver tissue from 30 different mice stained with eosin and hematoxylin

with very low staining variability. The images in the two liver gender experiments Liver Gender

AL and Liver Gender CR come from six months male and female mice on Caloric Restriction

(CR) or Ad-Libitum (AD) diets. The 265 images in Liver Gender AL and the 303 images in

Liver Gender CR are separated in both cases into two classes corresponding to the gender of

the mouse. AD diet is known for inducing a larger variability in liver aspect in mice of the

same gender, making the classification task more complicated. Finally the Liver Aging dataset

is composed of 529 images coming from female mice on AL diet taken at 4 different time

points (month 1, 6, 16 and 24). Since aging is a continuous process and greatly varies among

individuals this classification task is expected to be harder than the Liver Gender series.

Lymphoma The Lymphoma dataset contains images of 3 types of malignant lymphoma, a

type of cancer of the lymph nodes. The original color images were acquired using a brightfield

microscope and were subsequently processed in MATLAB to make them grey-levels images.

The sample tissues come from very different sources and therefore exhibit large variations in

the way they are stained, which makes this dataset look like a difficult real-life problem. Each

of the three classes are composed of 1388x1040 pixels images with a total of 374 images in

the dataset. Automated classification of cancer types from tissue images is as area of growing

interest as it would allow for faster and less expensive diagnosis and might therefore have a

big impact in the medical world.

C. Elegans Images The Terminal Bulb dataset is composed of images of the C. Elegans

nematode taken at different time points, where the goal is to determine the age of the worm

based on the images. The dataset is composed of images of the pharynx terminal bulb, a part

of the digestive tract of the worm. They were obtained using differential interference contrast

(DIC) microscopy with a 20x objective. Here again the 970 300x300 pixels images are split into

10 classes corresponding to time points (days 0 to 12 with one time point every 2 days). The

IICBU suite contains another dataset based on C. Elegans images composed of fluorescence

microscopy images acquired at 20x of different muscles of the worm split in four groups

corresponding to the day of acquisition (day 2, day 4, day 6 and day 8). Each class is composed

of 1600x1200 pixels images, 237 images in total. We did not use this latter set because we were

unable to obtain WND-CHARM results as the C++ version crashed on it. These dataset are

expected to be difficult to classify for two reasons: first each class is composed of images of

different worms and the process of aging greatly varies among individuals, and then classes

form in these cases a continuum which makes the difference between them more subtle. In

addition to that the Terminal Bulb data are DIC images, known to be more difficult to process

than traditional microscopy data.

The CHO, HeLa and Pollen datasets already present in the Reference datasets are also part of

37



Chapter 2. Materials and Methods

the IICBU suite. Table 2.3 summarizes the content of these ten image sets.

Table 2.3: Description of the content of each IICBU image set

Dataset Number of classes Total number of images

Binucleate 2 40

CHO 5 327

HeLa 8 689

Liver Aging 4 529

Liver Gender AL 2 265

Liver Gender CR 2 303

Lymphoma 3 374

Pollen 7 630

RNAi 10 200

Terminal Bulb 7 970

BBBC Datasets

The Broad Bioimage Benchmark Collection (BBBC) is a list of freely available biological

datasets with ground truth that can be used to validate an algorithm in realistic conditions.

We selected four datasets from the BBBC, all being fluorescence microscope images from

high-throughput assays. In every cases signals from two channels were available: one from

a dye labeling the DNA, and the second from GFP-tagged proteins. A difference between

positive and negative phenotypes can more easily be found in the GFP channel as the DNA

doesn’t really changes between the two conditions. We first classified these datasets using

the information from both channels, and then compared it to the results obtained using GFP

channel only. If we found classification results using GFP channel alone to be satisfying, we

would discard DNA channel and work only with the information from GFP channel as it would

be useless to handle more data when they do not add any information for classification. In all

these image sets the goal was to distinguish between "positive" and "negative" phenotypes.

The sets can be separated in two groups corresponding to two types of experiments: transloca-

tion and transfluor assays. As most of these datasets were composed of only a small number

of elements, which could be problematic for classification as the training and validation sets

tended to be really small, we enriched these datasets by chopping down images in 2x2 equal-

sized tiles. The number of data was therefore increased by four. We obtained results on the

enriched datasets and compared them to the performance achieved on the original ones.

Human U2OS Cells Cytoplasm–Nucleus Translocation Both translocation assays involve a

protein fused with GFP and transfected in human osteosarcoma cells (U2OS). In BBBC013

the protein of interest is located in cell cytoplasm and naturally moves inside the nucleus

where it is actively exported back into the cytoplasm. Cells are treated with two different drugs
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(Wortmannin and LY294002) such that the proteins responsible for the nuclear transport are

inhibited and the protein of interest is therefore trapped into the nucleus. The drug-treated

cells are considered as "positive". The original 640x640 pixels images came from a 96-well

plate. The 8 Positive (respectively Negative) controls wells along with the highest (respectively

lowest) doses of each drugs were selected to constitute the dataset, therefore ending up with

32 images. On the enriched datatset, these images were split in 4x4 tiles, yielding 128 320x320

images. The setup of BBBC014 is quite similar to BBBC013, with a different GFP-tagged protein

of interest. The images in BBBC014 were acquired from a 96-well plate with two different cell

lines (MCF7 and A549) using a 10x objective. We again used images from the controls and the

first closest dose to represent the positive and negative phenotypes. This dataset is composed

of 32 1360x1024 pixels images. The tiled version therefore contains 128 680x512 pixels images.

Human U2OS Cells Transfluor The two transfluor assays were performed using the same

cell line (U2OS) as the translocation assays. Cells expressed a receptor and a GFP-tagged

protein such that when stimulated by a particular compound the receptor triggered a cascade

of events leading to the generation of protein vesicles inside the cell. In the BBBC015 dataset

four fields were acquired in each wells of a 96-well plate, and we selected the wells containing

the two highest and two lowest compound concentrations. Our dataset was initially composed

of 48 1000x768 pixels images evenly split in positive and negative phenotypes. When enriched

by tiling the original images, it yielded 192 500x384 pixels images. BBBC016 is the smallest

dataset as only three fields from one row of a 384-well plate were acquired. By selecting the

two highest and two lowest doses we obtained 9 positive and 9 negative 512x512 pixels images.

When tiled to enrich the dataset, these data gave 72 256x256 pixels images.

A summary of the content of each of the BBBC datasets we used can be found in Table 2.4, and

examples of images for each class of the four datasets are presented in Fig. 2.8.

Table 2.4: Description of the content of the BBBC datasets

Dataset Number of classes Total number of images

BBBC013 2 32

BBBC014 2 32

BBBC015 2 48

BBBC016 2 18

For each image set we did not only gathered classification results, but also performed signif-

icance tests as we did earlier for WND-CHARM. These tests gave us a measure of random

classification efficiency in the datasets, which could be used as a reference value to assess how

good our actual classification efficiencies were.
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(a) BBBC013 - Positive (b) BBBC013 - Negative

(c) BBBC014 - Positive (d) BBBC014 - Negative

(e) BBBC015 - Positive (f) BBBC015 - Negative

Figure 2.8: Example of images from each of the BBBC datasets. Source: [2].
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(g) BBBC016 - Positive (h) BBBC016 - Negative

Figure 2.8: (Cont’d) Example of images from each of the BBBC datasets. Source: [2].

Since the BBBC datasets were good examples of the typical kind of data that would be pro-

cessed using CellProfiler we used them to measure how much value the various modules for

features extraction we implemented added to the software when doing whole image-based

classification. We computed the Z’ factor for every feature of our v0 and v3.2 vectors. As a

reminder v0 is composed only of CHARM-like features already available in the current release

of CellProfiler while v3.2 contains the addition of many more measurements obtained through

our newly implemented moduled. The Z’ factor ([58]) is defined by Eq. 2.14 where σ̂i is the

standard deviation and µ̂i the mean of samples for a particular feature in class i. It indicates

how well two populations (in our case positive and negative phenotypes) are separated. It is

therefore used as a measure of experiment quality: the value of the Z’ factor tells how much

discrimination power the measurements used to describe the two classes have. We preferred

using this metrics for comparison over classification efficiency because as these datasets were

fairly easy problems classification accuracies obtained using v0 and v3.2 did not exhibited

significant differences. As the Z’ factor is a more sensitive measure of the ability to separate

classes we hoped it could give us a better estimate of the effect of the features we implemented.

Z ′ = 1− 3(σ̂1 + σ̂2)

|µ̂1 − µ̂2|
(2.14)

The Z’ factor can be easily understood graphically as shown in Fig. 2.9. This measurement

obviously assumes that the data from the two classes follow normal distributions. The maximal

possible value of a Z’ factor is 1 and indicates the best possible setting (perfect separation).

Usually Z’ factors with values larger than 0.5 are considered to indicate an excellent setup

while values larger than zero are acceptable ([33]).

We measured Z’ factors for every features of the v0 and v3.2 vectors on the tiled BBBC datasets

and reported the highest Z’ values for each dataset as it technically corresponded to the best

classes separation we could obtain with the features we measured on the images.
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Figure 2.9: Graphical explanation of the Z’ factor: 3σ corresponds to 99% of the data in each
class. The numerator 3(σ1 +σ2) corresponds to the two dashed red lines and the denominator
|µ1−µ2| to the pointed blue line. The Z’ factor therefore indicates to which fraction of the blue
line corresponds the separation band shown as a dashed and pointed green line.

Tissue Dataset

As we are working with whole-image-based classification, tissue data were an area of big inter-

est. While we didn’t think that a WND-CHARM-like algorithm could really beat segmentation-

based methods on images of cell-based assays composed of a lot of background and subject

to population effects, we however suspected that it could become very powerful in images

where segmentation was not even possible for example in identifying organelles in tissue data.

We therefore worked with images from the Human Protein Atlas (HPA, [53]), an open source

database of tissue images. The HPA is a very large-scale high-throughput project involving

high-resolution data obtained using tissue microarrays of 20 cancerous and 45 normal tissues

from different organs. The goal of the HPA project is to study the spatial localization of every

human protein using labeled antibodies in order to better understand their functions. More

than 3000 different antibodies and close to 3’000’000 tissue images are freely available on the

HPA website ([19]).

All data were bright-field microscope images acquired with a 20x objective and stained with

two different compounds: one that targets the antibody against the protein to be localized

and that exhibit a brownish color, and the second that non-specifically stains with a blue color

the nucleus of all cells as well as extracellular compounds. These images are traditionally

analyzed manually, and there is therefore a large need for automation. In collaboration with

Carolina Wählby et al. at the Center for Image Analysis, Uppsala University, Sweden, we had

the opportunity to work on a dataset built using images from the HPA in which the task was to

identify different subcellular compartments. 1057 64x64 pixels images were manually selected

from 61354 patches created by tiling 3000x3000 pixels images of 19 normal and 10 cancerous

breast tissue from the HPA website. The original images were stained with labeled antibodies

against two proteins of interest. These 1057 patches were manually annotated as belonging

to one of three possible protein locations (cytoplasmic, nuclear and connective tissue) or as

background. As a result, the 1057 images were non-evenly split into the four classes: 200 in

the nuclei, 462 in the cytoplasm, 202 in the conjunctive tissue, and 193 patches containing

background only. Samples from each class are presented in Fig. 2.10 to illustrate this dataset.
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(a) Background (b) Cytoplasm

(c) Nuclei (d) Conjunctive Tissue

Figure 2.10: Example of elements of each classes of the Tissue datasets. Source: Carolina
Wählby, personal communication.

Since the original images were RGB, a color deconvolution algorithm was applied using ImageJ

([36]) to separate the protein and nucleus channels. Since we did not know for sure which

channel would provide the most information on the difference between classes, we performed

classification experiments using each channel separately and all together. We compared these

results in order to determine which images should be used to achieve good classification

results. Using the best channels we obtained classification results and compared it to a

distribution of random classifiers.

We wanted to work on more tissue data from the HPA, but the images available on the website

were annotated in such a way that many preprocessing operations were required before

obtaining a usable dataset. After tiling the small patches had to be manually annotated by

a trained expert. Due to time constraints on this project we were therefore unable to create

ground truth for a new dataset from the HPA.

HDAC Dataset

Our Histone Deacetylases (HDAC) dataset comes from an ongoing project at the Imaging

Platform. This high-throughput study involves different laboratories at the Broad Institute

and focuses on identifying HDAC inhibitors. The HDAC protein family is involved in many

different core biologic processes and is linked to a variety of human diseases (neurological

and cardiac diseases, cancer and stroke for instance) making HDAC inhibitors a target of
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interest for drug research. HDAC can have several isoforms, but no isoform-specific cell-based

assay has been proposed so far. It was therefore suggested to identify different HDAC by

characterizing each isoform’s phenotype using image analysis.

Our images were acquired from a 384-well plate using a fluorescence microscope with a 20x

objective. Five fluorescence channels were recorded, each corresponding to a dye labeling

cellular components. Six fields per well were acquired, but we used only one and discarded

the five others to avoid correlation effects as we had enough data at our disposition using one

field only. Images from the same well indeed have a higher risk of being correlated and biasing

the classification results by underestimating the true classification error. siRNA were used to

target nine different HDAC with three different siRNA construct per isoform, and we obtained

data for construct against five HDAC: 3 constructs against HDAC 8, 2 against HDAC 7, 3 against

HDAC 6, 3 against HDAC 3 and 3 against HDAC 1. Our goal with this dataset was therefore a

14-classes problem: we had to try to distinguish different phenotypes for each of the two or

three constructs of the five HDAC isoforms. Since the difference in phenotype between HDAC

isoforms is extremely subtle batch effect and plate-to-plate variations had to be minimized as

much as possible. For this reason the isoforms were plated following a scrambled layout such

that they did not form clusters that would favor global effects. Example of images from each

isoform class are shown in Fig. 2.11 to let the reader appreciate how subtle the differences

between classes are.

(a) HDAC 1 (b) HDAC 3 (c) HDAC 6

(d) HDAC 7 (e) HDAC 8

Figure 2.11: Example of samples from each HDAC isoform class. Constructs against the same
HDAC are not illustrated. Source: Shantanu Singh, personal communication.

As we had no prior information on which channel captured differences between classes, we
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initially performed classification experiments using all the five channels together. Following

this, we carried out a per-channel analysis to see if we could identify channels that were

more informative than the others. As we expected differences between constructs against

the same HDAC to be very light, we also tried to group the different constructs together and

classify based on isoforms only, which brought us back to a simpler 5-class problem. Finally

we reproduced the analysis using all channels together and separately on a subset of the full

HDAC dataset containing only two classes which were known to be more easily separable.

Every time a classification efficiency measure was obtained, we compared it to a reference

random efficiency.

This dataset presents many different difficulties: the classification task is in itself very chal-

lenging as phenotypical differences between isoforms are faint and images are highly subject

to global bias (plate and crowd effects). Moreover this is an ongoing project which implies that

issues are identified and new data are produced regularly. As we started with a very difficult

problem, we designed this serie of experiments to have decreasing difficulty to try to identify

the limits of our algorithm.

Neuronal Outgrowth Datasets

We gathered neuron images from an experiment performed within the framework of a col-

laboration with the Imaging Platform. Our images come from a 96-well plate with 60 wells

of usable data. The aim of this experiment was to look at the influence of different chem-

icals on neuronal growth. Some chemicals inhibit while others enhance growth, resulting

though their addition to a modification of the neurites. The plate contains a dose-response

curve for a different chemicals on each row, with increasing concentration along the row. The

six chemical used in the experiment are called Chiron99021, DOI, Quetiapine, Quetiapine

Intermed, Serotonin and TDZD-8. We decided to consider each row as a separate dataset

and tried to discriminate positive versus negative phenotype for each drug. We therefore

selected images at zero concentration to represent the negative phenotype, and images at

maximal concentration for the positive phenotype. In this experimental setup we therefore

had 6 different datasets and hence performed 6 different classification experiments. Eight

fields were acquired per well, and we conserved images from each field despite the risk of

correlation because of the scarce amount of available data. Three fluorescence channels were

acquired for each image. The first channel gathered signal from neuronal body, or nucleus,

the second one imaged the dendrites, which are the shorter neurites, and the last channel

contained signal from the axons, or longer neurites. Typical samples from each class of each

dataset are displayed in Fig. 2.12.

As it was the case for the BBBC and Tissue datasets, we were not sure of which channel should

be used to achieve best results. We hence carried out experiments using channels together

and separately and compared the results. We then gathered classification results using the

optimal channels combination, and assessed their quality by confronting them to the results

of random classification of the data which served as a reference. A summary of the content of
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the 6 datasets is presented in Table 2.5.

Table 2.5: Description of the content of the Neuronal Outgrowth datasets.

Dataset Number of classes Total number of images

Chiron99021 2 54

DOI 2 54

Quetiapine 2 53

Quetiapine Intermed 2 45

Serotonin 2 54

TDZD-8 2 54

These six two-class classification experiments remind of the BBBC as we are trying to identify

positive and negative phenotypes, but the problem is here much harder for several reasons.

The first difficulty comes from the nature of the available data: this plate contains a large

amount of representative of the negative phenotype, but the best positive controls were known

to be located in another plate whose images were not available. The experiment in itself is

also more difficult than the BBBC. While we were looking at highly visible effects in the BBBC

experiments, the action of the various chemicals on neuronal outgrowth is much lighter. These

potentially very subtle effects therefore render the classification task much more complex. No

quantitative results using cell-based classification were available for comparison on these data.

However some metrics obtained after segmentation (axon length for instance) were known to

obtain an acceptable Z’ factor (David Logan, personal communication). This problem could

therefore be characterized using per-object classification as hardly screenable, but not too

subtle either.
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(a) Chiron99021 - Positive (b) Chiron99021 - Negative

(c) DOI - Positive (d) DOI - Negative

(e) Quetiapine - Positive (f) Quetiapine - Negative

Figure 2.12: Example of images for each Neuronal Outgrowth datasets. Source: David Logan,
personal communication.
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(g) Quetiapine Intermed - Positive (h) Quetiapine Intermed - Negative

(i) Serotonin - Positive (j) Serotonin - Negative

(k) TDZD-8 - Positive (l) TDZD-8 - Negative

Figure 2.12: (Cont’d) Example of images for each Neuronal Outgrowth datasets. Source: David
Logan, personal communication.
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3 Results

We present in this chapter all results from the experiments described in the Methods section.

We enforced ourselves to describe as comprehensively as possible the experimental settings

and parameters we used for the sake of reproductibility. Since our results come from different

sources (Python, MATLAB, R), several plot designs were used but we tried to be as constant as

possible in the way we display our data. In general we used bar plots with error bars when

we needed to compare different classification accuracies, and tables when we only wanted

to list results from one source. In all bar plots, the mean value plus and minus one standard

deviations were reported. Unless specified otherwise, when using bar plots we displayed

misclassification rate (i.e. one minus the classification rate) since the variations of this metrics

are more visible than the difference between classification rates. In this setting the algorithm

with the lowest misclassification rate is the most efficient one. Value rage from 0 to 1, where a

misclassification rate of 0 corresponds to a classification accuracy of 100%. When using tables

we display classification accuracy, which is the ratio of the sum of the elements in the diagonal

of the confusion matrix (i.e. properly classified items) to the total number of elements in the

test set. This metric can be expressed as a fraction ranging from 0 to 1, or as a percentage

ranging from 0 to 100%. For most results we also displayed the confusion matrix of one

classification experiment in order to make sure the classification accuracy we observed was a

good indicator of the efficiency of the algorithm. In this way we could detect situations where

some classes were very well classified but others were extremely badly discriminated, yielding

an good accuracy on average. Confusion matrices also helped us get a better understanding of

where the difficulties of the dataset could be found: we could detect which groups of classes

often got confused for one another.

