
George Candea
School of Computer & Communication Sciences

Hints for Writing About Your Research

Hints for writing about your researchGeorge Candea

Good Writing

EPIC 11.05.2017

… so I wait for you like a lonely house
till you will see me again and live in me.
Till then my windows ache.

(Pablo Neruda)

The dopamine signaling in the nucleus
accumbens of my basal forebrain is lower
than normal due to your physical absence.

The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

The hit rate of the CPU cache drops by up
to 95% if programs consistently write to
the least-recently read memory address.

Lyrical writing Technical writing

Hints for writing about your researchGeorge Candea

The Writing Process

EPIC 11.05.2017

Perfection is finally attained not when there
is no longer anything to add, but when there
is no longer anything to take away.

(Antoine de Saint-Exupéry, “L’Avion”, Ch. III)

George Candea Hints for writing about your researchEPIC 11.05.2017

December 5, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

December 12, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

December 18, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

December 22, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

December 24, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

December 26, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

December 28, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

January 2, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

January 5, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

January 10, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Hints for writing about your researchEPIC 11.05.2017

 January 17, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

Hints for writing about your researchGeorge Candea

The Writing Process

EPIC 11.05.2017

Perfection is finally attained not when there
is no longer anything to add, but when there
is no longer anything to take away.

(Antoine de Saint-Exupéry, L’Avion, Ch. III)

Section title

Topic sentence + Paragraph body
Topic sentence + Paragraph body
…

Abstract

Abstract

Paper title

Recursive Structure

Section title
…

Conclusion

George Candea Hints for writing about your researchEPIC 11.05.2017

George Candea Hints for writing about your researchEPIC 11.05.2017

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Hints for writing about your researchEPIC 11.05.2017

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Hints for writing about your researchEPIC 11.05.2017

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Hints for writing about your researchEPIC 11.05.2017

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Hints for writing about your research

Recursive Structure

EPIC 11.05.2017

Paper title

Section title

Topic sentence + Paragraph body
Topic sentence + Paragraph body
…

Section title
…

Abstract

Conclusion

Abstract

George Candea Hints for writing about your research

Keep Opinions to Yourself

Statement =

Fact

Result

Opinion

formal proof

measurement

citations

EPIC 11.05.2017

George Candea Hints for writing about your research

Avoid Vagueness

EPIC 11.05.2017

The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

The hit rate of the CPU cache drops by
up to 95% if programs consistently write
to the least-recently read memory
address.• Employ logic

• Quantify
• Avoid passive voice
• Avoid anthropomorphism
• Avoid hyperbolae
• Use consistent terminology

Image courtesy of https://imgflip.com/i/p8blw

George Candea Hints for writing about your research

Fewer Words, More Examples

I would have written a shorter letter,
but I did not have the time.

(Blaise Pascal, Provincial Letters # XVI)

EPIC 11.05.2017

George Candea Hints for writing about your research

Clear Graphs

EPIC 11.05.2017

1 2 3 4 5 6

10

20

30

40

Time

B
ac

te
ria

Time from start of culture

George Candea Hints for writing about your research

Clear Graphs

EPIC 11.05.2017

1 2 3 4 5 6

10

20

30

40

N
r.

of
 b

ac
te

ria

Time from start of culture (hours)

George Candea Hints for writing about your research

Clear Graphs

EPIC 11.05.2017

N
r.

of
 B

ac
te

ria
 (t

ho
us

an
ds

)

1 2 3 4 5 6

10

20

30

40

Time from start of culture (hours)

George Candea Hints for writing about your research

Clear Graphs

EPIC 11.05.2017

N
r.

of
 B

ac
te

ria
 (t

ho
us

an
ds

)

1 2 3 4 5 6

Growth of Vibrio cholerae in 0.9% NaCl solution at 22 °C

10

20

30

40

Time from start of culture (hours)

George Candea Hints for writing about your research

Clear Graphs

EPIC 11.05.2017

N
r.

of
 B

ac
te

ria
 (t

ho
us

an
ds

)

1 2 3 4 5 6

Growth of Vibrio cholerae in 0.9% NaCl solution at 22 °C

10

20

30

40
22° C
18° C

George Candea Hints for writing about your research

Explain Your Data

EPIC 11.05.2017

 64 threads, 8 locks, 64 signatures, siglen 2

 0.1

 1

 10

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δin [microseconds]

δout=1,000 µsec

Java Baseline
Java Dimmunix

 0.1

 1

 10

 100

 1000

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δout [microseconds]

δout=1,000 µsec

δin=1 µsec

Java Baseline
Java Dimmunix

Figure 6: Variation of lock throughput as a function of
δin and δout for Java; the pthreads version is similar.

Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to
Dimmunix, because non-immunized programs deadlock
and stop running, whereas immunized ones continue run-
ning and doing useful work.
Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks in practice are limited to two threads [16], so
variation with signature size is not that interesting.
In addition to the matching overhead, as more and

more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more in order to be
deadlock-safe (i.e., there are more deadlocks to avoid)—
our overhead measurements include both effects.
We show in Figure 7 the performance overhead intro-

duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
is relatively constant across this range, which means that
searching through history is a negligible component of
Dimmunix overhead.
Breakdown of overhead: Having seen the impact of
number of threads, history size, and matching depth,
we profiled the overhead, to understand which parts of
Dimmunix contribute the most. For this, we selec-
tively disabled parts of Dimmunix and measured the lock

 7900

 8000

 8100

 8200

 8300

 8400

 8500

 2 4 8 16 32 64 128 256

Lo
ck

 O
pe

ra
tio

ns
 /

Se
co

nd

Number of signatures in history

64 threads, 8 locks, δin=1 µsec, δout=1 msec

pthreads Baseline
pthreads Dimmunix (match depth=4)
pthreads Dimmunix (match depth=8)

Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

throughput. First we measured the overhead introduced
by the base instrumentation, then we added the data
structure lookups and updates performed by request in
the avoidance code, then we ran full Dimmunix, includ-
ing avoidance.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512 1024

O
ve

rh
ea

d
[%

]

Number of threads

 64 sigs, siglen 2, 8 locks, δin=1 µsec, δout=1 msec

Instrumentation
Data Structure Updates

Avoidance

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8—the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.

7.3 False Positives
Any approach that tries to predict the future with the pur-
pose of avoiding bad outcomes suffers from false posi-
tives, i.e., wrongly predicting that the bad outcome will
occur. Dimmunix is no exception. False positives can
arise when signatures are matched too shallowly, or when
the lock order in a pattern depends on inputs, program
state, etc. Our microbenchmark does not have the latter
type of dependencies.

12

George Candea Hints for writing about your research

Explain Your Data

EPIC 11.05.2017

 64 threads, 8 locks, 64 signatures, siglen 2

 0.1

 1

 10

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δin [microseconds]

δout=1,000 µsec

Java Baseline
Java Dimmunix

 0.1

 1

 10

 100

 1000

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δout [microseconds]

δout=1,000 µsec

δin=1 µsec

Java Baseline
Java Dimmunix

Figure 6: Variation of lock throughput as a function of
δin and δout for Java; the pthreads version is similar.

Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to
Dimmunix, because non-immunized programs deadlock
and stop running, whereas immunized ones continue run-
ning and doing useful work.
Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks in practice are limited to two threads [16], so
variation with signature size is not that interesting.
In addition to the matching overhead, as more and

more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more in order to be
deadlock-safe (i.e., there are more deadlocks to avoid)—
our overhead measurements include both effects.
We show in Figure 7 the performance overhead intro-

duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
is relatively constant across this range, which means that
searching through history is a negligible component of
Dimmunix overhead.
Breakdown of overhead: Having seen the impact of
number of threads, history size, and matching depth,
we profiled the overhead, to understand which parts of
Dimmunix contribute the most. For this, we selec-
tively disabled parts of Dimmunix and measured the lock

 7900

 8000

 8100

 8200

 8300

 8400

 8500

 2 4 8 16 32 64 128 256

Lo
ck

 O
pe

ra
tio

ns
 /

Se
co

nd

Number of signatures in history

64 threads, 8 locks, δin=1 µsec, δout=1 msec

pthreads Baseline
pthreads Dimmunix (match depth=4)
pthreads Dimmunix (match depth=8)

Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

throughput. First we measured the overhead introduced
by the base instrumentation, then we added the data
structure lookups and updates performed by request in
the avoidance code, then we ran full Dimmunix, includ-
ing avoidance.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512 1024

O
ve

rh
ea

d
[%

]

Number of threads

 64 sigs, siglen 2, 8 locks, δin=1 µsec, δout=1 msec

Instrumentation
Data Structure Updates

Avoidance

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8—the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.

