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SUPERSTRINGS AND D-BRANES

Field theory describes O-dimensional point-like objects.

Point particle

String theory describes 1-dimensional extended objects.

Open strings

Closed strings

There are five consistent perturbative string theories, in D=10:

Type 11A,B.
N=2 SUSY. Closed strings

Type 1.
N=1 SUSY. Unoriented open + closed strings.

Heterotic SO(32)/FEs x Es.
N=1 SUSY. Closed strings

The oscillation modes can be interpreted as particles. The mass scale is the
Plank mass, and at low energy only massless modes are relevant. The effective
actions are various versions of SUGRA and SYM.
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The five string theories are actually related by dualities, relating two theories

through a specific map between their free parameters. For example:
S-dualities

e Type [ & Heterotic
e Type Il on K3 < Heterotic on T

T-dualities

e Type ITA on S; < Type IIB on S
e Heterotic SO(32) on Sy < Heterotic Fg x Fg on 9.

These dualities connecting the five string theories show that they are different
limits of a fundamental D=11 supermembrane theory called M-theory. It is

therefore important to study non-perturbative aspects of superstring theories.
D-branes

They arise as hyper-planes on which open strings can end. More precisely,

two kinds of boundary conditions are allowed for open string end-points:
e Neumann: 9,X =0, ¢ = 4.
e Dirichlet: 9,X =0, 1) = F4.

Dp-brane:

X% a=0,1,..,p: Neumann

X' i=p+1,..,9—p: Dirichlet

-
-

Lorentz invariance: SO(9,1) — SO(p,1) x SO(9 — p).

SUSY: Q,Q — Q" = 55(Q + MQ) with M = T[(I'T"™).

S
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In general, the two end-points of an open string end on two D-branes.

)

—
—

In conventional open string theory, both ends lie on D9-branes, and one

recovers ten-dimensional Lorentz invariance.

A generic Dp-brane corresponds to an exact BPS string backgrounds breaking

Lorentz invariance and preserving % of the SUSY.

D-brane are dynamical objects. Fluctuations of the world-volume are de-

scribed by open strings starting and ending on the D-brane.

Massless modes of open strings:

D=10 N=1 SYM — D=p-+1

(A A) = (Aa, g5 A7)

)

D-brane are also sources of closed strings. In fact, the open strings living on

the world-volume can close and then come out of the world-volume.

Massless modes of closed strings:

:::::::D D=10 N=2 SUGRA

(g/un bw/a @; Cm...un; )‘17 Xl; )\27 X2>

=)




The effective action of a Dp-brane can be determined by requiring conformal

invariance of the string action on a disk ending on it. One finds (Leigh):

§ =~ o, 76— et (o + Fpu) = iy f, O AT AVA]

p+1

At low energy or large distances, D-branes appear therefore as sources of

the massless modes of closed strings. Consider & = 0 and trivial topology

(A =1). In the Einstein frame and in units of \/§f<o 10) (27r)7/ 20/%:
T,=py, = V2w (2#\/3)319

3 3—p
ay = p4 \/_(27\/_)

Since H(, = "Hj9_p), Dp and D(6-p)-branes are magnetically dual. The

Dirac quantization condition fi,/6—, = 2mn is satisfied with n = 1.

D-branes carry therefore elementary quanta of RR charge. They are the exact
quantum description of BPS SUGRA solutions called p-branes.
The p-brane solution is

Jap = H 1/2

Nas 5 Gij = H; 251]
Cozl ap+1 — eal...ap_,_l (le o 1)

6= Pinm,

where

The charges of the p-brane solution are proportional to those of the Dp-brane.
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D-BRANE DYNAMICS

D-branes can also interact among themselves. The leading string diagram is
a cylinder joining the two D-branes, and can be interpreted equivalently as

an exchange of closed strings, or as a loop of open strings.

/
02( < > < > Phase-shift.
/

The interaction can be interpreted as a classical force mediated by closed

strings or as a quantum Casimir-like force induced by vacuum fluctuations of

open strings.

Open string channel

Take 0y = 0 € [0, 7] and 09 = 7 € [0,¢]. The boundary conditions are:
0X" = M"OX", ' =M

The diagonal matrix M*, has entry 1 for Neumann and Dirichlet directions.

Here n = +1 and ;72 = 41 correspond to the R and NS sectors.

