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We study the conditions under which a generic supergravitgiehinvolving chiral and vector multiplets can
admit vacua with spontaneously broken supersymmetry ailidtie cosmological constant. We find that the
existence of such viable vacua implies some constraingdvimg the curvature tensor of the scalar geometry
and the charge and mass matrices of the vector fields, andhalsthe vector of” and D auxiliary fields
defining the Goldstino direction is constrained to lie withi certain domain. We illustrate the relevance of
these results through some examples and also discuss thesaitigms of our general results on the dynamics
of moduli fields in string models. This contribution is based[1, 2, 3].
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1 Introduction

Recently, substantial progress has been achieved in trehagfanon-supersymmetric Minkowski/dS vacua
in the context of string/M-theory compactifications. Thiassmainly related to the understanding of the
superpotentials generated by background fluxes [4] and hypeoturbative effects like gaugino conden-
sation [5], which generate a potential for the moduli fieldsning from the compactification and have
suggested new interesting possibilities for model buddiike in particular those proposed in refs. [6, 7].
From a phenomenological point of view, this type of modelsthwowever posses some characteristics
in order to be viable: supersymmetry must be broken, the otmgyital constant should be tiny, and all
the moduli fields should be stabilized. In the low energydiie theory all these crucial features are con-
trolled by a single quantity, the four-dimensional scalatemtial, which gives information on the dynamics
of the moduli fields, on how supersymmetry is broken and orvéthee of the cosmological constant. The
characterization of the conditions under which a supersgtryvbreaking stationary point of the scalar
potential satisfies simultaneously the flatness conditraniéhing of the cosmological constant) and the
stability condition (the stationary point is indeed a minim) is therefore very relevant in the search of
phenomenologically viable string models. In this note weaw the techniques presented in [1, 2, 3] to
study the possibility of getting this type of vacua in the &t of general supergravity theories in which
both chiral and vector multiplets participate to supersyetrgnbreaking.

2 Viable supersymmetry breaking vacua

The goal of this section is to find conditions for the exiseeotnon-supersymmetric extrema of the scalar
potential of general supergravity theories fulfilling twasic properties: i) they are locally stable and ii)
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2 M. Gomez-Reino and C.A. Scrucca: Constraints from F anddy bteaking

they lead to a negligible cosmological constant. We wilttfatsidy this issue for theories with only chiral
multiplets and then when also vector multiplets are present

2.1 Constraints for chiral theories

The Lagrangian of the most general supergravity theory withiral superfields is entirely defined by a
single arbitrary real functiot’ depending on the corresponding chiral superfididand their conjugates
®;, as well as on its derivatives [8]. The functiGhcan be written in terms of a real Kahler potential
and a holomorphic superpotentldl in the following way:

G(®i, ®;) = K(Pi, @) + log W (®;) + log W (®;) . (1)

The quantitiess andWW are however defined only up to Kahler transformations gasi — K + f + f
andW — e~ /W, f being an arbitrary holomorphic function of the superfieldsich leave the function
G invariant. The scalar components of the chiral multiplptsan:-dimensional Kahler manifold whose
metric is given byG';;, which can be used to lower and raise indices.

The 4D scalar potential of this theory takes the followingsle form:

V =€ (G"’Gk - 3) . 2

The auxiliary fields of the chiral multiplets are fixed by thadrangian through the equations of motion,
and are given by, = — ¢%/2 G; wheree©/? = ms 7 IS the mass of the gravitino. Whenever# 0 at the
vacuum, supersymmetry is spontaneously broken and thetidinegiven by the7;’s defines the direction
of the Goldstino eaten by the gravitino in the process of symemetry breaking.

In order to find local non-supersymmetric minima of the pt#rf2) with small non-negative cosmo-
logical constant, one should proceed as follows: First isethe condition that the cosmological constant
is negligible and fix = 0. This flatness condition implies that:

G*GL =3. (3)
Then look for stationary points of the potential where thinflas condition is satisfied. This implies:
Gi+G"VGr =0, (4)

where byV,;G\, = Gy, — I'}}, G,, we denote the covariant derivative with respect to the &@imetric.
Finally, make sure that the matrix of second derivative$efgotential,

m2  m?2.
m2< ; ;%>, ®

is positive definite. This matrix has two differentdimensional blocksmfj = V;V;V and mfj =
V;V;V, and after a straightforward computation these are fouihe tgiven by the following expressions:

m2 = G (Gij+ VG V,GF — RimGl’Gq) , o
6
1
mfj = ¢C (ViGj + VjGi + §Gk{vi, Vj}Gk) ,
whereR;;,; denotes the Riemann tensor with respect to the Kahler en€fiie conditions under which
this 2n-dimensional matrix (5) is positive definite are complichte work out in full generality, the only
way being the study of the behaviour of the eigenvalues. Nevertheless a necessary condition for this
matrix to be positive definite can be encoded in the condttiahthe quadratic formzszizj is positive for

1 We will use the standard notation in which subindi¢ggmean derivatives with respectd, ®7 and Planck unitsM p = 1.
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any choice of non-null complex vectet. Our strategy will be then to look for a special vectémwhich
leads to a simple constraint.