7.3 False Positives
Any approach that tries to predict the future with the pur-
pose of avoiding bad outcomes suffers from false posi-
tives, i.e., wrongly predicting that the bad outcome will
occur. Dimmunix is no exception. False positives can
arise when signatures are matched too shallowly, or when
the lock order in a pattern depends on inputs, program
state, etc. Our microbenchmark does not have the latter
type of dependencies.

12

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)
5. Related Work
6. Conclusion

Image courtesy of http://phdcomics.com/

EPIC 11.05.2017

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
• Problem Statement
• Solution Overview (1 para)
• Contributions (1 para)
• Roadmap (1 para)

2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)
5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)
5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)
5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)

• Questions to be answered
• Experimental setup
• Experiment 1, 2, …
• Summary

5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

George Candea Hints for writing about your researchEPIC 11.05.2017

2:32 V. Chipounov et al.

Fig. 9. Example of a SystemTAP probe that injects symbolic data into network packets.

5.5. Summary
In this section, we showed how S2E users can combine various S2E plugins to carry out
the desired analysis tasks and how S2E developers can write custom plugins using the
S2E developer API. An S2E user can combine path selection plugins to limit the mul-
tipath exploration to the modules of interest with different analysis plugins, such as
bug finders, performance profilers, and execution tracers. We explained how S2E turns
existing single-path analysis tools, such as Valgrind and Microsoft Driver Verifier, into
multipath analyzers without any modification. Finally, we showed how developers can
write modular plugins by taking the example of the Annotations plugin, which is a
central piece of tools like REV+ and DDT+.

6. EVALUATION
S2E’s main goal is to enable rapid prototyping of useful, deep system analysis tools.
In this vein, our evaluation of S2E aims to answer three key questions: Is S2E truly
a general platform for building diverse analysis tools (Section 6.1)? Does S2E perform
these analyses with reasonable performance (Section 6.2)? What are the measured
trade-offs involved in choosing different execution consistency models on both kernel-
mode and user-mode binaries (Section 6.3)? All reported results were obtained on a
48-core, 2.0 GHz AMD Opteron machine with 512 GB of RAM, unless otherwise noted.

6.1. Three Use Cases
We used S2E to build three vastly different tools: an automated tester for propri-
etary device drivers (Section 6.1.1), a reverse engineering tool for binary drivers (Sec-
tion 6.1.2), and a multipath in-vivo performance profiler (Section 6.1.3).

Table IV summarizes the productivity advantage we experienced by using S2E com-
pared to writing these tools from scratch. For these use cases, S2E engendered two or-
ders of magnitude improvement in both development time and resulting code volume.
This justifies our efforts to create general abstractions for multipath in-vivo analyses,
and to centralize them into one platform.

6.1.1. Automated Testing of Proprietary Device Drivers. We used S2E to build DDT+, a
tool for testing closed-source Windows device drivers. This is a reimplementation of
DDT [Kuznetsov et al. 2010], an ad-hoc combination of changes to QEMU and KLEE,
along with hand-written interface annotations: 35 KLOC added to QEMU and 7 KLOC
modified, 3 KLOC added to KLEE and 2 KLOC modified. By contrast, DDT+ has 720

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)

• Questions to be answered
• Experimental setup
• Experiment 1, 2, …
• Summary

5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

George Candea Hints for writing about your researchEPIC 11.05.2017

language for C programs [34]. The instrumentation en-
gine at the hive is based on LLVM [26]. We wrote a 500-
LOC plugin that converts RELAY reports to the format
required by our instrumentation engine.

The instrumentation engine is an LLVM static analysis
pass. It avoids instrumenting empty loop bodies that have
a data race on a variable in the loop condition (e.g., of
the form while(notDone){}). These loops occur often
in ad-hoc synchronization [46]. Not instrumenting such
loops avoids excessive overhead that results from run-
ning the instrumentation frequently. When such loops
involve a data race candidate, they are reported by the
hive directly to developers. We encountered this situa-
tion in two of the programs we evaluated, and both cases
were true data races (thus validating prior work that ad-
vocates against ad-hoc synchronization [46]), so this op-
timization did not effect RaceMob’s accuracy.