The one-loop effective action is

0

A:/“%Zw
where (Pgso = 5(1+ (=1)F))

Z(t) =STr[Pago e 2]

= % (TI‘NS[G%H] + Tryg[(=1)Fe 2] — Trple 2t — TrR[(—l)Fe%tHD



One finds (Polchinski)
Vi1 oo dt 12 tl 24’: - 1+aﬁi(0|it)

€ dr (—1) AN
it h g T e

where 7 is the transverse dlstance.

A_

For a Dp-brane moving with v = thme the boundary conditions get rotated:
MY, — M, (€)

Repeating the computation for two moving Dp-branes one finds (Bachas)

v, odt 2,1 4 UNEIE )193(0\“)#0

A= (27 a/)p 0 p+2€ o 50422(_1) ; ﬁ1(3t|2)n (%)

where € = €; — €9 and b is the impact parameter.

Closed string channel

Take 0y = 7 € [0,1] and 09 = o € [0, 27]. The boundary conditions are
OXHM = —M"OXY | " =inM" "

These define a unique closed string eigenstate |B,n) which represents the

corresponding D-brane.

The solution for the boundary state is |B,n) = |B)p ® |B, n)r with
00 1 .
Blp=ep{ T (- Muat,i, )} 19)s

n=1

‘B7n>F:exp {_7:77 z>: ( WW NV )} ‘Q 7]>
Fermions have integer or half-integer moding in the RR and NSNS sectors.
The vacua implement the zero mode boundary conditions and are
. . d°Pk .
_ 59=p) (i _ i . ik-Y | 1.0
Q) =6 (' — Y7} [0) = /7(%)9_]9@ I3

0), NSNS

Q,n)p= - 1 — ipl!!

Mogsla)|B), M =CTO..TP T RR



The arbitrary sign 7 has to do with the GSO-projection. In fact, the overall
sign is irrelevant and (Peso = 2(1 + (=1)F), Paso = 3(1 + (—1)5))
B) = PosoPosol B, +) = 5 (1B, +) ~ [B,~)
One has to choose a Type IIA or IIB projection for p even or odd.
The amplitude is obtained by inserting a closed string propagator
A= % = [Tdle™

between the two boundary states

A= (B1|PasoPaso| Ba)

_ % [ dL{(By, +|e™ By, +) wsns — (Bi, +le ™| By, =) s
+(B1,+le"|By, +)rr — (Bu,+le | By, =) pr

The result is
el 1 0020
— = Y (—1)ireZel 12
A= o 27“/* ol / 5 QE_:Q( ) n'2(2il)
The boundary state for a Dp—brane moving with v = thme is obtained through

a boost (Bill6, Cangemi, Di Vecchia)

B.e)=c"|B)
In particular
MY, — M, (€)

Repeating the computation one finds
oodl _b21 4 Vo (i€|2i0)92 (0]2il
Trall — Z(_l)H—a ( ‘ ) 9( ‘ )
V(i€ 2il)n?(2il)

A_

2327r\/_ / 2 4=2 70

The expressions obtained in the two channels are identical (I < 1/t). The

two open and closed string descriptions are equivalent. Their truncations to

the lightest modes are instead relevant in different regimes.
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Short distance limit: b < [, = Vo'

The amplitude is dominated by loops of light open strings

V dt (b 2% 6+ 2ch2:55¢ — Sch 25t
Ashort — b 2 OOO 1+Q€ (27ro/) t 2ra — 2Ty
2(47T)2 t 2 Sh 507

This is the one-loop effective action for the N=1 SU(2) SYM theory reduced
from D=10 to D=p-+1 describing the open strings living on the two Dp-
branes. For b # 0, the theory is broken to U(1) in the Coulomb branch.

By T-duality, the relative velocity corresponds to F/ = e, and the particles

running in the loop have m = ﬁ and e = ﬁ

For v — 0, Agport ~ 02 /b7 by SUSY (non-renorm. theorem). Since

e

Loop of spin s particle = ch2s t

2mal
a cancellation occurs between loops of spin 0 and 1 bosons and spin % fermions.

Large distance limit: b > [, = Va!

The amplitude is dominated by the exchange of massless closed strings and
one finds .

o5 + ch2me — chme
Atarge = VyT = — Agg—p)(b)

This is the eikonal approximation of the phase-shift in SUGRA.

For v — 0, Ajgrge ~ v2/b57? by SUSY (no-force condition). Since
g
Exchange of spin s particle = chsme

a cancellation occurs between the attractive dilaton and graviton exchange in

the NSNS sector and the repulsive (p+1)-form exchange in the RR sector.