In this case there is only one special direction in field spéuat is the direction given by’ = G".
Indeed projecting in that direction we find the following gil@ expression:

miG G =6 — Rizpg G'GIGPG )

This quantity must be positive if we want the matrix (5) to besitive definite?. Using the rescaled
variablesf? = —\/%Gi the conditions for the existence of non-supersymmetrionfi@mima can then be
written as:

Gi jfifj =1 )
- 2
Rispq [P0 < 5.
The first condition, the flatness condition, fixes the amofisipersymmetry breaking whereas the second

condition, the stability condition, requires the existend directions with Kahler curvature less tha/(8
and constraints the direction of supersymmetry breakirmgetsufficiently aligned with it.

(8)

2.2 Constraints for gauge invariant theories

It can happen that the supergravity theory witithiral multiplets®’ we just described has a group of
some numbern of global symmetries, compatibly with supersymmetry. Iis thubsection we consider
the possibility of gauging such isometries with the introtilon of vector multiplets. The corresponding
supergravity theory will then include in addition to thehiral multiplets®?, m vector multipletsi @,

The two-derivative Lagrangian is specified in this case bgahKahler functiorG(®*, &%, V), deter-
mining in particular the scalar geometry, holomorphic Killing vectorsX: (®*), generating the isome-
tries that are gauged, and anby m matrix of holomorphic gauge kinetic functior,;(®*), defining
the gauge couplingsin this case the minimal coupling between chiral and veetolitiplets turn ordinary
derivatives into covariant derivatives, and induces a nemtrioution to the scalar potential coming from
the vector auxiliary fieldsD®, in addition to the standard one coming from the chiral aailfields F*.
The 4D scalar potential takes the form:

. 1
V =eC (g” GGy — 3) + §habDan . 9)
The auxiliary fields are fixed from the Lagrangian throughehfaations of motion to be:
E = _m3/2 Gl ) (10)
Dy,=-G,=iX.G; =i X! Gy, (11)

where to get the relations in (11) one should also use gawgeamce of the action.

Now in order to find local non-supersymmetric minima of theéegodial (9) with small non-negative
cosmological constant, we will proceed as in the previolissction. First we will impose the condition
that the cosmological constant is negligible andifix= 0. This flatness condition implies that:

: 1
—3+G'Gi + 5 e “DD, =0. (12)

2 Actually, as emphasized in [9], the Goldstino multiplet wahreceive any supersymmetric mass contribution fidmsince
in the limit of rigid supersymmetry its fermionic componentist be massless. This means that, in order to study metigtat
is enough to study the projection of the diagonal blmf{7 of the mass matrix along the Goldstino directi6fi, as the rest of the
projections can be given a mass with the help of the superpalte

3 The gauge kinetic functiott/,;, must have an appropriate behavior under gauge transfamsatin such a way as to cancel
possible gauge anomali€g, ;.. Actually, the parth,;, = Re H,; defines a metric for the gauge fields and must be gauge intarian
On the other haniim H,; must have a variation that matches the coefficier®gf.., namelyX? hy.; = % Qabe-
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4 M. Gomez-Reino and C.A. Scrucca: Constraints from F anddy bteaking

The stationarity conditions correspond now to the requéeithatV;V = 0, and they are given by:

E Gi)Da n % habiDan} —0. (13)

Gi+G*V,Gy + e~ C [Da (vi -3

The2n-dimensional mass matrix (5) for small fluctuations of thalacfields around the vacuum has as
before two different:;-dimensional blocks, which can be computedn% =V;V;V andmfj =V;V;V.
Using the flatness and stationarity conditions, one findsr afstraightforward computation [10, 11]:

1

m¥ = ¢%[giy — RipaG'G" + ViGrV,G*| — 5 (97— GiG3) D*Du = 2D°G (V3D (14)

+(Gehasy) + W hacihoas) D*D¥ = 2 D*h*hyy (V) Do + W™V DyV;Dy + D*ViV; Do

1
m¥ = e€(2VGy) + GV V5 Gi| = 5(VG)) = GiG; ) DDa+ b ViDaV Dy (15)