Whereas Fig. 2 indicates three possible results from
user sites (Race, NoRace, and Timeout), our prototype
also implements a fourth one (NotSeen), to indicate that
a user site has not witnessed the race it was expected
to monitor. Technically, NotSeen can be inferred by the
hive from the absence of any other results. However, for
efficiency purposes, we have a hook at the exit of main,
as well as in the signal handlers, that send a NotSeen
message to the hive whenever the program terminates
without having made progress on the validation task.

Our prototype can be obtained from the RaceMob
website (http://dslab.epfl.ch/proj/racemob).

5 Evaluation

In this section, we address the following questions about
RaceMob: Can it effectively detect true races in real
code (§5.1)? Is it efficient (§5.2)? How does it com-
pare to state-of-the-art data race detectors (§5.3) and
interleaving-based concurrency testing tools (§5.4)? Fi-
nally, how does RaceMob scale with the number of
threads (§5.5)?

We evaluated RaceMob using a mix of server, desk-
top and scientific software: Apache httpd is a Web server
that serves around 65% of the Web [17]—we used the
mpm-worker module of Apache to operate it in multi-
threaded server mode and detected races in this spe-
cific module. SQLite [42] is an embedded database
used in Firefox, iOS, Chrome, and Android, and has
100% branch coverage with developer’s tests. Mem-
cached [12] is a distributed memory-object caching sys-
tem, used by Internet services like Twitter, Flickr, and
YouTube. Knot [43] is a web server. Pbzip2 [14] is a
parallel implementation of the popular bzip2 file com-
pressor. Pfscan [11] is a parallel file scanning tool that
provides the combined functionality of find, xargs,

and fgrep in a parallel way. Aget is a parallel vari-
ant of wget. Fmm, Ocean, and Barnes are applications
from the SPLASH suite [41]. Fmm and Barnes simulate
interactions of bodies, and Ocean simulates ocean move-
ments.

Our evaluation results are obtained primarily using a
test environment simulating a crowdsourced setting, and
we also have a small scale, real deployment of RaceMob
on our laptops. For the experiments, we use a mix of
workloads derived from actual program runs, test suites,
and test cases devised by us and other researchers [48].
We configured the hive to assign a single dynamic vali-
dation task per user at a time. Altogether, we have exe-
cution information from 1,754 simulated user sites. Our
test bed consists of a 2.3 GHz 48-core AMD Opteron
6176 machine with 512 GB of RAM running Ubuntu
Linux 11.04 and a 2 GHz 8-core Intel Xeon E5405 ma-
chine with 20 GB of RAM running Ubuntu Linux 11.10.
The hive is deployed on the 8-core machine, and the sim-
ulated users on both machines. The real deployment uses
ThinkPad laptops with Intel 2620M processors and 8 GB
of RAM, running Ubuntu Linux 12.04.

We used C programs in our evaluation because RE-
LAY operates on CIL, which does not support C++
code. Pbzip2 is a C++ program, but we converted it
to C by replacing references to STL vector with an
array-based implementation. We also replaced calls to
new/delete with malloc/free.

5.1 Effectiveness of Data Race Detection

To investigate whether RaceMob is an effective way to
detect data races, we look at whether RaceMob can de-
tect true data races, and whether its false positive and
false negative rates are sufficiently low.

RaceMob’s data race detection results are centralized
in Table 1. RaceMob detected a total of 106 data races in
ten programs. Four races in Pbzip2 caused the program
to crash, three races in SQLite caused the program to
hang, and one race in Aget caused a data corruption (that
we confirmed manually). The other races did not lead to
any observable failure. We manually confirmed that the
“True Race” verdicts are correct, and that RaceMob has
no false positives in our experiments.

The “Likely FP” row represents the races that Race-
Mob identified as likely false positives: (1) Not alias-

ing are reports with accesses that do not alias to the
same memory location at runtime; (2) Context are re-
ports whose accesses are only made by a single thread at
runtime; (3) Synchronization are reports for which, the
accesses are synchronized, an artifact that the static de-
tector missed. The first two sources of likely false posi-
tives (53% of all static reports) are identified using DCI,
whereas the last source (24% of all static reports) is iden-

language for C programs [34]. The instrumentation en-
gine at the hive is based on LLVM [26]. We wrote a 500-
LOC plugin that converts RELAY reports to the format
required by our instrumentation engine.

