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ABSTRACT

The prevalence of signals on weighted graphs is increasing; how-
ever, because of the irregular structure of weighted graphs, classical
signal processing techniques cannot be directly applied to signals on
graphs. In this paper, we define generalized translation and modula-
tion operators for signals on graphs, and use these operators to adapt
the classical windowed Fourier transform to the graph setting, en-
abling vertex-frequency analysis. When we apply this transform to a
signal with frequency components that vary along a path graph, the
resulting spectrogram matches our intuition from classical discrete-
time signal processing. Yet, our construction is fully generalized
and can be applied to analyze signals on any undirected, connected,
weighted graph.

Index Terms— Signal processing on graphs, time-frequency
analysis, generalized translation and modulation, spectral graph the-
ory

1. INTRODUCTION

In an increasing number of applications such as social networks,
electricity networks, transportation networks, and sensor networks,
data naturally reside on the vertices of weighted graphs. Moreover,
weighted graphs are a flexible tool that can be used to describe sim-
ilarities between data points in statistical learning problems, func-
tional connectivities between different regions of the brain, and the
geometric structures of countless other topologically-complicated
data domains. Unfortunately, weighted graphs are irregular struc-
tures that lack a shift-invariant notion of translation, a key compo-
nent in many signal processing techniques for data on regular Eu-
clidean spaces. Thus, the existing techniques cannot be directly ap-
plied to signals on graphs, and an important challenge is to design
localized transform methods to efficiently extract information from
high-dimensional data on graphs (either statistically or visually), as
well as to regularize ill-posed inverse problems. Accordingly, a num-
ber of new multiscale wavelet transforms for signals on graphs have
been introduced recently (see, e.g., the introductions of [1, 2] for
up-to-date reviews of these wavelet transforms).

Another important class of time-frequency analysis tools in clas-
sical signal processing are windowed Fourier transforms, also called
short-time Fourier transforms. Windowed Fourier transforms are
particularly useful in extracting information from signals with os-
cillations that are localized in time or space. Such signals appear
frequently in applications such as audio and speech processing, vi-
bration analysis, and radar detection.

Underlying the classical windowed Fourier transform are the
translation and modulation operators. While these fundamental op-
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erations seem simple in the classical setting, they become signifi-
cantly more challenging when we deal with signals on graphs. For
example, when we want to translate the blue Mexican hat wavelet on
the real line in Figure 1(a) to the right by 5, the result is the dashed
red signal. However, it is not immediately clear what it means to
translate the blue signal in Figure 1(c) on the weighted graph in
Figure 1(b) “to vertex 1000.” Modulating a signal on the real line
by a complex exponential corresponds to translation in the Fourier
domain. However, the analogous spectrum in the graph setting is
discrete and bounded, and therefore it is difficult to define a modula-
tion in the vertex domain that corresponds to translation in the graph
spectral domain.

In this paper, we define generalized translation and modulation
operators for signals on graphs, and use these operators to adapt the
classical windowed Fourier transform to the graph setting, enabling
vertex-frequency analysis.

(a) (b) (c)

Fig. 1. (a) Classical translation. (b) The Minnesota road graph. (c)
What does it mean to “translate” this signal on the vertices of the
Minnesota road graph?

2. THE CLASSICAL WINDOWED FOURIER TRANSFORM

For any f ∈ L2(R) and u ∈ R, the translation operator Tu :
L2(R)→ L2(R) is defined by

(Tuf) (t) := f(t− u), (1)

and for any ξ ∈ R, the modulation operator Mξ : L2(R) → L2(R)
is defined by

(Mξf) (t) := e2πiξtf(t). (2)

Now let g ∈ L2(R) be a window with ‖g‖2 = 1. Then a windowed
Fourier atom (see, e.g., [3, Chapter 4.2]) is given by

gu,ξ(t) := (MξTug) (t) = g(t− u)e2πiξt, (3)

and the windowed Fourier transform of a function f ∈ L2(R) is

Sf(u, ξ) := 〈f, gu,ξ〉 =
∫ ∞
−∞

f(t)g(t− u)e−2πiξtdt. (4)



3. SPECTRAL GRAPH THEORY NOTATION

We consider undirected, connected, weighted graphs G = {V, E ,W},
where V is a finite set of vertices with |V| = N , E is a set of edges,
and W is a weighted adjacency matrix (see, e.g., [4] for all defini-
tions in this section). A signal f : V → RN defined on the vertices
of the graph may be represented as a vector f ∈ RN , where the
nth component of the vector f represents the signal value at the
nth vertex in V . The non-normalized graph Laplacian is defined as
L := D −W , where D is the diagonal degree matrix.