Scale invariance for v — 0

For v — 0, the SYM and SUGRA descriptions agree, due to SUSY, and

U4

(N

ri—p
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POINT LIKE OBJECTS IN D=4 FROM D-BRANES

Consider a D-brane wrapped on some six-dimensional compact manifold. To

obtain a point-like configuration in D=4, we take Neumann b.c. in time 2"

and Dirichlet in the 3 non-compact directions z!', 2%, 2°. One can consider

various possibilities for the b.c. in the 6 compact directions z*, ..., 2°.

a+1)

Organize the compact directions in 3 pairs (2%, x%""), a = 4, 6, 8, correspond-

ing to 3 tori 7. Consider then three kinds of compactification:
o 7% N=8 SUSY in D=4 (KK).
o 12 x T*/Zy: N=4 SUSY in D=4 (K3).
o 1%/ Z3: N=2 SUSY in D=4 (CY).
The Z y action identifies points related by QW” rotations in NV of the 3 7.

There can be twisted sectors in which strings close only up to a Z rotation.
One has to project onto Z y-invariant states with Py = 4 (1+g+...+¢"1).
g is the generator of Zy. We can use
g = exp {z 3 zaJ“aH}
a

with

o T 2+ =25=28=0.

o Zy 2+ =0,2" =z8:O,27”.

o 7s: 24:z6:z820,2§,4§.

A wrapped D-brane is described by a projected boundary state in each sector:
‘B>inv — PN‘B>

Twisted sectors require equal b.c. for the directions 2%, %+ in each T2
Two interesting cases: the DO-brane (ITA) and the wrapped D3-brane (11B).
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Dynamics

L
10
P P

The amplitude is
A=Y [ dl{By,erle Py PosoPasol| B, €)

The result can be written as

M2 00 dl 7& T =
A=—rX )y ge 70 be, @) Z(1€)

where M is the mass, b the impact parameter and € = ¢; — €.

['(1,b.,,) is a lattice sum encoding the contribution of KK and winding

modes. Z(l, €) is the total partition function in each orbifold sector.

In the large distance limit b — oo, only very long world-sheets with [ — oo
contribute. In this limit:

b h2 h
F(l7b07u_jc) — 1, Z(Z,E) 804_{_66 TE + ycnme

I—00 I—00 shre

The modular integral gives then the transverse propagator A (b). Finally:

A — M? (a4 fch2me + yche) /OOOdT A (r(7))

b—oo

where

r(7) = Vb2 + sh2me 12
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DO-brane

a a+1)

All the compact directions (2, are Dirichlet. If the position coincides
with a fixed point, twisted sectors can contribute. The boundary state is

rotation invariant and Py acts trivially.

In the untwisted sector one finds:

A e Ualie]2i)93(0)2il)
ZU’E)_EQ( 2 01 (€| 2i0)n° (26l

For [ — oo this reduces to
0 + 2ch2me — 8che

Z(l,¢)

I—00 shre
and one finds in all cases
3 1 00
Alun.) — M? (Z + ich27re — Chﬂ'é) /_OO dr A (r(7))

For orbifold twisted sectors one finds:

1 I, . oyl .
22: = 2(a+b)19[b} (z16|221)19[b}(0|221)192[ ,21(0]2il) 7
9[3](iel2a)32[{) Of2it P 241
Z(l7 6) — 1 : 3 i 1
2 I (1€|220)9°[* 3] (0[241
Z (_1)2(a+b) . [ZJ( ‘ ) l[ b }( ‘ ) ZS
a,b=0 (7] (i€|2il)93[§] (0] 23l )n3(2il)
2 2
For [ — oo these reduce to
4 —;lChT('G 7
shre
Z(,¢) Q 2 — 2chme P
she o
and one finds both for Z- and Z;
» M? 50
Therefore
v? V2
V(un) ~— V(tw) o~
r r
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D3-brane

In each pair of compact directions (2, %), take 2 Dirichlet and 2™}
Neumann. The mixed b.c. in each 7% are incompatible with twisted sectors.

The boundary state is not rotation invariant and Py acts non-trivially.