The instrumentation engine is an LLVM static analysis
pass. It avoids instrumenting empty loop bodies that have
a data race on a variable in the loop condition (e.g., of
the form while(notDone){}). These loops occur often
in ad-hoc synchronization [46]. Not instrumenting such
loops avoids excessive overhead that results from run-
ning the instrumentation frequently. When such loops
involve a data race candidate, they are reported by the
hive directly to developers. We encountered this situa-
tion in two of the programs we evaluated, and both cases
were true data races (thus validating prior work that ad-
vocates against ad-hoc synchronization [46]), so this op-
timization did not effect RaceMob’s accuracy.

Whereas Fig. 2 indicates three possible results from
user sites (Race, NoRace, and Timeout), our prototype
also implements a fourth one (NotSeen), to indicate that
a user site has not witnessed the race it was expected
to monitor. Technically, NotSeen can be inferred by the
hive from the absence of any other results. However, for
efficiency purposes, we have a hook at the exit of main,
as well as in the signal handlers, that send a NotSeen
message to the hive whenever the program terminates
without having made progress on the validation task.

Our prototype can be obtained from the RaceMob
website (http://dslab.epfl.ch/proj/racemob).

5 Evaluation

In this section, we address the following questions about
RaceMob: Can it effectively detect true races in real
code (§5.1)? Is it efficient (§5.2)? How does it com-
pare to state-of-the-art data race detectors (§5.3) and
interleaving-based concurrency testing tools (§5.4)? Fi-
nally, how does RaceMob scale with the number of
threads (§5.5)?

We evaluated RaceMob using a mix of server, desk-
top and scientific software: Apache httpd is a Web server
that serves around 65% of the Web [17]—we used the
mpm-worker module of Apache to operate it in multi-
threaded server mode and detected races in this spe-
cific module. SQLite [42] is an embedded database
used in Firefox, iOS, Chrome, and Android, and has
100% branch coverage with developer’s tests. Mem-
cached [12] is a distributed memory-object caching sys-
tem, used by Internet services like Twitter, Flickr, and
YouTube. Knot [43] is a web server. Pbzip2 [14] is a
parallel implementation of the popular bzip2 file com-
pressor. Pfscan [11] is a parallel file scanning tool that
provides the combined functionality of find, xargs,

and fgrep in a parallel way. Aget is a parallel vari-
ant of wget. Fmm, Ocean, and Barnes are applications
from the SPLASH suite [41]. Fmm and Barnes simulate
interactions of bodies, and Ocean simulates ocean move-
ments.

Our evaluation results are obtained primarily using a
test environment simulating a crowdsourced setting, and
we also have a small scale, real deployment of RaceMob
on our laptops. For the experiments, we use a mix of
workloads derived from actual program runs, test suites,
and test cases devised by us and other researchers [48].
We configured the hive to assign a single dynamic vali-
dation task per user at a time. Altogether, we have exe-
cution information from 1,754 simulated user sites. Our
test bed consists of a 2.3 GHz 48-core AMD Opteron
6176 machine with 512 GB of RAM running Ubuntu
Linux 11.04 and a 2 GHz 8-core Intel Xeon E5405 ma-
chine with 20 GB of RAM running Ubuntu Linux 11.10.
The hive is deployed on the 8-core machine, and the sim-
ulated users on both machines. The real deployment uses
ThinkPad laptops with Intel 2620M processors and 8 GB
of RAM, running Ubuntu Linux 12.04.

We used C programs in our evaluation because RE-
LAY operates on CIL, which does not support C++
code. Pbzip2 is a C++ program, but we converted it
to C by replacing references to STL vector with an
array-based implementation. We also replaced calls to
new/delete with malloc/free.

5.1 Effectiveness of Data Race Detection

To investigate whether RaceMob is an effective way to
detect data races, we look at whether RaceMob can de-
tect true data races, and whether its false positive and
false negative rates are sufficiently low.

