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Introduction

One of the most fascinating and intriguing issues ever addressed in theoretical physics is
the search for a consistent and unified quantum theory of fundamental interactions. The
first major difficulty in this attempt is that there seems to be no consistent quantum field
theory associated to Einstein’s classical theory of general relativity [1], whereas all other
fundamental interactions have instead been successfully formulated in this language. This
suggests that perhaps quantum field theory is not the correct framework for the formula-
tion of a so-called theory of everything. Moreover, the astonishing and appealing possibility
of unifying gravity and gauge theories through the Kaluza-Klein mechanism of compact-
ification [2, 3] has given strong support to the idea that actually our world might have
more than four spacetime dimensions. All these arguments, together with supersymmetry
[4, 5], have led to the formulation of supergravity [6, 7] and especially superstring theory
[8, 9, 10, 11, 12], which is undoubtly the most promising candidate to this date for a unified
theory of fundamental interactions.

Superstring theory describes one-dimensional extended strings, rather than point-like
particles as does quantum field theory. The infinitely many vibrational modes of the string
can be regarded as particle excitations with growing mass and spin, belonging to a so far
unknown (and probably very complicated) field theory with an infinite tower of elementary
fields. The tension T = 1/(2πα′) of the string (energy per unit length) introduces a length
scale ls =

√
α′ in the theory, so that the typical mass of the modes is ms = 1/

√
α′.

For energies much below ms, only the lowest lying massless modes are relevant, and their
dynamics is encoded in a low-energy effective action (LEEA) obtained by integrating out
all the massive modes. The effective field theories obtained in this way are various versions
of super Yang-Mills (SYM) and supergravity (SUGRA) theories for open and closed strings
respectively, α′-corrections appearing through higher dimensional effective operators.

The first quantized version of string theory is defined by assigning a conformally invariant
world-sheet action, weighting the free propagation. More precisely, this action is in general
a non-linear σ-model defining an embedding form the world-sheet Σ to a generic spacetime
(or super spacetime for the Green-Schwarz formulation of the superstring) M. The scalar
fields appearing in the action are the spacetime coordinates of the string, whereas its spin
is encoded in additional fermionic degrees of freedom. Free propagation of open and closed
strings corresponds to world-sheets with the topology of a strip and a cylinder respectively.
Interactions can instead be associated in a natural and geometric way to topologically
more complex world-sheets representing the splitting and joining of strings. Thanks to
the coupling of the dilaton background field φ to the world-sheet scalar curvature, whose
integral gives (in two dimensions) the Euler characteristic χΣ of the world-sheet Σ, the
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amplitude corresponding to Σ is automatically weighted by its topology through a factor
e−〈φ〉χΣ involving the vacuum expectation value (VEV) of φ. It is therefore natural to
identify the string coupling as gs = e−〈φ〉, so that Σ is weighted by g−χΣ

s .

The second quantized theory can then be built perturbatively, à la Feynman, assum-
ing that the coupling constant gs is small. Despite the powerful underlying mathematical
structure inherited from conformal invariance [13], the lack of a truly second-quantized
formulation of the theory is a severe limitation which is responsible for the difficulty of
studying non-perturbative effects. Consistency at the quantum level requires D=10 space-
time dimensions, giving therefore a interesting prediction for the spacetime dimensionality.
However, the theory is not unique, as one might have hoped. In fact, five apparently
different consistent string theories are known:

• Type I
N=1 SUSY, open strings with gauge group SO(32) and closed strings, unoriented.
The LEEA is N=1 SUGRA coupled to SO(32) SYM.

• Type IIA,B
N=2 non-chiral (A) or chiral (B) SUSY, closed strings only.
The LEEA is N=2A,B SUGRA.

• Heterotic SO(32) and E8 × E8

N=1 SUSY, closed strings with gauge groups SO(32) or E8 × E8.
The LEEA is N=1 SUGRA coupled to SO(32) or E8 × E8 SYM.

Phenomenologically interesting models can be obtained upon compactification. More pre-
cisely, one makes a Kaluza-Klein ansatz of the form M10 = IR3,1 ⊗M6 for the ten dimen-
sional spacetime background, where IR3,1 is four-dimensional flat Minkowski’s space and
M6 a compact manifold. The condition for this background to be an acceptable vacuum
solution of the theory translates into the requirement that the non-linear σ-model describing
string propagation be at a conformal fixed-point. For this to be true it is enough to chose
M6 to be Ricci-flat. In order to preserve some of the original ten-dimensional supersymme-
try in the four-dimensional effective theory, M6 has to be also a complex Kähler manifold.
These two properties define a class of manifolds called Calabi-Yau manifolds, which turn
out to be extremely important in string theory compactifications [14]. Another important
class of compact spaces of great relevance in this context are the so-called orbifolds [15, 16].
They are defined by a manifold M6 modded out by a discrete equivalence group Γ, that
is identifying points on M6 which are related by an element of Γ. This leads typically
to isolated conical singularities on M6/Γ, where the Riemannian structure is lost. There
exists nevertheless a well defined procedure, called blow-up, in which the singularities and
their neighborhoods are substituted with a smooth space, yielding a regular manifold. In
this sense, orbifolds represents singular limits of regular manifolds. Their importance lies
essentially in the fact that even very simple versions of them (e.g. taking M6 to be flat so
that M6/Γ is also everywhere flat but at its singular points, where all the curvature is con-
centrated), can be topologically equivalent to some more complicated Calabi-Yau manifold.
Correspondingly, the non-linear σ-model describing compactified string theory turns into a
solvable orbifold CFT. A famous example is the T n/ZZm orbifold, constructed by identifying
points of a torus related by discrete rotations.
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A major break-through in the understanding of string theory has been achieved by rec-
ognizing that its five different perturbative versions are actually related by various dualities
[17, 18, 19, 20, 21], and are therefore not independent. Actually, most of these duality
relations are conjectures that cannot be rigorously proven, since according to their non-
perturbative character, this would mean to solve exactly the involved theories. Rather,
evidence for a duality between two theories typically emerges from the matching of their
BPS spectra, LEEA and supersymmetries. BPS states are invariant under a fraction of
supersymmetry and have a mass m equal to the central charge |z|, saturating the BPS
bound m ≥ |z|. Since this property is related to the supersymmetry algebra only, these
states are expected to be stable under any change in the free parameters of the theory,
generically called moduli, and can therefore be used to infer duality relations even when the
latter involve a map which changes dramatically the moduli. A first kind of duality are the
so-called non-perturbative S-dualities, which are generalizations of electric-magnetic duality
[22, 23, 24, 25]. They connect two theories whose couplings are related by a duality map,
and typically weak coupling in one of the theory is mapped to strong coupling in the other.
Important examples of the latter are the strong-weak coupling duality between Type I and
SO(32) Heterotic theories in ten dimensions [26, 27, 28, 29], and between the Type IIA
theory compactified on K3 and the Heterotic theory compactified on T 4 [30, 31, 32, 33, 34].
There is also a conjectured SL(2,ZZ) self-duality of the Type IIB theory in ten dimensions
[30] which generalizes the corresponding symmetry of the Type IIB supergravity equations
of motion [35, 36, 37, 38]. Another important class of duality are the so-called perturba-
tive T-dualities [39]. In this case, the duality map inverts all the compactification radii
(Ri → α′/Ri) and exchanges Kaluza-Klein and winding modes, but affects only in a multi-
plicative way the coupling (gs → gs

√
α′/R). These dualities can be proven to all orders in

perturbation theory and relate for examples the two Type II theories or the two Heterotic
theories when compactified on T n. Finally, a more general kind of duality containing S
and T-duality, called U-duality, has been proposed [30]. All string dualities correspond to
the quantum realization of a discrete subgroup of some continuous global symmetry of the
LEEA. In the SUGRA context, these symmetries have been known for a long time under
the name of hidden symmetries and have been extensively studied [40, 41]. They correspond
simply to the allowed isometries of the scalar manifold.

Another very important ingredient in defining a fundamental theory underlying the
five perturbative string theories is the fact that D=10 Type IIA SUGRA can be obtained
[40, 42, 43, 44, 45] from dimensional reduction of D=11 SUGRA [46]. Actually, upon this
geometric compactification on a circle, one obtains also a tower of Kaluza-Klein modes
which are BPS states with mass mn = |n|/R11 and charge qn = n/R11. The ten and eleven-

dimensional couplings κ(10) ∼ l4s and κ(11) ∼ l
9/2
11 are related through the compactification

radius R11: κ(11)/κ(10) =
√

2πR11. Moreover, since the D=10 SUGRA action has an e−2φ

dependence on the dilaton φ, the effective ten-dimensional coupling is actually gsκ(10), and
a precise analysis of the compactification metric shows that the eleven-dimensional radius

and length scale are given by R11 = gsls and l11 = g
1/3
s ls in terms of the string coupling

gs and length scale ls [26]. This leads to the crucial observation that the strong coupling
regime of D=10 Type IIA SUGRA is described by D=11 SUGRA. In fact, for gs → 0
all the infinite Kaluza-Klein modes become a continuum of massless states, signaling the
opening of the eleven-th dimension. Lifting this statement from the LEEA up to the level
of string theory, this means that the strong coupling of Type IIA superstring theory is
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described by some mysterious eleven-dimensional theory, called M theory, whose LEEA is
D=11 SUGRA [47, 26, 48]. Using the various dualities relating the Type IIA theory to the
other four perturbative string theories, it becomes clear that M theory can be thought as
a fundamental and non-perturbative theory which reduces in various corners of its moduli
space to D=11 SUGRA or one of the five perturbative superstring theories, as depicted in
the now famous hexagon figure of dualities. An extremely important issue is to understand

M theory

Type IIA Type IIB

Type I D=11 SUGRA

Het SO(32) Het E8 × E8

the nature and the role of Kaluza-Klein modes arising from eleven dimensions, both in
SUGRA and in string theory. It is worth to recall that their identification with massive
string states has been ruled out long ago for a number of reason. In particular, they
carry a non-vanishing Ramond-Ramond (RR) charge, whereas string states carry Neveu-
Schwarz-Neveu-Schwarz (NSNS) charge but couple only non-minimally to the RR field-
strengths. In the SUGRA context, there exist solitonic p-extended solutions called p-branes
[49, 50, 51] (see also [52, 53]), both with RR and NSNS charges. They are black-hole-
like BPS configurations with a tension proportional to 1/g2

s for the NSNS ones which are
ordinary solitons, and to 1/gs only for the RR ones. In particular, RR p-branes have a charge
µp with respect to the RR (p+1)-form C(p+1), and since the latter are related by Hodge-
duality, ∗F(p) = F(10−p), low-dimensional p-brane can be considered as electrically charged
with respect to C(p+1) and high-dimensional p-brane as magnetically charged with respect
to C(7−p) if one chooses the low-dimensional forms as fundamental degrees of freedom. It is

moreover convenient to define µ̂p as the charge in inverse units of
√

2κ(10), so that the true

charge is µp = µ̂p/(
√

2κ(10)). Dirac’s quantization condition, appropriately generalized to
extended objects [54, 55], then requires that µ̂pµ̂6−p = 2πn for consistency of the theory at
the quantum level, so that the allowed charges µp for p-branes are quantized. This allows
the tantalizing identification of solitonic 0-branes with Kaluza-Klein modes [47, 26].

At the string level, it is natural to expect the appearance of solitonic states whose
LEEA counterparts are p-branes. A major difficulty that one has then to face is to fit these
non-perturbative states into the conformal field theory (CFT) defining perturbative string
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theory. This has been possible due to the extremely important observation [56] that p-branes
correspond in string theory to topological hyper-plane defects on which string world-sheets
can end through a boundary [57, 58]. Since this corresponds to choosing Dirichlet rather
than traditional Neumann boundary conditions for the fields in the world-volume directions,
these stringy generalizations of p-branes have been called Dp-branes (see [59, 60, 61, 62]).
These objects exists in the Type I theory with p=5,9 and in the Type IIA and Type IIB
theories for p even and odd respectively, where they couple to the corresponding RR (p+1)-
forms. Dp-branes are BPS states preserving half of the supersymmetry, with a charge
density µp which is equal to their tension. They carry the elementary quanta of RR charges
µ̂p =

√
2π(2π

√
α′)3−p in inverse units of

√
2κ(10), which satisfy the Dirac quantization

condition with the minimum allowed integer n = 1. As before, the true charge is µp =
µ̂p/(

√
2κ(10)). Also, due to the e−φ dependence of its effective action, the Dp-brane has

an effective tension proportional to 1/gs as for the RR p-brane solitons of supergravity.
This gives further evidence for the identification of Dp-branes as the stringy version of p-
branes. In particular, since the Kaluza-Klein modes of D=10 Type IIA SUGRA have been
identified with solitonic 0-branes at the quantum level, it follows that the corresponding
objects in string theory are D0-branes, which play indeed a very important role. More
precisely, the n-th Kaluza-Klein mode carries n units of fundamental quantum charge and
is therefore identified with the threshold bound state of n D0-branes. These bound-states
of zero binding energy are BPS states with m=q and their existence as genuine quantum
states [63, 64] is crucial for the identification to be possible.

The discovery of D-branes and a powerful and efficient CFT description of them has
opened the possibility of studying non-perturbative aspects of string theory, like O(e−1/gs)
effects that where expected from large order in string perturbation theory [65] and rec-
ognized to be related to boundary effects [66]. Another extremely important theoretical
issue is related to the black hole nature of D-branes. Since the first disappointments with
the quantum version of Einstein’s theory, it has been been accepted that general relativ-
ity should be the LEEA of some microscopic theory like string theory. This belief is also
strongly sustained by the discovery that black holes, which can be considered in some sense
as solitonic solutions of Einstein’s theory, are actually thermodynamical objects with a
non-vanishing temperature [67] and entropy [68, 69, 70]. The study of black holes and their
thermodynamics is therefore of extreme importance and should allow to test significantly
(and non-perturbatively) string theory, probably more than any possible future high-energy
particle physics experiment. In fact, one of the most exciting and significant successes of
string theory is the microscopic explanation of the entropy of extremal black holes as a
statistical entropy associated to its microscopic stringy constituents (see [71]). In much the
same way as singular p-brane solitons are described in string theory by D-branes, the string
theory description of regular point-like black holes is generically given in terms of several
D-branes wrapped in various way on the compact part of spacetime, possibly with mass-
less open-string stretched between them. The statistical entropy of the resulting composite
object is associated to the degeneracy of microscopic states yielding the same macroscopic
properties like mass and charge, and correctly reproduces the Hawking-Beckenstein area
low (even the correct numerical factor comes out).

M theory is strongly suspected [47] to be the theory of a supermembrane [72, 73], whose
world-volume action is known to reproduce the Green-Schwarz action of the Type IIA su-
perstring by double (world-sheet and spacetime) dimensional reduction [74]. Unfortunately,
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the quantization of the eleven-dimensional supermembrane presents some extremely sub-
tle aspects and has not yet been accomplished. The key point seems to be the infinite
dimensional symmetry group of area-preserving diffeomorphisms that is responsible for de-
coupling of ghost modes. This admits a finite dimensional SU(N) regularization which
allows to formulate the theory in the light-cone gauge as the large N limit of U(N) max-
imally supersymmetric quantum mechanics (SQM) [75, 76], which can also be thought as
the dimensional reduction of D=10 SYM theory to D=1 (see also [77, 78]). This is one
of the arguments that have led to the matrix model conjecture [79], according to which
M theory in the infinite momentum frame admits a parton description with a dynamics
governed by U(N) SQM in the limit of infinite number N → ∞ of partons (for a review
see [80, 81, 82]). Furthermore, it has been established [83, 84] that this matrix theory has
a meaning even for finite N and describes the discrete light-cone quantization of M theory
compactified on a light-like circle Rl at fixed p− = N/Rl. An important point of the conjec-
ture is the identification of the partons with D0-branes. This is suggested by the fact that
the short-distance dynamics of a cluster of N of them is known to be governed precisely
by U(N) SQM [85]. The appearance of the eleven-dimensional Plank scale in D0-brane
quantum mechanics [86, 87, 88, 89] was indeed one of the most important ingredients in the
formulation of matrix theory.