As the graph Laplacian L is a real symmetric matrix, it has
a complete set of orthonormal eigenvectors, which we denote by
{χ`}`=0,1,...,N−1. Without loss of generality, we assume that the
associated real, non-negative Laplacian eigenvalues are ordered as
0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax.

The classical Fourier transform is the expansion of a func-
tion f in terms of the eigenfunctions of the Laplace operator, i.e.,
f̂(ξ) = 〈f, e2πiξt〉. Analogously, the graph Fourier transform f̂
of a function f ∈ RN on the vertices of G is the expansion of f
in terms of the eigenfunctions of the graph Laplacian. It is defined
by f̂(`) := 〈f, χ`〉 =

∑N
n=1 χ

∗
` (n)f(n), where we adopt the

convention that the inner product be conjugate-linear in the second
argument. The inverse graph Fourier transform is then given by
f(n) =

∑N−1
`=0 f̂(`)χ`(n).

4. GENERALIZED TRANSLATION

For signals f, g ∈ L2(R), the convolution product h = f ∗g satisfies

h(t) = (f ∗ g)(t) =
∫
R
ĥ(ξ)e2πiξtdξ

=

∫
R
f̂(ξ)ĝ(ξ)ψξ(t)dξ, (5)

where ψξ(t) = e2πiξt. By replacing the complex exponentials in
(5) with the graph Laplacian eigenvectors, we define a generalized
convolution of signals f, g ∈ RN on a graph by

(f ∗ g)(n) :=
N−1∑
`=0

f̂(`)ĝ(`)χ`(n). (6)

Now the application of the classical translation operator Tu de-
fined in (1) to a function f ∈ L2(R) can be seen as a convolution
with δu:

(Tuf)(t) := f(t− u) = (f ∗ δu)(t)
(5)
=

∫
R
f̂(ξ)δ̂u(ξ)ψξ(t)dξ

=

∫
R
f̂(ξ)ψ∗ξ (u)ψξ(t)dξ,

where the equalities are in the weak sense. Thus, for any signal
f ∈ RN defined on the the graph G and any i ∈ {1, 2, . . . , N}, we
also define a generalized translation operator Ti : RN → RN via
generalized convolution with a delta centered at vertex i:

(Tif) (n) :=
√
N(f ∗ δi)(n)

(6)
=
√
N

N−1∑
`=0

f̂(`)χ∗` (i)χ`(n). (7)

In Figure 2, we apply generalized translation operators to the
graph signal from Figure 1(c).

(a) (b) (c)

Fig. 2. The translated signals (a) T200f , (b) T1000f , and (c) T2000f ,
where f , the signal shown in Figure 1(c), is a normalized heat kernel
satisfying f̂(`) = Ce−5λ` .

5. GENERALIZED MODULATION

Motivated by the fact that the classical modulation (2) is a mul-
tiplication by a Laplacian eigenfunction, we define, for any k ∈
{0, 1, . . . , N − 1}, a generalized modulation operator Mk : RN →
RN by

(Mkf) (n) :=
√
Nf(n)χk(n).

First, note that M0 is the identity operator, as χ0(n) =
1√
N

for all n
for connected graphs. In the classical case, the modulation operator
represents a translation in the Fourier domain:

M̂ξf(ω) = f̂(ω − ξ), ∀ω ∈ R.

This property is not true in general for our modulation operator on
graphs due to the discrete nature of the graph. However, we do have
the nice property that if ĝ(`) = δ0(λl), then

M̂kg(`) =

N∑
n=1

χ∗` (n)(Mkg)(n)

=

N∑
n=1

χ∗` (n)
√
Nχk(n)

1√
N

= δ0(λ` − λk),

so Mk maps the DC component of any signal f ∈ RN to f̂(0)χk.
Moreover, if we start with a function f that is localized around the
eigenvalue 0 in the graph spectral domain, as in Figure 3, then Mkf
will be localized around the eigenvalue λk in the graph spectral do-
main. We quantify this localization in the next theorem.
Theorem 1: Given a weighted graph G with N vertices, let C1(G)
be a constant such that

max
` = 0, 1, . . . , N − 1
i = 1, 2, . . . , N

{|χ`(i)|} ≤
C1√
N
. (8)
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Fig. 3. (a) The graph spectral representation of a signal f1 with
f̂1(`) = Ce−100λ` , where the constant C is chosen such that
‖f1‖2 = 1. (b) The graph spectral representation M̂2000f1 of the
modulated signal M2000f1. Note that λ2000 = 4.03.