RaceMob’s data race detection results are centralized
in Table 1. RaceMob detected a total of 106 data races in
ten programs. Four races in Pbzip2 caused the program
to crash, three races in SQLite caused the program to
hang, and one race in Aget caused a data corruption (that
we confirmed manually). The other races did not lead to
any observable failure. We manually confirmed that the
“True Race” verdicts are correct, and that RaceMob has
no false positives in our experiments.

The “Likely FP” row represents the races that Race-
Mob identified as likely false positives: (1) Not alias-

ing are reports with accesses that do not alias to the
same memory location at runtime; (2) Context are re-
ports whose accesses are only made by a single thread at
runtime; (3) Synchronization are reports for which, the
accesses are synchronized, an artifact that the static de-
tector missed. The first two sources of likely false posi-
tives (53% of all static reports) are identified using DCI,
whereas the last source (24% of all static reports) is iden-

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)

• Questions to be answered
• Experimental setup
• Experiment 1, 2, …
• Summary

5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)
5. Related Work
6. Conclusion

Discussion (a.k.a. Limitations)

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

There is a spectrum of approaches for avoiding deadlocks, from purely static techniques to purely dynamic ones. Dimmunix targets general-purpose
systems, not real-time or safety-critical ones, so we describe this spectrum of solutions keeping our target domain in mind.

Language-level approaches [3,15] use powerful type systems to simplify the writing of lock-based concurrent programs and thus avoid
synchronization problems altogether. This avoids runtime performance overhead and prevents deadlocks outright, but requires programmers to be
disciplined, adopt new languages and constructs, or annotate their code. While this is the ideal way to avoid deadlocks, programmers' human limits
have motivated a number of complementary approaches.

Transactional memory (TM) [8] holds promise for simplifying the way program concurrency is expressed. TM converts the locking order problem
into a thread scheduling problem, thus moving the burden from programmers to the runtime, which we consider a good tradeoff. There are still
challenges with TM semantics, such as what happens when programmers use large atomic blocks, or when TM code calls into non-TM code or
performs I/O. Performance is still an issue, and [14] shows that many modern TM implementations use lock-based techniques to improve
performance and are subject to deadlock. Thus, we believe TM is powerful, but it cannot address all concurrency problems in real systems.

Time-triggered systems [13] and statically scheduled real-time systems [22] perform task synchronization before the program runs, by deciding
schedules a priori based on task parameters like mutual-exclusion constraints and request processing time. When such parameters are known a
priori, the approach guarantees safety and liveness; however, general-purpose systems rarely have such information ahead of time. Event-triggered
real-time systems are more flexible and incorporate a priori constraints in the form of thread priorities; protocols like priority ceiling [20], used to
prevent priority inversion, conveniently prevent deadlocks too. In general-purpose systems, though, even merely assigning priorities to the various
threads is difficult, as the threads often serve a variety of purposes over their lifetime.

Static analysis tools look for deadlocks at compile time and help programmers remove them. ESC [7] uses a theorem prover and relies on
annotations to provide knowledge to the analysis; Houdini [6] helps generate some of these annotations automatically. [5] and [21] use flow-
sensitive analyses to find deadlocks. In Java JDK 1.4, the tool described in [21] reported 100,000 potential deadlocks and the authors used unsound
filtering to trim this result set down to 70, which were then manually reduced to 7 actual deadlock bugs. Static analyses run fast, avoid runtime
overheads, and can help prevent deadlocks, but when they generate false positives, it is ultimately the programmers who have to winnow the
results. Developers under pressure to ship production code fast are often reticent to take on this burden.

Another approach to finding deadlocks is to use model checkers, which systematically explore all possible states of the program; in the case of
concurrent programs, this includes all thread interleavings. Model checkers achieve high coverage and are sound, but suffer from poor scalability
due to the ``state-space explosion'' problem. Java PathFinder, one of the most successful model checkers, is restricted to applications up to ~10
KLOC [10] and does not support native I/O libraries. Real-world applications are large (e.g., MySQL has >1 MLOC) and perform frequent I/O,
which restricts the use of model checking in the development of general-purpose systems.

[..]

Deadlock immunity explores a new design point on this spectrum of deadlock avoidance solutions, combining static elements (e.g., control flow
signatures) with dynamic approaches (e.g., runtime steering of thread schedules). This combination makes Dimmunix embody new tradeoffs, which
we found to be advantageous when avoiding deadlocks in large, real, general-purpose systems.