3.1 WND-CHARM Analysis

The results we reproduced using our Python and the available C++ implementation of WND-

CHARM are presented in Fig. 3.1 along with the results presented in [38]. We implemented our

Python version of WND following the description of the algorithm in [38] and [46] and looking

at crucial steps in the source code of the C++ version to make sure we captured eventual
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discrepancies between theory and implementation. The accuracy for each reference dataset

computed using the CHARM vector along with the Python or the C++ implementation of

WND was obtained by averaging results over 100 runs of classification using the "save 25%"

validation method. No error bars are displayed for the results extracted from [38] as this

information was not available in the paper. We mostly aimed here to make sure we were able

to reproduce paper data using the C++ implementation, and that our Python implementation

was valid and also gave similar results. Fig. 3.1 displays misclassification rates, which means

that a lower value is better and the optimal case is zero as it corresponds to the case where

100% of the data are properly classified.

Figure 3.1: Comparison of misclassification rates across methods on the reference datasets
using the "save 25%" validation method. Results range from 0 (0%) to 1 (100%).

We observe that the C++ results are comparable to the reference ones listed in [38], and that on

most datasets there is no significant difference between our Python WND-CHARM and the C++

version. We see that the CHO dataset has a very large variance on our Python implementation

while it is smaller when running the C++ version, and the opposite is true for the HeLa dataset.

Our Python version performs significantly better on the Brodatz dataset, but it is important to

keep in mind the scale of these results: the difference is in the order of 2-3% of classification

accuracy.

As already explained in the Methods section we also implemented the WND classifier in MAT-

LAB. Since the "save 25%" validation method was not available with this software and since

we could be confident in the fact our Python WND was comparable to the C++ one following

results on Fig. 3.1, we validated our MATLAB version of WND by comparing results with the

Python version using the CHARM vector and 10-fold cross-validation. Misclassification rates

averaged over 10 runs of classification using these two methods are shown on Fig. 3.2. When

using 10-fold cross-validation we averaged results on a smaller number of rounds than when
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using "save 25%" as the former method was in its nature more robust than the latter. This

holds true as well for the other experiments of this chapter.

Figure 3.2: Comparison of misclassification rates across methods on the reference datasets
using 10-fold cross-validation. Results range from 0 (0%) to 1 (100%).

We see that results are extremely similar on most datasets. The AT&T and Brodatz sets obtain

significantly better results using the MATLAB implementation, but the difference in classifica-

tion accuracy is of 1% in both cases. We therefore think that this discrepancy would disappear

if results were averaged over more runs of 10-fold cross-validation. The variance of classifica-

tion results is relatively conserved across the two methods. The accuracy we obtain with our

re-implementations of WND-CHARM hence appear to be comparable to the reference results,

using either "save 25%" or 10-fold cross-validation.

We also measured the significance of the results, as described in the Methods section. The

mean and variance of the performances of 10’000 WND-classifiers using CHARM vectors

extracted on randomized data and validated using either the "save 25%" method or 10-fold

cross-validation are reported in Tables 3.1 and 3.2. As explained earlier, our goal was to

show that the performances we obtained were significantly different than those of a random

classifier. We recall that for a random classifier and an unbiased dataset we expect a mean

performance of 1
N where N is the number of different classes since each element has a 1

N

probability of being properly classified by chance.

We recall that a p-value of zero indicates that out of the 10’000 random classification rounds,

no result was found to be equivalent or better that the actual classification results shown in Fig.

3.1 (for the "save 25%" method) and Fig. 3.2 (for the 10-fold cross-validation). We observe that

random efficiencies correspond to the results we would expect for each dataset (i.e. 1
N where

N is the number of classes), indicating that our datasets were well designed. We also notice
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Table 3.1: Classification efficiency in percents on randomized datasets using WND-CHARM
and the "save 25%" validation method.

Dataset Mean Standard Deviation p-value

AT&T 2.50 3.05 0
Brodatz 0.89 0.19 0

CHO 21.25 20.31 0
COIL-20 5.07 1.36 0

HeLa 12.51 6.11 0
Pollen 14.3 7.78 0

Yale 6.69 13.82 0

Table 3.2: Classification efficiency in percents on randomized dataset using WND-CHARM
and 10-fold cross-validation.

Dataset Mean Standard Deviation p-value

AT&T 2.45 0.65 0
Brodatz 0.91 0.05 0

CHO 20.94 5.56 0
COIL-20 4.97 0.38 0

HeLa 12.50 1.66 0
Pollen 14.27 2.10 0

Yale 6.61 4.09 0

that there is no large difference between the mean results obtained with the two validation

methods. As expected from the fact that we are working with random data the classification

accuracy is more dependent on the nature of the dataset than on the validation method. We

however observe that the "save 25%" method has a much larger variance in classification

accuracy between runs than the 10-fold validation.

3.1.1 Features Extraction

Feature Vector Content

Features Groups We split the CHARM vector computed using the C++ implementation of

WND-CHARM in eight different features "groups" described in the Methods section, and we

classified eight times the CHARM vector minus one of these groups using WND. The MATLAB

results averaged over 10 rounds of 10-fold cross-validation are displayed in Fig. 3.3. The x-axis

labels indicate which feature group was removed. For comparison reasons we plotted the

mean (solid green line) and plus/minus one standard deviation (dashed green lines) of the

reference accuracy obtained with MATLAB using 10-fold cross-validation, WND and the full

CHARM vector along with the results on the reduced features sets.
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(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

(g) Yale

Figure 3.3: Misclassification rates per features "groups": the label under each bar corresponds
to the group that has been removed from CHARM for classification. The solid (respectively
dashed) line corresponds to the mean (respectively mean plus and minus one standard
deviation) reference classification accuracy using the whole features set. Results range from 0
(0%) to 1 (100%). 53
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We observe in 3.3a, 3.3b and 3.3g that no feature group seem to be significantly more important

than the others as the individual removal of each of these groups doesn’t significantly alter

classification efficiency with respect to the reference value. Each of the different groups seem

to contribute somehow to the overall results. In 3.3d, 3.3e and 3.3f the removal of the textures

group affects classification result. This result is not surprising as the HeLa and Pollen datasets

are composed of biological images where classes mostly differ based on textural properties.

The effect of the textures features in the COIL-20 dataset is more surprising. Since this set is

composed of images of objects one would expect edges and basic image features to play an

important role along with textures. This doesn’t seem to be the case as the elimination of either

edges or basic image features doesn’t affect classification accuracy. An interesting situation

can be observed in 3.3c where the removal of edges features drastically improves classification

results. One explanation for this behavior could be that edges features manage to get good

weights during the weighting procedure of WND and therefore end up in the top 15% while

they actually do not really help in discriminating between classes. By removing these features

some slots of the 15% best are liberated for the features ranked right after edges, which appear

to have a better discrimination power. The effect we observe could hence be explained by a

failure of the weighting scheme that should yield high values for informative features only. In

general we notice that there are no features groups that seem to be sufficient to explain the

good results on all the datasets. Different groups appear to be important depending on the

nature of the images as different morphological aspects allow for class separation. It is also

interesting to note that the removal of certain features groups appear to improve classification

accuracy in some cases as described for CHO. However here again there is no global tendency,

and we cannot therefore flag a particular group as "useless".

Features Levels After splitting the vector into groups we did the same experiment for fea-

tures "levels". Our three features levels were designed to be non-overlapping, i.e. elements

were unique to each group. Following the same settings as for the preceeding "per groups"

experiment, we classified the CHARM vector minus each group using our MATLAB imple-

mentation of WND. The results shown in Fig. 3.4 were validated ten times using 10-fold

cross-validation, and then averaged. We plotted again the reference mean and standard

deviation in green as in Fig. 3.3.

In most of the datasets, 3.4a, 3.4b, 3.4d, 3.4e, and 3.4f, it can be seen that the first features

level (i.e. the features extracted from the raw image) seem to contribute a lot to the good

classification result we obtain with the CHARM vector. Indeed if this level if removed we

observe a notable increase in the misclassification rate. This however doesn’t imply that the

two other levels are useless: we can see that the mean results when removing the second or

the third are not completely equivalent. In 3.4d for instance one notice that the removal of the

second level also impacts classification efficiency, though to a lesser extent. The Yale dataset

shown in 3.4g seems to rely more on the third level features, even though this trend is not

striking. In any case it appears that the first level features do not play here such a major role as

in the previously mentioned cases.
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(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

Figure 3.4: Misclassification rates per non-overlapping features "levels": the label under each
bar corresponds to the level that has been removed from CHARM for classification. The solid
(respectively dashed) line corresponds to the mean (respectively mean plus and minus one
standard deviation) reference classification accuracy using the whole features set. Results
range from 0 (0%) to 1 (100%).
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(g) Yale

Figure 3.4: (Cont’d) Misclassification rates per non-overlapping features "levels": the label
under each bar corresponds to the level that has been removed from CHARM for classification.
The solid (respectively dashed) line corresponds to the mean (respectively mean plus and
minus one standard deviation) reference classification accuracy using the whole features set.
Results range from 0 (0%) to 1 (100%).

The exact opposite situation can be found in the CHO dataset in 3.4c: the removal of lower

level features seem to benefit a lot classification efficiency. This result reminds us of the

observation made in 3.3c and could be imputed to the same causes. Similar cases of features

that apparently "penalize" classification can also be found in 3.4f and 3.4a although the trend

is much more sublte and the difference is not that significant. We draw from our analysis of

features levels the same kind of conclusions than for the analysis of features groups: even

though the first level appears to play an important role in most datasets we cannot clearly

discard the other features level as they seem to influence classification results as well, though

to a lesser extent. Moreover in this case as in the previous "per groups" experiment a multi-

groups and multi-level vector like CHARM seem to be an efficient solution to be general

enough to perform well on all reference data.
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Features Vectors Versions Assuming the power of the CHARM vector comes from its con-

struction based on features groups and features levels as concluded from the observation of

Fig. 3.3 and 3.4, we implemented several vectors containing not exactly the same elements as

CHARM but built on the same scheme. These different versions were classified using WND

in Python and validated with the "save 25%" method. Fig. 3.5 shows mean results over 100

classification runs obtained for each vector version on each reference dataset.

(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

Figure 3.5: Misclassification results using different features vector version, WND classifier and
the "save 25%" validation method. Results range from 0 (0%) to 1 (100%).
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(g) Yale

Figure 3.5: Misclassification results using different features vector version, WND classifier and
the "save 25%" validation method. Results range from 0 (0%) to 1 (100%).

A nice trend of improvement can be observed as the features vectors versions we designed

gain in complexity. On the v2 and v3 series, the larger vectors containing a bigger subset of

features (v2.2 and v3.2) outperform the simpler versions on most of the datasets. In 3.5a, 3.5b,

3.5d, 3.5e, and 3.5g we observe that v2.2 and v3.2 get similar results. v2.2 even beats the more

complex version in 3.5f. A hardly better mean result for v3.2 can be observed in 3.5c, but the

difference with v2.2 is extremely faint. In general we observe that the results obtained using

v3.2 are a little more constant as the variance is slightly smaller than the one obtained with

v2.2. On most of the datasets our vectors do not achieve as good results as CHARM, but there

is a net tendency towards approaching WND-CHARM’s reference accuracy. As our v2.2 vector

composed of transforms only seems to perform as well as the version containing all features

levels (v3.2), we could drop the compound transforms. However considering the fact we do

not really understand them, we think removing them directly would be delicate as we cannot

predict how it would impact on the algorithm’s ability to generalize on many different kind of

image data.

Feature Vector Interpretation

We ran the three experiments described in the Methods section in order to investigate the

nature of the hard-to-interpret higher level features. All results were gathered using RStudio

[43] along with R 2.15 [41].

Our first test aimed at comparing the classification results obtained using RBF-SVM on v1’

(first level features only) and Linear-SVM on the full CHARM vector. We used the train

function from the caret R package [29] with svmRadial on v1’ and svmLinear on CHARM.

The features were centered and scaled to the interval [0,1] using the preProcess function from

R. We used the 10-fold cross-validation also implemented in the train function to validate

our results. As usual, our results were averaged over 10 runs of 10-fold cross-validation.

The SVM implementations svmLinear and svmRadial are extremely time consuming and
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rapidly require large amount of resources as the number of different classes increases. For this

reason we did not use here the AT&T and Brodatz as the execution time on these sets was not

acceptable. Results were plotted using the ggplot R library and displayed in Fig. 3.6.

Figure 3.6: Misclassification rates using RBF-SVM on v1’ versus Linear-SVM on CHARM.
Results range from 0 (0%) to 1 (100%).

Apparently Linear SVM is a very powerful classifier when used with CHARM. We observe that

the use of RBF-SVM on v1’ does not compete with Linear SVM on CHARM. In all datasets the

misclassification rate on v1’ is larger than on CHARM. It therefore seems that the additional

dimensions offered by the Radial Basis Functions kernel is not sufficient to imitate the effect

of the higher level features present in the CHARM vector.

For the second experiment we used RBF-SVM on v1’ and RBF-SVM on CHARM. The same

R functions were used as before, namely the train function from caret with parameter

svmRadial for the classifier and 10 runs of 10-fold cross-validation. Results are presented

following the usual format in Fig. 3.7.

It is interesting to note that RBF-SVM on CHARM seems to penalize classification: the mis-

classification rate on the full vector is increased for all datasets except COIL-20 in Fig. 3.7

as compared to Fig. 3.6. A possible interpretation could be the following. As RBF-SVM is

"just another classifier" with the advantage of being able to increase the dimensionality of

the feature space, the low level vector v1’ benefits a lot from this "lifting" in higher dimension

space while the more complex vector only slightly benefits from this property of RBF-SVM

since it already has many dimensions. In any case this situation brings misclassification rates
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Figure 3.7: Misclassification rates using RBF-SVM on v1’ versus RBF-SVM on CHARM. Results
range from 0 (0%) to 1 (100%).

obtained with both features vectors to closer values. Our expectation that Linear SVM and

RBF-SVM on CHARM would yield approximately equivalent results is contradicted, but the

hypothesis that RBF-SVM on v1’ and CHARM should give comparable results seems to be

verified.

For our last analysis regarding higher level features we compared performances of Linear-SVM

and Random Fourier Features on v1’ versus Linear-SVM on CHARM. The same svmLinear

as in the first experiment was used, as well as the same validation method. For the Random

Fourier Features we used an ad-hoc gen_rand_feats R function implemented by Shantanu

Singh at the Imaging Platform for this study. The R source code of the gen_rand_feats is

extremely simple:

gen_rand_feats <- function (X,d=10) {

X <- as.matrix(t(X))

D <- dim(X)[1]

W <- sqrt(2)*matrix(runif(d*D), d)

V <- W %*% X

G <- t(rbind(cos(V),sin(V)))

}

Following [42], d ∗D random samples are simply drawn from a uniform distribution using the
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runif R method where d is the desired number of random features and D is the number of

samples (lines) of X. Following the description of random features given in the Materials and

Methods section, a new features space G with the addition of 2∗d random features is created.

The factor 2 comes from the fact that the cosine and sine of the W ∗X product are returned.

train with svmLinear was then used on the new feature vector as in previous cases. Results

using d=500 on the v1’ vector are presented in Fig. 3.8.

Figure 3.8: Misclassification rates using Random Fourier Features and Linear-SVM on v1’
versus Linear-SVM on CHARM. Results range from 0 (0%) to 1 (100%).

With its 1000 random features, v1’ contains a total of 1432 features, bringing it to a dimension-

ality of the same order than that of CHARM and its 1025 elements. We can however notice that

this is still not sufficient: the misclassification rate obtained on v1’ with the random features

is still larger than what is observed on CHARM. Comparing v1’ results on Fig. 3.7 and Fig.

3.8, we observe that results on v1’ using RBF-SVM and Linear SVM with random features

are similar. We can hence verify that the random features are performing the same kind of

trick than the RBF kernel on the low level features vector. As it was the case in Fig. 3.6, our

hypothesis stating that higher level features are no better than random features and are merely

adding dimensions cannot be verified as results go against it. Apparently there is something

more in the CHARM vector that we cannot mimic by generating random features to increase

dimensionality of the features space.

The hypothesis we proposed to explain the nature of the features computed on compound

transforms couldn’t be proved by these three experiments. While we still cannot easily un-
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derstand how these complicated features relate to the original image, we at least showed that

they are really capturing some aspects in the image. The higher level features might be hard to

interpret, but we now know that they do more than solely adding dimensions to the features

space. We also found out that Linear SVM apparently performs better than RBF-SVM when

teamed up with CHARM,. This is an interesting result as it indicates us that it is possible to

separate the classes in our reference datasets using a linear classifier. If class distributions were

not linearly separable, we would probably have obtained better results when using RBF-SVM.

This analysis eventually did not really helped us understanding the meaning of the compound

transforms features, but allowed us appreciating the fact they indeed carry information from

the image.

"Top 15%" Features

Dimension reduction of the features space is performed in WND-CHARM using weighting

and subsequent thresholding: the 15% features corresponding to the highest weights are kept

for classification and the others are thrown away. In order to gain insight into this step of the

algorithm we analyzed the top 15% features subset in two ways: by looking at its composition

and by investigating its stability over classification runs. We first extracted top features and

corresponding weights from the HTML report outputted by the C++ implementation of WND-

CHARM using ad-hoc Python scripts. Subset composition was then analyzed by gathering top

features into groups according to the same scheme we used for our "per groups" classification

experiments. In each groups features weights were summed to yield an overall "group weight".

Results were then exported to MATLAB and plotted for each reference dataset as shown in

Fig. 3.9. We aimed with this result to reach the same kind of conclusions as when we did "per

groups" classification, namely that all feature groups appear to play a role among the different

datasets.
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(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

(g) Yale

Figure 3.9: Features group composition of the top 15% subset selected after thresholding.
High weights indicates feature groups identified as having a large discriminative power by
WND-CHARM’s weighting scheme.

Values indicated in the y-axis of Fig. 3.9 correspond to the sum of weights of all features inside

each features groups. These values were not scaled, and we therefore look at the relative

weights of features groups rather than at their actual values. It is interesting to look at these

results while keeping in mind the ones we obtained in Fig. 3.3: we observe three different

situations. In some cases the groups that appear to have highest weights seem to penalize

classification, as we can see for ChebyHist in 3.9a (3.3a) and Histograms in 3.9g (3.3g). In these
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two cases classification accuracy is improved when the groups having the strongest weight

sums are removed. This could indicate that the weighting scheme based on Fischer scores

used in WND-CHARM creates "false positives": some features do not actually have a good

discrimination power but still get large weight values. As they are selected after thresholding

they prevent "better" features to be used. When they are removed classification efficiency

is thus improved. The second situation we observe is the expected one: feature groups

accumulating the largest weights correspond to important elements for class discrimination.