Because of these recent developments, it has become more and more clear that D-branes
represent an important opportunity to learn about non-perturbative aspects of string theory.
For instance, the distinction between Type I (containing also open strings) and Type II the-
ories (containing only closed strings) is no longer really sensitive in a D-brane background,
in which both types of theories can have open strings ending on D-branes. In the modern
language, these theories are referred to as theories with D-branes, and ordinary Type I
theory is simply a theory with D9-branes (i.e. open strings are free to end everywhere since
a D9-brane has a world-volume occupying all ten-dimensional spacetime). In particular,
the study of their string theory dynamics [90] has proven to be an extremely rich source of
information. For instance, interesting and important relations between SUGRA and SYM
effective actions at long and short distances have emerged in this context. A fundamental
issue in the study of D-brane dynamics is the determination of their effective world-volume
action in a generic SUGRA background, which encodes the couplings of D-branes as sources
of massless fields of string theory. This is determined at leading order in the string coupling
gs by a string world-sheet with the topology of a disk attached to the D-brane. It represents
the tree-level effective action induced by open string fluctuations, to be interpreted as the
propagation of a virtual open string first appearing and then disappearing on the D-brane.
Higher order corrections in gs are instead associated with more complicated world-sheets,
possibly with holes and all boundaries attached to the D-brane. Another important issue
is the study of interactions between two D-branes, and the determination of the effective
action governing their dynamics. This is given at leading order in the string coupling gs
by a string world-sheet with the topology of a cylinder connecting the two D-branes. In
Euclidean signature, this world-sheet can be interpreted either as a loop of open strings
stretched between the two D-branes or as a tree-level exchange of closed strings emitted by
one of the D-branes and absorbed by the other. The corresponding interaction can there-
fore be considered equivalently as a one-loop effective action obtained by integrating out
open string vacuum fluctuations or the tree-level effective interaction obtained by taking
into account closed string exchange. Higher order corrections come from more complicated
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world-sheets with all boundaries lying on one of the two D-branes and possibly containing
also holes. This open-closed string duality is not peculiar to the cylinder world-sheet but is
in fact a particular example of the more general fact that a generic Euclidean world-sheet
can be interpreted in different way by changing the time slicing. This was noted long ago in
the context of Neumann boundaries [91, 92, 93], but it is really only for Dirichlet boundaries
that this arguments acquires a physical significance, beside its mathematical convenience.
In particular, a powerful formalism called boundary state formalism has been developed
[94, 95, 96, 97] to treat boundaries, which are naturally associated with open strings, from
a closed string point of view. The main idea is that the boundary itself can be regarded as
a closed string coherent state, the boundary state, implementing the boundary conditions.
This state is obtained essentially by a Bogoliubov transformation on the closed string Fock
vacuum, and represents the couplings of the boundary to closed strings.

In this work, we study various aspects of D-brane dynamics in superstring theory, using
mainly the boundary state formalism to analyze string amplitudes with one or two bound-
aries ending on D-branes. In Chapter 1 we recall some basic concepts of modern superstring
theory, focusing on those aspects which are most relevant to D-branes and the understand-
ing of their basic properties. In Chapter 2 we review in some detail the basic computations
of the phase-shift for static and moving D-branes, focusing one the Dp-Dp and Dp-D(p+4)
systems preserving 1/2 and 1/4 of the supersymmetries [56, 90, 98]. In Chapter 3, we give a
brief introduction to the boundary state formalism, discussing in general its properties and
its utility in studying D-branes. In Chapter 4, we study point-like D-brane configurations in
D=4 Type II compactifications which are particularly interesting as potential microscopic
descriptions of various D=4 black holes. We concentrate on T 6, T 2 × T 4/ZZ2 and T 6/ZZ6

compactifications, whose LEEA is D=4 SUGRA with N=8, 4 and 2 supersymmetry. We
first study the interactions between two of these point-like D-brane configurations in the
boundary state formalism [99], focusing on the interesting cases of the dimensionally re-
duced D0-brane and the wrapped D3-brane. We then study the probability amplitude for
the emission of a massless closed string state from two of these configurations in interaction
[100], focusing on the four-dimensional axion, dilaton and graviton arising in the NSNS sec-
tor. The computation involves the evaluation of the one-point function of the corresponding
vertex operator on the cylindrical world-sheet connecting the two D-branes, which we carry
out again in the boundary state formalism. Both analysis show that the dimensionally re-
duced D0-brane represents a singular extremal dilatonic solution of the relevant low-energy
SUGRA, charged under the various scalar and vector fields of the theory, with no horizon
and vanishing entropy. Similarly, the D3-brane wrapped on T 6 and T 2 × T 4/ZZ2 represents
charged singular solutions of the corresponding N=8 and N=4 SUGRA in D=4. The D3-
brane wrapped on T 6/ZZ6 does instead not couple to any scalar of the relevant D=4 N=2
SUGRA, and therefore represents a regular Reissner-Nordström black hole solution with a
finite horizon and a non-vanishing entropy. In Chapter 5, we address more in detail the
issue of identifying four-dimensional point-like configurations with black hole solutions of
the appropriate D=4 SUGRA. We first study magnetic properties in order to determine
the possible magnetic charges inherited by the point-like configurations. After recalling
some basic concepts about the interactions of generic dyonic extended objects, we propose
a precise way of computing electromagnetic interactions between magnetically dual Dp and
D(6−p)-branes in string theory [101], and show that the electric and magnetic interactions
are encoded in the even and odd RR spin-structures arising in the RR sector as a conse-
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quence of the GSO-projection. We then apply this general description to the D3-brane, both
in ten dimensions and wrapped on T 6 and T 6/ZZ6. By studying the couplings appearing in
the electric and magnetic interactions, we determine the D=4 electric and magnetic charges
of the point-like configurations, which are related to the orientation of the D3-brane in the
compact part of spacetime. On T 6 we find a four-parameter family of singular dyonic black
holes of D=4 N=8 SUGRA, whereas on T 6/ZZ3 we find a one-parameter family of regular
dyonic black holes of D=4 N=2 SUGRA. We then discuss the construction of an explicitly
solution of D=10 SUGRA corresponding to a 3-brane wrapped on a 3-cycle of a generic
CY threefold MCY

3 and, specializing to the limit MCY
3 = T 6/ZZ3, we show that it repre-

sents indeed a regular R-N black hole from the four-dimensional point of view [102]. We
also deduce the couplings to massless fields in the string theory description by computing
the overlap of the corresponding closed string state with the boundary state describing the
wrapped D3-brane, finding the same values for the four-dimensional electric and magnetic
charges as those extracted from the computation of electromagnetic phase-shifts. We also
give a geometric interpretation of the angle parameterizing the charges within the previ-
ously constructed SUGRA solution. Finally, in Chapter 6 we study the spin dependence of
the interactions between two moving D-branes using the boundary state formalism in the
Green-Schwarz formulation of superstring theory. We focus our attention on the leading
terms for small velocities v, which are found to behave as v4−n/r7−p+n and v2−n/r3−p+n

for the Dp-Dp and Dp-D(p+4) systems [103]. These leading interactions are completely
determined by the fermionic zero modes, the contributions of massive non-BPS states can-
celing by supersymmetry. This implies the scale-invariance of these leading spin-effects, and
supports the equivalence between the SYM and SUGRA descriptions of D-brane dynamics
[104]. We compute also one-point functions of massless fields encoding all the non-minimal
spin-dependent couplings, and give a detailed field theory interpretation of our results. We
conclude by arguing that the matching between the SYM and SUGRA truncations for one-
loop leading interactions is dictated by supersymmetry, which determines them completely
without leaving any dynamical freedom.

11



Chapter 1

Superstrings and D-branes

In this chapter, we recall some generalities about superstrings and D-branes in the covariant
formulation. In particular, we review how D-branes arises as as hyper-planes on which
string world-sheets can end through a Dirichlet boundary. We also discuss T-duality and
its important consequences in the context of D-branes.

1.1 Strings

In the Ramond-Neveu-Schwarz (RNS) covariant formulation, the superstring action in a
flat Minkowski background and in the conformal gauge reads

S0 = − 1

4πα′

∫

Σ
d2σ

(

∂αX
µ∂αXµ + iα′Ψ̄µ/∂Ψµ

)

, (1.1)

where Σ denotes the (Euclidean) two-dimensional world-sheet with coordinate σ1 and σ2

and µ runs from 0 to 9. The coordinates Xµ in ten-dimensional target-space are world-sheet
scalars, whereas the internal spin degrees of freedom Ψµ

a are two-component Majorana world-
sheet spinors which can be decomposed into one-dimensional Majorana-Weyl components as

Ψµ
a =

(

ψµ

ψ̃µ

)

. The theory has N=1 or N=2 world-sheet superconformal symmetry depending

on Σ. The equations of motion are obtained by setting the variation of this action with
respect to Xµ and ψµ, ψ̃µ to zero. The variation has a bulk and a boundary term:

δS0 =
1

2πα′

∫

Σ
d2σ

(

δXµ2X
µ + iα′δΨµ/∂Ψµ)

+
1

2πα′

∮

∂Σ
dσαǫ

αβ (δXµ∂βX
µ + iα′δψµρβΨ

µ) . (1.2)

In order make this to vanish without ruining locality, the integrands of the bulk term and
each of the boundary terms have to be separately zero.

The bulk equations of motion are the usual Laplace and Dirac equations on Σ

2Xµ = 0 , (1.3)

/∂Ψµ = 0 . (1.4)

The boundary equations of motion can be solved in two different ways. For the bosons, one
can set either the normal derivative ∂nX

µ or the variation δXµ to zero on the boundary.

12



This two choices are referred to as Neumann (N) and Dirichlet (D) boundary conditions
(b.c.) respectively. The former amount to set the momentum flowing out of the boundary
to zero, whereas the latter corresponds to fix the end-points at some fixed value Y µ for the
coordinate, which is also equivalent to requiring that the tangential derivative ∂tX

µ be zero
on the boundary. Summarizing,

∂nX
µδXµ|∂Σ = 0 ⇒

{

∂nX
µ|∂Σ = 0 N

∂tX
µ|∂Σ = 0 D

. (1.5)

For the fermions, one has to identify the two chiral components up to a sign. The two
possibilities correspond therefore to equal (+) and opposite (−) sign b.c.

ψµδψ
µ − ψ̃µδψ̃

µ
∣

∣

∣

∂Σ
= 0 ⇒











ψµ = ψ̃µ
∣

∣

∣

∂Σ
+

ψµ = −ψ̃µ
∣

∣

∣

∂Σ
−

. (1.6)

As we will see, an important features shared both by N and D b.c. for the bosons and +
or − b.c. for fermions, is that they identify two otherwise independent components of the
corresponding fields with a ± sign. For a number of reasons, it is natural to associate the
N and D bosonic b.c. respectively with the + and − fermionic b.c.. In this way, choosing
say the first p+1 coordinates Xα and fermions ψα to be N and +, and the remaining 9−p
coordinates Xi and fermions ψi to be D and −, the original SO(9,1) Lorentz invariance
of the theory is broken to SO(p,1) × SO(9−p), corresponding to a flat (p+1)-dimensional
topological defect: a Dp-brane. A crucial feature emerging from this setting is that end-
points of strings can move only in the (p+1)-hyperplane corresponding to the Dp-brane.

1.1.1 Open strings

Consider for instance a world-sheet like in Fig. 1.1 with the topology of a strip, with
coordinates τ running from −∞ to ∞ and σ from 0 to π, representing the propagation of
an open string. Using the notation z, z̄ = τ ± iσ, and correspondingly ∂, ∂̄ = 1/2(∂τ ± i∂σ),

τ

σ

Figure 1.1: The propagation of an open string.

the bulk equation of motion imply the usual splitting of the fields in left and right movers

∂∂̄Xµ = 0 ⇒ Xµ = Xµ(z) + X̃µ(z̄) , (1.7)

∂ψµ = ∂̄ψ̃µ = 0 ⇒ ψ = ψ(z) , ψ̃ = ψ̃(z̄) . (1.8)
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At each of the two boundaries, one can then choose N or D b.c. for the bosons and + or −
b.c. for the fermions. The N,D and ± b.c. can be rewritten as

{

∂Xµ = ∂̄X̄µ|∂Σ N

∂Xµ = −∂̄X̄µ|∂Σ D
,











ψµ = ψ̃µ
∣

∣

∣

∂Σ
+

ψµ = −ψ̃µ
∣

∣

∣

∂Σ
−

. (1.9)

Therefore, the b.c. identify left and right movers up to a sign, independently on each
connected component of the boundary ∂Σ.

For generality, suppose that the two boundaries at σ = 0, π end on a Dp and a Dq-brane
respectively. Correspondingly, various combinations of b.c. arise both for the bosons and
the fermions. The bosonic coordinates satisfy NN, DD, ND or DN b.c. depending on if they
belong or not to the world-volumes of the Dp and the Dq-branes. The mode expansion for
Xµ in these four cases is given by the following expressions

Xµ =































































xµ − 2iα′pµτ + i

√

α′

2

∑

n∈ZZ

αµn
n

(

e−nz + e−nz̄
)

, NN

Y µ
0 +

Y µ
0 − Y µ

π

π
σ + i

√

α′

2

∑

n∈ZZ

αµn
n

(

e−nz − e−nz̄
)

, DD

Y µ
0,π + i

√

α′

2

∑

n∈ZZ± 1
2

αµn
n

(

e−nz + e−nz̄
)

, DN,ND

. (1.10)

xµ and pµ are the center of mass position and momentum operators and satisfy the canonical
commutation relation [xµ, pµ] = iηµν , whereas the modes αµn satisfy [αµm, α

ν
n] = mδm+nη

µν .
For the fermions, the b.c. can be either ++, −−, +− or −+. The overall sign between left
and right mover is a matter of definition since it can be changed by a field redefinition, so
that only the relative sign between the two boundaries is relevant. Let us therefore choose
as starting convention to associate the ± fermionic b.c. to N,D bosonic b.c. respectively,
in agreement with superconformal and broken Lorentz invariance. There is then still the
freedom of changing the relative sign between the two boundaries. We shall refer with R
and NS to the sectors respectively with and without an additional flip in the relative sign.
With these conventions, ψµ has integer moding for NN and DD directions and half-integer
moding for ND and DN directions, in the R sector, and vice versa in the NS sector. Notice
that in this way the moding of the fermions in the R and NS sectors is always respectively
equal and opposite to that of the bosons. The fermion mode expansion is generically

ψµ =
√
α′
∑

n

ψµne
−nz , (1.11)

ψ̃µ =
√
α′
∑

n

ψµne
−nz̄ . (1.12)

with appropriate moding and {ψµm, ψνn} = δm+nη
µν .

The Fock space is constructed by acting with negative frequency modes on a vacuum |0〉
annihilated by all the positive frequency modes. Whenever fermions have integer moding,
there are fermionic zero modes ψµ0 satisfying the Clifford algebra {ψµ0 , ψν0} = ηµν . The
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vacuum |0〉 then becomes a 32-dimensional SO(9,1) spinor representation of this algebra,
with the fermionic zero modes acting as Γ-matrices, ψµ0 = Γµ/

√
2. In the sectors where

fermions have half-integer moding, the vacuum |0〉 is instead a scalar. The world-sheet
Hamiltonian can be written as the sum of a zero mode and an oscillator parts

H = H0 +Hosc . (1.13)

The zero mode part depends on the b.c.