The partition function is
1
Z(le)=—=Y Z'(l,¢, 2%
N =1y

- 7 + ( ‘ ) ( ) ( a‘ )
4 9, (1€|2il 2sin 24 49, (%211

! l a Z 1 1+ ¥« , a\ g

( & % ) a_—g( ) 191(i6|2il) a 191(—Z7T |2il)

In the limit [ — oo this reduces to

2>, c0822% 4+ 2ch2me — 811, cos z%chme

Z'(1, €, 2)

I—00 she
Averaging one finds:
3 1 0
M? (Z + Zch27re - chwe) /_OO drAg(r(1)) , T, Z,
AT e
s e (ch2me — chme) /_ozo drA)(r(7)) . 23
Therefore
v
T T; ZQ (tw.)
V(un) - 1;/*2 LV w) —
I Z?)
”

Field theory interpretation

The field theory phase-shift in the eikonal approximation for two sources of

scalars (a), gravitons (m) and vectors (e) is

2
AWt (aQ + mzch27re — 62Ch7T€) /_O; dTA(3)(7“(T))
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One reads the following charges:

DO-brane
3
a:\Q[M, e=M., m=M . T, Z.Z
/ 1 / ]‘
CLI-M, e =-M ,ZQ,Zg
2 2
D3-brane
3
a:g Ce=M, m=M ., T Z
1
a:O,e:§M,m:M . A3

The scalar coupling distinguishes between two class of black holes.

Consider the typical D=4 action

1 4 1 9 I g
27, [davs (R 2 (99)" — 2.01° ¢F(2)>

This has the BPS solution (Lii,Pope,Sezgin,Stelle)
¢=alnH(r)

ds®* = —H(r)=™"2dt* + H(r)"?*dz - dz
Ag=c(H(r)™t =1)

S =

where
2\ 4 2

= N =, (N = e

a(\)

The charges are
m2
a=aM , m=bM, e=cM and a2+z—6220

Two cases: A =0 (IIB: Zs) and X\ # 0 (1A: T, Z, Zs, UIB: T, Z>).

e Regular RN black hole: A =0,a=0,b=4,c= 2.
D3 on Zj5.

e Singular black brane: A = /3: a = \/TE, b=1c=1.
DO on T, Zy, Zs and D3 on T, Z>.

14



Radiation of massless particles

e

Nothing depends on o so

[dl [dz [dz = [Fdi [,dr = [Fdr [*al
The kinematics is peculiar. The two D-branes can emit states with
kt(e1) = (Shﬂ'El k' chme, k', ET)
q"(€2) = (shmea ¢, chmes ¢, Gr)
The momentum of the out-going massless particle is
p"' = (p,cosOp,pr = mnsinfp)

Momentum conservation (k" — ¢" = k") completely fixes the energies and

longitudinal momenta.
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In particular

in terms of the boosted energies

p(m) = (chme; 9 — sinmey 9 cosf) p

Consider massless NSNS states with p and £" in D=4:
V =&, (0X" — %p YY) (0XY + %p Lapp?)e
To compute A we need the partition function
Z(l,€) = (B, e1]e | By, )

One can use Wick’s theorem to reduce all the contractions to
<B, 61‘6_ZHX’MXV‘B, €2>
(B, e&le”"|B, €)

B, ei|e My’ | B, e -

L L
<B7€1‘6 ‘B7€2>

PY (1,1 €)= = (X"X")

PJ}W(T, ' e)= <

Both the partition function and the correlators can be computed exactly, and

27l

one finds Y-functions. Using the notation ¢ = e~ """ one finds

Z(l, €)= ijo d,(€)g*"

P(r 1) =a"(€) + S [bul€) ful7) + cale) full)]

n=0

where
fB) (@) =In (1 — ¢*e ™)

2n —4nx n,—2rx
g€ RR q'e
SN @) = 1 i s T2 (@) =

16



In the large distance limit b — oo, again only world-sheets with [ — oo
contribute, and the amplitude becomes
M? | kr

A= 4she / (27)?

2/
et [Sar [dl'e el

(2)2 (1)2

[1 o 6_47TT]_p2—7T [1 o e—47rl/]_pT M(T, l/, 6)

Double poles in M(7, 1", €) cancel between bosons and fermions, and

6—47TT

M(1,l' €)= F(b“”“)( ) + 4dshm ey p? F(rad)(e) I
— e T

/
6—47rl

1 rad
—4Sh7T€1 p( ) F( )(6) m

Integrating by parts in 7 and [”:

6—47?7' B 1
1 — 6—47TT o 4p

2)2 7 1 _ g—d4nll T _4p(1)2

q2 e—47rl/ . 1 k2
(

Therefore M(7,0',¢) = M(e) and

. Sj}\l{i / gf;e%.gh[? {F(bulk:) X Shmlpk(i)F(md) _ Sthpq(z)F(md)}

The proper time integrals can then be evaluated:
N T ] Ll ek B
Il(p,q):§/0 dre 2 [1—6 } =3 F[g—i—%le] o
a5 oAl o a1l [g} ! [_p% " 1] 1
_/0 [ ] e F[g_p%le] p0 k2