Their removal impacts classification results in a bad way as we can see for Textures in 3.9b

(3.3b), 3.9e (3.3e) and 3.9f (3.3f), Moments in 3.9a (3.3a) and 3.9g (3.3g), and Moments and

Textures in 3.9d (3.3d). These indicate cases where large weights properly correspond to

strongly discriminating features. At last we can also notice some cases where features groups

exhibiting the largest weight sums do not seem to be that important for classification as their

absence do not affect the results shown in Fig. 3.3. ChebyHist in 3.9b (3.3b), Moments in 3.9c

(3.3c), Histograms in 3.9d (3.3d) and 3.9e (3.3e), and Histograms and Moments in 3.9f (3.3f)

are examples of such situation. A possible explanation could be that these features groups

are highly represented in the 15% subset, but do not strongly contribute to classification as a

few other features with much stronger weights are present. When adding up weights these

features groups obtain a large sum only because of the fact they are numerous. Aside from

these observations, the results on the CHO dataset displayed in 3.9c are extremely puzzling.

The Moments features group obtains a weights score that strongly dominates all other groups,

but it appears in 3.3c that the absence of this group does not influence classification results.

Even stranger: we observe in 3.3c that the absence of the Edges features group improves

classification accuracy even though it gets a near-zero weights sum in 3.9c. We do not have an

explanation for this particular case, but since it is an isolated situation we do not consider it as

a big source of concern. These experiments highlight some limitations of the features selection

scheme used in WND-CHARM. There seems to be in some cases a discrepancy between the

features selected by the weighting step and the crucial elements for classification.

In order to assess the stability of the feature selection algorithm we measured two metrics: the

Tanimoto distance and the Pearson’s correlation coefficient described in the Methods section.

We wrote a Python script gathering these measurements from features names and weights

we extracted from WND-CHARM’s HTML report. The output is a tab separated matrix in a

text file. As the Tanimoto distance and Pearson’s correlation coefficient are measured for every

pairs of subsets and since our data covered 100 runs of classification, the results are displayed

as 100x100 pixels matrices. These matrices are shown as black and white images in 3.10 and

3.11 where black corresponds to the lowest value and white to the largest.
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(a) AT&T (b) Brodatz (c) CHO

(d) COIL-20 (e) HeLa (f) Pollen

(g) Yale

Figure 3.10: Tanimoto distance measuring the similarity of top features subsets content across
100 classification runs on the reference datasets.

In the ideal case of a perfectly stable feature selection scheme each matrix will be all white as a

value of one indicates perfectly similar subsets for the Tanimoto distance. We observe that

for 3.10a, 3.10b, 3.10c, 3.10d, and 3.10f the overall tendency is grey, meaning that the subset

of 15% best features used is rather unstable. The Tanimoto distance matrix of the COIL-20

dataset 3.10d is particularly white, which could probably be explained by the fact this dataset is

fairly easy to classify and the features required for class discrimination are therefore "obvious".
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Hela in 3.10e and Yale in 3.10g exhibit the most variations as seen by the larger amount of dark

areas. This could be explained by the fact that they are difficult datasets, hence the classifier

is maybe always "hesitating" between which features to consider. This could also indicate

redundancy in the information given by the different features resulting in different possible

"top subsets" of equal strength.

(a) AT&T (b) Brodatz (c) CHO

(d) COIL-20 (e) HeLa (f) Pollen

(g) Yale

Figure 3.11: Pearson’s correlation coefficient measuring the similarity between features weights
across 100 classification runs on the reference datasets.
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We recall that the Pearson’s correlation coefficient measures the similarity of weights across

classification runs. A value of 1 is synonym of perfect correlation, while -1 corresponds to

perfect anticorrelation. When no correlation between weights is detected, Pearson’s coefficient

is equal to 0. In Fig. 3.11 black therefore corresponds to -1, grey to zero and white to 1. We

observe several trends in these matrices. First 3.11e and 3.11f display an extreme degree of

correlation between classification runs. The Pollen dataset appeared to have quite dissimilar

subsets between rounds in 3.10f, and 3.11f therefore indicates us that even though the nature

of the top features is changing the weights values in the subset seem to be conserved. The

situation is very interesting for the HeLa dataset: we saw in 3.10e that the subset composition

appeared to vary a lot between runs, but we observe in 3.11e that the weights are highly

correlated. This observation gives more credit to our supposition that this dataset contains

redundant features, i.e. descriptors with the same discriminative power. Depending on the

nature of the training set, one feature set or another is used but the resulting weights appear to

be similar as several features are equally powerful. The Brodatz dataset 3.11b presents a strong

degree of anticorrelation between rounds, while we saw in 3.10b that the content of the subset

was reasonably varying. This could mean that depending on the nature of the training set the

features appearing on the top 15% vary slightly but have more or less discriminative power

and hence get different weight values. The same conclusions could be drawn from 3.11a that

exhibits absence of correlation between many rounds. In the case of 3.11g we already saw in

3.10g that the content of the subset was very unstable, hence a notable absence of correlation

could be expected. An interesting situation can be found in 3.11c and 3.11d where a few runs

appear to be highly anticorrelated or uncorrelated to the other ones, yielding isolated black

and grey lines. As we observed that these two datasets have mildly stable subset contents

we can imagine that the same situation as described for 3.11b is happening: the nature of

the training set affects more the absolute (i.e. the weight value) than the relative (i.e. the

fact feature A is more powerful than feature B) discriminative power of the features thereby

changing weight values while keeping subset content more or less stable over runs.

As a general conclusion it seems that we should rely more on the top features content for

our analysis than on the weight values as the latter displays greater variations over classi-

fication rounds than the former. While weight values vary differently between datasets as

it can be seen on Fig. 3.11, the amount of variation in the identity of the features linked to

highest weights seems to affect more uniformly the datasets as shown on Fig. 3.10. We could

hence conclude that while a dimension reduction step is definitely appropriate, the weighting

scheme proposed in WND-CHARM might not be the best solution.

3.1.2 Classification

We used MATLAB in order to try two standard classifiers on the CHARM vector and compare

their efficiency with WND. We used the 10-fold cross-validation provided by the crossval

method available in MATLAB and the classify and classifyknn functions for LDA and

k-NN respectively. In order to perform PCA we called the MATLAB function princomp, and
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we selected the desired amount of PC by simply computing the ratio of the cumulative sums

of eigenvalues of the covariance matrix to the total sum. The classifyWND function we

implemented performed WND classfication and was written in the same format as the two

other "classify" functions for convenience’s sake.

k-NN

First of all we performed a parameter exploration in order to find the optimal value of k for

k-NN. We classified the CHARM vector using k-NN with 1 to 10 neighbors and plotted the

results for every reference dataset in Fig. 3.12.

Figure 3.12: k-NN parameter exploration using MATLAB.

We observe that for every dataset except AT&T the influence of parameter k doesn’t appear to

be striking. With these results we obtained an optimal k value for each dataset, listed in Table

3.3

Table 3.3: Optimal k values for kNN.

Dataset k

AT&T 1

Brodatz 5

CHO 9

COIL-20 1

HeLa 7

Pollen 4

Yale 5

We have to keep in mind that situations like AT&T and COIL-20 where only one neighbor is
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considered are highly sensitive to noise in the data and therefore highly dependent on the

nature of the training set.

PCA-LDA

When doing PCA as a pre-processing step for LDA the number of principal components we

need depends on the amount of variance desired to be conserved in the PCA-transformed

space. We hence ran an experiment similar to the k-NN parameter exploration discussed

previously, this time with different amount of variance. We performed PCA-LDA on CHARM

while keeping 95 to 99% (with a 1% increment) of the original variation. Results are shown in

Fig. 3.13. The Yale dataset does not have result for %var=0.99. As explained in the Methods

section LDA tends to fail when the feature space dimension is too large, hence requiring a

dimension-reduction step before classification. As %var approaches 1 the number of principal

component to be kept approaches the number of features in the original space and amounts

to no dimension reduction. LDA hence crashes on the Yale dataset when %var=0.99 as the

covariance matrix becomes singular.

Figure 3.13: PCA parameter exploration using MATLAB.

We again see that except in the case of AT&T the influence of %var is light. Most variations are

not significant, and it is therefore difficult to decide which value to choose. We listed the %var

values that yielded the best classification results in Table 3.4.

We chose the value quite arbitrarily for COIL-20 as it can be seen in Fig. 3.13 that the difference

of results is indistinguishable. 98% is a usual choice for PCA parameter, so we decided to go for

this value. Most datasets seem to require only a small amount of the variance in the original

data to be able to give good results.
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Table 3.4: Optimal %var for PCA.

Dataset %var [%]

AT&T 95
Brodatz 99

CHO 95
COIL-20 98

HeLa 96
Pollen 95

Yale 96

3.1.3 Comparison with WND

Taking into account the observations of k-NN and PCA parameters exploration we ran our

classification experiments in MATLAB using WND, k-NN and PCA-LDA. Results presented in

Fig. 3.14 were averaged over 10 classification runs. Values of k for k-NN were chosen for each

dataset according to results presented in Table 3.3, and PC were selected in order to keep the

optimal amount of the variance in the original data as listed in Table 3.4. In all cases features

were centered and scaled before classifying.

Modifying the classification method from WND to k-NN and PCA-LDA yielded interesting

results: in most cases we managed to obtain lower misclassification rates with either algo-

rithms. We observe in 3.14a that k-NN wins over all other methods even though the difference

is minimal (about one percent). However in 3.14b, 3.14e, 3.14f, 3.14g, and in 3.14c (although

the effect is extremely small in this last case) the common efforts of PCA and LDA achieve

better performance than k-NN, and in more than half of the cases better than WND. Results

on the COIL-20 dataset (3.14d) are so good in any cases that it is hardly possible to make any

conclusion, but as a general trend PCA-LDA seems to be a better options than k-NN in terms

of results. Moreover caution should be taken with k-NN results especially in cases where only

one neighbor was considered and no variance was observed (3.14a): good results could come

only from the fact that the "important" neighbor was present on every run in the training set

by chance.

In the light of these results we can conclude that LDA combined with PCA seems to be a

promising approach at the results level. It is also interesting from a theoretical standpoint as

this standard method is more widely accepted and less empirical than WND.
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(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

Figure 3.14: Misclassification results using the CHARM vector, different classification methods
and 10-fold cross-validation in MATLAB for the reference datasets. Results range from 0 (0%)
to 1 (100%).
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(g) Yale

Figure 3.14: (Cont’d) Misclassification results using the CHARM vector, different classification
methods and 10-fold cross-validation in MATLAB for the reference datasets. Results range
from 0 (0%) to 1 (100%).

3.1.4 Validation

We implemented two different validation methods to test our implementation as we explained

before in the Material and Methods section. The original C++ implementation of WND-

CHARM uses "save 25%", but as we saw in 3.1 this method has a very large variance and is

not a standard one. We therefore preferred k-fold cross-validation which is more reliable. In

Fig. 3.15 we reported results using WND-CHARM and validating with either method using

our Python version. Results were averaged over 100 classification runs for "save 25%" and

10 for 10-fold cross-validation as the result obtained by training and validating one classifier

is actually already the average of 10 splits of the dataset in 10-fold while in the "save 25%"

case only one split is made. We selected k=10 as it is a standard choice of parameter for

cross-validation.
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Figure 3.15: Comparison of misclassification rates when validating WND-CHARM with the
"save 25%" method and 10-fold cross-validation. Results range from 0 (0%) to 1 (100%).

Let us recall the principle of each method: while k-fold cross-validation splits the dataset into

k subsets and validates k times the classifier using k-1 subsets for the training and the last one

for validation, "save 25%" only randomly selects 25% of the dataset in each class and uses it for

validation while training on the remaining 75% per class. It therefore makes sense to observe

in Fig. 3.15 that 10-fold cross-validation exhibits a much smaller variance than "save 25%".

We also see that 10-fold tends to give slightly worse results than "save 25%". This was expected

from the fact that 10-fold is a much more stringent method than "save 25%": on the 10-fold

method no constraint is put on the way the 10 splits are created and it might be possible that

all the elements of one class are present in only one split by chance, therefore affecting the

overall performance when this split is kept for validation. This situation cannot happen in

the "save 25%" method which is more "gentle" as we ensure that the classifier is trained and

validated with the same number of elements from each of the classes. In spite of this, results

using either methods are quite comparable.

While k=10 is usually used for k-fold cross-validation as a standard value, we thought it could

be interesting to try to use a value depending on the way each dataset was built. We proposed a

formula in the Methods section that would allow us to find an empirical kmax being a function

of the number of images per class. We obtained the values presented in Table 3.5. We used

again our Python implementation of WND-CHARM and k-fold cross-validation to compare

the effect of 10-fold and kopt -fold cross-validation. Fig. 3.16 displays a MATLAB plot of our

results averaged over 10 runs of testing and training. Datasets with a kmax larger than 10 are

not shown as the results obtained using k=10 were already appropriate.
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Table 3.5: Optimal k values for our reference datasets.

Dataset Number of classes Minimal number of images per class kmax

AT&T 40 10 2

Brodatz 111 16 3

CHO 5 33 6

COIL-20 20 72 14

HeLa 10 73 14

Pollen 7 90 18

Yale 15 11 2

Figure 3.16: Comparison of misclassification rates when validating WND-CHARM using 10-
fold and k-fold cross-validation, with k adapted to the nature of each dataset. Results range
from 0 (0%) to 1 (100%).

We observe that adapting the value of k depending on the nature of the dataset as we proposed

does not generally benefit classification results. Misclassification rate is larger in AT&T and

Yale using k = kmax instead of k = 10, and results do not seem to be affected in Brodatz. The

CHO set is the only one to benefit from the adapted value of k, probably because the k we

selected in this case was not too small (6, versus 2 in the case of AT&T and Yale). As already

mentioned when describing k-fold cross-validation in the Methods section, the choice of k is

very debated among the machine learning community. Taking into account the unconvincing

results of Fig. 3.16 with different values of k, we dropped the idea of changing the validation

parameter value and used the standard 10-fold instead. Adapting the value of k could still be a

possibility. The optimal value should however be obtained using something different from the
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formula we adopted to obtain values in Table 3.5 as it tends to give too small k values.

As a conclusion we observe that in spite of the slight differences in performance between

the two validation methods the overall rank order of classification accuracies on the different

datasets is mostly conserved. We conclude then that the design of the features vector and the

choice of the classification algorithm have a greater impact on classification results than the

method chosen for validation. We therefore safely decided to switch for the more standard

and robust 10-fold cross-validation.

3.2 "PCA-LDA-CHARM-like"

The analysis of the different steps and components of WND-CHARM we performed until now

helped us designing our new "PCA-LDA-CHARM-like" algorithm as follows:

Feature vector: v3.2, extracted using pre-existing and newly implemented modules from

CellProfiler. This CHARM-like vector was built using features groups and "levels" as

suggested by our analysis (Fig. 3.3 and 3.4). The same transforms as in CHARM were

used to built the "higher levels". We kept this structure as our analysis of higher order

features (Fig. 3.6, 3.7 and 3.8) suggested that even if we were not fully able to explain

what they meant, their effect couldn’t be mimicked using random features, hence the

fact they capture actual information on the image couldn’t be proved to be wrong.

Dimension reduction: PCA, as our analysis of the "top 15%" feature subset helped us notice

that while the weighting scheme from WND-CHARM seems to be efficient in the sense

that it yields good results, it also behaves in a quite anarchic way. Switching for the

widely accepted PCA therefore seemed safer. We observed in Fig. 3.13 that on average

96% of the variance needed to be conserved to give the best results on the reference

datasets. As these datasets were used in order to benchmark the algorithm and might

be simpler than real-life cases. We decided to use instead the standard value of 98% for

further experiments. This value indeed yielded good results on all datasets as well while

keeping a reasonable amount of information present in the untransformed data, which

might help for more difficult classification tasks. As in WND-CHARM, features were

centered and scaled before performing dimension reduction.

Classification: LDA, as this reliable, widely used and well-defined method exhibited promis-

ing results in our classifier analysis shown in Fig. 3.14.

Validation: 10-fold cross-validation, following our observations from Fig. 3.15.

In this way we saved the core ideas of WND-CHARM, namely features extracted on the whole

image and vector built from groups and levels.
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3.2.1 Comparison

Before presenting the actual results we found important to discuss the relative computation

time required by each method. First computation time is dependent on the number of

elements (images) in the dataset, hence training a classifier using for example the COIL-20 or

the Brodatz dataset would requires a long computation time, while it could be much faster on

the small Yale dataset. Secondly, the size of the images greatly varies between the different

datasets, and since most features extraction algorithms are dependent on image size the

typical dimension of images in the dataset also affects execution time. We present in Tables

3.6 and 3.7 WND-CHARM and PCA-LDA-CHARM-like execution times on two extreme cases

(Brodatz, the biggest dataset, and Yale the smallest one) and on a typical example (HeLa). We

displayed the time needed for features extraction, for classification, and the total time. In the

C++ version the process is separated into "training" and "testing", so the time reported in the

features extraction column actually takes into account the time needed to train the classifier as

well. In our algorithm the feature extraction (CellProfiler) and training/testing (Python script)

steps are totally independent, therefore the classification column records the time required to

train and test the classifier. All experiments were run via the Broad’s LSF cluster.

Table 3.6: Execution time using WND-CHARM on the LSF cluster (in seconds).

Dataset Features extraction Classification Total

Brodatz 34507.42 390.06 34897.48

HeLa 27264.35 69.75 27334.1

Yale 7949.96 3.56 7953.53

Table 3.7: Execution time using PCA-LDA-CHARM-like on the LSF cluster (in seconds).

Dataset Features extraction Classification Total

Brodatz 74711.62 597.01 75308.63

HeLa 58267.01 123.19 58390.2

Yale 7755.00 17.28 7772.28

First, we notice that in both cases features extraction is obviously the most time-taking step.

For small datasets like Yale our algorithm appears to be faster than WND-CHARM, though

the difference is not especially remarkable. For larger datasets the execution time difference

becomes much more striking: our implementation requires at least twice the time needed by

WND-CHARM to perform a full classification experiment, essentially due to features extraction.

We think that this observation can be better explained by the programming language used in

each case rather than by the structure of each algorithm. Benchmarking tests [10] show that

in order to perform a similar task Python can take ten to hundred times more time than C++.

This slowness is due mostly to the fact C++ is a compiled language while Python is interpreted,
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but other aspects of the way the language is conceived make Python more time-consuming.

However Python has a big advantage over C++ at the code readability level. Moreover our goal

here was to make our program user-friendly, and this is what motivated our choice for Python:

we wanted to be able to make it part of CellProfiler. As classification experiments applied to

biology do not have stringent time constrains we think the benefits brought by its availability

in a widely used open-source software outweigh the relative slowness of our algorithm versus

WND-CHARM

One of the essential aspects of our method had to be be the ability to recreate equally good or

in best-case scenario better results than WND-CHARM. In order to make sure this condition

was respected we performed several comparisons of results obtained with WND-CHARM and

PCA-LDA-CHARM-like. In order to cover a wide range of possible data types we of course

re-used our reference datasets from [38], but we also gathered results on the IICBU datasets

presented in [47]. These two sources contain most of the published comprehensive results

using WND-CHARM and therefore appeared to be a sufficient benchmarking set for our new

algorithm. In order to make results comparable we brought the two methods to a common

basis by using the same validation technique, once with each algorithm’s method. Fig. 3.17

compares the two algorithms using the "save 25%" from WND-CHARM and Fig. 3.18 using

10-fold cross-validation from PCA-LDA-CHARM-like, in both cases on reference datasets.