H0 =































α′

2
p2 , NN

α′

2

(

∆Y

πα′

)2

, DD

0 , ND,DN

. (1.14)

In the NN case, it represents the kinetic energy due to the center of mass motion, whereas
in the DD case, it accounts for the potential energy due to the stretching form Y µ

0 to Y µ
π ,

proportional to the distance ∆Y = |Y µ
0 − Y µ

π |. The oscillator part can be written in a
universal way as

Hosc = N − a , (1.15)

where
N =

∑

n>0

(α−n · αn + nψ−n · ψn) (1.16)

is the excitation level, with appropriate moding, and a is the total normal-ordering zero-
point energy. The contributions to a from a single physical boson and fermion is −1/24
and 1/24 for integer moding, and 1/48 and −1/48 for half-integer moding.

Consider in particular the purely Neumann standard open string theory, that is open
strings whose end-points live on a D9-brane. In this case, world-sheet fermions have integer
and half-integer moding in the R and NS sectors respectively. The R ground state is a
spacetime spinor, whereas the NS one is a scalar, so that R and NS states are spacetime
fermions and bosons respectively. The total normal ordering constant a is equal to 0 and
−1/2, so that the lowest lying NS mode is tachyonic. The GSO projection is implemented
through the projection P = 1/2(1 + (−1)F ). It achieves spacetime supersymmetry and
projects out the tachyon by keeping only the states with even world-sheet fermion num-
ber. The lowest lying modes of each sector are massless and fill the following irreducible
representations of the SO(8) little group:

Type I

NS : 8v ⇔ Aµ

R : 8s ⇔ ψα

(1.17)

In total, one has therefore a massless vector multiplet. The LEEA for this light mode is
N=1 D=10 SYM, and is completely determined by supersymmetry

S =
1

g
(10)2
YM

∫

d10x

(

−1

4
FµνF

µν +
i

2
ψ̄/∂ψ

)

, (1.18)
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with
g
(10)
YM =

√
gs(2π)

7
2α′ 32 ∼ √

gsl
3
s . (1.19)

Actually, SYM theory is not renormalizable in ten dimensions, so that it cannot be pro-
moted to a consistent microscopic theory. Rather, it can be used consistently only up to
some cut-off energy scale of the order of the string mass ms = 1/

√
α′. At higher energies,

α′-corrections to the LEEA coming from integrating out virtual massive string modes and
entering through higher-dimensional operators involving the scale α′, become important.
The determination of these α′-corrections is a long-standing problem, which can be faced
in a number of different way. One can for example reconstruct order by order the effective
action by requiring it to reproduce the tree-level (disk) n-photons correlation functions com-
puted in string theory. In principle, one could also compute the generating functional for
such correlation functions by directly evaluating the Polyakov path-integral on a disk with
a generic electromagnetic background coupling to the end-points of open strings, which
amounts to exponentiate the photon vertex-operator. This can be done exactly in the
constant field approximation, which is the lowest order approximation of a derivative ex-
pansion and corresponds to resum all the α′-corrections with at most second derivatives.
One obtains a non-linear Born-Infeld generalization of the SYM theory [105, 106]

S = −T9

gs

∫

d10x
√

− det (ηµν + 2πα′Fµν) + ferm. , (1.20)

with

T9 =
√
α′−1 (

2π
√
α′
)−9

∼ l−10
s . (1.21)

It is worth mentioning that there exists an very interesting connection between the open
string LEEA and dissipative quantum mechanics (DQM) [96, 107, 108] (see also [109, 110]).
DQM can be introduced by coupling a particle with ordinary dynamics to a bath of infinite
harmonic oscillators with a linearly growing frequency spectrum, which once integrated out
leave an effective dissipation term [111]. It is quite obvious that the same is happening
the the end-point of the string. Since the electromagnetic background only couples to the
end-points of the open string, one can evaluate the path-integral by first integrating out
the free bulk oscillations. One is then left with a path-integral over the end-points with
a dissipative dynamics on all of the ten coordinates, which then yields immediately the
Born-Infeld Lagrangian. Yet another way to determine the exact LEEA is to require the
interacting σ-model for a generic electromagnetic background to be at a conformal fixed-
point. This can be implemented at lowest order by require the vanishing of the β-function,
obtaining the same Born-Infeld Lagrangian [112].

When some of the ten directions are Dirichlet, say the last 9−p so that the end-points
of the open strings now live on a Dp-branes, all the discussion goes through essentially in
the same way. As already explained, ten-dimensional Lorentz invariance SO(9,1) is broken
to SO(p,1) × SO(9−p) so that one can imagine the theory as effectively living in the (p+1)-
dimensional world-volumes of the Dp-branes, with and SO(p,1) Lorentz invariance and an
SO(9−p) global R-symmetry inherited from the invariance of the theory under transverse
rotations. It is a straightforward exercise to determine how the lowest lying massless modes
of each sector transform under the Lorentz and R-symmetry groups. One obtains precisely
the content corresponding to the dimensional reduction of a D=10 vector multiplet to
D=p+1 dimensions. In particular, the ten-dimensional vector field living on the D9-brane
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of the standard Type I theory splits into a (p+1)-dimensional vector Aµ living on the Dp-
brane and 9−p scalar fields qi. The LEEA for these light modes is therefore N=1 SYM
reduced from D=10 to D=p+1, and is again completely determined by supersymmetry

S =
1

g
(p+1)2
YM

∫

dp+1x

(

−1

4
FµνF

µν − 1

2(2πα′)2
∂µq

i∂µqi
)

+ ferm. , (1.22)

with

g
(p+1)
YM =

√
gs(2π)

p−2
2 α′ p−3

2 ∼ √
gsl

p−3
2

s . (1.23)

As before, there are α′-prime corrections to this LEEA, which in the constant field approx-
imation yield again a non-linear Born-Infeld generalization of the SYM theory

S = −Tp
gs

∫

dp+1x
√

− det (ηµν + ∂µqi∂νqi + 2πα′Fµν) + ferm. , (1.24)

with
Tp =

√
α′−1 (

2π
√
α′
)−p

∼ l−(p+1)
s . (1.25)

Finally, some of the ten directions can have mixed ND or DN b.c.. This happens for
example when for open strings stretched between a Dp and a Dq-brane. In this case the
analysis is some what more involve and one finds typically hypermultiplets in an N=1 SYM
theory reduced from D<10 to D=p+1 (see [113]).

1.1.2 Closed strings

Before going on, it is worth recalling the basic properties of closed strings in absence of
branes. Since in this case there are no boundaries on the world-sheet, left and right moving
degrees of freedom remain completely independent. Consider in particular a world-sheet
with the topology of a cylinder like in Fig. 1.2, with τ running from −∞ to ∞ and σ from
0 to 2π. Using as before the notation z, z̄ = τ ± iσ, the equations of motion again imply

σ

τ

Figure 1.2: The propagation of a closed string.

the splitting of the fields in left and right movers

∂∂̄Xµ = 0 ⇒ Xµ = Xµ(z) + X̃µ(z̄) , (1.26)

∂ψµ = ∂̄ψ̃µ = 0 ⇒ ψ = ψ(z) , ψ̃ = ψ̃(z̄) . (1.27)

The bosonic coordinates must be periodic in σ and have therefore integer moding

Xµ = xµ − 2iα′pµτ + i

√

α′

2

∑

n∈ZZ

1

n

(

αµne
−nz + α̃µne

−nz̄) . (1.28)
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As before [xµ, pµ] = iηµν and the modes αµn and α̃µn satisfy the usual commutation relation
[αµm, α

ν
n] = [α̃µm, α̃

ν
n] = mδm+nη

µν . Each chiral component of the fermions can instead
be either periodic (R) with integer moding or antiperiodic (NS) with half-integer moding.
There are therefore four sectors, RR, NSNS, RNS and NSR, corresponding all the possible
choices. The mode expansion is generically

ψµ =
√
α′
∑

n

ψµne
−nz , (1.29)

ψ̃µ =
√
α′
∑

n

ψ̃µne
−nz̄ , (1.30)

with appropriate moding. The commutation relations are {ψµm, ψνn} = {ψ̃µm, ψ̃νn} = δm+nη
µν .

The closed string Fock space is essentially the tensor product of two open string Fock
spaces for the left and right-moving sectors. Again, it is constructed by acting with negative
frequency modes on a vacuum |0〉 ⊗ |0̃〉 annihilated by all the positive frequency modes.
Depending on the sector, |0〉 and |0̃〉 are either SO(9,1) spinors or scalars, and as before,
fermionic zero modes act as gamma matrices, ψµ0 = Γµ/

√
2, ψ̃µ0 = Γ̃µ/

√
2. The world sheet

Hamiltonian can again be written as the sum of a zero mode and an oscillator parts,

H = H0 +Hosc , (1.31)

with

H0 =
α′

2
p2 (1.32)

and
Hosc = N − a+ Ñ − ã . (1.33)

Here

N =
∑

n>0

(α−n · αn + nψ−n · ψn) , (1.34)

Ñ =
∑

n>0

(

α̃−n · α̃n + nψ̃−n · ψ̃n
)

, (1.35)

are, with appropriate moding, the left and right excitation levels subject to the level-
matching condition N = Ñ , and a and ã represent the total left and right normal-ordering
zero-point energies.

The left and right R ground states are spacetime spinors, whereas the NS ones are
scalars, so that RR and NSNS states are spacetime bosons, whereas RNS and NSR states
are spacetime fermions. The total normal-ordering constants a and ã are equal to 0 and
−1/2 for R and NS b.c., so that the lowest lying RNS, NSR and NSNS modes are tachyonic.
The GSO projection is implemented independently in the left and right sectors as for the
open string, P = 1/2(1 + (−1)F ), P̃ = 1/2(1 + (−1)F̃ ). Again, it achieves spacetime
supersymmetry and projects out the tachyons by keeping only the states with even left
and right world-sheet fermion number. Since the R spacetime chirality choice for the P
and P̃ projections is arbitrary, there are two distinct consistent theories, with negative and
positive left-right relative chirality. These theories are called Type IIA and Type IIB, and
are globally non-chiral and chiral respectively. The irreducible representations of the little
group SO(8) filled by the lowest lying massless modes of the two versions of the theory can
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be deduced by tensoring those found for Type I open strings, Eq. (1.17). One finds the
following content

Type IIA

NSNS : 8v ⊗ 8v = 1 ⊕ 28 ⊕ 35v ⇔ φ , bµν , gµν

RR : 8s ⊗ 8c = 8v ⊕ 56v ⇔ Cµ , Cµνρ

NSR : 8v ⊗ 8c = 8s ⊕ 56c ⇔ λ1
α , ψ1µ

α

RNS : 8s ⊗ 8v = 8c ⊕ 56s ⇔ λ̃2
α , ψ̃2µ

α

(1.36)

and
Type IIB

NSNS : 8v ⊗ 8v = 1 ⊕ 28 ⊕ 35v ⇔ φ , bµν , gµν

RR : 8s ⊗ 8s = 1 ⊕ 28 ⊕ 35t ⇔ C , Cµν , C+
µνρσ

NSR : 8v ⊗ 8s = 8c ⊕ 56s ⇔ λ1
α , ψ1µ

α

RNS : 8s ⊗ 8v = 8c ⊕ 56s ⇔ λ2
α , ψ2µ

α

(1.37)

In total, one has therefore the non-chiral and chiral massless gravitational multiplets. The
LEEA for this light mode is N=2A,B D=10 SUGRA, and is again completely determined
by supersymmetry. Its generic form is

S =
1

2κ2
(10)

∫

d10x
√
ge−2φ

[

(

R+ 4∂µφ∂
µφ− 1

12
HµνρH

µνρ
)

−
4
∑

n=0

1

2n!
F (n)
µ1...µn

Fµ1...µn

(n)

]

+ferm. , (1.38)

where the rank n of the RR field strengths F(n) is even or odd for Type IIA and Type IIB
and

κ(10) =
1√
2
(2π)

7
2α′2 ∼ l4s . (1.39)

Actually, there is a subtlety for the self-dual 4-form of the Type IIB theory. In fact, the
self-duality constraint makes the usual action to vanish, so that there is, strictly speaking,
no simple action reproducing the constrained equations of motion. One can nevertheless
decide to use for simplicity the conventional unconstrained kinetic term and impose the self-
duality condition as a true constraint. As for open strings, the LEEA for massless modes
can be reconstructed in various way. The action Eq. (1.38) can in this case be determined
only to leading order in α′. This can be done most easily by computing tree-level (sphere)
n-supergraviton correlation functions in string theory [114], where by supergravitons we
mean here and in the following any of the massless particles of SUGRA. Equivalently, Eq.
(1.38) can be deduced, at least for NSNS part, by requiring conformal invariance through
the vanishing of the β-function of the non-linear σ-model describing string propagation in a
general curved spacetime [115, 116]. One can also face the problem in its whole generality by
trying to compute directly the Polyakov path-integral on the sphere yielding the generating
functional at leading order in the string coupling constant gs [117]. However, due to the
non-linear coupling to the gravitational background, it is not possible in this case to obtain
and α′-exact result similar to the Born-Infeld Eq. (1.20) action for open strings, and the
best one can do is a heat-kernel expansion in α′. The effective action Eq. (1.38) contains
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a factor e−2φ corresponding to the sphere topology. Since gs = 〈eφ〉, the effective coupling
is therefore the product gsκ(10). In the RR sector, the dilatonic factor has been reabsorbed

into the fields, C(p+1) → eφC(p+1) in order to get the usual Maxwell equations and Bianchi
identities even for non-trivial dilaton backgrounds. In the NSNS sector instead, this is not
necessary. These field definitions correspond to the so-called string frame. For practical
calculation, it is convenient to reabsorb the dilatonic factor in the Einstein term, in order
to avoid the mixing between dilaton and graviton porpagators. This is achieved in the
so-called Einstein frame by rescaling the metric, gEµν = e−φ/2gSµν . The effective action in
the Einstein frame is

S =
1

2κ2
(10)

∫

d10x
√
g

[

(

R− 1

2
∂µφ∂

µφ− 1

12
e−φHµνρH

µνρ
)

−
4
∑

n=0

1

2n!
e

5−n
2
φF (n)

µ1...µn
Fµ1...µn

(n)

]

+ferm. . (1.40)

An important characteristic of this action is the presence of non-minimal exponential cou-
plings of the dilaton to the RR gauge forms and the NSNS Kalb-Ramond antisymmetric
tensor. A crucial consequence is that the latter act as sources for the dilaton, and charged
solitonic solutions have in general a non-trivial dependence on the dilaton. The only excep-
tion is the RR 4-form, whose self-dual 5-form field-strength do not couple to the dilaton.

1.1.3 T-duality

Historically D-branes where discovered by studying the behavior of open string compactified
on a small circle of radiusR→ 0 [57]. In particular, the T-duality symmetry of closed strings
which reverses the relative sign between left and right movers, has proven to be extremely
important also in the open string context.