Finally one finds
(bulk) (rad) (rad)
A e o g — o
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k2q2
o
: .
AVAVAVAVAVAVAVAVAY \VAVAVAVAVAVAVAVAY plg2
o
ki : 1
AVAVAVAVAVAVAVAVAY \VAVAVAVAVAVAVAVAY -~ p2) k2

For the dilaton (£ ~ § — p'p’ /p?) and the axion (£ ~ €7%p,./p), the total
amplitude vanishes. For the graviton (£¥ = h%, p;h"/ = 0,h = (), one finds

instead a non-vanishing result.
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Untwisted sector for DO-branes in T", Z, Z3; D3-branes in T, Z>:

3 o o |
plbutk) — | hik' k| + . ch2me hijk'k — 2sh2me phak' + 2sh®me p*hay
— [Chﬂ'e hijk:ik:j — shme phﬂkq
3 1 | |
plrad) — | hik'| + | ch2me hyk' — sh2me phik'

. 1 .
— [Chﬁe hi k' — §sh7rephi1k72]
D3-branes in Zs:

1 o .
Frloulk) 1 [ChQﬂ'E hiik'k) — 2sh2me phi k' + 2sh?me p*hyy

1 o .
~7 {chwe hijk'k’ — shme phﬂkq

1 , ,
plrad) . [Ch27re hak' — sh2me phﬂkﬂ]

1 1 ,
~7 [ hme hj k' — §Sh7T€ph¢1]€Z]

Twisted sectors for DO-branes in Zs, Zs:

1 o o |

pbutk) = k'K — . chre hijk'k) — shre pha k'

plrad) _ L [h- k:i] ! chre hi k' — 1shm hi k!
4 il 1 il 9 Pl

Field theory interpretation

In the eikonal approximation and for charges a, m and e:

FO =62 [hik' k) + m{ ch2me hijk'k? — 2sh2me phak' + 2sh*me p*hyy
—e” |che hijk'k! — shre phi k|

m2

FUh = a? [ha k'] + 8 ch2me hy k' — sh2me phy K
. 1 .
—e? {Chwe hak! — §shm phﬂkZ]
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DYONIC BLACK HOLES IN D =4.

Consider a wrapped D3-brane, but now with Neumann and Dirichlet direc-

tions forming an angle #* with the directions 2%, "

Dynamics
The general interaction amplitude is
A=Y [ dl(By, e1,0ile”"" PxPasoPaso| Ba, €2, 03)

The result can be written as

wdl p )
A_—Z/ 2—7'(‘l€b2lZl€6)

where Z (1, €,0) is the total partition function, € = ¢; — €5 and 6 = 6 — 65.

For b — oo, only world-sheets with [ — oo contribute. In this limit:
201, .0 804(«9") + B(6%)ch2me + v(0*)chme

00 she

+85(6)

The modular integral gives then A(y)(b) and finally:

A2t Bch2me + ychme
b—o0 she

A

Ay (b) + M?5A5(b)

For a Coulomb-like force, the non-relativistic phase-shift is

- lee' b lee/ . b
F(Cau.) _ ﬁi — VA (Cou.) __ ~%% ¥ — A(Cou.) A [
A3 02 b2 v 2T nbo
For a Lorentz-like force, one has
- "X T > eg’ “b eqg’
F(Lor.) _ ﬂ?) - vA(Lor . - A(Lor.) — 2 (Hh—0
A 73 o b2 27 ( 0)
Defining b = = + 1y, the relativistic result for charges a;, m;, e; and g; is
a1y + m1m20h27re — (e1e2 + g1go) chme
A(f.t.) _ 4 RGA(Q)(I))

shme
+ (€192 — €201) ImA () (D)

There are subtleties in the cancellation between ghosts and long. modes.
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The odd spin-structure encodes magnetic interaction between D-branes. It

produces the correct velocity dependence and is non vanishing only for the

dual system Dp-D(6-p) in D=10.
The magnetic coupling satisfies the Dirac quantization condition

D_y
e1g2o + (—1)2 "grea = 270

The partition function is

1
Z(l,e,0)=— 3 Z'(l,e,0" + 2%)
N {Za}
with p
Vo (i€|2il) _ (2sin B%) 0, (=|241)
Z/L,a: _11+oz04 aaﬂ
(e 5°) %:( ) V1 (i€|2il) “a 191(%|2il)
In the limit [ — oo this reduces to
21, 3 25, cos 23" + 2ch2me — 811, cos B*che
I—00 shre