All results were obtained using our Python code and averaged over 100 ("save 25%") and 10

(10-fold) classification runs.

We observe that for both validation methods our algorithm appears to be a good competitor for

WND-CHARM. On most datasets the results are comparable, and they even seem to be better

on a few cases as it can be observed in Fig. 3.18. Compared to the results in Fig. 3.18, there is

not indeed much significant differences between the performance of the two approaches in

Fig. 3.17 because of the large variance of the "save 25%" method. The global trend is conserved

across the different methods: PCA-LDA-CHARM-like tends to obtain better mean results than

WND-CHARM on AT&T, CHO and Yale, and the opposite situation is observed for HeLa and

Pollen. In our results on Brodatz, the approach obtaining the best mean classification accuracy

depends on the classification method, and results on COIL-20 using either approach are so

close it is hard to determine which method performs best.
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Figure 3.17: Comparison of misclassification rates obtained with WND-CHARM and our
algorithm using the "save 25%" validation method. Results range from 0 (0%) to 1 (100%).

Figure 3.18: Comparison of misclassification rates obtained with WND-CHARM and our
algorithm using 10-fold cross-validation. Results range from 0 (0%) to 1 (100%).

In order to make sure the average classification result we see for PCA-LDA-CHARM-like

truly indicates the ability to separate accurately each different class, we displayed a typical

confusion matrix obtained with 10-fold cross-validation for each dataset in 3.19. These results

helped us making sure each class was reasonably well separated.
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(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

Figure 3.19: Typical confusion marices for the reference datasets using PCA-LDA-CHARM-like
and 10-fold cross-validation.
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(g) Yale

Figure 3.19: (Cont’d) Typical confusion marices for the reference datasets using PCA-LDA-
CHARM-like and 10-fold cross-validation.

In the cases of 3.19a, 3.19b, 3.19d, 3.19c and 3.19f we observe little confusion as suspected from

the good classification rates (98, 91, 100, 98 and 94% correct on average, respectively). More

confusion can be seen on 3.19e, and 3.19g. These two sets seem to possess many elements

that look like each other, presenting a harder classification task. We know for instance in the

case of HeLa that images from the different Golgi classes golgpp and golgia are difficult to

identify by eye, and that cell components like lysosomes and endosomes also are troublesome

to classify manually ([47]). We can indeed observe confusion between these elements in 3.19e.

In general we see with these matrices that our PCA-LDA-CHARM-like performs well. The

difficulties it encounters seem to truly emerge from the nature of the data and not from a bad

design of the algorithm.
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We also compared our results on the IICBU sets ([47]). These 11 image sets were classified using

WND-CHARM and PCA-LDA-CHARM-like and validated with "save 25%" in order to make

comparison with WND-CHARM meaningful. Results averaged over 100 runs are presented in

3.20.

Figure 3.20: Comparison of misclassification rates using WND-CHARM and our algorithm
with "save 25%" for validation on the IICBU datasets. Results range from 0 (0%) to 1 (100%).

PCA-LDA-CHARM-like again obtains results that compete with WND-CHARM’s on most

datasets. On Lymphoma, RNAi and Pollen our algorithm is outperformed, but the different is

on the order of 1%, Moreover we can see that the biggest discrepancy between results is found

on the Pollen dataset, which was also part of our reference datasets and obtained comparable

results with WND-CHARM in Fig. 3.17. This allows us to conclude that we are globally able to

obtain satisfactory results on the IICBU datasets. Apart from the relatively bad performances

on Terminal Bulb, Lymphoma and RNAi, our algorithm seems suitable for the analysis of

varied types of biological image data.

Once we made sure PCA-LDA-CHARM-like was able to perform well enough on the IICBU

suite, we switched back to its original 10-fold cross-validation and displayed typical confusion

matrices for each of the IICBU set in Fig. 3.21.

81



Chapter 3. Results

(a) Binucleate (b) CHO

(c) HeLa (d) Liver Aging

(e) Liver Gender AL (f) Liver Gender CR

Figure 3.21: Typical confusion marices for the IICBU datasets using PCA-LDA-CHARM-like.
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(g) Lymphoma (h) Pollen

(i) RNAi (j) Terminal Bulb

Figure 3.21: (Cont’d) Typical confusion marices for the IICBU datasets using PCA-LDA-
CHARM-like.

As most of these sets are composed of less classes than the reference datasets the resulting

confusion matrices are more readable. These images represent more realistic biological

conditions and are therefore harder to classify than the reference datasets used earlier. We

however see that the results are satisfying in most cases: 3.21b, 3.21d, 3.21e, 3.21f and 3.21h

display only a slight amount of confusion and all classes are well separated. In the cases of

3.21c, 3.21a, 3.21i and 3.21j elements in the confusion matrix are less concentrated in the

diagonal and we detect groups of classes that are badly separated, for instance day8, day6 and

day4 in Terminal Bulb or CG9484 and CG8222 in RNAi. This is not surprising as these datasets

are expected to be difficult problems. It is for example mentioned in [47] that while the RNAi

image set presents a similar problem as Binucleate, it is expected to be a harder classification

experiment. This is what we observe by comparing 3.21i and 3.21a. A dramatic situation is

seen in 3.21g where the confusion matrix appears to be mostly scrambled. Here again we

think this result comes from the intrinsic difficulty of the image data. As already discussed
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when presenting it in the Materials and Methods section, the Lymphoma dataset is composed

of images taken in very different conditions and therefore exhibits large in-class variations

making classification difficult.

With these results we can affirm we managed to build a whole-image classification algorithm

which performances compare to WND-CHARM. It can therefore be used without further

comparison on real-life datasets.

3.2.2 Analysis

We felt satisfied by our method as described at the beginning of this section and therefore

used it on some application examples, but we performed some experiments concerning the

features vector and classification method of PCA-LDA-CHARM-like in order to determine

what could be further improved to design in the future a better version of our algorithm.

We first went back to the different features vector versions we built to imitate the CHARM

vector. As a reminder, we chose v3.2 for our algorithm as it appeared to perform well with

WND, but results using v2.2 were equivalently good. In order to check if our choice was also

an optimal solution for PCA-LDA, we classified all the different features vectors versions using

PCA-LDA and validated them with 10-fold cross-validation in Python. Results averaged over

10 runs can be found in Fig. 3.22.
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(a) AT&T (b) Brodatz

(c) CHO (d) COIL-20

(e) HeLa (f) Pollen

Figure 3.22: Misclassification rates using the different features vector version, PCA-LDA and
10-fold cross-validation. Results range from 0 (0%) to 1 (100%).
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(g) Yale

Figure 3.22: (Cont’d) Misclassification rates using the different features vector version, PCA-
LDA and 10-fold cross-validation. Results range from 0 (0%) to 1 (100%)

It can be seen that the v3.2 we chose indeed gives the best performance on all reference

datasets. However just like it was the case with WND, v2.2 competes with v3.2 in every cases

except 3.22d, but the difference there is in the order of less than a percent. We hence reach the

same conclusion as earlier: a possible improvement could be to use v2.2 as a feature vector.

This would benefit the algorithm in two ways: first the computation time needed for features

extraction would be reduced as v2.2 is composed of less elements than v3.2, and second we

wouldn’t be using compound transforms. As we extensively mentioned, on one hand we do

not really understand what higher level features capture at the image level, and we could

hence feel safer by not using them. However on the other hand as we suspect these features

are actually capturing some aspects of the image, removing them might restrict the power of

the algorithm in certain situations. In any case the results we see in Fig. 3.22 are reassuring in

the sense that v0 gives bad performances in all datasets, meaning that the features extraction

modules we implemented in CellProfiler add a real value when it comes to whole-image-based

classification.

We then wanted to look again at the classification method and try more algorithms combined

with our v3.2 vector and 10-fold cross-validation. We used RStudio and the R caret package

([29]) already mentioned before to try classifying with k-NN, LDA and other dimension reduc-

tion methods than PCA, Penalized LDA, RBF-SVM, Linear-SVM, and Random Forests all of

which were previously discussed in the Methods section.
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(a) CHO (b) COIL-20

(c) HeLa (d) Pollen

(e) Yale

Figure 3.23: How good can we get: Misclassification rates using our features vector v3.2,
different classifiers and 10-fold cross-validation on R. Results range from 0 (0%) to 1 (100%).
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These algorithms were all available in the train function of the caret package: knn, lda,

PenalizedLDA, svmRadial, svmLinear, and rf. As the R SVM implementation execution

time explodes on problems with a large number of classes we excluded the Brodatz and AT&T

datasets from these experiments. Features were centered and scaled as a pre-processing step

in every cases, and we averaged results in Fig. 3.23 over 10 runs.

First of all we notice that COIL-20 (3.23b) is definitely too easy to classify to be the subject of

an analysis as most methods perform similarly well. In the other datasets we observe that RBF-

SVM, pLDA, o-LDA (LDA with other dimension reduction methods) and k-NN display a large

variation of results. In some cases they obtain good results while in others their performances

are catastrophic. k-NN, pLDA and o-LDA most often obtain significantly worse performances

than the other algortihms. PCA therefore seems to be a good option for pre-processing before

LDA as better results are obtained than when combining LDA with other features selection

methods. While the bad results of k-NN are not extremely surprising from the fact that it is a

very simple method, we did expected better performances for pLDA. RBF-SVM gives always

either similar or worse results than Linear SVM on average, a trend we already observed when

using the CHARM vector. This can probably be explained by the fact that our datasets are

already linearly separable and therefore do not need to be mapped in a higher dimensional

space. RF and Linear SVM give results that compete with our PCA-LDA in most cases. They

however display a greater variability of results across datasets. PCA-LDA still seems to be the

best option as it tends to be the most constant method: it is the one that appears most often

in the top results. This motivates the choice of PCA-LDA as it looks to be the option with the

largest generalization power.

This analysis of our algorithm leaves us with two potential leads for improvement: switching

to a features vector version with less levels but same groups, i.e. using v2.2 instead of v3.2,

and try using Support Vector Machines or Random Forests instead of PCA-LDA. One of the

drawbacks of switching for SVM would be to render the algorithm highly sensitive to the

number of classes, and execution time could become prohibitive for multiclass problems.

3.3 Applications

We will present in this section some examples of applications of our PCA-LDA-CHARM-like

whole-image-based classifier. These examples aim to confront our algorithm to real-life

scenarios and to show how it could be used in actual research.

3.3.1 BBBC Datasets

The BBBC datasets ([2]) are typical benchmarking sets for image analysis algorithms. The

four sets we selected are two-classes problems where the goal is to discriminate between a

"negative" and a "positive" phenotype. All sets were composed of images from two channels:

one containing a GFP signal linked to the phenomenon to be observed, and the second
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containing signal from a stain that nonselectively binds cell nucleus. We therefore expected

DNA channel to be much less informative on class difference compared to the GFP channel.

We classified each channel separately as well as the two channels together and displayed the

results in Fig. 3.24. All results were averaged over 10 classification runs for robustness purpose.

(a) BBBC013 (b) BBBC014

(c) BBBC015 (d) BBBC016

Figure 3.24: Mislassification rates using images from different channels of the BBBC datasets.
Results range from 0 (0%) to 1 (100%).

As expected classification using images from the DNA channel only yielded very bad results,

while images from the GFP channel obtained a low misclassification rate, and hence a good

classification accuracy. It is interesting to note that multichannel classification gives worse

performances than GFP-only: the DNA channel images seem to confuse the classifier and

make class separation harder. We will therefore use only data from the GFP channel for these

BBBC experiments as it is observed to yield better results, and saves us computation time as

less images need to be processed.
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Classification accuracies obtained with PCA-LDA-CHARM-like for each of the BBBC dataset

using GFP channel images only are presented in Table 3.8. These results are very satisfying as

each case is a two-class problem with equal number of images per class, and we hence expect

random classification accuracy to be 50%. The variance in classification efficiency is observed

to be quite large for BBBC016. This can be explained by the fact that this dataset is very small,

meaning that the classifier only has a small set of images to train on. Inside a class there can

be slight variations, but the presence of many elements in the training set usually allows the

classifier to detect enough common elements among class samples. When the training set is

too small it can happen by chance that the images left for the test set differ from the one in the

training set and form a "subset" inside the class. The classifier will then give bad results as

there are not enough representatives of this "subset" to be present in the training set. This

is probably what happened here as we were training and testing on 9 images per class only.

In order to check the validity of our results we displayed typical confusion matrices for these

datasets in Fig. 3.25.

Table 3.8: Classification efficiencies in percent on the BBBC datasets.

Accuracy [%]

Dataset Mean Standard Deviation

BBBC013 98.75 1.53

BBBC014 82.19 3.44

BBBC015 99.58 0.83

BBBC016 80.55 7.56

(a) BBBC013 (b) BBBC014

Figure 3.25: Typical confusion matrices for the BBBC datasets.

90



3.3. Applications

(c) BBBC015 (d) BBBC016

Figure 3.25: (Cont’d) Typical confusion matrices for the BBBC datasets.

These confusion matrices confirm the good results presented in Table 3.8. In order to validate

our results we performed significance tests on the BBBC datasets. We shuffled class labels

and ran 10’000 classification experiments on these randomized data. We obtained from this a

measure of the random classification accuracy, and were therefore able to compute a p-value

for the results presented in Table 3.8. In this way we could make sure that the performances

of our classifier were better than what could be obtained randomly. Results are presented in

Table 3.9. We observe that for BBBC013 to 015 no random classifier was found to obtain an

equal or better classification accuracy that the actual one. BBBC016 on the contrary obtained

a p-value of 0.02, which is not really surprising from the fact that this dataset was highly

underpopulated. The small size of the set made it difficult for the classifier to identify patterns

specific to each class, and it was hence more likely to classify randomly. It can however be

noted that the significance threshold for a p-value is usually set either to 0.01 (1%) or 0.05 (5%).

This means that a result is considered as significantly different from random if it is within

either the 1% or the 5% extreme values of the distribution. If we select the stringent threshold

of 1% we cannot reject the hypothesis that our classifier performs as random on BBBC016,

but if we choose the more permissive 5% value our classifier would be found to be valid. The

conclusion we could draw from this was that results on BBBC016 should be taken with care.

Table 3.9: Classification efficiency in percents on randomized datasets using PCA-LDA-
CHARM-like.

Dataset Mean Standard Deviation p-value

BBBC013 49.31 10.54 0.00

BBBC014 49.21 10.71 0.00

BBBC015 49.46 8.77 0.00

BBBC016 49.09 14.42 0.02
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In order to make sure our results were not too much biased by the limited amount of training

data we had at our disposition, we re-ran our classifier on "enriched" BBBC sets. We increased

the number of images in each dataset by 4 by chopping down every image into 2x2 equally

sized tiles. While this technique helped us addressing the lack of images, it added another

bias: four images created out of a big image are exposed to an enhanced risk of being highly

correlated. Indeed, if an image is subject to a particular global effect independent of the class

difference we want to measure results would probably not be too much affected as long as

only a few images are concerned. However classification efficiency could be affected to a

greater extent when this effect is present in a high proportion of the dataset. By creating more

images out of a single one we potentially duplicate these unwanted effects. Comparison of

misclassification rates using the original sets and the enriched ones are presented in Fig. 3.26.

Figure 3.26: Comparison of results between tiled and full images of the BBBC datasets.

We observe that misclassification rates on the tiled sets are either lower or comparable to

the original ones, which is a good news as it indicates that we do not suffer from unwanted

correlation in our tiled images. It also seems that the tiling had the effect we wanted on the

results: the variance of classification accuracy between runs is diminished indicating a more

robust classifier. This is mostly observed on BBBC016 where the variance is greatly reduced,

which is not surprising as it corresponded to the least populated dataset and hence the most

prone to instability depending on the nature of the training set.

We performed on these enriched data the same significance tests we did before on the original

datasets. Class labels were again shuffled, and the results of 10’000 classification runs on these

randomized data were gathered. Mean random classification accuracies can be found in Table

3.10, as well as p-values for results on the tiled datasets presented in Fig. 3.26.
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Table 3.10: Classification efficiency in percents on randomized enriched datasets using PCA-
LDA-CHARM-like.

Dataset Mean Standard Deviation p-value

BBBC013 49.70 5.49 0.0

BBBC014 49.80 5.51 0.0

BBBC015 49.82 4.56 0.0

BBBC016 49.67 7.23 0.0

As it was the case for the actual classification results, we see that the variance is reduced by

two on the enriched data as compared to Table 3.9. It is also interesting to observe that the

BBBC016 set benefits from the addition of images in the dataset: our classifier appeared this

time to be clearly relying on features information and not simply classifying randomly. This

result indicate us that the p-value we obtained on the original dataset reflected more the poor

amount of training and testing data than a failure of our classification algorithm.

Since these datasets were the most relevant to CellProfiler, we computed the Z’ factors for

every features contained in the v0 and v3.2 vectors on the enriched BBBC datasets. The largest

Z’ value is indicated in Table 3.11 for each dataset. We only reported this metrics as we recall

that it indicates the best classes separation that could be obtain using the features we extracted

on the images.

Table 3.11: Highest Z’ scores for the BBBC datasets using v0 and v3.2.

Accuracy [%]

Dataset Z’ (v0) Z’ (v3.2)

BBBC013 -0.120 0.065

BBBC014 -3.382 -1.815

BBBC015 0.174 0.174

BBBC016 -0.778 -0.551

We see that in the case of BBBC013 new features available in v3.2 benefited the Z’ score,

bringing its best value over zero. In BBBC014 and BBC016 the initial situation with v0 was

quite bad and the added elements did not bring the highest Z’ to a positive value, but the

new measurements still helped as the best value got closer to zero. No improvement was

observed for BBBC015, probably because it was a very easy case where class separation was

obvious with basic features. These results were gratifying as it showed us that the features

extraction algorithms we implemented for CellProfiler give an advantage when using a whole

image-based classifier.

As a conclusion our PCA-LDA-CHARM-like algorithm seemed to give satisfying results on

these typical example data of high-throughput screens. It is however important to keep in
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mind that the BBBC datasets are assumed to be easy, hence the good performances of our

method were not very surprising.

3.3.2 Tissue Dataset

Our tissue dataset created using images from the Human Protein Atlas ([53]) is a typical exam-

ple of tissue image classification where the goal is to identify several cellular compartments,

as well as background images where no cells are present. The original color images were

deconvolved to isolate the two stains present in the tissue: a brown dye targeting a protein of

interest and a blue dye nonselectively labeling some cellular components. Different locations

could be identified by looking at both channels. Not only the blue stain probably exhibits

different patterns depending on the cellular compartment, but the pattern of accumulation of

proteins is also certainly affected by its location. We ran 10 runs of classification experiments

using the signal from each dye both individually and together as shown in Fig. 3.27.