Closed strings

Consider for instance closed strings with one of the spacetime coordinates, say X9, compact-
ified on a circle of radius R. The zero mode part of the mode expansion will be modified.
The momentum p9 = n/R is quantized in units of 1/R, for the wave function exp{ip ·X}
to be well-defined under the shift X9 → X9 + 2πR, and a winding w9 = mR, quantized in
units of R, can appear since X9 is allowed to change by a integer multiple of 2πR when
going around the string, σ → σ + 2π. Therefore, the mode expansion is

X9 = xµ − 2iα′ n
R
τ +mRσ + osc. . (1.41)

This can be written as X9 = X9 + X̃9 where

X9(z) =
xµ

2
− i

√
2α′α9

0z + i

√

α′

2

∑

n∈ZZ

α9
n

n
e−nz , (1.42)

X̄9(z̄) =
xµ

2
− i

√
2α′α̃9

0z̄ + i

√

α′

2

∑

n∈ZZ

α̃9
n

n
e−nz̄ , (1.43)
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with

α9
0 =

√

α′

2

(

n

R
+
mR

α′

)

, (1.44)

α̃9
0 =

√

α′

2

(

n

R
− mR

α′

)

. (1.45)

Correspondingly, the mass operator in the remaining non-compact directions becomes

M2 =
1

α′

[

(

n

R

)2

+

(

mR

α′

)2

+ osc.

]

, (1.46)

which can be written more precisely as

M2 =
1

α′

[

(α9
0)

2 + (α̃9
0)

2 + 2
(

N − a+ Ñ − ã
)]

. (1.47)

Sending R into α′/R and exchanging winding and Kaluza-Klein modes n ↔ m results
in the transformation α9

0, α̃
9
0 → α9

0,−α̃9
0, which leaves the mass spectrum invariant [118,

119]. By superconformal symmetry, one has also to transform the fermionic zero modes
in the 9 direction, ψ9

0 , ψ̃
9
0 → ψ9

0 ,−ψ̃9
0 . The interactions are identical as well [120]. This

symmetry is best formalized by generalizing it to reverse the sign of the whole right-moving
fields (changing the sign to the oscillator modes is trivial). In this way, the T-duality
transformation looks like a one-side parity transformation and reads

R → R′ = α′/R

m,n → n,m

X9, X̄9 → X9,−X̄9

ψ9, ψ̃9 → ψ9,−ψ̃9

. (1.48)

In particular, whereas the original theory was written in terms of the usual coordinate
X9 = X9 + X̄9, the dual theory is written in terms of the dual one, X ′9 = X9 − X̄9. Notice
also that ∂τ,σX

9 ∼ ∂X9 ± ∂̄X̄9 goes into ∂σ,τX
′9 ∼ ∂X9 ∓ ∂̄X̄9.

An important feature of the T-duality transformation is that, due to the sign change
in ψ̃9 it reverse the spacetime chirality of the RR vacuum. As a result, T-duality actually
exchange the two versions of the theory, Type IIA and Type IIB. This statement can be
translated at the level of spin-fields [121] Sα, S̃α, which are the chiral spinors entering the
construction of the RR vertex-operator. In fact, the transformation ψ9, ψ̃9 → ψ9,−ψ̃9

implies
Sα, S̃α → Sα, (Γ9Γ11)αβS̃α . (1.49)

The Γ11 gives just a chirality-dependent sign. To understand the effect of this transforma-
tion, recall that the RR vertex-operator is given, in the (−1/2,−1/2) picture, by

VRR =

∫

d2z e−
φ
2 e−

φ̃
2 SCFS̃eip·X . (1.50)
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Here φ and φ̃ are the bosonization of the left and right superghosts, C is the charge-
conjugation matrix and Fαβ is the RR chiral bi-spinor field-strength, which can be decom-
posed into antisymmetric tensors F (n) with even and odd rank n in the Type IIA and Type
IIB theories respectively

Fαβ =
∑

n

1

n!
F (n)
µ1...µn

Γµ1...µn

αβ . (1.51)

These RR field-strengths are related by Hodge-duality, ∗F(k) = ±F(10−k), so that they are
actually not all independent, and lead to a total of 256 components both in the Type IIA
and Type IIB theories, corresponding to 64 on-shell degrees of freedom for the corresponding
potentials C(n), as displayed in Eqs. (1.36) and (1.37). It is now straightforward to see that
the effect of the matrix Γ9Γ11 in Eq. (1.49) is to add a 9 index to F(n) if none is present,
and to remove it if one is present. This is precisely the map relating the RR sector of the
Type IIA and Type IIB theories when compactified on a circle.

Finally, notice that T-duality acts non-trivially on the string coupling gs. In fact, the
effective coupling of the compactified theory is gs/

√
R. T-duality requires this to be equal

to the corresponding effective coupling g′s/
√
R′ of the dual theory at radius R′ = α′/R.

This yields

gs → g′s =

√
α′

R
gs . (1.52)

Open strings

Consider now purely Neumann open strings, with as before one of the spacetime coordinates,
say X9, compactified on a circle of radius R. The zero mode part of the mode expansion
will be modified in this case too. The momentum p9 = n/R is again quantized in units of
1/R, but there is no analog of the winding in this case. Therefore,

X9 = xµ − 2iα′ n
R
τ + osc. . (1.53)

This can be written as X9 = X9 + X̃9 where

X9(z) =
x9 + Y 9

2
− i

√
2α′α9

0z + i

√

α′

2

∑

n∈ZZ

α9
n

n
e−nz , (1.54)

X̄9(z̄) =
x9 − Y 9

2
− i

√
2α′α9

0z̄ + i

√

α′

2

∑

n∈ZZ

α9
n

n
e−nz̄ , (1.55)

with

α9
0 =

√

α′

2

n

R
. (1.56)

In this case, there is no manifest left-right symmetry. Nevertheless, its is natural to study
the theory for R→ 0 in terms of the dual variable X ′9 = X9 − X̄9. One finds

X ′9 = Y 9 + 2nR′σ + osc. . (1.57)

22



The osc. part vanishes now at both ends of the string, so that in the new variable one gets
a Dirichlet string with its two end-points fixed on a D-brane hyper-plane located at Y 9,
which is periodically identified with Y 9 + 2πnR′

X ′9
∣

∣

∣

σ=0
= Y 9 , X ′9

∣

∣

∣

σ=π
= Y 9 + 2πnR′ . (1.58)

The integer n labeling the momentum quantum number in the original theory becomes a
winding quantum number in the dual theory, and represents the number of times the open
string, starting on the D-brane, winds around the compactification circle before ending
again on the D-brane. Thus, T-duality changes Neumann into Dirichlet b.c. and vice versa.
This could have been anticipated from the fact that

∂τ,σX
9 ↔ ∂σ,τX

′9

ψ9 ± ψ̃9 ↔ ψ9 ∓ ψ̃9 . (1.59)

Summarizing, T-duality is a symmetry of closed strings compactified on a circle. It
relates the two versions of the theory, Type IIA and Type IIB, which contain respectively
odd and even RR forms. For open strings compactified on a circle, T-duality relates two
versions of the theory with different b.c. along the compact directions, exchanging N and
D b.c.. In the general case of a theory in a Dp-brane background, with both open and
closed strings, there is an important consistency condition that the theory has to fulfill due
to the fact that D-branes couple to fundamental strings. In fact, compactifying on a circle
and performing a T-duality transformation, the closed string spectrum will change from
Type IIA to Type IIB or vice versa, and Dp-brane will be turned into a D(p±1)-brane.
The coupling between closed strings and D-branes has therefore to be consistent with this
transformation. Indeed, we will see that Dp-branes couple minimally to RR (p+1)-forms,
and T-duality consistently relates theories with even branes and odd RR forms to theories
with odd branes and even RR forms.

1.2 D-branes

Having introduced D-branes and the important notion of T-duality, it is possible to analyze
in somewhat more detail their fundamental characteristics. In particular, the fact they do
couple to fundamental strings implies that their are not rigid and inert objects, but rather
dynamical ones. In particular, it is natural to expect that they will play the role of some
special background in the framework of string theory LEEA.

1.2.1 Supersymmetry

The first important property of D-branes is that they are BPS states. More precisely, they
are backgrounds of theory preserving half of the supersymmetry, which are trivially realized.
This can be seen by recalling the expression for the left and right supersymmetry charges,
given by

Qα =

∮

dz e−
φ
2 Sα(α) , (1.60)

Q̃α =

∮

dz̄ e−
φ̃
2 S̃α(α) . (1.61)
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The presence of a boundary on the world-sheet Σ identify left and right movers, so that
at most a linear combination of these two supersymmetries can be expected to survive.
In ordinary Type I theory, that is a D9-brane, the surviving supersymmetry is generated
simply by the sum of the left and right supercharges, Qα+ = (Qα + Q̃α)/

√
2. This is

easily understood recalling that Type I theory can be regarded as Type IIB theory witch
gauged world-sheet parity Ω, open strings emerging in Ω-twisted sectors of the hilbert
space as strings which are closed only up to an Ω parity transformation. The result for
a more general Dp-brane can be obtained simply by T-duality. As already shown, a T-
duality transformation along some direction Xi has the effect of multiplying the right-
moving spin-field S̃α by the matrix ΓiΓ11, as in Eq. (1.49), so that according to the
definitions Eqs. (1.60) and (1.61), the unbroken combination of supersymmetry is in this

case Qα+ = (Qα +
∏9
i=p+1

(

ΓiΓ11
)αβ

Q̃α)/
√

2. Summarizing, in the presence of a Dp-brane,
the two Type II left and right supercharges (1.60) and (1.61) split into an unbroken (Qα+)
and a broken (Qα−) combinations given by

Qα± =
1√
2

(

Qα ±Mαβ
p Q̃β

)

, (1.62)

where

Mαβ
p =

9
∏

i=p+1

(

ΓiΓ11
)αβ

. (1.63)

Dp-branes are therefore BPS string theory backgrounds preserving half of the supersym-
metry.

When more than one D-brane is present, that is when the world-sheet Σ has more than
one boundary, the combination of supersymmetry left over is the intersection of those left
over by each of the branes. More precisely, a Dp-brane and a Dq-brane (suppose p<q)
preserve two generically different combinations of supersymmetries involving the matrices

Mαβ
p =

9
∏

i=p+1

(

ΓiΓ11
)αβ

, (1.64)

Mαβ
q =

9
∏

i=q+1

(

ΓiΓ11
)αβ

. (1.65)

The number of supersymmetries preserved by the theory with both of these D-branes as
background is equal to the dimension of the eigenspace common to both of the two matrices
Mp and Mq. This is given by the number of +1 eigenvalues of the matrix

Nαβ
pq =

(

MpM
−1
q

)αβ
=

q
∏

i=p+1

(

ΓiΓ11
)αβ

. (1.66)

Notice that q−p has to be even since in any case there can be only even (Type IIA) or
odd (Type IIB) branes together in a consistent theory. It is easy to check that for q−p
= 2 or 6, N2

pq = −11 so that all its eigenvalues are imaginary. For q−p=4 or 8, Npq is
traceless and N2

pq = 11 so that its eigenvalues are ±1 in equal number. Finally, if q−p = 0
obviously Npq = 11 and all the eigenvalues are +1. Therefore, since Npq acts actually on a
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16-dimensional chiral subspace, one finds that

# of SUSY =















16 , q − p = 0

8 , q − p = 4, 8

0 , q − p = 2, 6

. (1.67)

This means that beside single Dp-branes preserving 1/2 of the 32 supersymmetries, there
exists BPS configurations formed by two of them, also preserving a fraction of these su-
persymmetries. For example, two parallel Dp-branes form a BPS state preserving 1/2 of
the supersymmetry. Similarly, a Dp-brane together with a parallel D(p+4)-brane or a
D(p+8)-brane form a BPS state preserving 1/4 of the supersymmetry. This discussion can
be generalized to the more general case in which there are more D-branes at arbitrary angles
and possibly with some ND or DN directions. For instance, one finds that any of the former
BPS configurations can be generalized by replicating an arbitrary number of times each
of its constituents. The question of whether or not these composite configurations can be
considered as threshold bound-states representing genuine elementary quantum states and
not merely as superpositions is a subtle issue.

1.2.2 Effective action

D-branes are genuine dynamical excitations of superstring theory, since they couple to
fundamental strings. Furthermore, this coupling is completely encoded in Polchinski’s b.c.
prescription, which gives in principle an exact σ-model description of fundamental strings
in presence of D-branes. We have already seen that the bosonic massless degree of freedom
describing the Dp-brane split into a (p+1)-dimensional vector Aµ living on its world-volume
and a set of 9−p scalar qi related to its position. More precisely, the gauge field Aµ describes
internal excitations on the world-volume, and the VEV of its field-strength is related to the
electromagnetic flux that the Dp-brane carries. The scalar fields qi describe instead the
transverse fluctuations of the Dp-brane, and their VEV give its position 〈qi〉 = Y i. The
vertex-operators corresponding to these excitations is obtained in a straightforward way by
T-duality from the vertex-operator for a Type I photon:

VAµ =

∮

∂Σ
dσαAµ

(

∂αXµ + iα′p · Ψ̄ραΨµ) eip·X , (1.68)

Vqi =
1

2πα′

∮

∂Σ
dσαǫ

αβqi
(

∂βX
i + iα′p · Ψ̄ρβΨi

)

eip·X . (1.69)

The momentum p entering these vertex-operators corresponds to the dependence on the
coordinates X of the fields Aµ(X) and qi(X). For simplicity, we shall take a dependence
only on the world-volume N directions Xµ, corresponding to a non-vanishing N momentum
pµ. The path-integral representation of the corresponding generating functionals is obtained
by adding to the free string action S0, Eq. (1.1), the deformations S1 and/or S2 obtained
by exponentiating and Fourier transforming these vertex-operators

S1 =

∮

∂Σ
dσα

[

Aµ∂
αXµ + α′FµνΨ̄

µραΨν] , (1.70)

S1 =
1

2πα′

∮

∂Σ
dσαǫ

αβ
[

qi∂βX
i + α′∂µq

iΨ̄µρβΨ
i
]

. (1.71)
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In this way, one obtains a complete definition of the string partition function as a function
of the background fields Aµ and qi specifying the Dp-brane. The LEEA can then be found
with the usual methods, either by directly computing the generating functional or requiring
conformal invariance through the vanishing of the β-function. At leading order in the string
coupling constant gs, the relevant world-sheet has the topology of a disk, and the result is
the Dirac-Born-Infeld action [58] augmented by a Wess-Zumino term [56, 122, 123, 124, 125]

S = −Tp
∫

Wp+1

dp+1ξe−φ
√

− det (ĝµν + Fµν) − µp

∫

Wp+1

(

C ∧ eF ∧
√
A
)

(p+1)
+ ferm. . (1.72)

Here ĝµν = gij∂µq
i∂νq

j represents the induced metric on the world-volume Wp+1. The pull-

back of the antisymmetric tensor b̂µν = bij∂µq
i∂νq

j and the world-volume field-strength Fµν
appear only in the gauge-invariant combination

Fµν = 2πα′Fµν − b̂µν . (1.73)

In fact, at the world-sheet level, the antisymmetric tensor gauge invariance is violated by
a surface term on the D-brane boundary in the variation δbµν = ∂µχν − ∂νχµ, which has
to be compensated with a gauge transformation of the gauge field living on the world-
volume, δAµ = χµ. The quantity C indicates the somewhat formal sum of all the RR

n-form potentials C(n) = C
(n)
µ1...µndξ

µ1 ∧ ...∧dξµn , F = FµνdXµ∧dXν is the gauge-invariant

two-form constructed out of Eq. (1.73) and Â(R) is the roof genus constructed out of the
(pulled-back) curvature two-form R = Rµνdξ

µ ∧ dξν . In this notation C ∧ eF ∧
√
A is

therefore a sum of forms, and it is implicitly understood in the notation that one has to
pick-up the part of it which is a (p+1)-form and can therefore be integrated over the world-
volume Wp+1. The tension Tp and charge density µp are equal, indicating BPS saturation
of the Dp-brane, and are given by

Tp = µp =
√
α′−1 (

2π
√
α′
)−p

. (1.74)

The world-volume action Eq. (1.72) is written in the string frame. The factor e−φ

corresponds to the disk topology and therefore the effective tension is Tp/gs. As in the
closed string effective action Eq. (1.38), the dilatonic prefactor appears only in the NSNS
part and not in the RR one, because the RR gauge forms have been rescaled. Eq. (1.72)
encodes all the interactions of the Dp-branes with the massless modes of open and closed
fundamental strings. The complete LEEA in the string frame is therefore that of these
massless modes, Eq. (1.38) augmented with Eq. (1.72) as a source. In the Einstein frame,
Eq. (1.38) becomes Eq. (1.40). Correspondingly, Eq. (1.72) becomes

S = −Tp
∫

Wp+1

dp+1ξe−
3−p
4
φ

√

− det
(

ĝµν + e−
φ
2 Fµν

)

− µp

∫

Wp+1

(

C ∧ eF ∧
√
A
)

(p+1)

+ferm. (1.75)

The couplings to the massless fields can be obtained by expanding this action around flat
spacetime. The gravitational mass T̂p, p-form charge µ̂p and dilaton coupling âp in units of
the coupling

√
2κ(10), are found to be

T̂p = µ̂p =
√

2π(2π
√
α′)3−p , âp =

p− 3

4

√
2π(2π

√
α′)3−p . (1.76)
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It is then easy to compute the asymptotic fields generated by the Dp-brane. Some of the
details are reported in Appendix C, together with the results Eqs. (C.11) and (C.12) in the
Einstein and string frames.

