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We study the conditions under which a generic supergravity model involving chiral and vector multiplets can
admit vacua with spontaneously broken supersymmetry and realistic cosmological constant. We find that the
existence of such viable vacua implies some constraints involving the curvature tensor of the scalar geometry
and the charge and mass matrices of the vector fields, and alsothat the vector ofF andD auxiliary fields
defining the Goldstino direction is constrained to lie within a certain domain. We illustrate the relevance of
these results through some examples and also discuss the implications of our general results on the dynamics
of moduli fields in string models. This contribution is basedon [1, 2, 3].
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1 Introduction

Recently, substantial progress has been achieved in the search of non-supersymmetric Minkowski/dS vacua
in the context of string/M-theory compactifications. This was mainly related to the understanding of the
superpotentials generated by background fluxes [4] and by non-perturbative effects like gaugino conden-
sation [5], which generate a potential for the moduli fields coming from the compactification and have
suggested new interesting possibilities for model building, like in particular those proposed in refs. [6, 7].
From a phenomenological point of view, this type of models must however posses some characteristics
in order to be viable: supersymmetry must be broken, the cosmological constant should be tiny, and all
the moduli fields should be stabilized. In the low energy effective theory all these crucial features are con-
trolled by a single quantity, the four-dimensional scalar potential, which gives information on the dynamics
of the moduli fields, on how supersymmetry is broken and on thevalue of the cosmological constant. The
characterization of the conditions under which a supersymmetry-breaking stationary point of the scalar
potential satisfies simultaneously the flatness condition (vanishing of the cosmological constant) and the
stability condition (the stationary point is indeed a minimum) is therefore very relevant in the search of
phenomenologically viable string models. In this note we review the techniques presented in [1, 2, 3] to
study the possibility of getting this type of vacua in the context of general supergravity theories in which
both chiral and vector multiplets participate to supersymmetry breaking.

2 Viable supersymmetry breaking vacua

The goal of this section is to find conditions for the existence of non-supersymmetric extrema of the scalar
potential of general supergravity theories fulfilling two basic properties: i) they are locally stable and ii)
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2 M. Gomez-Reino and C.A. Scrucca: Constraints from F and D susy breaking

they lead to a negligible cosmological constant. We will first study this issue for theories with only chiral
multiplets and then when also vector multiplets are present.

2.1 Constraints for chiral theories

The Lagrangian of the most general supergravity theory withn chiral superfields is entirely defined by a
single arbitrary real functionG depending on the corresponding chiral superfieldsΦi and their conjugates
Φ̄i, as well as on its derivatives [8]. The functionG can be written in terms of a real Kähler potentialK
and a holomorphic superpotentialW in the following way1:

G(Φi, Φ̄i) = K(Φi, Φ̄i) + log W (Φi) + log W̄ (Φ̄i) . (1)

The quantitiesK andW are however defined only up to Kähler transformations acting asK → K +f + f̄
andW → e−fW , f being an arbitrary holomorphic function of the superfields,which leave the function
G invariant. The scalar components of the chiral multiplets span ann-dimensional Kähler manifold whose
metric is given byGi̄, which can be used to lower and raise indices.

The 4D scalar potential of this theory takes the following simple form:

V = eG
(

GkGk − 3
)

. (2)

The auxiliary fields of the chiral multiplets are fixed by the Lagrangian through the equations of motion,
and are given byFi = − eG/2 Gi whereeG/2 = m3/2 is the mass of the gravitino. WheneverFi 6= 0 at the
vacuum, supersymmetry is spontaneously broken and the direction given by theGi’s defines the direction
of the Goldstino eaten by the gravitino in the process of supersymmetry breaking.

In order to find local non-supersymmetric minima of the potential (2) with small non-negative cosmo-
logical constant, one should proceed as follows: First impose the condition that the cosmological constant
is negligible and fixV = 0. This flatness condition implies that:

GkGk = 3 . (3)

Then look for stationary points of the potential where the flatness condition is satisfied. This implies:

Gi + Gk∇iGk = 0 , (4)

where by∇iGk = Gik − Γn
ikGn we denote the covariant derivative with respect to the Kähler metric.