Figure 3.27: Misclassification rates using images from different channels of the Tissue dataset.
Results range from 0 (0%) to 1 (100%).

As expected the presence of both channels together gives the best results. Unlike the BBBC

situation observed earlier we see that the difference in discrimination power of images from

either channel is not striking: images containing only information from the non-selective

blue dye leave us with a larger misclassification rate than the ones including signal from the

protein-linked brown stain, but the difference is in the order of 2 to 3% only. The averaged

classification result on the Tissue dataset using PCA-LDA-CHARM-like using images from

both channels can be found in Table 3.12.
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Table 3.12: Classification efficiency in percent on the Tissue dataset.

Accuracy [%]

Dataset Mean Standard Deviation

Tissue 90.86 0.36

To better analyze this result we present a typical confusion matrix for this set in Fig. 3.28.

Figure 3.28: Typical confusion matrix for the Tissue dataset.

The background class can be easily distinguished from the other ones as expected by the fact

it is highly recognizable as it contains no protein signal. The confusion matrix also allows us

noticing that the cytoplasm and nuclei classes seem to be very hard to distinguish as they

often get confused for one another by the classifier while the conjuctive tissue class is always

properly identified. Some samples from each of these three classes are shown in Fig. 3.29.

(a) Cytoplasm (b) Nuclei (c) Conjunctive Tissue

Figure 3.29: Examples of elements of the three cell compartments classified in the Tissue
dataset. Background class is not shown.
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We indeed see that images from the nuclei and cytoplasm classes are less different from one

another than from the samples drawn from the conjunctive tissue class, therefore explaining

the behavior observed in Fig. 3.28. The nuclei and cytoplasm classes contain signal from both

stains while the conjunctive tissue and background ones exhibit information from only one

or no stain at all. It is also noticeable when looking at the whole content of the two confused

classes that they are much more heterogeneous than the conjunctive tissue and background

class, thereby complicating the classification task.

We setup significance tests to validate our classification efficiency result presented in Table

3.12. 10’000 classification experiments were performed on the Tissue data with shuffled class

labels. Using this random classification accuracy distribution, we computed a p-value for our

result, given in Table 3.13.

Table 3.13: Classification efficiency in percents on the randomized Tissue dataset using PCA-
LDA-CHARM-like.

Dataset Mean Standard Deviation p-value

Tissue 32.07 2.20 0.0

We could apparently trust the decency of our result with tissue data as in 10’000 random

classification runs no better or equal accuracy was obtained. The p-value of 0 allowed us

concluding that PCA-LDA-CHARM-like is significantly more efficient than a random classifier

on these data, and hence that the feature we extracted from images were actually useful in

discriminating between classes.

These results are very promising. Tissue images analysis in the context of the HPA project is

mostly performed manually so far, and the good classification accuracy we obtain with our

algorithm on this subset of data indicates that automation of this process could be possible

with a reasonable error rate. We think whole-image-based classification algorithms like

our method dully display their strength in tissue images. In such cases segmentation is

meaningless, and every part of the image contains information that can be captured by our

feature vector as opposed to cell-based screens like BBBC where images are mostly composed

of background and global effects could easily render our algorithm useless. The tissue data

results presented in Table 3.12 show a realistic example of the power of our PCA-LDA-CHARM-

like algorithm.

3.3.3 HDAC Dataset

The HDAC dataset consists of images of cells treated with different siRNA constructs against

five HDAC protein isoforms. The resulting 14-class problem is a good example of a difficult

high-throughput cell-based screen. This dataset came from an ongoing study carried out at

the Imaging Platform. For this reason the results we present here are probably not definitive
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as the imaging setup might evolve and images from new batches are likely to be produced. We

constituted our dataset of only one image out of the six acquired for each well in order to avoid

correlation effects since we had a sufficient amount of data. Five channels were recorded for

each image, each one containing a signal from a tagged cellular component. As we had no

prior information telling us which channel contains the looked-for phenoypical differences,

we first analyzed images using all channels together. We used PCA-LDA-CHARM-like in 10

classification runs and averaged results to obtain the efficiency shown in Table 3.14.

Table 3.14: Classification efficiency in percent on the entire HDAC dataset.

Accuracy [%]

Dataset Mean Standard Deviation

HDAC 18.13 0.58

We notice that the classification result we obtained is far from being acceptable. The variance

is very low, indicating that the mean accuracy of 18.63% seems to be a reliable measure of

what we could expect from our classifier on these data. An example of confusion matrix for

the HDAC set is presented in Fig. 3.30 in order to further analyze this mediocre result.

Figure 3.30: Typical confusion matrix for the HDAC dataset.

The confusion matrix looks quite catastrophic: nearly no trend could be observed in the diago-

nal. Apart from HDAC8_3, HDAC6_3 and HDAC3_3, the other classes look extremely confused.

We noticed that there is no global tendency for confusion: we don’t observe particular columns

where confusion is concentrated. It is also interesting to notice that a lot of confusion appears

within constructs against the same HDAC isoform. The difference between these classes is

probably lighter than the dissimilarity between isoforms. A better classification efficiency
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could hence probably be obtained by changing the experiment to a six-class classification

problem where we try to separate the HDAC isoforms but ignore the different constructs for

an identical isoform.

As the result we obtained in Table 3.14 was rather bad we thought necessary to perform

significance tests to determine if it was at least better than what can be obtained by chance.

We trained and tested 10’000 classifiers using the HDAC dataset with randomized class labels,

and obtained the results displayed in Table 3.15.

Table 3.15: Classification efficiency in percents on the randomized dataset using PCA-LDA-
CHARM-like.

Dataset Mean Standard Deviation p-value

HDAC 7.05 0.88 0.0

Even though the mean classification accuracy displayed in Table 3.14 is quite poor, we observe

that it is clearly significantly better than random. This result is encouraging as it informs us

that while we cannot use our method to efficiently characterize profiles for the constructs

against different HDAC, we are definitely able to significantly discriminate classes.

So far we handled images from the five fluorescent channels altogether. We performed classifi-

cation experiment using only images from one channel at the time. Classification accuracies

per channel are shown in Table 3.16. These results could help us determining if some channels

contain more information to discriminate between classes than the others. This could be used

to design experiments in such a way that only useful data are acquired.

Table 3.16: Classification efficiency in percents on the different channels using PCA-LDA-
CHARM-like.

Dataset Mean Standard Deviation

Channel 1 13.60 0.41

Channel 2 12.28 0.49

Channel 3 10.35 0.49

Channel 4 13.02 0.56

Channel 5 10.40 0.33

We observe that results on each separate channel are worse than the multichannel result

obtained in Table 3.14. Classification hence seems to benefit from the joint information of all

channels together, as class separation is slightly easier when using information from every

channel at once. No channel gave especially good results over the others. Confusion matrices

for each channel can be found in Fig. 3.31.
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(a) Channel 1 (b) Channel 2

(c) Channel 3 (d) Channel 4

(e) Channel 5

Figure 3.31: Typical confusion matrices per channel for the HDAC dataset.

All confusion matrices indeed look very much like Fig. 3.30: we observe strong confusion in

every channel. Channel 2 and 3 are even confused to a more extreme level. It is interesting
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to notice in 3.31a and 3.31d that the confusion seems to be less general at least for HDAC8_3

and HDAC7_2 in channel 1, and HDAC3_2 and HDAC8_3 in channel 4 which display a better

classification rate than all other classes. These values were compared to the efficiencies of

10’000 random classifiers in Table 3.17 in order to test their significance over random results.

Table 3.17: Classification efficiency in percents on the different channels with randomized
labels using PCA-LDA-CHARM-like.

Dataset Mean Standard Deviation p-value

Channel 1 7.02 0.82 0.0

Channel 2 7.02 0.91 0.0

Channel 3 6.97 0.86 0.0

Channel 4 6.70 0.9 0.0

Channel 5 7.03 0.80 0.0

We observe the same situation as when we were using all channels together: classification

efficiency on the separate channels is mediocre, but it is still nearly twofold better than what

can be obtained by chance. We are therefore able to detect a significant effect of the different

classes using channels separately.

As suggester earlier these poor results on the full dataset using either all channels together

or separately could be strongly due to the fact different constructs against the same HDAC

isoform are extremely difficult to distinguish. We gathered results on a simplified problem by

ignoring the different constructs for same isoforms and classifying based on isoforms only.

We were hence back to a five-class classification task where all constructs against one specific

isoform were put together in one class. The classification result averaged on 10 runs using

PCA-LDA-CHARM-like is presented on Table 3.18.

Table 3.18: Classification efficiency in percent on the entire HDAC dataset discriminating only
between isoforms.

Accuracy [%]

Dataset Mean Standard Deviation

HDAC, isoforms only 35.00 0.66

While these results were again not very good, a notable improvement in classification efficiency

is observed compared to Table 3.14. More development result from the observation of an

example of confusion matrix for these data as shown in Fig. 3.32.
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Figure 3.32: Typical confusion matrix for the HDAC dataset discriminating only between
isoforms.

We see in particular that there is less global confusion for than in Fig. 3.30. HDAC6 and HDAC3

are better discriminated than in previous experiments. The same holds for HDAC8, although

it already obtained quite good results for construct number 3 in Fig. 3.30. HDAC7 suffers from

confusion with almost every class, and HDAC3 and HDAC1 seem to be often confused for one

another. These results were nevertheless still insufficient as the best success rate we could get

in this example was 42% properly classified, which is obviously not satisfying for a profiling

experiment. Finally in Table 3.19 we again compared result from Table 3.18 to the efficiencies

of 10’000 random classifiers in order to assess how better than random our performance was.

Table 3.19: Classification efficiency in percents on the randomized dataset using PCA-LDA-
CHARM-like.

Dataset Mean Standard Deviation p-value

HDAC, isoforms only 20.32 1.51 0.0

The estimated p-value of 0 indicates us that our approach clearly manages to classify HDAC

isoforms using features information and does not assign class labels randomly. While our

method might not be sufficient for identifying isoforms with an acceptable error rate (as

observed with the result shown in Table 3.18), it is apparently able to identify differences

between classes distributions.

As the HDAC dataset has primarily been analyzed using cell-based classification algorithms,

we displayed for comparison a confusion matrix obtained using such kind of method in the

context of the HDAC inhibitor study. Fig. 3.33 is an example of what could be obtained using
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cell-based classification experiments specially designed for the HDAC dataset. Cells in images

were segmented, and features were extracted from them.

Figure 3.33: Typical confusion matrix for the HDAC dataset discriminating only between
isoforms using cell-based classification. Source: Shantanu Singh, personal communication.

We observe than even though our results based on isoform classification (Table 3.18) are better

than random as observed in Table 3.19, they are clearly not good enough and much poorer

than the ones obtained using cell-based classification. We suspect our method suffers a lot

in this dataset from "background issues". We displayed in Fig. 3.34 two patchworks made of

6 images from the HDAC dataset. What we want to point out with these images is that the

number of cell present in the image greatly varies from patch to patch. As a result the bottom

right patch in 3.34a or the two bottom right patches from 3.34b barely contain any cell or no

cell at all while the others are more populated. As our algorithm captures every information

in the image, it identifies patches containing only background as representatives of the class

they were assigned to. Cell distribution therefore certainly affects our classification results as

most of the features heterogeneity we capture probably comes from cell arrangement rather

than from cell properties.
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(a) Example 1

(b) Example 2

Figure 3.34: Illustration of the "background issue" encountered by PCA-LDA-CHARM-like on
the HDAC dataset. Both examples are patchworks composed of 2x3 images from the HDAC
dataset. Source: Shantanu Singh, personal communication.

Since our method was not convincing on the full dataset we focused on a subset of images

composed of the first construct against HDAC 6 and HDAC 7 only. We selected these two

isoforms as they appeared to be relatively well distinguishable in early results of the reference

cell-based analysis carried out in this study. As plate effects were known to be important, we

selected constructs HDAC6_1 and HDAC7_2 as constructs for these isoforms were located on

the same plate. This setup brought us back to a two-class problem in which we thought we

had better chances of success. We carried out the same experiment as with the full dataset: 10

runs of PCA-LDA-CHARM-like, summarized in Table 3.20.
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Table 3.20: Classification efficiency in percent on HDAC 6 and 7 only.

Accuracy [%]

Dataset Mean Standard Deviation

HDAC 6-7 64.44 3.63

The mean result we obtained is obviously again not sufficient. Hardly more than one sample

over two was properly classified. A representative confusion matrix for this problem is shown

in Fig. 3.35 to help understanding this result.

Figure 3.35: Typical confusion matrix for HDAC 7 and 8.

The prevalence of data in the diagonal is not very remarkable as the antidiagonal is highly

populated as well. It seems that HDAC7 is more often confused for HDAC6 than the other

way around. Our classifier globally seemed to have a hard time discriminating between these

two classes. We again also performed significance tests with 10’000 classifiers to observe how

our result differed from random. Results are presented in Table 3.21. We notice that even on

this reduced dataset our method doesn’t perform well enough. The p-value of 0.01 allows

us to reject the hypothesis that our classifier is assigning class labels by chance only to a 5%

confidence level. A per-channel analysis similar to the one performed on the whole dataset

was also carried out using only HDAC 6 and 7. Classification results can be found in Table 3.22.
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Table 3.21: Classification efficiency in percents on the randomized HDAC 6 and 7 using
PCA-LDA-CHARM-like.

Dataset Mean Standard Deviation p-value

HDAC 6-7 49.75 6.77 0.01

Table 3.22: Classification efficiency in percents on the different channels using PCA-LDA-
CHARM-like on HDAC 6 and 7 only.

Dataset Mean Standard Deviation

Channel 1 59.44 3.45

Channel 2 50.42 3.05

Channel 3 50.55 4.90

Channel 4 46.53 4.08

Channel 5 48.75 4.91

As it was the case for the full dataset, the results obtained on each individual channel are

poorer than the one we get when considering all channels together. Channels 1 however

appears to perform slightly better than the others. We displayed one example of confusion

matrix per channel in Fig. 3.37.

(a) Channel 1 (b) Channel 2

Figure 3.36: Typical confusion matrices per channel for HDAC 6 and 7.

105



Chapter 3. Results

(a) Channel 3 (b) Channel 4

(c) Channel 5

Figure 3.37: Typical confusion matrices per channel for HDAC 6 and 7.

The difference in performance between channel 1 and the others is less remarkable when

looking at the confusion matrix. It is interesting to note that the patterns in 3.36a and 3.36b are

similar: in the first case HDAC7 is well discriminated but HDAC6 is confused half of the time,

and in the second it is the exact other way around . Channel 5 is in the exact same situation as

channel 2. Results on channel 3 and 4 are very bad as HDAC6 is misclassified most of the time

in both cases. The results of 10’000 random classifiers finally helped us determine the validity

of the classification accuracy on each channel as shown in Table 3.23.
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Table 3.23: Classification efficiency in percents on the different channels with randomized
labels using PCA-LDA-CHARM-like.

Dataset Mean Standard Deviation p-value

Channel 1 49.63 7.12 0.09

Channel 2 49.62 7.17 0.44

Channel 3 49.31 7.19 0.43

Channel 4 49.53 7.37 0.66

Channel 5 49.60 7.10 0.52

Classification appears to be strongly not significantly better than random on every channel. We

cannot reject the random hypothesis for channel 1, but the p-value is closer to the threshold,

which is not surprising as we observed in Table 3.22 that channel 1 obtained better results

than the others. Classification per channel did therefore not really add value to our results.

The results on the HDAC dataset are far from being as good as the ones obtained in the

previous application examples. This however is not exceedingly surprising as these data are

extremely challenging. The class characteristics we were looking for are not only very delicate,

but we were also dealing with realistic cell images that have not been curated as the BBBC data

were. A direct implication was that plate effects was potentially present. Such global bias is

extremely detrimental to a whole-image based algorithm such as WND-CHARM or PCA-LDA-

CHARM-like as they have no way to avoid capturing these global effects. We tried to classify

our data using each channel separately, but this analysis did not yielded convincing result

using the whole dataset. Best performances were achieved when simplifying the problem by

bringing together different constructs for the same isoform and classifying HDAC isoforms

only, but results were still too bad to use the classifier to identify profiles, and much worse

than the reference results obtained on the same data using cell-based classification. Our

experiment using only two HDAC isoforms, HDAC 6 and 7, yielded admissible accuracies

using all channels together, but nothing of interest when analyzing channels separately. More

work needs to be done in order to use our algorithm on data similar to the HDAC dataset. It is

however difficult to make a global conclusion on the applicability of our method using results

on these data as we recall that this dataset is part of an ongoing research.

3.3.4 Neuronal Outgrowth Datasets

The Neuronal Outgrowth Datasets is a collection of data from an experiment looking at neu-

ronal outgrowth when different chemicals are added to the neurons. The six different chemi-

cals constitute the six datasets where in each case we aimed to classify positive versus negative

phenotype (i.e. a two-class classification problem). Negative phenotype corresponded to the

neuron in its natural state, and positive phenotype exhibited neuronal growth or inhibition of

growth depending on the drug. For each image three fluorescence channels were acquired:
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channel 1 detects cell nucleus, channel 2 dendrites (the shorter neurites), and channel 3 axons

(the longer neurites). It was hence expected that most class difference would be determined

using channels 2 and 3 as the effect of the drug should mostly affect neurites rather than cell

nucleus.To investigate the discrimination power of these different channels we performed clas-

sification experiments using PCA-LDA-CHARM-like. Results averaged over 10 classification

runs are presented in Fig. 3.38.
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(a) Chiron99021 (b) DOI

(c) Quetiapine (d) Quetiapine Intermed

(e) Serotonin (f) TDZD-8

Figure 3.38: Mislassification rates using images from different channels of the Neuronal
Outgrowth datasets. Results range from 0 (0%) to 1 (100%).
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We notice that the perfect score is hit using channel 3 only in 3.38a, but we strongly suspect

this to be a faulty result. As it can be observed in Fig. 2.12a, the third channel displayed in

green is extremely noisy for samples of the positive phenotype. All images from this class are

affected by noise, and we therefore suspect that the good performance obtained on channel 3

in 3.38a is due mostly to the fact that class discrimination is achieved by detecting the presence

of noise rather than by looking at actual phenotypical differences. This is one of the drawbacks

encountered when using whole-image based methods, as we already observed in the case of

the HDAC dataset. Selecting channel 2 seems to benefit classification in the cases of 3.38b and

3.38f, while both 2 and 3 appear to yield better results than either channel 1 or multichannel

on 3.38d. 3.38e and 3.38c display rather uniform results regardless of the channel used for

classification. The global trend seem to be that channels 2 and 3 contain more information

than channel 1, which was expected as we are looking for effect on the neurites and not

necessarily on cell nucleus. The multichannel analysis did not appear to give the worst result

in any case so it is probably not a bad option. We finally decided to perform analysis using all

channels together as no single channel was found to yield significantly better results on all the

datasets. Classification results for the multichannel analysis using PCA-LDA-CHARM-like are

presented in Table 3.24.

Table 3.24: Classification efficiency in percent on the Neuronal Outgrowth datasets.