1.2.3 Charge quantization

A flat Dp-brane with vanishing gauge field couples minimally to the RR (p+1)-form C(p+1)

with the charge (1.74). This charge is electric and the Dp-brane is a true source for C(p+1).
However, not all the RR-forms are independent degrees of freedom. Rather, they are related
by Hodge duality through their field strength. In the string frame, one has simply F(p+2) =
∗F(8−p), whereas in the Einstein frame this becomes F(p+2) = e(p−3)/2φ∗F(8−p). One could
keep considering all the Dp-branes as electrically charged with respect to the corresponding
(p+1)-form, and impose the Hodge duality as a constraint. Another possibility is two
eliminate high forms and keep only those with p≤4 as propagating degree of freedom.
Doing so, Dp-branes with p≤3 are still electrically charged with respect to C(p+1), whereas
those with p≥3 become magnetically charged with respect to C(7−p), which is dual to C(p+1)

that has been eliminated. In any case, a Dp-brane and a D(6−p)-brane are magnetically
dual and experience an electric-magnetic interaction. In fact, working for example in the
string frame, the C(p+1) form has a field-strength F(p+2) which is identified with ∗F(8−p),
and locally F(8−p) admits the potential C(7−p). Therefore, the potential C(p+1) generated
by a Dp-brane can be described in terms of the potential C(7−p) to which a D(6−p)-brane
couples, everywhere but on a Dirac hyper-string, where the potential is singular. One
way of obtaining Dirac’s quantization condition is then to require that this singularity not
be observable. In particular, the Aharonov-Bohm effect in transporting a D(6−p)-brane
around the Dirac string attached to a Dp-brane, and therefore describing a S7−p sphere as
world-sheet, results in a shift δΦ in the phase of the wave-function given by the interaction
action. One finds (in the string frame)

δΦ = µ6−p

∫

S7−p

C(7−p) . (1.77)

Using Gauss’ law and Hodge duality one finds that

δΦ = µ6−p

∫

S7−p

C(7−p) = µ6−p

∫

S8−p

F(8−p) = µ6−p

∫

Sp+2

∗F(p+2)

= 2κ2
(10)µpµ6−p . (1.78)

In order the singularity not to be observable, this phase has to be an irrelevant multiple of
2π, yielding therefore the condition

2κ2
(10)µpµ6−p = 2πn , (1.79)

which is satisfied with n=1 by Eq. (1.74). In order to avoid the annoying appearance of the
coupling 2κ2

(10), it is convenient to work as before in Eqs. (1.76) with the rescaled charge

µ̂p =
√

2π(2π
√
α′)3−p defined such that µp = µ̂p/(

√
2κ(10)), which satisfy

µ̂pµ̂6−p = 2π . (1.80)
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1.2.4 Low energy interpretation

One of the most important characteristics of Dp-branes is that they correspond at low
energy to charged solitonic solutions of the LEEA called p-branes, that we shall now briefly
describe. The string frame effective action Eq. (1.38) has the following exact solutions































gµν = H
− 1

2
p η̄µν , gij = H

1
2
p δij

Cµ1...µp+1 = ǭµ1...µp+1

(

H−1
p − 1

)

φ =
3 − p

4
lnHp

. (1.81)

Here Greek indices correspond to the p+1 world-volume directions, whereas Latin indices
span the 9−p transverse directions, and η̄µν and ǭµ1...µp+1 are the Minkowski and Levi-
Civita tensors on the Dp-brane world-volume, with indices running from 0 to p. Hp is a
harmonic function of the transverse distance r and can be parameterized as

Hp(r) = 1 + 2κ2
(10)T̃p∆(9−p)(r) (1.82)

in terms of the transverse Green function ∆(9−p) and a so far arbitrary coupling T̃p. The
corresponding solution of Eq. (1.40) in the Einstein frame is































gµν = H
p−7
8

p η̄µν , gij = H
p+1
8

p δij

Cµ1...µp+1 = ǭµ1...µp+1

(

H−1
P − 1

)

φ =
3 − p

4
lnHp

. (1.83)

This p-brane solution has a tension T̃p and dilaton coupling ãp = (3−p)/4T̃p. It is electrically
charged with respect to the the RR (p+1)-form, with a charge

µ̃p =
1

2κ2
(10)

∫

S8−p

∗F(p+2) = T̃p . (1.84)

By Hodge duality, this can also be interpreted as a magnetic charge with respect to the RR
(7−p)-form. Consistency at the quantum level leads as before to the Dirac quantization
condition 2κ2

(10)µ̃pµ̃6−p = 2πn. On dimensional grounds, this fixes µ̃p to be an integer

multiple of the fundamental charge µp. This means T̃p = nTp and suggests that p-branes
are related to the low energy description of Dp-branes.

The p-brane solution is BPS for every T̃p. This can be verified by computing the gravitino
and dilatino variations in the background of the solution, which are found to be proportional
to the projection 1/2(1−M)η of the supersymmetry parameter η, with M =

∏9
n=p+1(Γ

iΓ11)
as in Eq. (1.63). Since P± = 1/2(1 ±M) are orthogonal projection operators, the initially
arbitrary supersymmetry parameter η splits into the two components η± = P±η. η+ appears
in the supersymmetry variations and corresponds therefore to broken supersymmetries,
whereas η− does never appear and corresponds therefore to trivially realized preserved
supersymmetries. In a more technical language, η+ is Killing spinor of the solution, whereas
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η− are fermionic zero modes. By applying the broken supersymmetries to the fundamental
p-brane solution, one obtaines other solutions carrying non-vanishing spin. These can be
grouped in a supermultiplet representing the fermionic degeneracy related to the fermionic
zero modes on which the broken supersymmetry is realized. The p-brane solution is therefore
a BPS background of the LEEA preserving 1/2 of the 32 supersymmetries. Moreover, the
unbroken and broken combinations η± correspond precisely to the unbroken and broken
supercharges Eq. (1.62) of Type II superstrings in a Dp-brane background. This gives strong
evidence that p-branes are the low energy description of Dp-branes. Further evidence for this
identification is obtained by analyzing the couplings to massless fields. It is straightforward
to verify that the asymptotic fields of the p-brane solution obtained in the weak field limit
κ(10) → 0 from Eqs. (1.81) or (1.83) match with T̃p instead of Tp those computed in
Appendix C, Eqs. (C.11) or (C.12), starting from the knowledge of the Dp-brane couplings
Eqs. (1.76). This demonstrate that the elementary p-brane with T̃p = Tp can be identified
with the Dp-brane at low energy. Since, as we will see in detail, parallel Dp-branes do not
exert any force on each other due to their BPS character, the multiply charged p-brane
with T̃p = Tp can be interpreted as the superposition of n Dp-branes at the same position.
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Chapter 2

D-brane dynamics

In this chapter, we describe in some detail the one-loop amplitude encoding the interaction
between D-branes, focusing on the systems constituted by two parallel Dp-branes and by a
Dp-brane and a D(p+4)-brane. We also discuss the amplitude in the closed string channel,
by performing a modular transformation.

2.1 Static D-branes

An important and extremely interesting issue in modern superstring theory is the study of
the interactions between D-branes. This opens a new domain of investigation in the theory
which proves to be extremely rich and generous of information.

Consider then two parallel D-branes, say a Dp-brane and a Dq-brane with p<q. The
world-sheet encoding their interaction at leading order in the string coupling gs has the
topology of a cylinder whose boundaries end on the two D-branes. Using the usual time slic-
ing, this world-sheet represents a loop of open strings stretched between the two D-branes.
The resulting amplitude has to be interpreted, once integrated over the real modulus param-
eterizing all the inequivalent cylinders, as a one-loop effective action written in Schwinger’s
proper time parameterization. Physically, this represents the Casimir energy that the two
D-branes experience due to open string vacuum fluctuations in the space in-between them.

To compute the amplitude, it is convenient to parameterize the cylinder with a fixed
length π and circumference t. The amplitude is given as usual by

A =

∫ ∞

0

dt

t
Z(t) . (2.1)

Here Z(t) indicates the GSO-projected open string partition function

Z(t) = STr[Pe−
π
2
tH ] , (2.2)

where P = 1/2(1 + (−1)F ) is the GSO operator projecting onto states with even world-
sheet fermion number. The supertrace STr runs over the two sectors, R and NS, of the
open string spectrum, and counts spacetime bosons with a + sign and spacetime fermions
with a − sign. Decomposing the projector P , the partition function Eq. (2.2) splits into
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four distinct contributions

Z(t) =
1

2

(

TrNS [e−
π
2
tH ] + TrNS [(−1)F e−

π
2
tH ] − TrR[e−

π
2
tH ] − TrR[(−1)F e−

π
2
tH ]
)

=
1

2

(

Z(NS+)(t) − Z(NS−)(t) − Z(R+)(t) + Z(R−)(t)
)

. (2.3)

The two sectors without (−1)F insertion have world-sheet fermions which are antiperiodic
around the loop, whereas the two sectors with an (−1)F insertion have world-sheet fermions
which are instead periodic around the loop. Moreover, integer moding corresponds to
periodicity and half-integer moding to antiperiodicity in the cycle of the covering torus.
The four sectors R± and NS± correspond therefore to all the possible periodicities of the
fermions on the covering torus, and are referred to as spin-structures. For reasons that will
become clear in the following, the spin-structures which have antiperiodic b.c. around at
least one of the two cycles of the covering torus are called even, whereas the spin-structure
which has periodic b.c. along both of the cycles of the covering torus is called odd. Recall
that fermions have integer and half-integer moding in the R and NS sectors for a NN or DD
directions and vice versa for a ND or DN directions. The partition functions Z(t) can be
split in each of the four sectors into the product of a bosonic and a fermionic contributions,
ZB and ZF . Each of these can be further decomposed into a product of zero mode and
oscillator parts, Z0 and Zosc. It is convenient to analyze these four parts separately for a
single field corresponding to a given direction.

Consider first the bosons. The contribution of the bosonic zero mode depends crucially
on the b.c.. In the DD case, the contribution is trivial since the z.m. part H0 of the
Hamiltonian, Eq. (1.14), is in this case a number. In the NN case, the trace becomes an
integral over momentum, with H0 given by Eq. (1.14) and there is an infinite degeneracy
proportional to the volume V of the direction under analysis, due to translational invariance.
Finally, in the ND or DN cases there are no zero modes, and we can therefore assign them
conventionally a partition function equal to 1. Summarizing one finds

ZB0 (t) =























V (4π2α′t)−
1
2 , NN

e−
∆Y 2

4πα′ t , DD

1 , ND,DN

. (2.4)

The bosonic oscillators have integer moding for a NN or DD direction, and half-integer
moding for a ND or DN direction. One finds

ZBosc(t) =



























q−
1
12

∞
∏

n=1

(

1 − q2n
)−1

, NN,DD

q
1
24

∞
∏

n=1

(

1 − q2n−1
)−1

, ND,DN

. (2.5)

where q = e−πt.

Consider next the fermions. As already pointed out, they have integer and half-integer
moding in the R and NS sectors for a NN or DD direction, and vice versa for a ND or
DN direction. Let us call temporarily P and A the sectors with integer and half-integer
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moding for the direction under analysis. In the P sector there is a fermionic z.m. which
anticommutes with (−1)F and does not contribute to the energy. At each level one has
therefore a two-fold degeneracy corresponding to the freedom of inserting or not this z.m.,
yielding an equal number of states with even and odd fermion number and equal energy.
Correspondingly, the P− spin-structure partition function, which has a (−1)F inserted,
vanishes. On can therefore assign to the z.m. a vanishing partition function in the P−
spin-structure. In the P+ spin-structure, with no (−1)F inserted, states with even and odd
fermion number are counted with the same sign and therefore do not cancel but sum. Taking
properly into account the multiplicity of the states for each direction, one can attribute a
partition function equal to

√
2 to the fermionic z.m. of the P+ spin-structure. Finally, in

the A sector there are no fermionic z.m. at all, so that one can conventionally assign them
a partition function equal to 1. Summarizing

Z
F (P+)
0 (t) =

√
2 , Z

F (P−)
0 (t) = 0 , (2.6)

Z
F (A±)
0 (t) = 1 . (2.7)

The fact that the P− fermionic z.m. give a vanishing result reflects the fact that they
correspond to true z.m. on the covering torus which give a vanishing result in the Polyakov
path-integral representation of the partition function. On the contrary, the P+ fermionic
z.m. are fake. They are z.m. only with respect to the open string Fourier decomposition,
since in this sector the fields are antiperiodic around the loop. For the oscillator modes,
one finds

ZF (P±)
osc (t) = q

1
12

∞
∏

n=1

(

1 ± q2n
)

, (2.8)

ZF (A±)
osc (t) = q−

1
24

∞
∏

n=1

(

1 ± q2n−1
)

. (2.9)

Recall that

P =

{

R , NN,DD

NS , ND,DN
, A =

{

NS , NN,DD

R , ND,DN
. (2.10)

Making use of the formulæ reported in Appendix A, it is straightforward to write these
partition functions in terms of ϑ-functions. One can summarize by quoting the results for a
boson and a fermion with periodicities P1 and P2 along the two cycles of the torus, indicated
with the symbol

P2

P1

(2.11)

P1 is the periodicity along the σ-cycle and is P for integer moding and A for half-integer
moding. P2 is the periodicity along the τ -cycle and is respectively P and A with (− spin
structure) and without (+ spin-structure) (−1)F insertion, for the fermions, and always P
for the bosons. The results are reported in Appendix B, Eqs. (B.2)-(B.7). Using these re-
sults, it is straightforward to compute the one-loop amplitude giving the leading interaction
energy between a Dp and a Dq-brane. To carry out a complete and precise computation
within the covariant formalism, one should explicitly consider also the contribution of b,c
diffeomorphisms ghosts and β,γ superdiffeomorphisms superghosts running in the loop.
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Nevertheless, it is easy to show that, a part from the z.m., their contribution is exactly the
inverse of that of a pair of bosonic and fermionic fields in two NN or DD directions. Can-
celing a priori the contributions of the ghosts and superghosts with an appropriate pair of
bosons and fermions amounts to recover a light-cone gauge treatment in which only physical
states propagate. Actually, there are some subtleties concerning fermionic and superghost
z.m. in P− odd spin-structure on which we shall return further on. For simplicity and
concreteness, we shall concentrate in the following on two simple and illustrative cases: the
system of two parallel Dp-branes, preserving 1/2 of the supersymmetry, and the system of
a Dp and a parallel D(p+4)-brane, preserving 1/4 of the supersymmetry.