+ 8 sin 5

For T, Z, the averaging has no effect and the couplings depend on all 6%s:

1 1
— Y cos 20 + —ch2me — [[ cos 0%chme
A — M24 2 4 = ROA(g)(b)
b—ls she
+M? T sin 6 ImA 9 (b)
For Z3, the averaging is non-trivial and the couplings depend only on ¥, 6“:
1 1
—ch2me — —cos>_ 0 hme
A — M24 4 2 RCA(Q)(())
b—sls she

M2
—|—T sin >~ 0° ImA(g)(b)

The Dirac condition is satisfied in D = 10 withn =1 (u3 = 27). In D =4
it is satisfied with n # 1 related to the winding number (€19 — g1e0 = 27n).
One can then determine how the D = 4 charges depend on the angles 6.
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Consider the Z3 case. Calling o; = 3, 0! and av = ar; — g, one reads

B ) B M2 B M2 ‘
mimeo = M , €1€9 -+ g1go = T COsx , €192 — €2g1 = TSIHO&
We conclude that
M M
m; = M | ei:?(:osozi, giZESinai

For T, Z5, one can do the same thing, and one finds more charges.
One-Point functions

The wrapped D3-brane couples to the D=4 fields arising from the D=10
graviton A" in the NSNS sector and to the 4-form C**7? in the RR sector.

The couplings are encoded in the one-point functions
1
(V) = (V| Py|B, 0% = N > (V|B, 0% + 2%)
{=}
For T, Z5, one finds:
(h) =M {hoo + At + A% 4 p?
—y [COS 20% (haa o ha—l—la—i—l) — 94in 20° haa+1] }
(C) =2M {H cos 04CV108 4 {COS 0* cos 0° sin §3C™MY + perm.}
+ [COS 6" sin 6% sin @ CY + perm.} + [Isin 9“A0579}
For Zs, one finds instead:
(h) =M {hoo + M 4+ h* + h33}
M a (0468 0479 0569 0578
(C) =5 {cos 67 (CM — 70 — 000 — 07T

+ Siﬂz H¢ (00579 o 00568 o 00478 o CO469) }
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Specialize again to Z3. We see that the only couplings are:
M = m=M
AP = P88 _ opaTY _ omsbd _ omdT8 o — cosaM
Bl = O o088 _ AT _ oY op — sinaM

It follows from F = "F in D=10 that Fg = *F)y in D=4. Therefore,

ep < g4 and/or e4 < gp. Using e.g. A" and eliminating B* one recovers

M M .
m =M, e=— cosa, g=—-sino

For T, Z- one gets more fields.
Geometric interpretation and SUGRA solution
In complex notation (z¢ = %(aﬁa—i—ixaﬂ)), T°/Z3 has 9 (1,1) forms, 0 (2, 1)-

forms and 1 (3, 0)-form which are harmonic. It is the limit of a Calabi-Yau

manifold with A4 = 9 and K12 = 0.

The effective theory in D=4 is N=2 SUGRA with ny =0 and ny = 9 + 1.
The only gauge field is the graviphoton, described by A*, B* with Fg = *F 4.

A and B arise by decomposing C*?? on Ref2 and Im(2, where
Q= dz* Adz" A d2°
The D3-brane wrapped with angles 8 corresponds to
Qp = Re[e_i94dz4 Ae ' d25 A e_iegdzg} = Rele ()]
= cos a Ref) + sin o ImS

One can construct a SUGRA solution corresponding to a D3-brane wrapped

on a 3-cycle of a Calabi-Yau. The solution is a dyonic RN x CY:
d’s = g/S]jN)diC’udiCy + gc(lgy)d:c“d:cb , 5= F((Q};“N) NQp, ¢=0
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SPIN EFFECTS IN D-BRANE DYNAMICS

D-branes are BPS states preserving 16 of the 32 SUSYs of Type II theories.
They fill short multiplets with 2° = 256 components with different spins
realizing the 16 broken SUSYs.

The cylinder amplitude gives only the universal spin-independent part of the

interaction between two Dp-branes.

Performing SUSY transformations, one can generate all the other spin-dependent
leading interactions. This program can be carried out in the Green-Schwarz

formalism, finding the scale-invariant potential
A=k
Vi~ Z ri1—p+k

Boundary state and SUSY.