Accuracy [%]

Dataset Mean Standard Deviation

Chiron99021 97.96 1.75

DOI 72.41 5.46

Quetiapine 47.74 5.54

Quetiapine Intermed 92.44 4.57

Serotonin 67.96 8.45

TDZD-8 84.44 4.70

A wide range of results was obtained on these different situations. Classification on Chi-

ron99021 and Quetiapine Intermed appear to yield very good accuracies with reasonable

variance, but we remain suspicious about the results on Chiron99021 because of the noise

present in samples from the positive phenotype. The performance obtained on Quetiapine

Intermed is more likely to really represent an ability of our method to detect differences in cell

phenotype. Results on DOI, TDZD-8 and Serotonin are less convincing but not catastrophic.

What we obtained on Quetiapine is however much more concerning as the result looks com-

pletely random. These observations can be completed by looking at representative confusion

matrices for each of the dataset, presented in Fig. 3.39.
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(a) Chiron99021 (b) DOI

(c) Quetiapine (d) Quetiapine Intermed

(e) Serotonin (f) TDZD-8

Figure 3.39: Typical confusion matrices for the Neuronal Outgrowth datasets.
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The good results on Chiron99021 and Quetiapine Intermed are confirmed by the look of the

confusion matrices 3.39a and 3.39d. Very good discrimination is achieved for each class in

these two cases, but caution should still be taken when interpreting the good performances of

Chiron99021. The situation is less favourable for DOI, Serotonin and TDZD-8 as we observe in

3.39b, 3.39e and 3.39f that in all three cases the negative phenotype is too often mistaken for

the positive phenotype. The positive phenotype however appears to cause less problem and be

less often misclassified. The random-looking result we obtained on Quetiapine is confirmed by

3.39c: the confusion matrix looks totally scrambled and for the positive phenotype a majority

of elements are misclassified. The negative phenotype does not get much better results and is

mostly confused as well. We randomized class identifiers in the training set on all the neurons

datasets and executed 10’000 classification runs. The estimation of the efficiency distribution

that can be obtained by chance helped us measuring the validity of the results from Table 3.24

by computing a p-value for each set, shown in Table 3.25.

Table 3.25: Classification efficiency in percents on randomized Neuronal Outgrowth datasets
using PCA-LDA-CHARM-like.

Dataset Mean Standard Deviation p-value

Chiron99021 51.86 7.87 0.0

DOI 51.11 7.67 0.0

Quetiapine 51.34 7.65 0.67

Quetiapine Intermed 50.10 8.57 0.0

Serotonin 51.53 7.75 0.02

TDZD-8 51.58 7.71 0.0

Classification on Quetiapine clearly does not appear to be significantly different than random

as shown by its large p-value of 67%, which confirms the observation made on results from

Table 3.24. Results on Serotonin are mediocre: with a p-value of 2%, classification on this set is

better than what can be obtained by chance at 5% significance level, but not at 1%. In all other

cases the situation is more reassuring as the p-value is lower than 0.01 or clearly equal to zero.

We therefore managed to classify efficiently 4 out of the 6 datasets.

Results obtained on these datasets were globally favorable. It is important to recall that the

effect on neuronal outgrowth is known to be subtle for some chemicals, making this problem

much harder than the BBBC sets. The less good results obtained on Serotonin, TDZD-8 and

DOI could hence indicate that the effect of these drugs on the cells is lighter than in the case of

Quetiapine Intermed. We prefer remaining suspicious about the good accuracy obtained on

Chiron99021 as it is likely to stem mostly out of the difference in data quality for the two classes.

In spite of this PCA-LDA-CHARM-like managed to produce excellent results on one sets and

good efficiencies on three others where image quality was observed to be more uniform across

classes. It only appeared to be totally inefficient in one case.
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The analysis we performed on WND-CHARM gave us many information on the functioning of

this classification algorithm. We were first able to reproduce the results previously obtained

by Goldberg in [38] with the existing C++ implementation. As expected from the conclusions

drawn in the original paper, the results were very good on all reference datasets. It served us as

a reference to validate our implementations of WND-CHARM in Python and MATLAB. We also

made sure our results were significantly better than random by performing "significance tests"

where we shuffled class labels and classified each randomized dataset, thereby obtaining a

measure of the random classification accuracy of WND-CHARM.

We then investigated in details the various steps of the algorithm. Our first major critics

against WND-CHARM was the fact that it looks a bit too "brute force": the features vector

seemed to be composed of as many feature as available image processing operations can

extract out of an image, without explaining their presence. As a result the feature vector was

highly complete and offered ways to discriminate properly many different sets of images,

but its construction was hard to justify. Our analysis on features extraction followed several

axis: we investigated the importance of the different features groups and features "levels"

composing the CHARM vector. After reaching the conclusion that the construction of the

vector was pertinent, we implemented several versions of a "CHARM-like" vector starting with

a very small subset of features and iteratively adding more elements. Our goal in doing so

was to design a features vector that we could defend with classification results showing that it

was composed of a judicious subset of features that obtain good classification efficiency. Our

iterative implementation helped us making sure we were not unnecessarily adding elements

that would not improve results. In parallel we digressed on the features extracted on transforms

of transforms as we wanted to better understand these complex features. We suggested these

higher level features were only helping in classification by adding more dimensions to the

features space, and tested this hypothesis through several experiments using linear and RBF-

SVM on basic and higher levels features. Finally, we tried to mimic the effect of complex

features by completing the vector composed of simple features only with random Fourier

features. With these investigations we did not manage to fully grasp to which aspects of
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the image compound transform features corresponded, but our results were nevertheless

helpful as they allowed us concluding that these measurement were actually capturing some

information in the image rather than simply adding random dimensions. To close our analysis

related to features, we dedicated a part of our work to the analysis of the features selection

process in WND-CHARM. We analyzed the content and stability of the "top 15%" features

subset, a kind of analysis that has not been done before. We observed that the behavior

of the selection process was difficult to understand and that the weights values used for

classification did not seem to be stable. The second step of our analysis was dedicated to the

classification method. After carrying on some parameter exploration experiments to get the

best out of k-NN and PCA-LDA, we classified the CHARM vector using these two methods

and compared results with WND. Classification using PCA-LDA yielded promising results

that either outperformed or compared with the reference. Finally we did some research

around the validation method. We tried to replace the "save 25%" validation method used

in WND-CHARM by the standard 10-fold cross-validation, or by a k-fold cross-validation

with a variable k parameter. The latter experiment did not obtain good results, therefore we

dropped this idea. We observed that the 10-fold and "save 25%" validation methods yielded

more or less equivalent classification accuracies, with the "save 25%" being slightly better but

having a much larger variance, which confirmed our suspicions. We concluded that this latter

method tends to overestimate classification efficiency and produce highly variable results

across classification runs. For this reason we thought the use of 10-fold cross-validation would

be preferable.

These observations helped us designing our own algorithm, "PCA-LDA-CHARM-like". We

validated it against WND-CHARM on the reference datasets and on the IICBU collection. It

obtained results competing with WND-CHARM’s on both of these sources, but we thought it

superior in various aspects. We conserved the idea of using groups of image-based features

extracted from the original and transformed image, but the way we built our CHARM-like

vector by iteratively adding features and observing results makes it more legitimate. We chose

PCA for features selection, which brings many advantages over the weighting and subsequent

thresholding present in WND-CHARM. First, the method is more reliable and commonly

accepted, and then the parameters it requires can be related to the data distribution while

the threshold value in WND-CHARM is purely empirical. Last but not least, the effect of

thresholding was that only 15% of the features were actually used for classification, while

about a thousand of them were computed. In this way most of the time required to execute

WND-CHARM was dedicated to the computation of measurements that would never be used.

When transforming features space using PCA, the resulting principal components are linear

combinations of the features. As a result even if only a little number of principal components

are kept, they are composed of a contribution of every features in the vector. The classification

method we chose, LDA, also had the advantage of being more standard and trusted than

WND. Finally, we left the option for both the "save 25%" and the 10-fold cross-validation

method, but selected 10-fold as the default choice as this method appeared to yield more

stable and reliable results. PCA-LDA-CHARM-like was designed to be user-friendly as intended.
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Features extraction was therefore designed as a CellProfiler pipeline and classification was

implemented in Python to make its integration into CellProfiler or related software easier.

Finally our implementation choice also provides another advantage over the C++ version of

WND-CHARM: our features extraction pipeline is modular and easily modifiable. The direct

implication of this is an easier access to intermediate results and an enhanced possibility to

perform further analysis. Extracting the CHARM vector out of the C++ implementation was

not an easy task as this program was designed to be used as a black box. Our pipeline is on the

contrary made to be openly editable: modules can be added or removed, and every parameter

can be easily tweaked. In this way our CHARM-like vector is not a fixed entity: it can easily

evolve and be modified by the user to fine tune results on a particular analysis.

Just as we did with WND-CHARM, we performed a brief analysis on our algorithm to identify

possible ways of improving it in the future. On the feature vector side we observed that one of

our earlier versions seemed to allow us obtaining sufficiently good results. As this vector is

composed of less elements it requires a smaller execution time, which could be an advantage,

but it also means that it captures less aspects of the image, which is an inconvenient in some

cases. As the features that differ from these two versions are the higher level features we

mentioned earlier, we decided to be cautious with this result. Future work focusing on the

nature of these compound transforms features could help us determine how we are affecting

the classifier’s ability to characterize images by removing them. If we understand which

aspect of the image these features are capturing we could predict on which kind of data a

vector that does not contain them would fail. In this way we could design several versions

our algorithm to be used depending on the nature of the images: a "lighter" one for cases

where the compound transforms are not needed, and a full one for other applications. We also

tried modifying the classification scheme for more refined methods. Penalized LDA did not

produced better results than PCA-LDA. A similar situation was found when choosing LDA with

other dimension reduction methods as a pre-processing step. We noticed that the use of SVM

or Random Forests gave us excellent results, but as trade-off a prohibitively long execution

time as well as large resources requirements for multiclass problems when using SVM which

made it unusable on two of the reference sets. Random Forests and SVM therefore seemed to

be promising alternatives, but in the latter case further work is needed to address time and

memory requirements for this method if we aim to conserve the ability of the algorithm to

be used in a wide range of situations. PCA-LDA still appears to us to be the best compromise

between results and usability.

WND-CHARM was defined as a multi-purpose algorithm, but as we implemented it to be part

of CellProfiler, creating an efficient classifier especially for biological images was of utmost

importance. For this reason we dedicated the rest of our work in gathering images from various

actual biological problems on which we could test our algorithm. We first used four of the

BBBC datasets which are typical exampled of high-throughput cell-based assay images. We

obtained excellent classification performances on these data. We also showed that the features

we added to CellProfiler were useful in a whole image-based classification experiment like the

one we performed as they improved the best Z’ factor we could obtain on these data.
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Chapter 4. Discussion

Our second application case concerned the identification of immunostaining patterns in

human tissue images. This experiment was a success: we obtained good classification accura-

cies, and were able to identify the difficulties of this dataset by looking at typical confusion

matrices. This set is in our opinion a perfect example of a case where our method fully exhibits

its potential. As information is contained everywhere on tissue image data and little or no

background is present the analysis can truly benefit from the construction of our CHARM-like

vector. These images are also less prone to plate or population effects as it is the case in images

featuring cell colonies. When present these global effects have a large risk of being captured by

our whole-image feature extraction scheme, hence affecting classification in a bad way. This

kind of situation would be an example of the limits of a WND-CHARM-like algorithm: as we

extract information from the whole image our basic assumption is that the effects we measure

are solely due to classes difference and do not come from external sources. This supposition

might often not be reasonable for high-throughput experiments.

We tested our algorithm on a dataset composed of high-throughput cell-based images where

the task was to identify the effect of different siRNA constructs targeted against various iso-

forms of Histone Deacetylase (HDAC) proteins. These data were expected to present a difficult

classification problem because of the faint distinction between classes composed of different

isoforms and constructs. The first results we obtained were indeed very bad. Since our data

contained information from five different fluorescence channels, we then performed classifi-

cation extracting features from each channel at the time. We noticed that we did not manage

to obtain better results when focusing on certain channels than when considering them all

together. This kind of analysis could be interesting to feedback to the experimental design: if

it is observed that certain channels allow obtaining better results, the next set of images could

be acquired using only the channels of interest, thus simplifying the imaging procedure. We

also tried to simplify the problem by considering only different HDAC isoforms and ignoring

the differences between constructs. This experiment gave us better performance, but the

result was still outside the admissible range for a practical application. We also observed

that our result on isoforms classification was much worse than what could be obtained using

cell-based classification. We could attribute our bad results to the intrinsic complexity of the

classification task, but the comparison with results obtained using per-cell features tend to

indicate that our problem rather lies in the fact that cell-based information is truly important

in these data. Finally we selected two HDAC isoforms and worked on this reduced subset as a

further simplification of the problem. Mediocre results were obtained when using all channels

together, and no better performance were obtained when considering channels separately.

The results we obtain on the HDAC data give us indications on the relative strength of our

method depending on the task to be performed. In the context of a profiling experiment like

the full HDAC study where the goal is to identify signatures for the different isoforms, our

whole-image based method appears to be inefficient probably because of a lack of sensitivity

for small class differences, or due to a too large susceptibility to capture background informa-

tion. However if the task is a simple classification experiment where we aimed to measure

whether there is a statistically significant effect between different isoforms, or in other words
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to identify if there is a drift between classes, our method could be helpful as we observed

that we were able to detect an effect as our results were significantly better than random in

most experiments. On these data segmentation-based classification will probably most often

give better performance than whole-image based methods as per cell features seem to be

very important. The reason for this can be found both in the fact that the patterns we are

looking for might be so subtle they tend to be buried in background noise when the whole

image is considered, and in the presence of global effects that are unavoidably captured by

whole-image algorithms. This does not imply that our method is useless with cell-based data:

the main point is to establish a trade-off between the effort needed for pre-processing and the

desired results. If segmentation is extremely hard or impossible, a whole-image based classifier

like the one we proposed can still be used to help classifying data, keeping in mind that the

results might be only tolerable. While we do not recommend it for profiling experiments, our

algorithm could still be used when it comes to a classification problem in which the task is to

look for a statistically significant effect between classes.

Our last experiment concerned a set of images from neuronal outgrowth experiments. The

different datasets corresponded to neurons treated with different drugs that act on neurite

growth either by inhibiting or enhancing it. In every dataset the goal was to distinguish be-

tween phenotypes in the absence (negative, concentration of zero) and presence (positive,

maximal concentration) of the drug of interest. We obtained varied results depending on the

dataset: in a third of the cases the results were very good and in half of the datasets classifica-

tion efficiency was satisfactory. In one dataset our algorithm appeared to be inefficient and

was found to perform no better than a random classifier. One of the dataset which achieved

excellent performances presented a large difference in image quality between the positive and

negative phenotype class. We suggested that this good result should not be taken into account

as it probably reflects the fact our algorithm is classifying based on image quality rather than

on differences in cell phenotype between classes. Image quality was more conserved between

classes in the others datasets, allowing us to be more confident on our results. We still recall

that the images we were using we drawn from a single plate, and available positive control

samples were known to be of quite poor quality. Better (and more reliable) results could

therefore probably be achieved using images of better positive controls and more uniform

image quality. In this setting it was indeed hard for us to determine if the acceptable results we

got on half of the datasets truly represented the best performance we could obtain with our

method in this problem, or if they were impacted by the bad quality of the data. Working with

images of different quality depending on the class also caused us problems when interpreting

the results as we couldn’t be sure that our whole-image based classifier was actually capturing

differences in phenotype rather than physical properties of the image. In any case as these

data present a more complicated problem than the BBBC, we are quite satisfied by the results.

Moreover, our results compare with what would be expected from cell-based classification: as

the problem is subtle no excellent performances are obtained, but in most cases we are defi-

nitely able to identify an effect between the different classes. Whole-image based classification

is very interesting in the particular case of such kind of neuronal data as in the very diverse
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amount of neuron projects a common challenging part is typically the segmentation of the

neurites. A complete and correct separation of the neuronal extensions from the background

and subsequent identification of the corresponding cell body can be very difficult, but is

needed in order to quantify the effect of a specific drug on neuronal outgrowth. Gathering

features on the whole image could hence give a way to detect drug effect without requiring

any segmentation.

PCA-LDA-CHARM-like therefore fulfills our initial goals: it performs at least as well as the

algorithm that inspired it, it is designed in a neater way, and most of all it was observed to

be efficient in different biological classification problems. Except on the HDAC dataset, we

managed to achieve satisfying results while circumventing segmentation. This algorithm

could certainly be further improved in several ways, but we are quite satisfied with its current

form. Before modifying it further we think it is important to assess its ability to generalize by

applying it to real problems.

As a closing remark we find important to discuss a potential pitfall of whole-image based

algorithms as WND-CHARM and the one we propose. The main idea of these methods

is to capture information on the whole image, which circumvent a possibly cumbersome

segmentation step , but the direct result is that every effect present on the image is captured,

even if it is not actual information. The resulting risk is a faulty analysis of the data: a classifier

could for example perform very well in identifying different classes merely because the samples

from each class were located in a different plate. The whole-image based algorithm would

only capture plate effect, and would therefore fail when presented with images from the

same classes but plated on a different device. In order words the problem with image-based

classification comes from the fact we cannot be sure the difference in feature value we observe

between classes is caused by the effect we want to detect. This risk is much more present

when dealing with images of cell populations than for instance with tissue images. For this

reason we think special attention should be dedicated to the analysis of classification results

on cell-based experiments. Image-based algorithms can be used with more confidence on

images where population or hardware effects are less likely to be influential and where image

quality if constant over all images. However we would like to emphasize that there might be

some cases in which this pitfall becomes a real strength over cell-based methods. In certain

cell-based assays cells distribution is of extreme importance: the phenotype to be detected

is sometimes determined by the way cells form colonies. A segmentation-based algorithm

would be unable to capture such effect, while PCA-LDA-CHARM-like would be able to use this

information. It is therefore important to understand the implication of whole-image based

classification in order to avoid erroneous conclusions, but also to be able to fully benefit from

its advantages.
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5 Conclusion

We achieved several goals throughout this work. Our analysis of WND-CHARM helped us gain

understanding in various fields of machine-learning theory. We investigated many aspects

of WND-CHARM and observed the way it functioned at a refined level. The analysis we

performed on the features extracted from compound transforms, or higher-level features,

did not give us conclusive explanations on what these measurements mean at the image

level, but it nevertheless helped us demonstrating their importance through our inability to

mimic their effect using random Fourier features. Analyzing the meaning of the compound

transforms features could be the subject for more research on the image processing side,

as it is not immediately linked to biological applications. Overall we wanted to design our

algorithm in a "wise" way: rather than simply re-implementing WND-CHARM, we wanted to

create something we could justify and defend. We think we reached this goal as our PCA-LDA-

CHARM-like was built using observations made on results of our WND-CHARM analysis. One

of our major concerns was also to make the whole algorithm user-friendly. For this reason

we built the whole features extraction process as a CellProfiler pipeline file which can be

easily loaded and used. The classification part is at present state performed in a separate

script, but it has been coded in Python to facilitate its integration into CellProfiler or another

software from the CellProfiler suite (CellProfiler Analyst for instance). Most importantly we

wanted the algorithm we designed to be useful. Making sure it allowed us obtaining results

that competed with WND-CHARM was a first step, but we think the good results we obtained

on the various real-life examples datasets make the most important point. A new method

could be as nicely designed as possible, its actual value would always be measured through

asking "does it work?". By testing our algorithm on several kind of biological data, we gave

elements of answer to this question.