Finally, make sure that the matrix of second derivatives of the potential,

m2 =

(

m2
i̄ m2

ij

m2
ī̄

m2
ı̄j

)

, (5)

is positive definite. This matrix has two differentn-dimensional blocks,m2
i̄ = ∇i∇̄V and m2

ij =
∇i∇jV , and after a straightforward computation these are found tobe given by the following expressions:

m2
i̄ = eG

(

Gi̄ + ∇iGk∇̄G
k − Ri̄pq̄G

pGq̄
)

,

m2
ij = eG

(

∇iGj + ∇jGi +
1

2
Gk
{

∇i,∇j

}

Gk

)

,
(6)

whereRi̄pq̄ denotes the Riemann tensor with respect to the Kähler metric. The conditions under which
this 2n-dimensional matrix (5) is positive definite are complicated to work out in full generality, the only
way being the study of the behaviour of the2n eigenvalues. Nevertheless a necessary condition for this
matrix to be positive definite can be encoded in the conditionthat the quadratic formm2

i̄z
iz̄ ̄ is positive for

1 We will use the standard notation in which subindicesi, ̄ mean derivatives with respect toΦi, Φ̄j and Planck units,MP = 1.
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any choice of non-null complex vectorzi. Our strategy will be then to look for a special vectorzi which
leads to a simple constraint.

In this case there is only one special direction in field space, that is the direction given byzi = Gi.
Indeed projecting in that direction we find the following simple expression:

m2
i̄G

iG̄ = 6 − Ri̄pq̄ GiG̄GpGq̄ . (7)

This quantity must be positive if we want the matrix (5) to be positive definite2. Using the rescaled
variablesf i = − 1√

3
Gi the conditions for the existence of non-supersymmetric flatminima can then be

written as:
{

Gi ̄f
if ̄ = 1 ,

Ri ̄ p q̄ f if ̄fpf q̄ <
2

3
.

(8)

The first condition, the flatness condition, fixes the amount of supersymmetry breaking whereas the second
condition, the stability condition, requires the existence of directions with Kähler curvature less than2/3
and constraints the direction of supersymmetry breaking tobe sufficiently aligned with it.

2.2 Constraints for gauge invariant theories

It can happen that the supergravity theory withn chiral multipletsΦi we just described has a group of
some numberm of global symmetries, compatibly with supersymmetry. In this subsection we consider
the possibility of gauging such isometries with the introduction of vector multiplets. The corresponding
supergravity theory will then include in addition to then chiral multipletsΦi, m vector multipletsV a.

The two-derivative Lagrangian is specified in this case by a real Kähler functionG(Φk, Φ̄k, V a), deter-
mining in particular the scalar geometry,m holomorphic Killing vectorsX i

a(Φk), generating the isome-
tries that are gauged, and anm by m matrix of holomorphic gauge kinetic functionsHab(Φ

k), defining
the gauge couplings3. In this case the minimal coupling between chiral and vectormultiplets turn ordinary
derivatives into covariant derivatives, and induces a new contribution to the scalar potential coming from
the vector auxiliary fieldsDa, in addition to the standard one coming from the chiral auxiliary fieldsF i.
The 4D scalar potential takes the form:

V = eG
(

gi̄ GiG̄ − 3
)

+
1

2
habDaDb . (9)

The auxiliary fields are fixed from the Lagrangian through theequations of motion to be:

Fi = −m3/2 Gi , (10)

Da = −Ga = i X i
a Gi = −i X ı̄

a Gı̄ , (11)

where to get the relations in (11) one should also use gauge invariance of the action.
Now in order to find local non-supersymmetric minima of the potential (9) with small non-negative

cosmological constant, we will proceed as in the previous subsection. First we will impose the condition
that the cosmological constant is negligible and fixV = 0. This flatness condition implies that:

−3 + GiGi +
1

2
e−GDaDa = 0 . (12)

2 Actually, as emphasized in [9], the Goldstino multiplet cannot receive any supersymmetric mass contribution fromW , since
in the limit of rigid supersymmetry its fermionic componentmust be massless. This means that, in order to study metastability, it
is enough to study the projection of the diagonal blockm2

i̄ of the mass matrix along the Goldstino directionGi, as the rest of the

projections can be given a mass with the help of the superpotential.
3 The gauge kinetic functionHab must have an appropriate behavior under gauge transformations, in such a way as to cancel

possible gauge anomaliesQabc. Actually, the parthab = Re Hab defines a metric for the gauge fields and must be gauge invariant.
On the other handIm Hab must have a variation that matches the coefficient ofQabc, namelyXi

ahbci =
i
2

Qabc.
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The stationarity conditions correspond now to the requirement that∇iV = 0, and they are given by:

Gi + Gk∇iGk + e−G
[

Da
(

∇i −
1

2
Gi

)

Da +
1

2
habiD

aDb
]

= 0 . (13)

The2n-dimensional mass matrix (5) for small fluctuations of the scalar fields around the vacuum has as
before two differentn-dimensional blocks, which can be computed asm2

i̄ = ∇i∇̄V andm2
ij = ∇i∇jV .

Using the flatness and stationarity conditions, one finds, after a straightforward computation [10, 11]:

m2
i̄ = eG

[

gi̄ − Ri̄pq̄G
pGq̄ + ∇iGk∇̄G

k
]

− 1

2

(

gi̄ − GiG̄

)

DaDa − 2 DaG(i∇̄)Da (14)

+
(

G(ihab̄) + hcdhacihbd̄

)

DaDb − 2 Dahbchab(i∇̄)Dc + hab∇iDa∇̄Db + Da∇i∇̄Da ,

m2
ij = eG

[

2∇(iGj) + Gk∇(i∇j)Gk

]

− 1

2

(

∇(iGj) − GiGj

)

DaDa + hab ∇iDa∇jDb (15)

− 2 DaG(i∇j)Da − 2 Dahbchab(i∇j)Dc +
(

G(ihabj) + hcdhacihbdj −
1

2
habij

)

DaDb .

We want to analyze now the restrictions imposed by the requirement that the physical squared mass
of the scalar fields are all positive. In general the theory displays a spontaneous breakdown of both su-
persymmetry and gauge symmetries, so in the study of the stability of the vacuum it is necessary to take
appropriately into account the spontaneous breaking of gauge symmetries. In that processm of the 2n
scalars, the would-be Goldstone bosons, are absorbed by thegauge fields and get a positive mass, so we do
not need to take them into account for the analysis of the stability. Nevertheless the would-be Goldstone
modes correspond to flat directions of the unphysical mass matrix, and get their physical mass through
their kinetic mixing with the gauge bosons. This means that positivity of the physical mass matrix implies
semi-positivity of the unphysical mass matrix in (14), (15). We can use then the same strategy as before
but changing the strictly positive condition to a semi-positive one.

In this case there exist two types of special complex directionszi one could look at. The first is the
directionGi, which is associated with the Goldstino direction in the subspace of chiral multiplet fermions.
Projecting into this direction one finds, after a long but straightforward computation:

m2
i̄G

iG̄ = eG
[

6 − Ri̄pq̄ GiG̄GpGq̄
]

+
[

−2 DaDa + hcdhacihbd̄ GiG̄DaDb
]

(16)

+ e−G
[

M2
abD

aDb+
3

4
QabcD

aDbDc− 1

2

(

DaDa

)2

+
1

4
h i

ab hcdiD
aDbDcDd

]

,

whereQabc = −2iX i
ahbci. The conditionm2

i̄ GiG̄ ≥ 0 is then the generalization of the condition in (7)
for theories involving only chiral multiplets. In terms of the rescaled variables:

fi =
1√
3

Fi

m3/2
= − 1√

3
Gi , da =

1√
6

Da

m3/2
, (17)

the flatness and stability conditions take then the following form:






















f ifi + dada = 1 ,

Ri ̄ p q̄ f if ̄fpf q̄ ≤ 2

3
+

2

3

(

M2
ab/m2

3/2 − 2ha b

)

dadb + 2hc dha c ihb d ̄f
if ̄dadb

−
(

2 ha bhc d − hi
a bhc d i

)

dadbdcdd +

√

3

2

Qabc

m3/2
dadbdc .