Consider the Type II theories in the light-cone gauge. X+ = 7 + p'7
whereas X~ is completely determined and after fixing the k-symmetry, we

are left with two spinors S® e S in the 8 of SO(8).

The Fock space is constructed on a vacuum representing the algebra of S e

5’8. The representation is 8, ¢ 8. both for the left and the right parts, and

Seliy = %@m | ﬂw\ i

\/%ala) . Sila) = fvaaH

The light-cone coordinates X+ automatically satisfy Dirichlet b.c., whereas

Spla) =

Stli) =

the b.c. of the transverse coordinates X, ¢ = 1,2, ..., 8 can be chosen freely.

[t is possible to define a Dp-brane-like configuration by choosing Neumann
b.c. for p = 1,2,...,p + 1 and Dirichlet b.c. for I = p+2,....8 — p. The

usual description is recovered through an analytic continuation.
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The boundary conditions are
OX' = Mj;0X’ , S%=iMyS"
where

1y O

, Mb: ! 2... pHl b
, 117_p) b= (77" a

The solution for the boundary state is

1 . . ~
‘B> = exXp Z (—Mijoﬂ_néﬂ_n — iMabenSgn> ‘B()>

n>0 \T

with the zero mode part
|Bo) = Myli)|5) — iMy|a)|b)

The boundary state in configuration space is |B,Y) = |B) @ |Y) with

9— o
\}7> :5(9—19)(* _37)@ :/ d""q ez’q“‘YM
o (27)9-» !

Consider the combinations of supercharges

1 - . 1 : -
QL= 5 (@ +iMaQ") , QL= 5 (Q"+iM; Q)

satisfying the algebra
Q1@ =", {Q1.Q"} =P "
(Q1.Q) = 0l [0 + M)
The boundary state satisfies the BPS conditions

QLB)=0 |, QEHB> =0 = Qi,@‘i preserved

QUIB)#0 , Q%YB)#0 = Q% Q" broken
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Multipole expansion

Performing an arbitrary broken SUSY transformation on |B), one obtains

informations on the couplings of any Component of the multiplet. The state

Q)" B)

o 16
|B,n) =" |B) =
m= O m/!
encodes the couplings to closed string states of a semi-classical current formed
by an “in” and an “out” Dp-branes (n = (1,,7:) and @~ = (@), ,Q;)). The
sum corresponds to a multipole expansion, and terms with m even and odd

are relevant for bosonic and fermionic currents.

For elastic scatterings, it suffice to consider even powers of (). Moreover, in

each (nQ)? = (n,Q, + 1:Q5)* it is enough to consider the SO(8) part
‘/;/ — naQ;ﬁng

In this way, the boundary state | B, n) for a generic static D-brane current is

TL

Zo ()P

The generalization to non-zero velocity is obtained through a boost and

B, ) = 3| B)

—ime; JY x 1 . N\
‘Ban7€>:€ i |B777>: Z:O%(—’MTGL'Jl) |B777>

It corresponds to insertions of the operator
V. = —ime; JJ"

Finally, the boundary state |B, 7, €) for a generic moving D-brane current is

e 8 va'r/n
[B.n, €)= X X 31B)

Therefore, Lorentz and SUSY transformations correspond to insert zero mo-

mentum bosonic and fermionic vertices.
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Zero modes and one-point functions

Using the b.c. implemented by |B), the zero mode parts of 1}, and V; can be

written in terms of the left-moving SO(8) generators
RY = S,
Both Vo and Vg are linear in Réj and one finds
Vo= —27T€Z'Réi
0= iy wﬁ:::jgn(n)R%m...R‘éQ”_m” , n<4

where the tensor

e 1 _ i n o
Wi o (1) = o [ (Y™ Py (7Y™ | Vi 122

encodes the dependence on the SUSY parameter.