J

—2D"G(;V jyDa — 2 D*Whey, iV ) Dy + (G(ihabj) + 7 hggihogy — %hubij) DD

We want to analyze now the restrictions imposed by the reqent that the physical squared mass
of the scalar fields are all positive. In general the theospldiys a spontaneous breakdown of both su-
persymmetry and gauge symmetries, so in the study of thdistalf the vacuum it is necessary to take
appropriately into account the spontaneous breaking ofgaymmetries. In that process of the 2n
scalars, the would-be Goldstone bosons, are absorbed batiye fields and get a positive mass, so we do
not need to take them into account for the analysis of thelgyaliNevertheless the would-be Goldstone
modes correspond to flat directions of the unphysical magsxnand get their physical mass through
their kinetic mixing with the gauge bosons. This means tlaitjyity of the physical mass matrix implies
semi-positivity of the unphysical mass matrix in (14), (18)e can use then the same strategy as before
but changing the strictly positive condition to a semi-igsione.

In this case there exist two types of special complex dioestt’ one could look at. The first is the
directionG?, which is associated with the Goldstino direction in thesp#ze of chiral multiplet fermions.
Projecting into this direction one finds, after a long buaisthtforward computation:

m2GGT = O [6 — Rispa GiGJ’GPGﬂ + [—2 DDy + hheihva; GiGJ’D“Db} (16)
3 1 21 . ,
+e G [Mng“Db+ = Qune D" DD~ (D“Da) + Zha,}hcdiD“DbD‘Dd} ,
whereQup. = —2i X hye;. The conditionm?; G'G7 > 0 is then the generalization of the condition in (7)
for theories involving only chiral multiplets. In terms dfe rescaled variables:

1 F 1 1 D,

fi

:%m3/2 a EG“ da:%msm’
the flatness and stability conditions take then the follgaform:
fifitdid, =1,
Rigpq P P17 < 2 2 (M2, /3 = 2t )d*d 21 D shy g "

-3 3
i > 3 aoc
- (2 havhea — hy, bhcdi) dedbded® + 3 Qabe
msz/2

17)

(18)
d*dbde .

Again we have that the flathess condition fixes the amount péymmetry breaking whereas the
stability condition constrains its direction. One couldatonsider the directionk?, which are instead
associated with the Goldstone directions in the space ddilanultiplet scalars. Nevertheless the constraint
m7; X, X] > 0 turns out to be more complicated and no useful condition seeramerge from it.
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3 Analysis of the constraints

The analysis of the flatness and stability conditions in thgecwhere both chiral and vector multiplets
participate to supersymmetry breaking presents an additmmplication with respect to the case where
only chiral multiplets are present, due to the fact that tnelery fields of the chiral and vector multiplets
are not independent of each other. The rescaled auxiliddsfje andd, are actually related in several
ways. One first relation (consequence of gauge invariarazebe read from eq. (11) and is given by:

__iX¢
\/§m3/2
This relation is satisfied as a functional relation valid g point of the scalar field space. It shows that

thed, are actually linear combinations of tife Using now the inequalitya’d;| < v/a’a;1/b7b; one can
derive a simple bound on the sizes that#hecan have relative to thg:

d| < £ Moo /i (20)

- 2m3/2

da

ft. (29)

There is also a second relation betwggmandd,, that is instead valid only at the stationary points of the
potential. It arises by considering a suitable linear caraton of the stationarity conditions along the
directionX¢, in other words, by imposing:V,;V = 0. This relation reads [12, 13] (see also [14]):

2
IV Xy fif - \/§m3/2 (3~ 1) du — e  Quucd’d = 0. (21)
3 \/6 UEYD)

These relations show that whenever fhauxiliary fields vanish also thé&, auxiliary fields should vanish.
Therefore we can say that tligs represent the basic qualitative seed for supersymmetigking whereas
thed,’s provide additional quantitative effects. Along this sexa we will address the problem of working
out more concretely the implications of these constraiivisorder to do so we will concentrate on the
case in which the gauge kinetic function is constant andatiag r., = g, 2das. In this case we can
rescale the vector fields in such a way as to include a fagtdor each vector index. In this way, no
explicit dependence og, is left in the formulas and the metric becomes jugt Using this the flathess
and stability conditions take the following simple form:

{fifﬂrzadil,

o 2 4 22
RiqufzfjfpfqﬁnggZa(?mi*1)d3*22a,bdid§, (e2)

where we have defined the quantity, = M,/(2m3,,) measuring the hierarchies between scales. De-
notingv!, = v/2X! /M, andT, ;; = i VX, ;/ M, the relations betweefi’ andd” read:

do =imgvlfi = |do| <ma N fifi, (23)
o § Mg Taijfifj
w3 mE—1/2+8/2°7, &4

3.1 Interplay between F and D breaking effects

In this subsection we will study the interplay between thand D supersymmetry breaking effects. In
order to do so it is useful to introduce the variabfés= f?/,/1 — %" d2. Using these variables the
conditions for flathess and stability can be rewritten as:

fifi = 1) 9 o5
Rigpa PP §771 < 2 K(d2m?) )

a’ a
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6 M. Gomez-Reino and C.A. Scrucca: Constraints from F anddy breaking

where the functiork (d2, m?2) is given by:

Samidi — (2, d2)°
3 .
(1=, d7)
In the limit in which the rescaled vector auxiliary fields areall ¢/, < 1) we have thaif’ ~ f¢ and
therefore these variablgé are the right variables to study the effect of vector mudtiplwith respect to

the case where only chiral multiplets are present. Noteithsuich a limit the relation (24) between F and
D auxiliary fields can be written at first orderds ~ +/3/2m, /(1 +m2) T, f* f7. Using this we get:

K(d* m?) =144

(26)

A A A A 2
K = 1465, 00 Tuiy Tapa FPFFT. €alm) = ey (27)

a

and we can write the flatness and stability conditions as:
S (28)

whereR; ;,q = Rijpq—4 3, 62(m) Ty 7 Tapq)- This means that the net effect in this case is to change
the curvature felt by the chiral multiplets. Note as wellttiathe case in which the mass of the vectors
is large this is not necessarily a small effect and can coenwéh the curvature effects due to the chiral
multiplets. Actually for heavy vector fields one can chedttintegrating out the vector fields modifies the
Kahler potential of the chiral multiplets in a way that agots for this shift in the Kahler curvature.

For larger values of,, one can instead find an upper boundiqsee [3] for details):

mg (1+ 35, m3)

K< 1468, 0T Tapa S alm) = 5t M=ty
a a 2 b

(29)

So in this general case we get as well that the effect of veutdtiplets can be encoded into an effective
curvatureR; ¢ = Rizpg — 4 3, 6(m) Tui G Tapg)-

In this section we have derived the implications of the flatnhand stability conditions taking into
account the fact that’ andd® are not independent variables. The strategy that we halosviad is to use
the the relation (19) to writé, in terms of f. A second possibility would be to use instead the relation
(21) to writed® in term of % and a third one would be to impose only the bound (20) to stre values
of thed® in terms of the values of?. Itis clear that switching from the relation (19) to the tala (21) and
finally to the bound (20) represents a gradual simplificatibthe formulas, which is also accompanied
by a loss of information. As a consequence, these diffesgred of strategies will be tractable over an
increasingly larger domain of parameters, but this will lsecnpanied by a gradual weakening of the
implied constraints. A detailed derivation of the implicais of the flatness and stability conditions when
the relations (21) and (20) are used can be found in [3].

4 Some examples: moduli fields in string models

In this section we will apply our results to the typical stioas arising for the moduli sector of string
models. The Kahler potential and superpotential goveriiie dynamics of these moduli fields typically
have the general structure:

where by the dots we denote corrections that are subleadihg iderivative and loop expansions defining
the effective theory. The Kahler metric computed from (88¢omes diagonal and the whole Kahler man-
ifold factorizes into the product of one-dimensional Kahler submanifolds. Also the only nonisfaing
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components of the Riemann tensor are theotally diagonal component®; ;,,; = R; g7, d; »3 Where
R; = 2/n,. Recall now that when only chiral fields participate to ssyermetry breaking the flatness and
stability conditions take the form (8), so in this partiautase they just read:

SfP =1, SR FE <2 (31)

These relations represent a quadratic inequality in thiabigr| f*|?> subject to a linear constraint. This
system of equations can be easily solved to get the condﬁ]pR[l > 3, which translates into:

Also egs. (31) constrain the values that the auxiliary fi¢fglscan take.

When a single modulus dominates the dynamics the condi@@pifnpliesn > 3 (this result was al-
ready found in [15] in a less direct way). For the universétdin S we havens = 1 and therefore it
does not fulfill the necessary condition (32). This shows ey clear way that just the dilaton modulus
cannot lead to a viable situation [16] unless subleadingections to its Kahler potential become large
[17, 18]. We can therefore conclude that the scenario pexpwsref. [19], in which the dilaton dominates
supersymmetry breaking, can never be realized in a coalrelivay. On the other hand, the overall Kahler
modulusT” hasnr = 3, and violates only marginally the necessary conditionhis tase, subleading cor-
rections to the Kahler potential are crucial. Recently santeresting cases where subleading corrections
can help in achieving a satisfactory scenario based onlh@i field have been identified for example in
[20, 21].

