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... S0 | wait for you like a lonely house
till you will see me again and live in me.
Till then my windows ache.

(Pablo Neruda)

The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

Lym’ca[ wriu’ng

The dopamine signaling in the nucleus
accumbens of my basal forebrain is lower
than normal due to your physical absence.

The hit rate of the CPU cache drops by up
to 95% if programs consistently write to
the least-recently read memory address.
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The Writing Process

Perfection is finally attained not when there
IS no longer anything to add, but when there
IS no longer anything to take away.

(Antoine de Saint-Exupéry, “L’Avion”, Ch. )
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Abstract

Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).

Debugging deadlocks is hard— merely seeing a dead-
lock happen does not mean the bug is easy to fix.

Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].

Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software

systems continue getting larger and more complex. On

consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock. When

threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

the other hand, owing to the advent ol multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-

Avoiding the introduction of deadlock bugs during de-
velopment is challenging. Large software systems are

devetoped by multipie teams totating umdreds 1o tou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.

Even deadlock-free code 1s not guaranteed to execute
free of deadlocks once deployed in the field. Depen-

dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

currences of similar deadlocks. We describe Dimmunix,

—a tool Tor developing deadlock immunity with noO assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.

In the rest of the paper we survey related work (§2),
give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).



Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads.

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock.

Avoiding the introduction of deadlock bugs during de-
velopment 1s challenging.

Even deadlock-free code is not guaranteed to execute
free of deadlocks once deployed in the field.

Debugging deadlocks i1s hard—merely seeing a dead-
lock happen does not mean the bug is easy to fix.

We expect the deadlock challenge to persist and likely
become worse over time

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks.
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enterprise Java beans).

Debugging deadlocks 1s hard —merely seeing a dead-
lock happen does not mean the bug 1s easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software
systems continue getting-larger and more complex..-On



bugs or, instead oI nxing the underiymg bug, merely de-
crease the probability of occurrence [16].

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but 1ssues surrounding I/O and long-running operations
make 1t difficult to provide atomicity transparently.

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
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The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

The hit rate of the CPU cache drops by
up to 95% if programs consistently write
to the least-recently read memory
address.
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| would have written a shorter letter,
but | did not have the time.

(Blaise Pascal, Provincial Letters # XVI)
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Growth of Vibrio cholerae in 0.9% NaCl solution at 22 °C

40
30
20

10

Nr. of Bacteria (thousands)

1 2 3 4 5 6
Time from start of culture (hours)



Nr. of Bacteria (thousands)

40

30

20

10

Growth of Vibrio cholerae in 0.9% NaCl solution

— 22° C
— 18°C

1 2 3 4 5
Time from start of culture (hours)



EXplain Your Data

64 sigs, siglen 2, 8 locks, 6,,=1 usec, d,,=1 msec

30 | | | | . | | | |
Instrumentation ——

25 Data Structure Updates s -
20 Avoidance 1

15 -
10 —
tall -
0

64 128 256 512 1024
Number of threads

Overhead [%)]

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8
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Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8 —the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.
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6. EVALUATION

S?E’s main goal is to enable rapid prototyping of useful, deep system analysis tools.
In this vein, our evaluation of S?E aims to answer three key questions: Is S?E truly
a general platform for building diverse analysis tools (Section 6.1)? Does S?E perform
these analyses with reasonable performance (Section 6.2)? What are the measured
trade-offs involved in choosing different execution consistency models on both kernel-
mode and user-mode binaries (Section 6.3)?
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We evaluated RaceMob using a mix of server, desk-
top and scientific software: Apache httpd is a Web server
that serves around 65% of the Web [17]—we used the
mpm-worker module of Apache to operate it in multi-
threaded server mode and detected races in this spe-
cific module. SQLite [42] 1s an embedded database
used in Firefox, 10S, Chrome, and Android, and has
100% branch coverage with developer’s tests. Mem-
cached [12] 1s a distributed memory-object caching sys-
tem, used by Internet services like Twitter, Flickr, and
YouTube. Knot [43] 1s a web server. Pbzip2 [14] is a
parallel implementation of the popular bzip2 file com-
pressor. Pfscan [11] 1s a parallel file scanning tool that
provides the combined functionality of find, xargs,

and fgrep in a parallel way. Aget 1s a parallel vari-
ant of wget. Fmm, Ocean, and Barnes are applications
from the SPLASH suite [41]. Fmm and Barnes simulate
interactions of bodies, and Ocean simulates ocean move-
ments.