If for some κ > 0, a given signal f satisfies

1

|f̂(0)|

N−1∑
`=1

|f̂(`)| ≤ 1

C1 + κ(C1)3
, (9)

then

|M̂kf(k)| ≥ κ|M̂kf(`)| for all ` 6= k. (10)

Proof.

M̂kf(`
′)

=

N∑
n=1

√
Nχ∗`′(n)χk(n)f(n)

=

N∑
n=1

√
Nχ∗`′(n)χk(n)

N−1∑
`′′=0

χ`′′(n)f̂(`
′′)

=

N∑
n=1

√
Nχ∗`′(n)χk(n)

[
f̂(0)√
N

+

N−1∑
`′′=1

χ`′′(n)f̂(`
′′)

]

= f̂(0)δ`′k +

N∑
n=1

√
Nχ∗`′(n)χk(n)

N−1∑
`′′=1

χ`′′(n)f̂(`
′′). (11)

Therefore, we have

|M̂kf(k)|

=

∣∣∣∣∣f̂(0) +
N∑
n=1

√
N |χk(n)|2

N−1∑
`′′=1

χ`′′(n)f̂(`
′′)

∣∣∣∣∣
≥ |f̂(0)| −

∣∣∣∣∣
N∑
n=1

√
N |χk(n)|2

N−1∑
`′′=1

χ`′′(n)f̂(`
′′)

∣∣∣∣∣
≥ |f̂(0)| −

N∑
n=1

√
N |χk(n)|2

N−1∑
`′′=1

|χ`′′(n)| |f̂(`′′)|

≥ |f̂(0)| − C1

N−1∑
`′′=1

|f̂(`′′)|

≥ |f̂(0)|
(
1− C1

C1 + κ(C1)3

)
, (12)

where the last two inequalities follow from (8) and (9), respectively.
Returning to (11) for ` 6= k, we have

κ|M̂kf(`)| = κ

∣∣∣∣∣
N∑
n=1

√
Nχ∗` (n)χk(n)

N−1∑
`′′=1

χ`′′(n)f̂(`
′′)

∣∣∣∣∣
≤ κ

N∑
n=1

N−1∑
`′′=1

√
N |χ∗` (n)χk(n)χ`′′(n)| |f̂(`′′)|

≤ κC3
1

N−1∑
`′′=1

|f̂(`′′)|

≤ |f̂(0)| κC3
1

C1 + κC3
1

, (13)

where the last two inequalities once again follow from (8) and (9),
respectively. Combining (12) and (13) yields (10).

6. WINDOWED GRAPH FOURIER FRAMES

Analogously to (3) and (4) in the classical case, for a window g ∈
RN , we define a windowed graph Fourier atom by

gi,k(n) := (MkTig) (n) = Nχk(n)

N−1∑
`=0

ĝ(`)χ∗` (i)χ`(n),

and the windowed graph Fourier transform of a function f ∈ RN by

Sf(i, k) := 〈f, gi,k〉.

Theorem 2: If ĝ(0) 6= 0, then {gi,k}i=1,2,...,N ; k=0,1,...,N−1 is a
frame with lower frame bound

A := min
n∈{1,2,...,N}

{
N‖Tng‖22

}
,

and upper frame bound

B := max
n∈{1,2,...,N}

{
N‖Tng‖22

}
.

Proof.

N∑
i=1

N−1∑
k=0

|〈f, gi,k〉|2 =

N∑
i=1

N−1∑
k=0

|〈f,MkTig〉|2

= N

N∑
i=1

N−1∑
k=0

|〈f(Tig)∗, χk〉|2

= N

N∑
i=1

〈f(Tig)∗, f(Tig)∗〉 (14)

= N

N∑
i=1

N∑
n=1

|f(n)|2 |(Tig)(n)|2

= N

N∑
i=1

N∑
n=1

|f(n)|2 |(Tng)(i)|2 (15)

= N

N∑
n=1

|f(n)|2 ‖Tng‖22, (16)

where (14) is due to Parseval’s identity, and (15) follows from the
symmetry of L and the definition (7) of Ti. Moreover, under the
hypothesis that ĝ(0) 6= 0, we have

‖Tng‖22 = N

N−1∑
`=0

|ĝ(`)|2 |χl(n)|2 ≥ |ĝ(0)|2 > 0. (17)

Combining (16) and (17), for f 6= 0,

0 < A‖f‖22 ≤
N∑
i=1

N−1∑
k=0

|〈f, gi,k〉|2 ≤ B‖f‖22 <∞.