In this case where the dynamics is dominated by just one fielKehler potential of (30) corresponds
to a constant curvature manifold witR = 2/n and it has a global symmetry associated to the Killing
vectorX = ¢ £, which can be gauged as long as the superpotential is algegacariant. By doing so the
potential would get @-term contribution that should be taken into account in thelysis of stability, as
was explained in the previous section. In such a situatierflfiness condition in (22) can be solved by
introducing an anglé and parametrizing the rescaled auxiliary field§as cos § andd = sind. In terms
of this angle the stability condition implies:

3

- 33
n>1+4tan65 (33)

From this expression, it is clear that it is always possiblestisfy the stability condition for a large enough
value oftan 6. Note in particular that eq. (33) implies that wheis substantially less thad) which is the
critical value for stability in the absence of gauging, tleatribution to supersymmetry breaking coming
from the D auxiliary field must be comparable to the one coming fromAheuxiliary field.

A final comment is in order regarding the issue of implementire idea of uplifting with an uplifting
sector that breaks supersymmetry in a soft way. It is clear ghch a sector will have to contain some
light degrees of freedom, providing also some non-vangshirand/orD auxiliary field. Models realizing
an I'-term uplifting are easy to construct. A basic precursoruahsmodels was first constructed in [22].
More recently, a variety of other examples have been cottstlywhere the extra chiral multiplets have
an O’ Raifeartaigh like dynamics that is either genuinelgtptated from the beginning [23] or effectively
derived from the dual description of a strongly coupled thig®4] admitting a metastable supersymmetry
breaking vacuum as in [25]. Actually, a very simple and gah&lass of such models can be constructed by
using as uplifting sector any kind of sector breaking suparaetry at a scale much lower than the Planck
scale [1]. Models realizing &-term uplifting, on the other hand, are difficult to achieVée natural idea
of relying on some Fayet-lliopoulos term [26] does not watle to the already mentioned fact that such
terms must generically be field-dependent in supergrasdtyhat the induced is actually proportional
to the available chargeB’s. It is then clear that there is an obstruction in gettidlgnuch bigger than
the F’s (see also [27]). Most importantly, if the only chargedrehimultiplet in the model is the one of
the would-be supersymmetric sector (which is supposed e tianishingF’) then alsoD must vanish,
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8 M. Gomez-Reino and C.A. Scrucca: Constraints from F anddy breaking

implying that a vector multiplet cannot act alone as an tiptifsector [28, 29]. This difference between
F-term andD-term uplifting is, as was emphasized in the previous sectlae to the basic fact that chiral
multiplets can dominate supersymmetry breaking wherea®reultiplets cannot.

Finally we would like to mention that the flathess and stabéonditions simplify not only for factor-
izable Kahler manifolds but also for some other classesafs manifolds that present a simple structure
for the Riemann tensor. This is the case for example for &gbtentials generating a scalar manifold of
the formG/ H which arise for example in orbifold string models [2, 3], aisb for no-scale supergravities
and Calabi-Yau string models [9].

5 Conlcusions

In this note we have reviewed the constraints that can berpgaage invariant supergravity models from
the requirement of the existence of a flat and metastableuwactollowing the results of [1, 2, 3]. We
have shown that in a general = 1 supergravity theory with chiral and vector multiplets thare strong
necessary conditions for the existence of phenomenolthgicable vacua. Our results can be summarized
as follows. These necessary conditions severely condtraigeometry of the scalar manifold as well
as the direction of supersymmetry breaking and the size eftixiliary fields. When supersymmetry
breaking is dominated by the chiral multiplets the condigioestrict the Kahler curvature, whereas when
also vector multiplets participate to supersymmetry birggakhe net effect is to alleviate the constraints
through a lower effective curvature. This is mainly due te thct that theD-type auxiliary fields give a
positive definite contribution to the scalar potential, ba tontrary of the-type auxiliary fields, which
give an indefinite sign contribution. Nevertheless one ghalso take into account the fact that the local
symmetries associated to the vector multiplets also otdtie allowed superpotentials. These results
should be useful in discriminating more efficiently potatiyi viable models among those emerging, for
instance, as low-energy effective descriptions of strirmmglets.
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