The fate of the classification part of our algorithm that now consists of an independent Python

script is an open question. This issue is debated with the Imaging Platform and still needs

to be settled. Future work could also be made to further improve our PCA-LDA-CHARM-

like as we suggested in the discussion, and to yield a version 2.0 of the algorithm. This

improvement process could be iterated at will to try to get the most of the various machine-
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learning techniques available. Finally, we think the most important improvements could be

made by asking for feedback from potential users. As this whole method was designed both

in its substance and format to be practical and easy to use, taking into account the critics

and comments of users to increase the algorithm’s reach for the public would be of capital

importance.

We hope this project gave a demonstration of the power of whole image-based classification,

and most of all we raise the expectation that this work will contribute to make this technique

more available to the biomedical research community, thereby providing new analysis tools.
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A CellProfiler Modules Descriptions

A.1 Pre-existing Modules

Our CHARM-like vector is composed of measurements coming both from pre-existing and

newly implemented CellProfiler modules. We only describe here the parameters we used

for modules available in the current release, and invite the reader to consult CellProfiler

online manual ([12]) for a description of the theory behind measurements extracted from each

module.

A.1.1 ApplyThreshold

Our pipeline features three instances of the ApplyThreshold module with the following param-

eters:

• Otsu Global Thresholding, two classes, weighted variance minimized, binary output

image. All other parameters are default.

• Otsu Global Thresholding, three classes, weighted variance minimized, pixels in the

middle intensity class assigned to foreground, binary output image. All other parameters

are default.

• Otsu Global Thresholding, three classes, weighted variance minimized, pixels in the mid-

dle intensity class assigned to background, binary output image. All other parameters

are default.

A.1.2 EnhanceEdges

We used the EnhanceEdges modules with the original image as input and applied the Prewitt

edge-finding method with all edge direction enhanced.
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A.1.3 MeasureImageQuality

All parameters were kept to their default value in MeasureImageQuality, and one image list was

added for each image we created (original, edge-filtered, three thresholded, three transformed

and two compound-transformed images, a total of 10). Measurements of interests were

subsequently selected in the ExportToSpreadsheet module. The mean and standard deviation

of image intensity were extracted from all the 10 images. Maximal intensity was selected for all

images except the three thresholding results, and the percentages of pixels with the maximal

and minimal values in the image were computed for all images except the thresholded and

edge-filtered ones.

A.1.4 MeasureTexture

Textures were computed on the original, transformed and compound-transformed images.

For all of these, textures with scales 3 and 4 pixels were measured. Haralick textures features

were computed in every possible direction (horizontal, vertical, diagonal and anti-diagonal).

Finally, Gabor features were extracted using the default value (four angles).

A.2 New Modules

This section contains a description of the modules we created during this project. We explain

the theory behind each measurement, and specify how it was actually implemented.

A.2.1 Histograms

Our Histograms module computes histograms with different numbers of bins of the image

and returns the amount of pixels falling into each bin. The histogram-binning process is

performed using the built-in histogram numpy ([37]) function and normalized in [0,1]:

import numpy as np

bins, edges = np.histogram(image, bins=b)

bins=np.array(bins, dtype=float)

bins=bins/np.max(bins)

histogram takes as input an image and a parameter b. b can either be a scalar indicating the

number of bins, or an array indicating histogram bins edges. The function returns bins, a 1xb

array containing the number of elements in each bins, and edges, a 1x(b+1) array with the

values of bins edges.

In its current state the module computes 3, 5, 7 and 9-bins histograms of the image. We aim

to eventually have the number of bins as a parameter that can be edited from CellProfiler’s

interface.
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A.2.2 Moments

The Moments module was designed to easily extract moments statistics from an input image.

It computes the first four moments about the mean.

Mean The first moment is simply computed using mean from numpy ([37]):

import numpy as np

mean=np.mean(pixels)

Standard Deviation Similarly the standard deviation, or second moment, is extracted with

numpy’s std:

import numpy as np

mean=np.std(pixels, ddof=1)

We set ddof=1 in order to obtain the unbiased estimator of the standard deviation.

Skewness Skewness is the third moment defined as Eq. A.1 where µ is the mean and N the

total number of elements, which in the case of an image corresponds to width times height. It

measures the asymmetry of a distribution. A positive skewness indicates that the right tail is

longer, i.e. that there are few high values, while a negative value means the opposite, i.e. that

there are few low values. If the mean of the distribution is equal to its median, the skewness

drops to zero.

Skewness =
∑N

i=1(xi−µ)3

N(∑N
i=1(xi−µ)2

N

) 3
2

(A.1)

We strictly followed this definition in our implementation and used again std as skewness

can be expressed using the biased estimator of the variance.

Kurtosis The fourth moment, kurtosis, is measured following Eq. A.2, using the same

nomenclature as in A.1. This metric describes the morphology of peaks in the distribution.

When the peak is acute around the mean and the distribution has large tails, kurtosis obtains

a positive value. On the other hand when the peak is broader and the tails thin, kurtosis is

negative.

K ur tosi s =
∑N

i=1(xi−µ)4

N(∑N
i=1(xi−µ)2

N

)2 (A.2)
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As it was the case for skewness, we implemented kurtosis following Eq. A.2 and used numpy’s

std.

A.2.3 Tamura

The aim of Tamura texture features is to propose a set of textural features that would cor-

respond to human visual perception. The author’s goal was to create texture features that

would be visually obvious unlike the Haralick features for instance ([52]). Textures are prop-

erties of a region or a subimage (or macroscopic region), not of an isolated point. A texture

is defined t as t = R(e), where R is a placement rule and e an element ([52]). It is therefore

a repetitive pattern of elements organized according to the placement rule. In natural tex-

tures, R and e are unknown and very variable, hence a statistical approach was suggested

for local texture measurement. Tamura et al. proposed six features (Coarseness, Contrast,

Directionality, Line-likeness, Roughness and Regularity) out of which only three were shown

to be efficient: Coarseness, Contrast and Directionality. Our implementation was designed

using both Tamura’s original paper ([52]) and WND-CHARM’s C++ code ([57]).

Coarseness

Coarseness is defined against fineness. When two images are composed of the same pattern

but one is a scaled version of the other, the bigger ("magnified") version is coarser. In the

situation where images are composed of different patterns, the bigger the size of the element

composing the structure of the pattern and/or the less number of elements repetition are

present, the coarser is appears to be. The idea is to use various-size operators to adapt the size

of the area on which the measure is taken to the amount of coarseness of the texture, i.e. a

large size is considered when dealing with a coarse texture, and a small one when a fine texture

is present - we sort of measure the size of the texture element. The measure of coarseness is

obtained through four steps.

Step 1: The averages of pixels intensities in regions of sizes 2k × 2k are computed. The

authors suggest using k=1...6. The average value over a region of size 2k ×2k is defined as

Eq. A.3 for each point (x,y) in the image. H, W are the height and the width of the image

respectively, and I(i,j) is the intensity of the pixel (i,j) in image I.

Ak (x, y) =
x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

I (i , j )

22k
(A.3)

Step 2: For each position (x,y), differences between pairs of average corresponding to pairs

of non-overlapping neighborhoods just on opposite sides of the point in both horizontal and

vertical orientations ([52]) are computed. This amounts to compute Eq. A.4 (horizontal case)
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and A.5 (vertical case).

Ek,h(x, y) = |Ak (x +2k−1, y)− Ak (x −2k−1, y)| (A.4)

Ek,v (x, y) = |Ak (x, y +2k−1)− Ak (x, y −2k−1)| (A.5)

Step 3: For each position (x,y), Sbest is defined as the size giving the highest value of E

in either direction (horizontal or vertical), i.e. Eq. A.6 where k is such that Ek = Emax =
max(E1,h ,E1,v , ...,E6,h ,E6,v ).

Sbest (x, y) = 2k (A.6)

Step 4: The measure of coarseness is finally defined as the average of Sbest over the whole

image as shown in Eq. A.7. If Emax = Ei = E j with i 6= j , then Emax = Emax{i , j }.

Fcoar s =

W∑
x=0

H∑
y=0

Sbest (x, y)

H ×W
(A.7)

In WND-CHARM’s version, a matrix representing at each pixel the cumulative sum of all

preceding pixels in the image (according to a certain scheme) is first computed such that

the subsequent averages over regions of different size will be easily computed by subtracting

boundary pixels and dividing by the size of the region. Steps 1 and 2 are computed using this

cumulative sum. A and the two E are computed in two separate steps as suggested in [52].

Step 3 differs a little bit from the reference: Sbest is defined as Sbest = k, where k is the power

of two yielding the highest value of E instead of 2k . It is suggested in [23] to use k instead of 2k

since it is unlikely for textures to have a coarseness of 32 pixels. At this size the algorithm is

hence mostly expected to detect noise. Using k instead of 2k introduces a logarithmic scaling

of the coarseness and lessens the influence of large scales, thus potentially reducing noise

in the average measurement. This argument might however not be valid for biological data,

where some textures can have a very wide range of coarseness values. The final measure of

coarseness also differs from the original one. It is computed as Eq. A.8.

Fcoar s =

W∑
x=0

H∑
y=0

Sbest (x, y)

(H −32)× (W −32)
(A.8)

In this implementation the measure of coarseness Fcoar s is returned, as well as a 3-bins his-

togram of Sbest over the image. We implemented the two versions of coarseness as described

in [52] and Eq. A.8, and we also included the 3-bins histogram of Sbest in our module. All these

elements are outputted from the module.
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Contrast

Contrast is defined as high or low. It is composed of four factors: the dynamic range of grey-

levels in the image, the polarization of the grey-levels histogram (or ratio between black and

white areas), the sharpness of image edges, and the period of repeating patterns. The two first

characteristics are the usual definition of contrast. Fcont takes into account the range and the

dispersion of grey-levels (i.e. the variance σ2) and the polarization of the grey-levels histogram

(i.e. the kurtosis α4). It is therefore defined as Eq. A.9 where σ is the standard deviation, α4 the

kurtosis defined as Eq. A.10, µ4 the fourth moment about the mean, and µ the mean defined

as µ=
W∑

x=0

H∑
y=0

I (x,y)

W ∗H where W is the width and H the height.

Fcont = σ

(α4)n (A.9)

α4 = µ4

σ4 =

W∑
x=0

H∑
y=0

(I (x,y)−µ)4

W ∗H
W∑

x=0

H∑
y=0

(I (x,y)−µ)2

W ∗H


2 (A.10)

The value of n is set to 0.25 ([52]), hence Eq. A.11.

Fcont = σ

(α4)
1
4

= σ(µ4

σ4

) 1
4

= σ2

µ
1
4
4

(A.11)

Our implementation strictly follows Eq. A.11. A histogram of the grey level is used to compute

the mean, the variance and the fourth moment about the mean, and the measure of contrast

is returned.

Directionality

Directionality is defined against non-directionality. It is orientation-independent, meaning

that two patterns that differ only in their orientation will have the same degree of directionality.

In order to compute the total degree of directionality of the texture, it is proposed to use

an histogram of local edge probabilities against their directional angle ([52]). The gradient’s

magnitude |∆G| and edge direction θ ∈ [0,π[ are defined as Eq. A.12 and A.13. θ is measured

in the counterclockwise orientation such that the horizontal direction is equal to zero.

|∆G| = (|∆H |+ |∆V |)
2

(A.12)
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θ = arctan

(
∆V

∆H

)
+ π

2
(A.13)

In order to compute the gradient (to detect edges in the image), the Prewitt operator composed

of the two 3x3 difference filters ∆H (horizontal, Eq. A.14) and ∆V (vertical, Eq. A.15) is used.

∆H =

 −1 0 1

−1 0 1

−1 0 1

 (A.14)

∆V =

 1 1 1

0 0 0

−1 −1 −1

 (A.15)

The histogram HD of edge probability is obtained by quantizing and binning by θ (edge angle)

at each points satisfying |∆G| ≥ t , where t is a arbitrary threshold that aims to remove directions

that are not reliable enough as an edge. Eq. A.16 is hence obtained, where k = 0,1, ...,n −1 and

Nθ(k) is the number of points where (2k−1)π
2n ≤ θ < (2k+1)

2n . [52] suggests using n=16 and t=12.

HD (k) = Nθ(k)
n−1∑
i=0

Nθ(i )

(A.16)

The directionality is extracted from HD by computing the sharpness of the peaks and defined

as A.17 where np is the number of peaks, φ the quantized direction code (modulo 180°), φp

the peak position of HD , wp the range of p the peak between valleys, and r a normalization

factor.

Fdi r = 1− r np

np∑
p

∑
φ∈wp

(φ−φp )2HD (φ) (A.17)

[52] only considers cases where at most two peaks are presents. Eq. A.18 where νi j is the

positions of valley from peak φi to peak φ j can be used to determine whether two (np = 2) or

only one (np = 1) peaks are to be considered.

np =
2, if HD (ν12)

HD (φ2) < 0.5, HD (ν21)
HD (φ2) < 0.5, and HD (φ2)

HD (φ1) > 0.2

1, otherwise
(A.18)

Directionality is computed in WND-CHARM is a different manner. First of all the gradient

is determined using Sobel filters instead of Prewitt. At each point of the filtered image, the

orientation θ is computed using Eq. A.13, and a sum rs is incremented, with r s = r s+∆2
H (x, y)+

∆2
V (x, y)+θ2(x, y). θ is then quantized in a 125-bins histogram H. The index bmax of the bin

containing the maximum value of H is extracted, and a sum hs is computed, with hs =
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125∑
b=0

(b +1−bmax )2H(b). Using this, the directionality is obtained through Eq. A.19

Fdi r =
∣∣∣∣log

(
hs

r s

)∣∣∣∣=
∣∣∣∣∣∣∣∣∣log


125∑
b=0

(b +1−bmax )2H(b)

W∑
x=0

H∑
y=0
∆2

H +∆2
V +θ2


∣∣∣∣∣∣∣∣∣ (A.19)

The origin of this new definition is not explained in the code. It is however observed ([23]) that

the directionality feature performs quite poorly since calculating the variance of the peaks

of the histogram is complicated. A suggestion to improve the feature is then to calculate the

global variance of the histogram and use entropy ([23]). As entropy can be defined as Eq. A.20

for a vector x of N elements, it might be the explanation for the presence of the log.

Entr opy(X ) =
N−1∑
n=0

p(xn) log(p(xn)) (A.20)

In our module we implemented both the directionality as described in [52] (Eq. A.21 where

np are the peak values of the histogram, wp are all the bins that include a given peak value

p, and φp is the bin with the highest peak value) and as Eq. A.20. We used Prewitt’s filters as

suggested in [52]. The two versions of directionality are outputted from our Tamura module.

Fdi r =
np∑
p

∑
φ∈wp

(φ−φp )2HD (φ) (A.21)

A.2.4 Transforms

We implemented a Transform module that computes the Fourier, Wavelet or Chebyshev

transform of an image. It outputs images, without any measurement made on them. These

images can be further given as input to any existing measurement module. For the Fourier

and Wavelet, not only the transform but also the reconstruction was implemented. In this way

the user can process the transformed image and go back to the original domain if needed.

Fourier Transform

The Fourier Transform (FT) is very easily implemented using the fft2 function from the fft

class available in numpy/scipy ([37], [24]):

import numpy as np

ft_image=np.fft.fft2(raw_image)

As the Fourier-tranformed image is composed of complex values, we return its modulus using

the numpy abs function:
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mod_ft_image=np.abs(ft_image)

Haar Wavelet Transform

Just like the Fourier Transform, the Wavelet Transform (WT) is designed to express a signal

using orthonormal basis functions. It differs however in the fact that it is able to localize a

function precisely both in frequency and space. Many different wavelet basis function have

been proposed and we here implemented the most classical one, the Haar wavelet transform

([20]). The discrete Haar Wavelet Transform can be described by the transformation matrix H

shown in Eq. A.22.

H = 1p
2

[
1 1

1 −1

]
(A.22)

A signal x of size 2N can be analyzed following Eq. A.23. This procedure can be also explained

using the filter bank representation shown in Fig. A.1: the signal is first split in odd and even

samples, which amounts to downsampling it by two. Odd samples are filtered using an edge

detector and yield the wavelet coefficient at first scaleω1. Even samples go through a rectangle

filter, and the resulting low-passed image is used as input to start again the same procedure

and obtain coefficients at second scale. At each scale the size of the image is therefore reduced

by two. As a result the maximal possible number of scale is N for an image of size 2N .[
ω1(k)

y(k)

]
= H

[
x[2k]

x[2k +1]

]
(A.23)

Figure A.1: Filter bank representation of the discrete Haar Wavelet Transform.

When working with 2-dimensional signals like images the transform can simply be applied

in 1D first along the rows and then along the columns. The resulting Wavelet-transformed

image is presented as shown in Fig. A.2. At the first scale, the top right square corresponds

to the transformed image along rows, the bottom left square to the transformed image along
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columns, and the bottom right square to the transformed image along both directions. The

top left corner contains the lowpassed version of the image if only one scale is computed, or

further decompositions if more than one scales are used.

Figure A.2: Schematic representation of the wavelet-transformed image.

Our implementation strictly follows these explanations: at each scale we apply Eq. A.23 first

along the rows and then along the columns.

Discrete Chebyshev Transform

The Discrete Chebyshev Transform (DCT) aims to approximate a smooth function un with

Chebyshev Polynomials of the first kind of degree m, Tm(xn), weighted by expansion coeffi-

cients am as described in Eq. A.24.

un =
M−1∑
m=0

amTm(xn) (A.24)

The Chebyshev Polynomials Tm(xn) are orthogonal, and the approximation coefficients can

therefore be expressed as a scalar product between the function to be approximated and the

Chebyshev Polynomials (Eq. A.25).

am = 〈u(x),Tm(x)〉 =Cm

N−1∑
n=0

u(xn)Tm(xn) (A.25)

In Eq. A.25 the Cm are defined as Eq. A.26.

Cm =
 1

N , if m = 0
2
N , otherwise

(A.26)

The Chebyshev Polynomials of the first kind can be expressed as Tm(x) = cos(m cos−1(xn)),

and one can therefore see that xn ∈ [−1,1]. Using this definition, we can rewrite the approxi-
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mation coefficient am following Eq. A.27.

am =Cm

N−1∑
n=0

u(xn)cos(m cos−1(xn)) (A.27)

The 2D version of the Chebyshev transform is given by Eq. A.28

ui , j (xi , y j ) '
N−1∑
n=0

M−1∑
m=0

amnTn(xi )Tm(y j ) (A.28)

The DCT is therefore separable and can be implemented efficiently by first computing the 1D

transform along the rows, and then along the columns of the image. The Chebyshev Transform

can also be implemented using the Discrete Cosine Transform, as described in [14].