2.1.1 Dp-Dp interaction

For the Dp-Dp system, the first p+1 directions are NN, whereas the last 9−p are DD. Only
the three even spin-structure NS± and R+ contribute, whereas the R− odd spin-structure
gives a vanishing result because of the fermionic zero modes. Considering also the ghost
and superghost contributions, the result for the one-loop amplitude is [56]

A =
Vp+1

(2π
√
α′)p+1

∫ ∞

0

dt

t
p+3
2

e−
r2

4πα′ tZopen(t) , (2.12)

where ~r = ∆~Y and

Zopen(t) =
1

2

ϑ4
3(0| it2 ) − ϑ4

4(0| it2 ) − ϑ4
2(0| it2 )

η12( it2 )
. (2.13)

The combination of ϑ-functions appearing in the numerator of the partition function sum
up to zero by means of Jacobi’s æquatio identico satis abstrusa, which is a particular case
of Eq. (A.24). Using Eq. (A.24) one can formally rewrite Zopen(t) as

Zopen(t) =
ϑ4

1(0| it2 )

η12( it2 )
= 0 . (2.14)

The vanishing of the amplitude is a consequence the 1/2 of spacetime supersymmetry left
unbroken by the BPS system of two parallel Dp-branes. This is expected from the fact that
the vacuum of a theory with some unbroken supersymmetry must have strictly zero energy.
A cancellation occurs as usual between loops of spacetime bosons and spacetime fermions
contributing with opposite signs to the vacuum energy, which holds level by level within
each supermultiplet with growing mass and spin.

It is extremely interesting to analyze the amplitude from the closed string channel point
of view. To do so, it is enough to perform a modular transformation turning the open string
modulus t/2 into the closed string modulus 2l and rewrite the amplitude in terms of l = 1/t.
In the open string parameterization, the cylinder has fixed length π equal to the “length”
of open strings π and a variable circumference t corresponding to the loop proper time,
whereas in the closed string parameterization the cylinder has fixed circumference 2π equal
to the “length” of closed strings and variable length l corresponding to the propagation
proper time. Using Eqs. (A.16)-(A.19), the amplitude Eq. (2.12) can be rewritten as

A =
Vp+1

24(2π
√
α′)p+1

∫ ∞

0

dl

l
9−p
2

e−
r2

4πα′lZclosed(l) , (2.15)
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where

Zclosed(l) =
1

2

ϑ4
3(0|2il) − ϑ4

2(0|2il) − ϑ4
4(0|2il)

η12(2il)
. (2.16)

Again, the combination of ϑ-functions appearing in the numerator of the partition function
sum up to zero by means of Jacobi’s identity and using Eq. (A.24) one can rewrite Zclosed(l)
as

Zclosed(l) =
ϑ4

1(0|2il)
η12(2il)

= 0 . (2.17)

The amplitude is now interpreted as the interaction energy coming from the exchange of
all closed string states between the two Dp-branes. The vanishing of the amplitude reflects
the no-force condition holding for the interaction between a BPS combination of states.
Only spacetime bosons are exchanged, and a level by level cancellation occurs between the
attractive exchange of NSNS bosons and the repulsive exchange of RR bosons within each
supermultiplet with growing mass and spin.

In both channels, the amplitude receives contributions both from the lowest lying states
and from the infinite tower of higher mass states. Once one sums up all the contributions,
obtaining complete modular functions for the partition function, the open and closed string
channel descriptions are completely equivalent. Nevertheless, it is interesting to understand
which modes contributes at large and short distances in the two descriptions.

Consider first the short distance limit, in which the distance between the two Dp-branes
is small with respect to the string scale, r ≪ ls. In Eq. (2.12), only very bride world-sheets
with t→ ∞ contribute, corresponding to loops of almost massless open string modes. Loops
of higher mass open string modes give contributions which are exponentially suppressed.
Mathematically, the fact that only the lowest lying mode contributes reflects into the fact
that the limit t→ ∞ selects a single factor in the modular functions entering the partition
function. One finds

Zopen(t) −→
t→∞

(8 − 8) , (2.18)

and the amplitude (2.12) becomes

A −→
r≪ls

Vp+1

(2π
√
α′)p+1

∫ ∞

0

dt

t
p+3
2

e−
r2

4πα′ t(8 − 8) . (2.19)

Vice versa, in Eq. (2.15), only very short world-sheets with l → 0 contribute, corresponding
to the exchange of closed strings propagating for a very short distance. For this reason,
beside the massless closed string modes, also all the tower of massive closed string modes
are significant since they are suppressed only by an exponential factor with a vanishing ex-
ponent, and their contribution has to be resummed, yielding a power law behavior. Math-
ematically, the fact that all the modes contributes reflects into the fact that the limit l → 0
does not select any factor in the modular functions entering the partition function. Rather,
one has to perform a Poisson resummation to compute its behavior. One finds in this case

Zclosed(l) −→
l→0

(8 − 8)(2il)4 , (2.20)

and the amplitude (2.15) reduces to

A −→
r≪ls

Vp+1

(2π
√
α′)p+1

∫ ∞

0

dl

l
1−p
2

e−
r2

4πα′l (8 − 8) . (2.21)
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Eqs. (2.19) and (2.21) are identical and yield the short distance behavior of the amplitude
in the open and closed string parameterization. It clearly emerges that that the most
natural description of the short distance interaction of D-branes is obtained in the open
string channel, where a simple truncation to the massless mode is sufficient to give a good
approximation. The result can be rewritten more conveniently as

A −→
r≪ls

Vp+1

(4π)
p+1
2

∫ ∞

0

dt

t
p+3
2

e−( r
2πα′ )

2t(8 − 8) . (2.22)

One recognizes Schwinger’s proper time parameterization of the effective action for a super-
multiplet of particles with mass m = r/(2πα′) in p+1 spacetime dimensions, corresponding
to the lowest lying modes of the open strings stretched between the two Dp-branes.

Consider now the large distance limit, in which the distance between the two Dp-branes
is large with respect to the string scale, r ≫ ls. In Eq. (2.12), only very small world-sheets
with t → 0 now contribute, corresponding to loops of all the open string modes. Since open
string modes with high masses are not sufficiently suppressed, their contributions have to
be resummed. The behavior of the partition function is

Zopen(t) −→
t→0

(8 − 8)

(

it

2

)4

, (2.23)

and the amplitude (2.12) becomes

A −→
r≫ls

Vp+1

2(2π
√
α′)p+1

∫ ∞

0

dt

t
p−5
2

e−
r2

4πα′ t(1 − 1) . (2.24)

Vice versa, in Eq. (2.15), only very long world-sheets with l → ∞ now contribute, corre-
sponding to the exchange of closed string propagating for a very long distance. Closed string
modes with high masses give exponentially suppressed contributions, so that the dominant
interaction comes from the exchange of massless closed string modes. The behavior of the
partition function is in this case

Zclosed(l) −→
l→∞

(8 − 8) , (2.25)

and the amplitude (2.15) reduces to

A −→
r≫ls

Vp+1

2(2π
√
α′)p+1

∫ ∞

0

dl

l
9−p
2

e−
r2

4πα′l (1 − 1) . (2.26)

Eqs. (2.24) and (2.26) are identical and yield the large distance behavior of the amplitude
in the open and closed string parameterizations. Furthermore, the most natural description
of the large distance interaction of D-branes is now obtained in the closed string channel,
where a simple truncation the massless mode is sufficient to give a good approximation.
The result can finally be rewritten as

A −→
r≫ls

Vp+1T̂
2
p (1 − 1)∆(9−p)(r) , (2.27)

where T̂p =
√

2π(2π
√
α′)3−p is the tension of the Dp-brane in inverse units of the effective

coupling
√

2κ(10) and ∆(d)(r) is the green function for a scalar massless particle in d space
dimensions

∆(d)(r) =

∫

ddp

(2π)d
eip·r

p2
=

1

4πd/2
Γ

(

d− 2

2

)

1

rd−2
. (2.28)
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2.1.2 Dp-D(p+4) interaction

For the Dp-D(p+4) system, the first p+1 directions are NN, the last 5−q DD and the four
ranging from p+1 to p+4 are ND. This time, only the two + spin structures NS+ and
R+ contributes, whereas the − spin structures NS− and R− have both four z.m. and do
not contribute. Considering also the ghost and superghost contributions, the result for the
one-loop amplitude is [98]

A =
Vp+1

(2π
√
α′)p+1

∫ ∞

0

dt

t
p+3
2

e−
r2

4πα′ tZopen(t) , (2.29)

where ~r = ∆~Y as before and

Zopen(t) =
1

2

ϑ2
3(0| it2 )ϑ2

2(0| it2 ) − ϑ4
2(0| it2 )ϑ2

3(0| it2 )

η6( it2 )ϑ2
4(0| it2 )

. (2.30)

The combination of ϑ-functions in the numerator vanishes identically. Notice nevertheless
that using Eqs. (A.25), one can formally rewrite Zopen(t) as

Zopen(t) =
ϑ2

1(0| it2 )

η6( it2 )
= 0 . (2.31)

As before, the vanishing of the amplitude is a consequence the 1/4 of spacetime supersym-
metry preserved by the BPS system of two branes, and the cancellation occurs level by level
within all supermultiplets with growing mass and spin.

As before, the closed string channel interpretation is obtained by performing a modular
transformation turning the open string modulus t/2 into the closed string modulus 2l and
rewriting the amplitude in terms of l = 1/t. Using Eqs. (A.16)-(A.19), one finds

A =
Vp+1

22(2π
√
α′)p+1

∫ ∞

0

dl

l
5−p
2

e−
r2

4πα′lZclosed(l) , (2.32)

where

Zclosed(l) =
1

2

ϑ2
3(0|2il)ϑ2

4(0|2il) − ϑ2
4(0|2il)ϑ2

3(0|2il)
η6(2il)ϑ2

2(0|2il)
, (2.33)

or using Eq. (A.26)

Zclosed(l) =
ϑ2

1(0|2il)
η6( it2 )

= 0 . (2.34)

The vanishing of the total amplitude again reflects the no-force condition holding for the
interaction between a BPS combination of states, the cancellation occurring level by level
between the attractive and repulsive exchange of various NSNS bosons within each massive
supermultiplet.

In the short distance limit, r ≪ ls, only very bride world-sheets with t→ ∞ contribute
in Eq. (2.29), corresponding to loops of almost massless open string modes. Loops of higher
mass open string modes again give contributions which are exponentially suppressed. One
finds

Zopen(t) −→
t→∞

(2 − 2) , (2.35)
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and Eq. (2.29) becomes

A −→
r≪ls

Vp+1

(2π
√
α′)p+1

∫ ∞

0

dt

t
p+3
2

e−
r2

4πα′ t(2 − 2) . (2.36)

Vice versa, in Eq. (2.32), only very short world-sheets with l → 0 contribute, corresponding
to the exchange of closed string propagating for a very short distance. All the closed string
modes modes contribute significantly and their contributions have to be resummed. One
finds in this case

Zclosed(l) −→
l→0

(2 − 2)(2il)2 , (2.37)

and Eq. (2.32) reduces to

A −→
r≪ls

Vp+1

(2π
√
α′)p+1

∫ ∞

0

dl

l
1−p
2

e−
r2

4πα′l (2 − 2) . (2.38)

Eqs. (2.36) and (2.38) are identical and yield the short distance behavior of the amplitude
in the open and closed string parameterization. As before, the most natural description of
the short distance interaction is obtained in terms of the lowest lying open string modes.
Finally, the result can be rewritten more conveniently as

A −→
r≪ls

Vp+1

(4π)
p+1
2

∫ ∞

0

dt

t
p+3
2

e−( r
2πα′ )

2t(2 − 2) . (2.39)

One recognizes Schwinger’s proper time parameterization of the effective action for an su-
permultiplet of particles with mass m = r/(2πα′) in p + 1 spacetime dimensions, corre-
sponding to the lowest lying modes of the open strings stretched between the Dp and the
D(p+4)-brane.

In the large distance limit, r ≫ ls, only very small world-sheets with t → 0 now con-
tribute in Eq. (2.12). All open string modes loops contribute significantly. The behavior of
the partition function is

Zopen(t) −→
t→0

(2 − 2)

(

it

2

)2

, (2.40)

and Eq. (2.29) becomes

A −→
r≫ls

Vp+1

2(2π
√
α′)p+1

∫ ∞

0

dt

t
p−1
2

e−
r2

4πα′ t(1 − 1) . (2.41)

Vice versa, in Eq. (2.32), only very long world-sheets with l → ∞ now contribute, cor-
responding to the exchange of closed strings propagating for a very long distance. Closed
string modes with high masses give again exponentially suppressed contributions, and the
dominant interaction comes from the exchange of massless closed string modes. The be-
havior of the partition function is in this case

Zclosed(l) −→
l→∞

(2 − 2) , (2.42)

and Eq. (2.32) reduces to

A −→
r≫ls

Vp+1

2(2π
√
α′)p+1

∫ ∞

0

dl

l
5−p
2

e−
r2

4πα′l (1 − 1) . (2.43)
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Eqs. (2.41) and (2.43) are identical and yield the large distance behavior of the amplitude
in the open and closed string parameterizations. The most natural description of the large
distance interaction of D-branes is obtained in terms of the massless closed string modes.
The result can finally be rewritten as

A −→
r≫ls

Vp+1T̂pT̂p+4(1 − 1)∆(5−p)(r) . (2.44)

It is possible to study extremely important generalizations of the one-loop amplitude
discussed above, related to the vertex operators Eqs. (1.68) and (1.69). These vertex-
operators correspond geometrically to perturbations parallel and orthogonal to the Dp-brane
world-volume. The path-integral representation of the corresponding generating functionals
is obtained by adding to the free string action S0, Eq. (1.1), the deformations S1 and/or
S2 in Eqs. (1.70) and (1.71) obtained by exponentiating and Fourier transforming these
vertex-operators.