George Candea Hints for writing about your researchEPIC 11.05.2017

There is a spectrum of approaches for avoiding deadlocks, from purely static techniques to purely dynamic ones. Dimmunix targets general-purpose
systems, not real-time or safety-critical ones, so we describe this spectrum of solutions keeping our target domain in mind.

Language-level approaches [3,15] use powerful type systems to simplify the writing of lock-based concurrent programs and thus avoid
synchronization problems altogether. This avoids runtime performance overhead and prevents deadlocks outright, but requires programmers to be
disciplined, adopt new languages and constructs, or annotate their code. While this is the ideal way to avoid deadlocks, programmers' human limits
have motivated a number of complementary approaches.

Transactional memory (TM) [8] holds promise for simplifying the way program concurrency is expressed. TM converts the locking order problem
into a thread scheduling problem, thus moving the burden from programmers to the runtime, which we consider a good tradeoff. There are still
challenges with TM semantics, such as what happens when programmers use large atomic blocks, or when TM code calls into non-TM code or
performs I/O. Performance is still an issue, and [14] shows that many modern TM implementations use lock-based techniques to improve
performance and are subject to deadlock. Thus, we believe TM is powerful, but it cannot address all concurrency problems in real systems.

Time-triggered systems [13] and statically scheduled real-time systems [22] perform task synchronization before the program runs, by deciding
schedules a priori based on task parameters like mutual-exclusion constraints and request processing time. When such parameters are known a
priori, the approach guarantees safety and liveness; however, general-purpose systems rarely have such information ahead of time. Event-triggered
real-time systems are more flexible and incorporate a priori constraints in the form of thread priorities; protocols like priority ceiling [20], used to
prevent priority inversion, conveniently prevent deadlocks too. In general-purpose systems, though, even merely assigning priorities to the various
threads is difficult, as the threads often serve a variety of purposes over their lifetime.

Static analysis tools look for deadlocks at compile time and help programmers remove them. ESC [7] uses a theorem prover and relies on
annotations to provide knowledge to the analysis; Houdini [6] helps generate some of these annotations automatically. [5] and [21] use flow-
sensitive analyses to find deadlocks. In Java JDK 1.4, the tool described in [21] reported 100,000 potential deadlocks and the authors used unsound
filtering to trim this result set down to 70, which were then manually reduced to 7 actual deadlock bugs. Static analyses run fast, avoid runtime
overheads, and can help prevent deadlocks, but when they generate false positives, it is ultimately the programmers who have to winnow the
results. Developers under pressure to ship production code fast are often reticent to take on this burden.

Another approach to finding deadlocks is to use model checkers, which systematically explore all possible states of the program; in the case of
concurrent programs, this includes all thread interleavings. Model checkers achieve high coverage and are sound, but suffer from poor scalability
due to the ``state-space explosion'' problem. Java PathFinder, one of the most successful model checkers, is restricted to applications up to ~10
KLOC [10] and does not support native I/O libraries. Real-world applications are large (e.g., MySQL has >1 MLOC) and perform frequent I/O,
which restricts the use of model checking in the development of general-purpose systems.

[..]

Deadlock immunity explores a new design point on this spectrum of deadlock avoidance solutions, combining static elements (e.g., control flow
signatures) with dynamic approaches (e.g., runtime steering of thread schedules). This combination makes Dimmunix embody new tradeoffs, which
we found to be advantageous when avoiding deadlocks in large, real, general-purpose systems.

George Candea Hints for writing about your researchEPIC 11.05.2017

Hints for writing about your researchGeorge Candea

(Systems) Paper Structure

1. Introduction (a.k.a. Problem Stmt)
2. Design (a.k.a. Solution)
3. Prototype (a.k.a. Implementation)
4. Evaluation (a.k.a. Proof)
5. Related Work
6. Conclusion

EPIC 11.05.2017

Image courtesy of http://phdcomics.com/

Hints for writing about your researchGeorge Candea

Conclusion

• Technical writing ≠ Lyrical writing
• Write iteratively (the way Picasso drew)
• Clean, recursive structure to ease reader’s load
• Avoid opinions, vagueness
• Reduce # of words, increase # of examples
• Clear graphs with explained data
• Example structure for systems papers

EPIC 11.05.2017