Our evaluation results are obtained primarily using a
test environment simulating a crowdsourced setting, and
we also have a small scale, real deployment of RaceMob
on our laptops. For the experiments, we use a mix of
workloads derived from actual program runs, test suites,
and test cases devised by us and other researchers [48].
We configured the hive to assign a single dynamic vali-
dation task per user at a time. Altogether, we have exe-
cution information from 1,754 simulated user sites. Our
test bed consists of a 2.3 GHz 48-core AMD Opteron
6176 machine with 512 GB of RAM running Ubuntu
Linux 11.04 and a 2 GHz 8-core Intel Xeon E5405 ma-
chine with 20 GB of RAM running Ubuntu Linux 11.10.
The hive 1s deployed on the 8-core machine, and the sim-
ulated users on both machines. The real deployment uses
ThinkPad laptops with Intel 2620M processors and 8 GB
of RAM, running Ubuntu Linux 12.04.

We used C programs in our evaluation because RE-
LAY operates on CIL, which does not support C++
code. Pbzip2 is a C++ program, but we converted it
to C by replacing references to STL vector with an
array-based implementation. We also replaced calls to
new/delete withmalloc/free.
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There is a spectrum of approaches for avoiding deadlocks, from purely static techniques to purely dynamic ones. Dimmunix targets general-purpose
systems, not real-time or safety-critical ones, so we describe this spectrum of solutions keeping our target domain in mind.

Language-level approaches [3,15] use powerful type systems to simplify the writing of lock-based concurrent programs and thus avoid
synchronization problems altogether. This avoids runtime performance overhead and prevents deadlocks outright, but requires programmers to be
disciplined, adopt new languages and constructs, or annotate their code. While this is the ideal way to avoid deadlocks, programmers' human limits
have motivated a number of complementary approaches.

Transactional memory (TM) [8] holds promise for simplifying the way program concurrency is expressed. TM converts the locking order problem
into a thread scheduling problem, thus moving the burden from programmers to the runtime, which we consider a good tradeoff. There are still
challenges with TM semantics, such as what happens when programmers use large atomic blocks, or when TM code calls into non-TM code or
performs I/O. Performance is still an issue, and [14] shows that many modern TM implementations use lock-based techniques to improve
performance and are subject to deadlock. Thus, we believe TM is powerful, but it cannot address all concurrency problems in real systems.

Time-triggered systems [13] and statically scheduled real-time systems [22] perform task synchronization before the program runs, by deciding
schedules a priori based on task parameters like mutual-exclusion constraints and request processing time. When such parameters are known a
priori, the approach guarantees safety and liveness; however, general-purpose systems rarely have such information ahead of time. Event-triggered
real-time systems are more flexible and incorporate a priori constraints in the form of thread priorities; protocols like priority ceiling [20], used to
prevent priority inversion, conveniently prevent deadlocks too. In general-purpose systems, though, even merely assigning priorities to the various
threads is difficult, as the threads often serve a variety of purposes over their lifetime.

Static analysis tools look for deadlocks at compile time and help programmers remove them. ESC [/] uses a theorem prover and relies on
annotations to provide knowledge to the analysis; Houdini [6] helps generate some of these annotations automatically. [S] and [21] use flow-
sensitive analyses to find deadlocks. In Java JDK 1.4, the tool described in [21] reported 100,000 potential deadlocks and the authors used unsound
filtering to trim this result set down to 70, which were then manually reduced to 7 actual deadlock bugs. Static analyses run fast, avoid runtime
overheads, and can help prevent deadlocks, but when they generate false positives, it is ultimately the programmers who have to winnow the
results. Developers under pressure to ship production code fast are often reticent to take on this burden.

Another approach to finding deadlocks is to use model checkers, which systematically explore all possible states of the program; in the case of
concurrent programs, this includes all thread interleavings. Model checkers achieve high coverage and are sound, but suffer from poor scalability
due to the " state-space explosion" problem. Java PathFinder, one of the most successful model checkers, is restricted to applications up to ~10
KLOC [10] and does not support native I/O libraries. Real-world applications are large (e.g., MySQL has >1 MLOC) and perform frequent 1/O,
which restricts the use of model checking in the development of general-purpose systems.

[.]

Deadlock immunity explores a new design point on this spectrum of deadlock avoidance solutions, combining static elements (e.g., control flow
signatures) with dynamic approaches (e.g., runtime steering of thread schedules). This combination makes Dimmunix embody new tradeoffs, which
we found to be advantageous when avoiding deadlocks in large, real, general-purpose systems.
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