2.2 Rotated and boosted D-branes

Consider the case of two D-branes tiled with arbitrary angles πα1,2 in the plane of two
space-like NN and DD directions xi and xi+1. The rotations are implemented by giving an
VEV to the N derivative ∂i of the D position described by the scalar field qi+1, precisely
〈∂iqi+1〉 = tan πα1,2. In other words, the VEVs of the scalar field itself are given by
〈qi+1〉 = Y i+1 + tanπα1,2X

i. The free N and D b.c. get rotated and read

∂σ
(

cos πα1,2X
i + sinπα1,2X

i+1
)

= 0
∣

∣

∣

σ=0,π
, (2.45)

∂τ
(

cos πα1,2X
i+1 − sinπα1,2X

i
)

= 0
∣

∣

∣

σ=0,π
, (2.46)

or equivalently

∂Xi − ∂̄X̄i = tan πα1,2

(

∂Xi+1 − ∂̄X̄i+1
)∣

∣

∣

σ=0,π
, (2.47)

∂Xi+1 + ∂̄X̄i+1 = − tanπα1,2

(

∂Xi + ∂̄X̄i
)∣

∣

∣

σ=0,π
. (2.48)

Similarly, the ± fermionic b.c. become

ψi ∓ ψ̃i = tan πα1,2

(

ψi+1 ∓ ψ̃i+1
)∣

∣

∣

σ=0,π
, (2.49)

ψi+1 ± ψ̃i+1 = − tanπα1,2

(

ψi ± ψ̃i
)∣

∣

∣

σ=0,π
. (2.50)

In terms of the complex combinations Xi
± = (Xi ± iXi+1)/

√
2 and ψi± = (ψi ± iψi+1)/

√
2,

Eqs. (2.47), (2.48) and (2.49), (2.50) can be rewritten as

∂X± = e∓2πα1,2i∂̄X̄∓
∣

∣

∣

σ=0,π
, (2.51)

ψ± = ± e∓2πα1,2iψ̃∓
∣

∣

∣

σ=0,π
. (2.52)

It straightforward to write the mode expansions that follow from these twisted b.c.. The
integer or half-integer modes of the free case are shifted by the relative angle α = α2 − α1.
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As a consequence, there are no longer zero modes. The two bosonic coordinates X± with
the b.c. (2.51) have the following mode expansion

X± = i

√

α′

2

∑

n

(

α±
n

n± α
e−(n±α)z∓iπα1 +

α∓
n

n∓ α
e−(n∓α)z̄±iπα1

)

, (2.53)

where [α±
m, α

∓
n ] = (m± α)δm+n. Notice that n is integer in this case. Taking n to be half-

integer would correspond to the case in which the two directions to be tilted are ND-DN
(initially orthogonal D-branes) instead of NN-DD (initially parallel D-branes). Similarly,
the mode expansion for the two fermions ψ± and ψ̃± satisfying the b.c. (2.52) is

ψ± =
√
α′
∑

n

ψ±
n e

−(n±α)z∓iπα1 , (2.54)

ψ̃± =
√
α′
∑

n

ψ∓
n e

−(n∓α)z̄±iπα1 , (2.55)

with n integer or half-integer depending on the sector and {ψ±
m, ψ

∓
n } = (m±α)δm+n. Notice

that from the mode expansions Eq. (2.53), (2.54) and (2.55) it follows that the derivative
(or equivalently the oscillator part) of ± bosons, as well as the ± fermions, have a definite
monodromy under the transformation σ → σ + 2π

∂X±(τ, σ + 2π) = e∓2παi∂X±(τ, σ) , (2.56)

ψ±(τ, σ + 2π) = ±e∓2παiψ±(τ, σ) . (2.57)

These relation also follow directly from the b.c. Eqs. (2.51) and (2.52). In fact, the b.c.
at σ = 0 can be automatically implemented by identifying left and right movers with the
right phase through the involution z → z̄ + 2π which allows to obtain a cylinder of length
π from a torus with one of the periods equal to 2π. More precisely, one identifies

∂̄X̄±(z̄) = e∓2πα1i∂X±(z) , z = z̄ , (2.58)

ψ̃±(z̄) = ±e∓2πα1iψ±(z) , z = z̄ , (2.59)

at the first boundary σ = 0. Substituting these expressions into the b.c. Eqs. (2.51) and
(2.52) after having used then the equivalence under 2π shifts along the cycle of the torus,
one finds indeed Eqs. (2.56) and (2.57).

The contribution of the ± fields to the Hamiltonian is

H(+,−) = N (+,−) − a(+,−) , (2.60)

where

N (+,−) =
∑

n≥0

[

α−
−nα

+
n + (n+ α)ψ−

−nψ
+
n

]

+
∑

n>0

[

α+
−nα

−
n + (n− α)ψ+

−nψ
−
n

]

(2.61)

and a(+,−) is the total normal ordering zero-point energy. This can be easily computed
using the generalized ζ-function regularization

∞
∑

n=0

(n+ q) = ζ(−1, q) = −1

2
B2(q) = −1

2

[

1

6
+ q(q − 1)

]

. (2.62)
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The contribution of the bosonic and fermionic pairs with integer or half-integer is

a
(+,−)
B,F = ∓



















1

2

[

−1

6
+ α(1 − α)

]

, P

1

2

(

1

12
− α2

)

, A

. (2.63)

Consider now the case of two D-branes moving with constant velocities v1 and v2, in
some transverse D direction xi. The velocities correspond to non-zero VEVs for the time
derivative ∂0 of the scalar field qi specifying the position in the D direction, 〈∂0q

i〉 = v1,2.
Correspondingly, the VEVs of the scalar field itself are 〈qi〉 = v1,2X

0 + Y i. It is well
known that these constant velocities can be considered as imaginary rotations in the (x0, xi)
plane of Minkowski space. The angles are π times the rapidities ǫ1,2 defined such that
v1,2 = tanhπǫ1,2. The boundary interaction term associated to the velocities rotate the free
N and D b.c. of the X0 and Xi coordinates

∂σ
(

coshπǫ1,2X
0 − sinhπǫ1,2X

i
)

= 0
∣

∣

∣

σ=0,π
, (2.64)

∂τ
(

coshπǫ1,2X
i − sinhπǫ1,2X

0
)

= 0
∣

∣

∣

σ=0,π
, (2.65)

or equivalently

∂X0 − ∂̄X̄0 = tan πǫ1,2
(

∂Xi − ∂̄X̄i
)∣

∣

∣

σ=0,π
, (2.66)

∂Xi + ∂̄X̄i = tan πǫ1,2
(

∂X0 + ∂̄X̄0
)∣

∣

∣

σ=0,π
. (2.67)

Similarly, the ± fermionic b.c. become

ψ0 ∓ ψ̃0 = tan πǫ1,2
(

ψi ∓ ψ̃i
)∣

∣

∣

σ=0,π
, (2.68)

ψi ± ψ̃i = tan πǫ1,2
(

ψ0 ± ψ̃0
)∣

∣

∣

σ=0,π
. (2.69)

In terms of the light-cone combinations X± = (X0 ±Xi)/
√

2 and ψ± = (ψ0 ± ψi)/
√

2 the
b.c. Eqs. (2.66), (2.67) and (2.68), (2.69) become

∂X± = e±2πǫ1,2 ∂̄X̄∓
∣

∣

∣

σ=0,π
, (2.70)

ψ± = ± e±2πǫ1,2ψ̃∓
∣

∣

∣

σ=0,π
. (2.71)

Therefore, the only difference with respect to the case of real rotations is that the twists
are imaginary rather than real, α1,2 = iǫ1,2.

Because of their monodromy properties, the pairs of ± fields can be considered as two
fields twisted with two opposite angles ±2πγ around the σ-cycle of the covering torus.
γ = α for tilted D-branes and γ = iǫ for boosted D-branes. The contribution to the
partition function of a boson or fermion with generic periodicities and an additional twist
±γ is indicated with the symbol

P2

P1±γ

(2.72)
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Skipping the details, the results for contribution to the partition function of these twisted
pairs in the various sectors can be summarized by quoting the results for a pair of twisted
bosons and fermions with all possible periodicities on the covering torus. The results are
reported in Appendix B, Eqs. (B.9)-(B.14). Using these results, it is straightforward at
this point to generalize the computation of the partition functions entering in the one-loop
amplitude for the interaction energy between two Dp-branes and between a Dp-brane and
a D(p+4)-brane. In particular, we discuss now the case of constant velocities. The case of
real angles is similar.

2.2.1 Dp-Dp dynamics

The only change with respect to the static case is that the light-cone pairs of fields get
twisted. Eq. (2.12) becomes [90]

A =
Vp

(2π
√
α′)p

∫ ∞

0

dt

t
p+2
2

e−
b2

4πα′ tZopen(t, ǫ) , (2.73)

where ~b = ∆~Y is the impact parameter and

Zopen(t, ǫ) =
1

2

ϑ3(
ǫt
2 | it2 )ϑ3

3(0| it2 ) − ϑ4(
ǫt
2 | it2 )ϑ3

4(0| it2 ) + ϑ2(
ǫt
2 | it2 )ϑ3

2(0| it2 )

ϑ1(
ǫt
2 | it2 )η9( it2 )

. (2.74)

Using Eq. (A.24), this can be rewritten as

Zopen(t, ǫ) =
ϑ4

1(
ǫt
4 | it2 )

ϑ1(
ǫt
2 | it2 )η9( it2 )

. (2.75)

Supersymmetry is broken and the amplitude vanishes only in the limit ǫ → 0 in which
supersymmetry is restored.

The short distance limit b ≪ ls is conveniently analyzed in the open string channel.
Only very bride world-sheets with t → ∞ contribute, corresponding to loops of massless
open strings. In this limit, one finds simply

Zopen(t, ǫ) −→
t→∞

6 + 2 cos 2πǫt2 − 8 cos πǫt2

2 sin πǫt
2

=

(

2 sin πǫt
4

)4

2 sin πǫt
2

. (2.76)

Rescaling t→ πα′t, the amplitude reduces to

A −→
b≪ls

Vp

2(4π)
p
2

∫ ∞

0

dt

t
p+2
2

e−( b
2πα′ )

2t 6 + 2 cos 2 πǫ
2πα′ t− 8 cos πǫ

2πα′ t

sin πǫ
2πα′ t

−→
b≪ls

Vp

2(4π)
p
2

∫ ∞

0

dt

t
p+2
2

e−( b
2πα′ )

2t

(

2 sin πǫ
4πα′ t

)4

sin πǫ
2πα′ t

. (2.77)

This can be interpreted as a one-loop effective action for the U(2) SYM theory reduced from
D=10 to D=p+1, describing the massless strings living on the world-volumes of the two
Dp-branes when these coincide. For b 6= 0 and v 6= 0, the transverse and longitudinal scalar
fields acquire VEVs equal to ~b and vt respectively, and the theory is in the Coulomb phase.
The strings starting and ending on the same Dp-brane remain massless, whereas those
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starting end ending on two different Dp-branes become massive, and the gauge symmetry is
spontaneously broken to U(1)⊗U(1). One can factorize this two-fold symmetry into a U(1)
related to the overall center of mass motion and a U(1) related to the relative motion of the
two Dp-branes. By T-duality, the relative velocity corresponds to an effective relative U(1)
electric field equal to E = πǫ. The fact the effective electric field is πǫ rather than tanhπǫ
is due to the non-minimal electromagnetic coupling of open strings. The particles running
in the loop are the lightest modes of the open strings stretched between the two Dp-branes.
They have a mass m = b/(2πα′) and a charge q = 1/(2πα′) under the relative motion
U(1). Therefore, Eq. (2.77) can be interpreted as the effective action for a supermultiplet
of mass m = b/(2πα′) and charge q = 1/(2πα′) in an effective electric field E = πǫ. The
normalization differs from the usual one in the Euler-Heisenberg effective action because
of the different overall degeneracy of the energy levels. The universal denominator come
from the usual harmonic oscillator like spectrum of a particle in a constant electromagnetic
field. The numerator only depends on the spin. It is associated to helicity supertraces
coming from from the gyromagnetic coupling to the external field in the Hamiltonian. In
Appendix C we report some relevant cases, whose dependence on the rapidity allows two
disentangle unambiguously the contributions of various representation. In the present case,
this allows to recognize that the numerator of Eq. (2.77) exactly corresponds to the content
of a vector-like multiplet, with spin 0, 1/2 and 1 particles.

Again, one can understand the amplitude from the closed string channel point of view
by performing a modular transformation. One finds

A =
Vp

23(2π
√
α′)p

∫ ∞

0

dl

l
8−p
2

e−
b2

4πα′lZclosed(t, ǫ) , (2.78)

where

Zclosed(l, ǫ) =
1

2

ϑ3(iǫ|2il)ϑ3
3(0|2il) − ϑ2(iǫ|2il)ϑ3

2(0|2il) − ϑ4(iǫ|2il)ϑ3
4(0|2il)

ϑ1(iǫ|2il)η9(2il)
, (2.79)

or using Eq. (A.24)

Zclosed(l, ǫ) =
ϑ4

1(
iǫ
2 |2il)

ϑ1(iǫ|2il)η9(2il)
. (2.80)

The large distance limit, b ≫ ls, is conveniently analyzed in this channel. In fact, only
very long world-sheets with l → ∞ contribute, corresponding to the exchange of massless
closed strings. In this limit, the partition function becomes

Zclosed(l, ǫ) −→
l→∞

6 + 2 cosh 2πǫ− 8 cosh πǫ

2 sinhπǫ
=

(

2 sinh πǫ
2

)4

2 sinhπǫ
. (2.81)

The remaining integration over the modulus l produces essentially a transverse propagator
∆(8−p)(b), which combines with the sinhπǫ in the denominator to reconstruct the complete
propagator integrated over the time τ parameterizing the path. Indeed

1

sinhπǫ
∆(d−1)(b) =

∫ +∞

−∞
dτ∆(d)(r(τ)) , (2.82)
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where r(τ) =
√

b2 + sinh2 πǫ τ2 is the true distance between the Dp-branes at time τ .
Finally, the amplitude reduces to

A −→
b≫ls

VpT̂
2
p

(

3

4
+

1

4
cosh 2πǫ− coshπǫ

)∫ ∞

−∞
dτ∆(9−p)(r(τ))

−→
b≫ls

2VpT̂
2
p sinh4 πǫ

2

∫ ∞

−∞
dτ∆(9−p)(r(τ)) . (2.83)

This is interpreted as the phase-shift between two Dp-branes in SUGRA. The interaction
comes from the exchange of the gravitational multiplet. The dependence on the rapidity
allows to recognize the contribution of the different massless particles which are exchanged
between the two Dp-branes. Using the results reported in Appendix C, one immediately
recognizes the bosonic representation content of the gravitational multiplet.

Notice finally that, although generically different, the short distance and large distance
behaviors Eqs. (2.73) and (2.78) become equal in the non-relativistic limit v ≃ πǫ→ 0. Yet
more impressively, the exact amplitude given equivalently by Eqs. (2.73) or (2.78) in the
open and closed string channels no longer depends on the string scale in the non-relativistic
limit. Indeed, using Eq. (A.15), one finds

Zopen(t, ǫ) −→
ǫ→0

(πǫt)3

16
, (2.84)

Zclosed(l, ǫ) −→
ǫ→0

(πǫ)3

2
. (2.85)

and Eqs. (2.73) and (2.78) become

A −→
v→0

v3

8
VpT̂

2
p∆(8−p)(b) . (2.86)

2.2.2 Dp-D(p+4) dynamics

In the Dp-D(p+4) case, Eq. (2.29) becomes [98]

A =
Vp

(2π
√
α′)p

∫ ∞

0

dt

t
p+2
2

e−
b2

4πα′ tZopen(t, ǫ) . (2.87)

where again ~b = ∆~Y is the impact parameter and

Zopen(t, ǫ) =
1

2

ϑ3(
ǫt
2 | it2 )ϑ3(0| it2 )ϑ2

2(0| it2 ) − ϑ2(
ǫt
2 | it2 )ϑ2(0| it2 )ϑ2

3(0| it2 )

ϑ1(
ǫt
2 | it2 )η3( it2 )ϑ2

4(0| it2 )
. (2.88)

Using Eq. (A.24), this can be rewritten as

Zopen(t, ǫ) =
ϑ2

1(
ǫt
4 | it2 )ϑ2

4(
ǫt
4 | it2 )

ϑ1(
ǫt
2 | it2 )η3( it2 )ϑ2

4(0| it2 )
. (2.89)

Supersymmetry is broken and the amplitude vanishes only in the limit ǫ → 0 in which
supersymmetry is restored.
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In the short distance limit b ≪ ls, only world-sheets with t → ∞ contribute. In this
limit, one finds

Zopen(t, ǫ) −→
t→∞

2 − 2 cos πǫt2

2 sin πǫt
2

=

(

2 sin πǫt
4

)2

2 sin πǫt
2

. (2.90)

Rescaling t→ πα′t, the amplitude reduces to

A −→
b≪ls

Vp

2(4π)
p
2

∫ ∞

0

dt

t
p+2
2

e−( b
2πα′ )

2t 2 − 2 cos πǫ
2πα′ t

sin πǫ
2πα′ t

−→
b≪ls

Vp

2(4π)
p
2

∫ ∞

0

dt

t
p+2
2

e−( b
2πα′ )

2t

(

2 sin πǫ
4πα′ t

)2

sin πǫ
2πα′ t

. (2.91)

This can be interpreted as a one-loop effective action for the SYM theory reduced from
D=6 to D=p+1, describing the massless strings living on the world-volumes of the Dp
and D(p+4)-branes. For b 6= 0 and v 6= 0, the transverse and longitudinal scalar fields
acquire a VEV equal to ~b and vt respectively, and again the gauge symmetry related to
the relative motion is U(1). A before, by T-duality the relative velocity corresponds to an
electric field equal to E = πǫ. The particles running in the loop are the lightest modes
of the open strings stretched between the Dp-brane and the D(p+4)-brane. They have a
mass m = b/(2πα′) and fill a massive supermultiplet with a charge q = 1/(2πα′) under
U(1). Therefore, Eq. (2.91) can be interpreted as the effective action for a supermultiplet
of mass m = b/(2πα′) and charge q = 1/(2πα′) in an effective electric field E = πǫ. Using
the results of Appendix C, one recognizes that the numerator of Eq. (2.91) corresponds to
the content of an hyper-like multiplet, with spin 0 and 1/2 particles.