(18)

Again we have that the flatness condition fixes the amount of supersymmetry breaking whereas the
stability condition constrains its direction. One could also consider the directionsX i

a, which are instead
associated with the Goldstone directions in the space of chiral multiplet scalars. Nevertheless the constraint
m2

i̄X
i
aX ̄

a ≥ 0 turns out to be more complicated and no useful condition seems to emerge from it.
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3 Analysis of the constraints

The analysis of the flatness and stability conditions in the case where both chiral and vector multiplets
participate to supersymmetry breaking presents an additional complication with respect to the case where
only chiral multiplets are present, due to the fact that the auxiliary fields of the chiral and vector multiplets
are not independent of each other. The rescaled auxiliary fields fi andda are actually related in several
ways. One first relation (consequence of gauge invariance) can be read from eq. (11) and is given by:

da =
i Xa

i√
2m3/2

f i . (19)

This relation is satisfied as a functional relation valid at any point of the scalar field space. It shows that
theda are actually linear combinations of thefi. Using now the inequality|aibi| ≤

√
aiai

√

bjbj one can
derive a simple bound on the sizes that theda can have relative to thefi:

|da| ≤
1

2

Maa

m3/2

√

f ifi . (20)

There is also a second relation betweenfi andda, that is instead valid only at the stationary points of the
potential. It arises by considering a suitable linear combination of the stationarity conditions along the
directionX i

a, in other words, by imposingX i
a∇iV = 0. This relation reads [12, 13] (see also [14]):

i∇iXa̄ f if ̄ −
√

2

3
m3/2

(

3f ifi − 1
)

da − M2
ab√

6 m3/2

db + Qabc dbdc = 0 . (21)

These relations show that whenever thefi auxiliary fields vanish also theda auxiliary fields should vanish.
Therefore we can say that thefi’s represent the basic qualitative seed for supersymmetry breaking whereas
theda’s provide additional quantitative effects. Along this section we will address the problem of working
out more concretely the implications of these constraints.In order to do so we will concentrate on the
case in which the gauge kinetic function is constant and diagonal: hab = g−2

a δab. In this case we can
rescale the vector fields in such a way as to include a factorga for each vector indexa. In this way, no
explicit dependence onga is left in the formulas and the metric becomes justδab. Using this the flatness
and stability conditions take the following simple form:

{

f ifi +
∑

a d2
a = 1 ,

Ri ̄ p q̄ f if ̄fpf q̄ ≤ 2

3
+

4

3

∑

a

(

2 m2
a − 1

)

d2
a − 2

∑

a,bd
2
ad2

b ,
(22)

where we have defined the quantityma = Ma/(2 m3/2) measuring the hierarchies between scales. De-
notingvi

a =
√

2X i
a/Ma andTa i̄ = i∇iXa ̄/Ma the relations betweenf i andda read:

da = i mav
i
afi =⇒ |da| ≤ ma

√

f ifi , (23)

da =

√

3

2

ma Ta i ̄ f if ̄

m2
a − 1/2 + 3/2 f ifi

. (24)

3.1 Interplay between F and D breaking effects

In this subsection we will study the interplay between theF andD supersymmetry breaking effects. In
order to do so it is useful to introduce the variablesf̂ i = f i/

√

1 −∑a d2
a. Using these variables the

conditions for flatness and stability can be rewritten as:
{

f̂ if̂i = 1 ,

Ri ̄ p q̄ f̂ if̂ ̄f̂pf̂ q̄ ≤ 2

3
K(d2

a, m2
a) ,

(25)
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6 M. Gomez-Reino and C.A. Scrucca: Constraints from F and D susy breaking

where the functionK(d2
a, m2

a) is given by:

K(d2
a, m2

a) = 1 + 4

∑

a m2
ad2

a −
(
∑

a d2
a

)2

(

1 −∑b d2
b

)2 . (26)

In the limit in which the rescaled vector auxiliary fields aresmall (da ≪ 1) we have that̂f i ≃ f i and
therefore these variableŝf i are the right variables to study the effect of vector multiplets with respect to
the case where only chiral multiplets are present. Note thatin such a limit the relation (24) between F and
D auxiliary fields can be written at first order asda ≃

√

3/2ma/(1 + m2
a)Ta i ̄ f̂ i f̂ ̄. Using this we get:

K ≃ 1 + 6
∑

a ξ2
a(m)Ta i ̄ Ta p q̄ f̂ if̂ ̄f̂pf̂ q̄ , ξa(m) =

m2
a

1 + m2
a

, (27)

and we can write the flatness and stability conditions as:
{

f̂ if̂i = 1 ,

R̂i ̄ p q̄ f̂ if̂ ̄f̂pf̂ q̄ ≤ 2

3
,

(28)

whereR̂i ̄ p q̄ = Ri ̄ p q̄ − 4
∑

a ξ2
a(m)Ta i (̄ Ta p q̄). This means that the net effect in this case is to change

the curvature felt by the chiral multiplets. Note as well that in the case in which the mass of the vectors
is large this is not necessarily a small effect and can compete with the curvature effects due to the chiral
multiplets. Actually for heavy vector fields one can check that integrating out the vector fields modifies the
Kähler potential of the chiral multiplets in a way that accounts for this shift in the Kähler curvature.

For larger values ofda one can instead find an upper bound toK (see [3] for details):

K ≤ 1 + 6
∑

a ξ2
a(m)Ta i ̄ Ta p q̄ f̂ if̂ ̄f̂pf̂ q̄ , ξa(m) =

m2
a (1 +

∑

b m2
b)

1 + m2
a + (m2

a − 1
2 )
∑

b m2
b

. (29)

So in this general case we get as well that the effect of vectormultiplets can be encoded into an effective
curvatureR̂i ̄ p q̄ = Ri ̄ p q̄ − 4

∑

a ξ2
a(m)Ta i (̄ Ta p q̄).

In this section we have derived the implications of the flatness and stability conditions taking into
account the fact thatf i andda are not independent variables. The strategy that we have followed is to use
the the relation (19) to writeda in terms off i. A second possibility would be to use instead the relation
(21) to writeda in term off i and a third one would be to impose only the bound (20) to restrict the values
of theda in terms of the values off i. It is clear that switching from the relation (19) to the relation (21) and
finally to the bound (20) represents a gradual simplificationof the formulas, which is also accompanied
by a loss of information. As a consequence, these different types of strategies will be tractable over an
increasingly larger domain of parameters, but this will be accompanied by a gradual weakening of the
implied constraints. A detailed derivation of the implications of the flatness and stability conditions when
the relations (21) and (20) are used can be found in [3].

4 Some examples: moduli fields in string models

In this section we will apply our results to the typical situations arising for the moduli sector of string
models. The Kähler potential and superpotential governing the dynamics of these moduli fields typically
have the general structure:

K = −∑i ni ln(Φi + Φ̄i) + . . . , (30)

where by the dots we denote corrections that are subleading in the derivative and loop expansions defining
the effective theory. The Kähler metric computed from (30)becomes diagonal and the whole Kahler man-
ifold factorizes into the product ofn one-dimensional Kahler submanifolds. Also the only non-vanishing
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components of the Riemann tensor are then totally diagonal componentsRi ̄ p q̄ = Ri g2
i ı̄ δi ̄pq̄ where

Ri = 2/ni. Recall now that when only chiral fields participate to supersymmetry breaking the flatness and
stability conditions take the form (8), so in this particular case they just read:

∑

i |f i|2 = 1 ,
∑

i Ri |f i|4 <
2

3
. (31)

These relations represent a quadratic inequality in the variable |f i|2 subject to a linear constraint. This
system of equations can be easily solved to get the condition

∑

i R−1
i > 3

2 , which translates into:
∑

i ni > 3 . (32)

Also eqs. (31) constrain the values that the auxiliary fields|fi| can take.
When a single modulus dominates the dynamics the condition (32) impliesn > 3 (this result was al-

ready found in [15] in a less direct way). For the universal dilaton S we havenS = 1 and therefore it
does not fulfill the necessary condition (32). This shows in avery clear way that just the dilaton modulus
cannot lead to a viable situation [16] unless subleading corrections to its Kähler potential become large
[17, 18]. We can therefore conclude that the scenario proposed in ref. [19], in which the dilaton dominates
supersymmetry breaking, can never be realized in a controllable way. On the other hand, the overall Kähler
modulusT hasnT = 3, and violates only marginally the necessary condition. In this case, subleading cor-
rections to the Kähler potential are crucial. Recently some interesting cases where subleading corrections
can help in achieving a satisfactory scenario based only on theT field have been identified for example in
[20, 21].