7. EXAMPLES

We now present three examples to provide further intuition behind
the proposed windowed graph Fourier transform. In the first exam-
ple, we consider a path graph of 180 vertices, with all the weights
equal to one. The graph Laplacian eigenvectors for the path graph
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Fig. 4. (a) A signal f on the path graph that is comprised of three
different graph Laplacian eigenvectors restricted to three different
segments of the graph. (b) A spectrogram of f . The vertex indices
are on the horizontal axis, and the frequency indices are on the ver-
tical axis.
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Fig. 5. (a) A signal comprised of three different graph Laplacian
eigenvectors restricted to three different clusters of a random sensor
network. Positive components of the signal are in blue, and negative
components are in black. (b) The spectrogram shows the different
frequency components in the red, blue, and green clusters.

with N vertices, which are the basis vectors in the DCT-II trans-
form [5], are χ0(n) = 1√

N
, ∀n ∈ {1, 2, . . . , N}, and χ`(n) =√

2
N

cos
(
π`(n−0.5)

N

)
for ` = 1, 2, . . . , N − 1. We compose the

signal shown in Figure 4(a) on the path graph by summing three sig-
nals: χ10 restricted to the first 60 vertices, χ60 restricted to the next
60 vertices, and χ30 restricted to the final 60 vertices. We design
a window g by setting ĝ(`) = e−τλ` with τ = 300 and then nor-
malizing it so ‖g‖2 = 1. The “spectrogram” in Figure 4(b) shows
|Sf(i, k)|2 for all i ∈ {1, 2, . . . , 180} and k ∈ {0, 1, . . . , 179}.
Consistent with the intuition from discrete-time signal processing,
the spectrogram shows the discrete cosines at different frequencies
with the appropriate spatial localization.

In the second example, we repeat the first example on a more
general graph, which is a random sensor network with 64 vertices.
Using spectral clustering, we partition the network into three sets of
vertices, which are shown in red, blue, and green in Figure 5(a). We
take a signal f to be the sum of three signals: χ10 restricted to the
red set of vertices, χ27 restricted to the blue set of vertices, and χ5

restricted to the green set of vertices. We use the same window as
above with τ = 3 as the heat kernel parameter. Once again, the
spectrogram, shown in Figure 5(b), elucidates the structure of f , as
we can clearly see the three different frequency components present
in each of the three clusters of vertices.

In the third example, we consider the graph with 1000 points
sampled from the 2-D “Swiss roll” manifold, with the weights con-
structed as in [1, Section 8.2]. We take the window g as in the pre-
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Fig. 6. (a) The windowed graph Fourier atom g100,50. (b) The spec-
tral representation ĝ100,50 of the same atom. Note that λ50 = 0.95.
(c) The atom g600,500 in the vertex domain. (d) g600,500 in the graph
spectral domain. Note that λ500 = 5.53. These atoms are localized
in both the vertex and graph spectral domains.

vious two examples with τ = 5. In Figure 6, we show two different
atoms in both the vertex and graph spectral domains.

8. CONCLUSION AND FUTURE WORK

We defined generalized notions of translation and modulation
through multiplication with a graph Laplacian eigenvector in the
graph spectral and vertex domains, respectively. We leveraged
these generalized operators to design a windowed graph Fourier
transform, which enables vertex-frequency analysis for signals on
graphs. When the chosen window is localized around zero in the
graph spectral domain, we showed that the modulation operator is
close to a translation in the graph spectral domain. If we apply
this windowed graph Fourier transform to a signal with frequency
components that vary along a path graph, the resulting spectrogram
matches our intuition from classical discrete-time signal process-
ing. Yet, our construction is fully generalized and can be applied
to analyze signals on any undirected, connected, weighted graph.
The example in Figure 5 shows that the windowed graph Fourier
transform may be a valuable tool for extracting information from
signals on graphs, as structural properties of the data that are hidden
in the vertex domain may become obvious in the transform domain.

As ongoing work, we are i) studying ways to compute bounds on
the frame in order to reconstruct a signal from its windowed graph
Fourier coefficients via the frame algorithm (see, e.g., [3, Chapter
5.1.3]), ii) investigating computationally efficient methods to apply
the windowed graph Fourier transform and its adjoint without explic-
itly computing the graph Laplacian eigenvectors, and iii) designing
windows whose mathematical properties, in conjunction with struc-
tural properties of the underlying graph, can be formally linked to
properties of the transform coefficients.
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