Using the action of Réj in the 8, and 8, representations, one can compute
| Bo, 1, €) = Mij(n, €)[i)]7) — iMyi(n, €)]a)|b)

The couplings of a generic Dp-brane to massless closed strings states |V) are
encoded in (V) = (V|By,n) as a multipole expansion. The n-pole term is

(W) (n) = (U|V, 5| Bo) and for the bosonic states
€) = Eunlm)n) , |C) = Cyyla)|b)

one finds

&) )= TpQ Qiy---Giy, fi‘jwﬁ{zﬁﬁ..kn_lkn_lkn(U)Mknj

V=T q....qi wh:::“‘ n)Tr[Cry/172 . yl2n=1720 [
(n) = +p Dig---Yin %5

J2n
Inserting a closed string propagator and Fourier transforming, one finds the

asymptotic fields generated by a static Dp-brane.
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Spin-dependent dynamics

The phase-shift for two // Dp-branes with parameters 7; and ¢; is

A/ )P o Y .
A= ( 16) /0 dl <B,7]1,€1,}/1‘€ 2mllp™ (P )‘377727627}/2>
and can be rewritten as
V, (4m%a/)tp d®= pq 7D i
A= 16psh7r|€1 - 62|/0 dl/ 0 e 711 €6) ZoeL iy €1)

with
Zo(1i, €) = (Bo, m1, €1|Bo, 12, €2)
Zose(l, 01 €) = (Bose, 1, €1]e” W P By, €0)
Consider for simplicity n; = ¢; = 0. Expanding the Lorentz and the SUSY

transformations in powers of €5 = € and 1y = 7, the partition functions can

be rewritten as

Zofn,) = ngﬂzom,n,2<Bo\V£Lvn%\Bo>
00 1 / _
Zosclm €)= 3 z 5 (Busele VIV By
=0p=0 ¢'p!

For n = 0 and € = 0, the configuration is still BPS and

Zo(0,0) =8 —8 =0

50 (1 o 6—27Tln)8

Zosc l, ) —
( 0 O) nl;Il (1 _ 6—27Tln)8

For 1 # 0 and/or € # 0, the configuration is no longer BPS and
ZO(”? 6) 7é 0

Zosc(l,m,€) # 1
The leading terms for 17,e — 0 in the total Z(l,n,€) come from m,n # 0
(Zo(n, €) ~ (nn)"v™) but p,q = 0 (Zosc(l,m, €) ~ 1).
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The zero mode correlation contains only left-moving S{js and can be written
as a trace over fermionic zero modes in Type I theory. Indeed, it is the
analog of the integration over the fermionic zero modes in the path-integral

representation of the open string vacuum amplitude.

The trace is 0 unless at least 8 zero modes S are inserted. The first # 0 is

11 a8 TTSO [R1122R6324R6526R6728]
_ _leil"-iS o 1

2 2 [
{5@135141 6Z6L76L8L1 + perm. }

511t 7218 55§67 1 perm |

Therefore, the leading terms in the amplitude receive contributions only from

the massless states associated to the fermionic zero modes, and

ZOSC(lﬂ?, 6) — 1

1n,e—0
4 1

7,e—0  m=0 (4 m)'m'z

Z (777 ) TrS() [V ]

Schematically (e ~ v):

Z(l,n,e) — Z cr " tsv* " n?* | indep. of 1

1,e—0
From the open string point of view, this is an index to which only ultra short

multiplets contribute.

The corresponding leading potential is

> T2 24: tlml Amyg gy agp .7'1---.7%( )a, 0. A
me—0 P Ock Umy, -+ Umy_y, Wir.igp\") Gji-+- U 2(9-p)

4 gtk

%

k=0

It is exact in /. that is scale-invariant.
i
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DO-branes

In SO(9) notation, 6 = (ZZ), the result for elastic DO-brane scattering is

1
V= [0 2007, (0776) D, — 20,0, (6970) 0470) 0,0,
4q :
_évi(evzme) (evnl@) (9’7[)[9) amanap

2 m n pr /
+3(0710)(07"0)(6+7"0) (6+""0) 90,0, | Ao

Since this is scale-invariant, it has to be reproduced both in the SUGRA and

SYM limits. Several explicit checks have been done:
All terms in SUGRA : Plefka, Serone and Waldron
15 term in SYM : Douglas, Kabat, Pouliot and Shenker
2" term in SYM : Kraus
3" term in SYM : McArthur
5" term in SYM : Barrio, Helling and Polhemus

It has also been shown in some detail that the leading part of the effective

action is completely determined by SUSY (Paban,Sethi,Stern).

The BPS nature of DO-branes and the cancellation of leading orders in inter-
actions imply specific ratios of the couplings at each multipole order, gener-
alizing the usual BPS relation. In particular, g = 1, as appropriated for KK
states, rather than g = 2.

These results are in agreement with the identification of DO-branes with KK
states of M-theory compactified on Ry; = gls (Townsend,Witten). It has
also been conjectured that in the infinite momentum frame, DO-brane are the

partons of M-theory (Banks,Fischler,Shenker,Susskind).
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