In this case where the dynamics is dominated by just one field the Kähler potential of (30) corresponds
to a constant curvature manifold withR = 2/n and it has a global symmetry associated to the Killing
vectorX = i ξ, which can be gauged as long as the superpotential is also gauge invariant. By doing so the
potential would get aD-term contribution that should be taken into account in the analysis of stability, as
was explained in the previous section. In such a situation the flatness condition in (22) can be solved by
introducing an angleδ and parametrizing the rescaled auxiliary fields asf = cos δ andd = sin δ. In terms
of this angle the stability condition implies:

n >
3

1 + 4 tan6 δ
. (33)

From this expression, it is clear that it is always possible to satisfy the stability condition for a large enough
value oftan δ. Note in particular that eq. (33) implies that whenn is substantially less than3, which is the
critical value for stability in the absence of gauging, the contribution to supersymmetry breaking coming
from theD auxiliary field must be comparable to the one coming from theF auxiliary field.

A final comment is in order regarding the issue of implementing the idea of uplifting with an uplifting
sector that breaks supersymmetry in a soft way. It is clear that such a sector will have to contain some
light degrees of freedom, providing also some non-vanishing F and/orD auxiliary field. Models realizing
anF -term uplifting are easy to construct. A basic precursor of such models was first constructed in [22].
More recently, a variety of other examples have been constructed, where the extra chiral multiplets have
an O’ Raifeartaigh like dynamics that is either genuinely postulated from the beginning [23] or effectively
derived from the dual description of a strongly coupled theory [24] admitting a metastable supersymmetry
breaking vacuum as in [25]. Actually, a very simple and general class of such models can be constructed by
using as uplifting sector any kind of sector breaking supersymmetry at a scale much lower than the Planck
scale [1]. Models realizing aD-term uplifting, on the other hand, are difficult to achieve.The natural idea
of relying on some Fayet-Iliopoulos term [26] does not work,due to the already mentioned fact that such
terms must generically be field-dependent in supergravity,so that the inducedD is actually proportional
to the available chargedF ’s. It is then clear that there is an obstruction in gettingD much bigger than
theF ’s (see also [27]). Most importantly, if the only charged chiral multiplet in the model is the one of
the would-be supersymmetric sector (which is supposed to have vanishingF ) then alsoD must vanish,

Copyright line will be provided by the publisher



8 M. Gomez-Reino and C.A. Scrucca: Constraints from F and D susy breaking

implying that a vector multiplet cannot act alone as an uplifting sector [28, 29]. This difference between
F -term andD-term uplifting is, as was emphasized in the previous section, due to the basic fact that chiral
multiplets can dominate supersymmetry breaking whereas vector multiplets cannot.

Finally we would like to mention that the flatness and stability conditions simplify not only for factor-
izable Kähler manifolds but also for some other classes of scalar manifolds that present a simple structure
for the Riemann tensor. This is the case for example for Kähler potentials generating a scalar manifold of
the formG/H which arise for example in orbifold string models [2, 3], andalso for no-scale supergravities
and Calabi-Yau string models [9].

5 Conlcusions

In this note we have reviewed the constraints that can be put on gauge invariant supergravity models from
the requirement of the existence of a flat and metastable vacuum, following the results of [1, 2, 3]. We
have shown that in a generalN = 1 supergravity theory with chiral and vector multiplets there are strong
necessary conditions for the existence of phenomenologically viable vacua. Our results can be summarized
as follows. These necessary conditions severely constrainthe geometry of the scalar manifold as well
as the direction of supersymmetry breaking and the size of the auxiliary fields. When supersymmetry
breaking is dominated by the chiral multiplets the conditions restrict the Kähler curvature, whereas when
also vector multiplets participate to supersymmetry breaking the net effect is to alleviate the constraints
through a lower effective curvature. This is mainly due to the fact that theD-type auxiliary fields give a
positive definite contribution to the scalar potential, on the contrary of theF -type auxiliary fields, which
give an indefinite sign contribution. Nevertheless one should also take into account the fact that the local
symmetries associated to the vector multiplets also restrict the allowed superpotentials. These results
should be useful in discriminating more efficiently potentially viable models among those emerging, for
instance, as low-energy effective descriptions of string models.
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