Our implementation follows Ilya Goldberg’s C++ code for WND-CHARM that can be found in

chevishev.cpp ([57]). Our function is the image (i.e. a 2D signal), but since the Chebyshev

Transform is separable as explained before, we work with the columns and then with the rows

of the image (i.e. 1D signals). un(xn) is a 1xN vector, where N is either the width (if we are doing

the transform along the rows) or the height (if we are doing the transform along the columns)

of the image. un contains n elements (or pixels) with n ∈ [0, N [. Since xn ∈ [−1,1] we can define

xn = 2(n+1)
N −1 with n ∈ [0, N [ such that xnmi n = x0 = 2

N −1 and xnmax = xN−1 = 2(N−1+1)
N −1 =

2N
N −1 = 1, and therefore xn ∈ [ 2

N −1,1] ⊂ [−1,1]. Using this definition, we have n = N (xn+1)
2 −1.

This change of variable amounts to approximating a function g (xn) = u
(

N (xn+1)
2 −1

)
using

Chebyshev Polynomials. The expression of the expansion coefficients therefore becomes Eq.

A.29

am =Cm

N−1∑
n=0

g (xn)Tm(xn) =Cm

N−1∑
n=0

u(n)Tm

(
2(n +1)

N
−1

)
(A.29)

In WND-CHARM’s implementation, the whole coefficient is divided by 2 for unknown reasons.

It amounts to approximating the function un divided by two, but this doesn’t modify the

problem since what is of interest is not to have the DCT representing faithfully the original

function (since it does faithfully represents the function divided by two), but only to obtain

new measurements to discriminate images. Hence if the same operation (here: division by

two) is applied to all images, it doesn’t matter. The final expression of the approximation

coefficients is therefore Eq. A.30

am =Cm

N−1∑
n=0

g (xn)
Tm(xn)

2
= Cm

2

N−1∑
n=0

u(n)Tm

(
2(n +1)

N
−1

)
(A.30)

A.2.5 ChebyHist

In our pipeline two Chebyshev transforms are computed on the image. The first one is a

Chebyshev transform with order matching dimensions of the image, and is used as a new
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image to compute additional features (Textures, Moments, etc.). The second one is a Cheby-

shev transform with order N=20. The resulting transformed image is therefore composed of

400 Chebyshev coefficients. These 400 coefficients are binned in a 32-bins histogram that

compose the 32 Chebyshev Histogram Statistics. These features are computed on the original

image and on the Fourier Transform of the original image (Fourier/Chebyshev compound

transform). Our ChebyHist module performs binning and returns the Chebyshev Histogram

Statistics.
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B.1 WND-CHARM

B.1.1 Python

We implemented WND-CHARM in Python following both the description of the algorithm

provided in [38] and [46], and the source code of the C++ version of the algorithm. In the code

displayed in this section, np always corresponds to the numpy Python library ([37]).

Classifier training is performed by the train function of our WNDCHARMClassifier Python

class. Its inputs are a data matrix containing training data, and a labels matrix containing

the associated class labels. The features (i.e. columns in data matrix) are first normalized,

and a weight is computed for each of them. Weights are then ordered by increasing value and

selected using the 15% threshold as suggested in [46]. All weights that do not belong to the

15% best subset are set to zero and therefore become invisible for classification.

def train(self, labels, data):

self.labels=np.array(labels)

self.classes=np.array(np.unique(labels))

self.data=np.array(data)

for f in range(0, len(self.data[0])):

self.data[:,f]=normalize(self.data[:,f])

self.weight = np.array([])

for f in range(0, len(data[0])):

self.weight=np.append(self.weight,self.wnd_charm_weight(f))

percent=0.15

temp=np.sort(self.weight)

index=len(self.weight)-np.round(percent*len(self.weight))
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if index>=len(self.weight):

print 'Dataset contains too few information'

sys.exit()

thresh=temp[index]

for f in range(0, len(self.weight)):

if self.weight[f]<thresh:

self.weight[f]=0.0

The normalize function used in train brings back every column in the data matrix to the

[0,100] interval as it is the case in WND-CHARM’s C++ version.

def normalize(arr):

arr=np.array(arr, dtype=float)

max_val=float(arr.max())

min_val=float(arr.min())

if max_val!=min_val:

res=np.array(100.0*((arr-min_val)/(max_val-min_val)))

else:

res=np.zeros([len(arr)])

return res

Weights are computed following the C++ code and the explanations in [38]. Care is taken to

avoid potential crashes or faulty results due to numerical errors.

def wnd_charm_weight(self, f):

N=len(self.classes)

features_f=np.array(self.data[:,f], dtype=float)

if np.sum((features_f==False)*1.0)==len(features_f):

return 0.0

mean_f_c=np.array([])

var_f_c=np.array([])

for c in range(0,N):

t_c=np.array(self.get_class_vectors(self.classes[c]), dtype=float)

mean_f_c=np.append(mean_f_c, np.sum(t_c[:,f])/float(len(t_c)))

temp_mean=np.sum(t_c[:,f])/float(len(t_c))

var_f_c=np.append(var_f_c, np.sum(np.power(t_c[:,f]-temp_mean,2))/float(len(t_c)))

134



B.1. WND-CHARM

mean_f=np.sum(mean_f_c)/float(N)

if N>1:

var_f=np.sum(np.power(mean_f_c-mean_f,2))/float(N-1)

else:

var_f=0.0

inn_var_f=np.sum(var_f_c)/float(N)

if inn_var_f==0:

inn_var_f+=0.000001

weight=var_f/inn_var_f

return weight

Since it is required in weights computation to isolate samples from a particular class, we wrote

a simple get_class_vectors function that allows extracting all samples belonging to a given

class from the dataset.

def get_class_vectors(self, c):

t_c=np.array([], dtype='S100')

first_c=True

for i in range(0, len(self.labels)):

if self.labels[i] == c:

if first_c:

t_c=np.append(t_c, self.data[i,:])

first_c=False

else:

t_c=np.vstack((t_c, self.data[i,:]))

return t_c

When the training is done, a matrix data of samples from unknown classes can be given to

the classify function. For each element of the data matrix the WND classifier is called and

returns a predicted class.

def classify(self, data):

data = np.array(data, dtype=float)

predicted_labels = []

for f in range(0, len(data[0])):

data[:,f]=normalize(data[:,f])

for x in data:

predicted_labels.append(self.WND(x))

return np.array(predicted_labels)
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Our WND function simply computes WND similarity between the sample to be classified and

all classes in the training set. It returns the label of the class with maximal similarity.

def WND(self, x):

dist = []

for c in range(0,len(self.classes)):

d=wnd_charm_similarity(x,self.weight,self.get_class_vectors(self.classes[c]))

dist.append(d)

dist=zip(dist,self.classes)

return max(dist)[1]

Similarity is computed following [46] and the C++ implementation. The exponent value is set

to -5.0 as suggested in [38].

def wnd_charm_similarity(x, w, c):

if len(c)<1:

print 'ERROR: Empty class'

sys.exit()

p=-5.0

sum_t=np.array([])

wnd=0.0

for t in range(0, len(c)):

if len(c.shape)>1:

c_t=np.array(c[t,:], dtype=float)

else:

c_t=np.array(c[t], dtype=float)

sum_f=np.sum(np.multiply(np.power(w, 2),np.power(x-c_t, 2)))

sum_t=np.append(sum_t, np.power(sum_f, p))

wnd=np.sum(sum_t)

return wnd/len(c)

B.1.2 MATLAB

We designed a classifyWND function based on the existing classify and classifykNN

MATLAB functions. The same inputs are required: a matrix of training data XTRAIN, the

corresponding labels vector YTRAIN, and a matrix of test data with unknown labels XTEST. The

method outputs a vector YFIT of predicted labels for the test set.

Following WND-CHARM’s C++ code, we first bring back each features in the interval [0,100]
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using an ad-hoc normalize function:

function xnorm = normalize(x, upbnd, lowbnd)

xmax=max(x);

xmin=min(x);

if xmin>=xmax

xnorm=repmat(0.0,size(x,1),1);

else

xnorm=repmat(1.0/(xmax-xmin),size(x,1),1).*((repmat(upbnd-lowbnd,size(x,1),1).*x)+repmat((lowbnd*xmax)-(upbnd*xmin),size(x,1),1));

end

end

nbfeats=size(xtrain,2);

for f=1:nbfeats

xtrain(:,f)=normalize(xtrain(:,f),100.0,0.0);

xtest(:,f)=normalize(xtest(:,f),100.0,0.0);

end

After this pre-processing step, the first operation in WND-CHARM’s algorithm is to compute

features weights following their definition in [38]:

classes=unique(ytrain);

nbclasses=size(classes,1);

weight=zeros(nbfeats,1);

classmean=zeros(nbclasses,1);

classvar=zeros(nbclasses,1);

for f=1:nbfeats

for c=1:nbclasses

classels=find(strcmp(ytrain,classes(c)));

classmean(c)=mean(xtrain(classels,f));

classvar(c)=var(xtrain(classels,f),1);

end

totalvar=var(classmean);

meanvar=mean(classvar);

if meanvar~=0

weight(f)=totalvar/meanvar;

else

weight(f)=0.0;

end

end
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Weights are then thresholded, and the upper 15% is kept for classification. The other weights

are not physically removed from the array, but their value is set to zero in order to render them

ineffective in classification.

per=0.15;

temp=sort(weight);

tresh=temp(nbfeats-round(per*nbfeats));

for f=1:nbfeats

if weight(f)<tresh

weight(f)=0.0;

end

end

Finally the actual classification step is performed using the definition of WND. For each

element of the test set a predicted label corresponding to the class obtaining maximal similarity

is added to the output vector.

nbtests=size(xtest,1);

yfit=cell(nbtests,1);

for i=1:nbtests

sim=zeros(nbclasses,1);

for c=1:nbclasses

classels=xtrain(find(strcmp(ytrain,classes(c))),:);

nbels=size(classels,1);

for j=1:nbels

dist=sum(power(weight',2).*power((xtest(i,:)-classels(j,:)),2));

sim(c)=sim(c)+power(dist,-5);

end

sim(c)=sim(c)/nbels;

end

[val, ind]=max(sim);

yfit(i)=classes(ind);

end

This function can be used in the same way as the existing classify MATLAB functions, and

can for instance be fed into the crossval MATLAB method to perform k-fold cross-validation.
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B.2 PCA-LDA

B.2.1 Python

We used functions from the scikit-learn Python library ([40]) to classify our whole-image

features vectors using PCA-LDA in Python.

PCA

Since the columns of X (i.e. the features) are not known to be on the same scale we decided to

first normalize and center each column. In order to do so we used the appropriate built-in

sklearn function:

from sklearn.preprocessing import Scaler

scaler=Scaler()

X_norm=scaler.fit_transform(X)

X was explicitly defined as a float array, to avoid errors with Scaler.

Like most sklearn functions, PCA is performed on a NxM numpy array ([37]) of floats con-

taining N samples (rows) of M features (columns). We explicitly casted the input array X as a

numpy float array to avoid any type errors:

import numpy as np

X=np.array(X_raw, dtype='float')

PCA requires one argument n_components. If 0<n_components<1, PCA returns the number

of principal components needed to explain a fraction of n_components of the variance in the

original data. If n_components>1, PCA simply returns n_components principal components.

Once PCA is instantiated, the analysis can be performed on the input matrix X:

from sklearn.decomposition import PCA

pca = PCA(n_components=0.98)

pca_data=pca.fit_transform(X)

A description of sklearn’s PCA utility can be found at [51].

LDA

LDA is also performed on a NxM numpy array of floats containing N samples (rows) of M

features (columns). We explicitly cast the input array X as a numpy float array for the same

reasons mentioned for PCA:
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import numpy as np

formatted_training_data=np.array(training_data, dtype='float')

formatted_test_data=np.array(test_data, dtype='float')

For training, LDA requires the features matrix and the corresponding labels vector. The

function is written such that the label vector must be composed of integer numbers. Since our

classes did not always had numerical names we needed to recreate a vector of labels for LDA:

int_labels={}

for i in range(0, len(classes)):

int_labels[classes[i]]=i

training_int=np.zeros([len(training_labels)])

for i in range(0, len(training_labels)):

training_int[i]=int_labels[training_labels[i]]

This concludes the training part. Once the LDA instance was created, we could simply give to

LDA’s fit function our matrix of training data and the vector of corresponding labels:

import sklearn.lda as lda

classifier=lda.LDA()

classifier.fit(formatted_training_data, training_int)

We could hence test the efficiency of the classifier on our validation set. The predict func-

tion returns integer values as predicted labels, and we used the hash table int_labels we

described before to know what the corresponding class was:

pred_int = classifier.predict(formatted_test_data)

pred_labels=np.array([])

for i in range(0, len(pred_int)):

pred_labels=np.append(pred_labels, [key for key, value in int_labels.iteritems() if value == pred_int[i]][0])

pred_label therefore contains the predicted classes for each element of the validation set.

A description of the LDA class is available online on sklearn’s website ([50]).

B.2.2 MATLAB

We implemented PCA-LDA in MATLAB following our Python code.
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PCA

As a pre-processing step we centered and scaled the data along each column in order to bring

different features to a common scale. We made sure to remove zero-variance features as they

have no discrimination power.

X0 = X0(:,std(X0)~=0);

X0 = (X0 -repmat(mean(X0), size(X0,1),1) ) ./ repmat(std(X0), size(X0,1),1);

We then performed PCA using the MATLAB princomp function which returns the principal

components coefficients (c), the representation of the data in PCA space (s), and the eigen-

values of the covariance matrix of the data matrix X0 (l). When the econ option is used, only

the non-zero eigenvalues of the covariance matrix are returned. In order to determine how

much principal components are required to keep a portion of thresh of the variance, we

computed a matrix l0 containing the cumulative sums of eigenvalues divided by the total sum

of eigenvalues and looked for the neigs values from this matrix that were above thresh. The

neigs first principal components describing the data were then selected.

thresh=0.98;

[c s l] = princomp(X0(:,:), 'econ');

l0 = cumsum(l)/sum(l);

neigs = find(l0 > thresh, 1);

pcs(n,i)=neigs;

X = s(:,1:neigs);

LDA

In order to perform LDA we called the classify MATLAB function which takes as input a

pxN matrix (where N is the number of features) XTEST of p unlabeled samples, a mxN matrix

XTRAIN of m>>p training samples, and a mx1 matrix ytrain of m class labels correspond-

ing to samples in XTRAIN. It returns a px1 matrix of predicted class labels for elements in

XTEST. We fed this function to the crossval MATLAB method which directly performs 10-

fold cross-validation as setup by the cvpartition MATLAB function. The final output is the

misclassification rate obtained after cross-validation.

cp = cvpartition(y,'k',10);

classf = @(XTRAIN, ytrain, XTEST) (classify(XTEST,XTRAIN,ytrain));

cvMCR = crossval('mcr',X,y,'predfun',classf,'partition',cp);

Descriptions of both princomp and classify can be found in the online help of math-

works.com.
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B.3 Validation methods

B.3.1 Python

In this section, np in the code always corresponds to the numpy Python library ([37]).

k-fold cross-validation

The Python code for k-fold cross-validation was used with the kind permission of its author,

Auguste Genovesio at the Broad Institute.

def _k_fold_cross_validation_iterator(data, K=None):

if K == None:

K = data.shape[0]

np.random.shuffle(data)

for k in xrange(K):

training = np.array([x for i, x in enumerate(data) if i \% K != k], dtype='S100')

validation = np.array([x for i, x in enumerate(data) if i \% K == k], dtype='S100')

yield training, validation

"save 25%"

We implemented a "save X%" validation method where X is by default set to 25%, but can be

modified if desired. This method was written following WND-CHARM’s C++ code and the

description of "save 25%" given in [38].

def _saveX_validation_iterator(data, percent=0.25):

if percent >= 1:

print 'Error: training set must contains at least one element.'

sys.exit()

training=np.array([], dtype='S100')

validation=np.array([], dtype='S100')

first_v=True

first_t=True

classes=np.unique(data[:, 0])

for c in range(0, len(classes)):

t_c=np.array([], dtype='S100')

first_c=True

for i in range(0, len(data)):
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if data[i,0] == classes[c]:

if first_c:

t_c=np.append(t_c, data[i,:])

first_c=False

else:

t_c=np.vstack((t_c, data[i,:]))

nbr=int(percent*len(t_c))

np.random.shuffle(t_c)

if nbr==1:

print 'ERROR: Only one sample in test set.'

sys.exit()

for i in range(0, len(t_c)):

if i<nbr:

if first_v:

validation=np.append(validation, t_c[i,:])

first_v=False

else:

validation=np.vstack((validation, t_c[i,:]))

else:

if first_t:

training=np.append(training, t_c[i,:])

first_t=False

else:

training=np.vstack((training, t_c[i,:]))

yield training, validation

B.3.2 MATLAB

10-fold cross-validation

Cross-validation was performed in MATLAB using the crossval function already mentionned

in the PCA-LDA MATLAB section. More documentation can be found online at mathworks.com.
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C Comparison Across Softwares

We present here results of similar experiments performed using different implementations. As

we navigate through MATLAB, Python and R during our analysis we needed to ensure that we

obtained the same results when performing identical experiments on different platforms.

C.1 C++/Python

WND-CHARM, "save 25%"

Fig. C.1 compares results averaged over 100 classification runs using the CHARM vector, WND,

and "save 25%" for validation in the original C++ version and in our Python implementation.

Figure C.1: Comparison of misclassification rates across versions using WND-CHARM and
"save 25%" on the reference datasets. Results range from 0 (0%) to 1 (100%).
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C.2. Python/MATLAB

C.2 Python/MATLAB

WND-CHARM, 10-fold

Fig. C.2 compares results averaged over 10 classification runs using the CHARM vector, WND,

and 10-fold cross-validation in MATLAB and Python.

Figure C.2: Comparison of misclassification rates across versions using WND-CHARM and
10-fold cross-validation on the reference datasets. Results range from 0 (0%) to 1 (100%).

C.3 Python/MATLAB/R

PCA-LDA-CHARM, 10-fold

Fig. C.3 compares results averaged over 10 classification runs using the CHARM vector, PCA-

LDA, and 10-fold cross-validation in MATLAB, Python and R.

PCA-LDA-CHARM-like, 10-fold

Fig. C.4 compares results averaged over 10 classification runs using our CHARM-like vector

(v3.2), PCA-LDA, and 10-fold cross-validation in MATLAB, Python and R.
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Appendix C. Comparison Across Softwares

Figure C.3: Comparison of misclassification rates across versions using PCA-LDA-CHARM
and 10-fold cross-validation on the reference datasets. Results range from 0 (0%) to 1 (100%).

Figure C.4: Comparison of misclassification rates across versions using PCA-LDA-CHARM-like
and 10-fold cross-validation on the reference datasets. Results range from 0 (0%) to 1 (100%).
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D Contact information

The author of this thesis can be contacted at the following mailing address:

Virginie Uhlmann

Chataigneraie 17

1278 La Rippe (VD)

Switzerland

Home phone: +41 (22) 362 2419

Mobile phone: +41 (79) 726 8358

Electronic contact is also available using either of the following:

virginie (dot) uhlmann (at) epfl (dot) ch

uhlmann (dot) virginie (at) gmail (dot) com

virginie (underscore) uhlmann (at) bluewin (dot) ch
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