Again, one can understand the amplitude from the closed string channel point of view
by performing a modular transformation. One finds

A =
Vp

2(2π
√
α′)p

∫ ∞

0

dl

l
4−p
2

e−
b2

4πα′lZclosed(t, ǫ) , (2.92)

where

Zclosed(l, ǫ) =
1

2

ϑ3(iǫ|2il)ϑ3(0|2il)ϑ2
4(0|2il) − ϑ4(iǫ|2il)ϑ4(0|2il)ϑ2

3(0|2il)
ϑ1(iǫ|2il)η3(2il)ϑ2

2(0|2il)
, (2.93)

or using Eq. (A.24)

Zclosed(l, ǫ) =
ϑ2

1(
iǫ
2 |2il)ϑ2

2(
iǫ
2 |2il)

ϑ1(iǫ|2il)η3(2il)ϑ2
2(0|2il)

. (2.94)

In the large distance limit b ≫ ls, only world-sheets with l → ∞ contribute. In this
limit, the partition function becomes

Zclosed(l, ǫ) −→
l→∞

−2 + 2 cosh 2πǫ

8 sinhπǫ
=

(2 sinhπǫ)2

8 sinhπǫ
. (2.95)

As before,the remaining integration over the modulus l produces the transverse propagator
∆(4−p)(b), which combines with the sinhπǫ in the denominator to reconstruct the complete
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propagator integrated over the time τ parameterizing the path, according to Eq. (2.82).
Finally, the amplitude becomes

A −→
b≫ls

VpT̂pT̂p+4

(

−1

4
+

1

4
cosh 2πǫ

)∫ ∞

−∞
dτ∆(5−p)(r(τ))

−→
b≫ls

1

2
VpT̂pT̂p+1 sinh2 πǫ

∫ ∞

−∞
dτ∆(5−p)(r(τ)) . (2.96)

This is interpreted as the phase-shift between a Dp and a D(p+4)-branes in SUGRA. The
interaction comes from the exchange of part of the gravitational multiplet to which both the
Dp-brane and the D(p+4)-brane couple. The dependence on the rapidity allows to recognize
the contribution coming from the exchange of the different massless particles. Using the
results of Appendix C, one recognizes in particular that there is no contribution from the
RR gauge fields, and only the NSNS fields of the gravitational multiplet contribute. This is
due to the fact that the Dp and the D(p+4)-branes are charged under different RR forms.

Notice finally that the to short distance and large distance behaviors Eqs. (2.87) and
(2.92) match in the non-relativistic limit v ≃ πǫ → 0. Actually, the exact amplitude given
equivalently by Eqs. (2.87) or (2.92) in the open and closed string channels no longer
depends on the string scale in the non-relativistic limit. Indeed, using Eq. (A.15) one finds

Zopen(t, ǫ) −→
ǫ→0

πǫt

4
, (2.97)

Zclosed(l, ǫ) −→
ǫ→0

πǫ

2
. (2.98)

and Eqs. (2.87) and (2.92) become

A −→
v→0

v

2
VpT̂pT̂p+4∆(4−p)(b) . (2.99)

2.3 D-branes with electromagnetic fluxes

The case of two constant electromagnetic fields F 1
µν and F 2

µν on the world-volumes of the
two D-branes on which the cylindrical string world-sheets ends is perfectly similar. The
boundary interaction term modifies the free N bosonic b.c. to

∂σX
µ = i2πα′(F1,2)

µ
ν∂τX

ν
∣

∣

∣

σ=0,π
, (2.100)

or
∂Xµ − ∂̄X̄µ = 2πα′(F1,2)

µ
ν

(

∂Xν + ∂̄X̄ν)
∣

∣

∣

σ=0,π
. (2.101)

Similarly, the ± fermionic b.c. become

ψµ ∓ ψ̃µ = 2πα′(F1,2)
µ
ν

(

ψµ ± ψ̃µ
)∣

∣

∣

σ=0,π
. (2.102)

Let us start by considering for simplicity non-zero magnetic fields F 1,2
ii+1 = B1,2 only in

two space-like N directions, say xi and xi+1. It is convenient to parameterize this constant
fields by two angles α1,2 defined such that 2πα′B1,2 = tanπα1,2 and to form the complex
combinations Xi

± = (Xi ± iXi+1)/
√

2 and ψi± = (ψi ± iψi+1)/
√

2. By doing so, it becomes
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clear that the fields F 1,2
µν induce a relative rotations between left and right movers. Eqs.

(2.101) and (2.102) can in fact be rewritten as

∂X± = e∓2πiα1,2 ∂̄X̄±
∣

∣

∣

σ=0,π
, (2.103)

ψ± = ±e∓2πiα1,2ψ̃±
∣

∣

∣

σ=0,π
. (2.104)

It straightforward to write the mode expansion that follow from these twisted b.c.. The
integer or half-integer modes of the free case are shifted by α = α2 −α1. As a consequence,
in general there are no longer zero modes. The two bosonic coordinates X± with the b.c.
(2.103) have the following mode expansion

X± = x± + i

√

α′

2

∑

n∈ZZ

α±
n

n± α

(

e−(n±α)z∓iπα1 + e−(n∓α)z̄±iπα1

)

, (2.105)

where [α±
m, α

∓
n ] = (m ± α)δm+n and [x+, x−] = π/ tan πα. Similarly, the mode expansion

for the fermions ψ± and ψ̃± satisfying the b.c. (2.104) is

ψ± =
√
α′
∑

n

ψ±
n e

−(n±α)z∓iπα1 , (2.106)

ψ̃± =
√
α′
∑

n

ψ±
n e

−(n±α)z̄±iπα1 , (2.107)

with n integer or half-integer in the R and NS sectors and {ψ±
m, ψ

∓
n } = (m±α)δm+n. Notice

that from the mode expansions Eq. (2.105), (2.106) and (2.107) it follow that the derivative
(or equivalently the oscillator part) of the ± bosons, as well as the ± fermions, pick up a
definite phase under the transformation σ → σ + 2π

∂X±(τ, σ + 2π) = e∓2παi∂X±(τ, σ) , (2.108)

ψ±(τ, σ + 2π) = ±e∓2παiψ±(τ, σ) . (2.109)

These relation also follows directly from the b.c. Eqs. (2.103) and (2.104). In fact, the b.c.
at σ = 0 can be automatically implemented by identifying left and right movers with the
right phase through the involution z → z̄ + 2π which allows to obtain a cylinder of length
π from a torus with one of the periods equal to 2π. More precisely, one identifies

∂̄X̄±(z̄) = e∓2πα1i∂X±(z) , z = z̄ , (2.110)

ψ̃±(z̄) = ±e∓2πα1iψ±(z) , z = z̄ , (2.111)

at the first boundary σ = 0. Substituting these expressions in the b.c. Eqs. (2.103) and
(2.104) after having used then the equivalence under 2π shifts along the cycle of the torus,
one finds indeed Eqs. (2.108) and (2.109).

The contribution of the ± fields to the Hamiltonian is

H(+,−) = N (+,−) − a(+,−) , (2.112)

where

N (+,−) =
∑

n≥0

[

α−
−nα

+
n + (n+ α)ψ−

−nψ
+
n

]

+
∑

n>0

[

α+
−nα

−
n + (n− α)ψ+

−nψ
−
n

]

. (2.113)
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The contribution to the normal-ordering zero-point energy a(+,−) for the bosonic and
fermionic pairs with integer or half-integer is

a
(+,−)
B,F = ∓



















1

2

[

−1

6
+ α(1 − α)

]

, P

1

2

(

1

12
− α2

)

, A

. (2.114)

The case of electric fields F 1,2
0i = E1,2 along the xi direction is similar. Again, it

is convenient to parameterize these constant fields by two angles ǫ1,2 defined such that
2πα′E1,2 = tanhπǫ1,2 and to form the light-cone combinations X± = (X0 ± Xi)/

√
2 and

ψ± = (ψ0 ± ψi)/
√

2. Eqs. (2.101) and (2.102) become

∂X± = e±2πǫ1,2 ∂̄X̄±
∣

∣

∣

σ=0,π
, (2.115)

ψ± = ±e±2πǫ1,2ψ̃±
∣

∣

∣

σ=0,π
. (2.116)

Therefore, the only difference with respect to the magnetic field case is that the twist is
imaginary rather than real, α1,2 = iǫ1,2.

The contributions to the partition function of the ± pair of twisted fields in the various
sectors is essentially the same as in the case of rotations and boosts reported in Appendix B.
The only difference is due to the additional bosonic zero modes x±. Due to their canonical
commutation relation, they behave as canonical variables conjugate to each other. They
produce a phase space density of states equal to ρ = γ/(2π2), yielding an infinite degeneracy
ρV± [126]. The result for the interaction amplitudes between D-branes with electromag-
netic fluxes is therefore similar to that obtained for moving D-branes, apart from a factor
accounting for the afore mentioned additional degeneracy. For interesting discussions on
open strings effective actions in electromagnetic fields, see also [112, 127, 128].
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Chapter 3

Boundary state formalism

In this chapter, we introduce the boundary state encoding the couplings of a D-brane to
closed strings. We show in particular that it allows to compute the asymptotic fields of
D-branes and a direct computation of the interaction amplitude between two D-branes in
the closed string channel.

3.1 World-sheet duality

As already mentioned, the cylinder amplitude giving the interaction between two D-branes
can be interpreted either as a one-loop open string vacuum amplitude or as a closed string
tree-level propagation [91, 92, 93]. In the open string channel, there is a direct prescription
to compute the amplitude, which has been presented in the previous section. As shown, once
the amplitude has been computed, it is possible to perform a modular transformation to
understand the result in the closed string channel. We will present here a powerful method
which allows to compute the amplitude directly in the closed string channel as the tree-level
propagation between two closed string states representing the D-branes. More precisely,
the circular world-sheet boundary to which a Dp-brane is attached can be interpreted as
a closed string coherent state |Bp〉 implementing the b.c. defining the Dp-brane, called
boundary state [94, 95, 96, 97]. This state encodes all the interactions between the Dp-brane
and fundamental strings in the semiclassical approximation. In particular, the fundamental
vertex involving an ”in” Dp-brane emitting a closed string state and becoming an ”out” Dp-
brane, is encoded simply in the overlap 〈Bp|Ψ〉 between the boundary state |B〉 describing
the Dp-brane semiclassical current in the eikonal approximation and the closed string state
|Ψ〉. At least formally, the amplitude corresponding to an arbitrary world-sheet with n
boundaries ending on D-branes can be computed by saturating the n-reggeon vertex with
the boundary states describing the n D-branes [129]. Consider the cylinder in Fig. 3.1.
with coordinates σ1 and σ2 grouped into the complex combinations zopen = σ1 + iσ2 and
zclosed = σ2 + iσ1 in the open and closed string channels. To properly define the boundary
state, it is convenient to start from the open string parameterization and turn to the closed
string parameterization through a π/2 world-sheet Wick rotation (z → eiπ/2z = iz) followed
by a (convenient) parity transformation (σ2 → −σ2). Indeed

zopen = σ1 + iσ2 → −σ2 + iσ1 → σ2 + iσ1 = zclosed . (3.1)

48



2

σ1

σ

Figure 3.1: The cylinder amplitude.

Correspondingly, the world-sheet fields transform as two-dimensional scalars and spinors

∂Xµ → e−i
π
2 ∂Xµ , ∂̄X̄µ → ei

π
2 ∂̄X̄µ , ψ → e−i

π
4ψ , ψ̃ → ei

π
4 ψ̃ . (3.2)

This allows a precise definition of the b.c. in the closed string channel.

Start from the open string parameterization, in which σ1 = σ ∈ [0, π] is the coordinate
along the open string and σ2 = τ ∈ [0, t] the periodic time of the loop. They are grouped
into the complex world-sheet coordinate z = σ + iτ . The b.c. at the two boundaries ∂Σ1,2

at σ = 0, π are the usual N,D and ± b.c. and generically











∂Xµ = (M1)
µ
ν ∂̄X̄

ν
∣

∣

∂Σ1

ψµ = η1(M1)
µ
ν ψ̃

ν
∣

∣

∣

∂Σ1

,











∂Xµ = (M2)
µ
ν ∂̄X̄

ν
∣

∣

∂Σ2

ψµ = η2(M2)
µ
νψ̃

ν
∣

∣

∣

∂Σ2

. (3.3)

Here (M1,2)
µ
ν are diagonal matrices with ±1 entries for the N or D b.c. and η1,2 = ±1

accounts for the two possible signs for the fermions. Only the relative sign η1η2 is insensitive
to field redefinitions and corresponds to the two open string R (η1η2 = 1) and NS (η1η2 =
−1) sectors. The bosonic and fermionic b.c. involve the same matrix (M1,2)

µ
ν , up to the

signs η1,2. This guarantees that at each boundary ∂Σ1,2 ten-dimensional Lorentz invariance
is broken into two factors corresponding to the + and the − entries in (M1,2)

µ
ν . For example,

for the b.c. corresponding to a Dp-brane, the matrix (M)µν has 1 in the first p+1 entries
and −1 in the last 9−p, and SO(9,1) is broken to SO(p,1)×SO(9−p). The bosonic fields
are periodic in σ2, whereas the fermion fields can pick up a sign η3 and are antiperiodic
(η3 = −1) and periodic (η3 = 1) in σ2 in the ± spin structures corresponding to the 1/2
and 1/2(−1)F parts of the open string GSO projection. Summarizing, around the cylinder

Xµ → Xµ , ψ → η3ψ , around σ2 . (3.4)

Now turn to the closed string parameterization, in which σ1 = τ ∈ [0, l] is the propa-
gation time and σ2 = σ ∈ [0, 2π] is the periodic coordinate along the closed string. Now
the periodicity η3 coming from the two parts of the open string GSO projection become
simply the RR (η3 = 1) and NSNS (η3) sectors of the closed string in which the left and
right fermions have the same periodicity η3. The relative signs η1η2 = ±1 giving rise to the
two open strings sectors now correspond to the two parts 1/4+(−1)F (−1)F̃ (η1η2 = 1) and
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1/2(−1)F + 1/2(−1)F̃ (η1η2 = −1) of the closed string GSO projection. The b.c. defining
the boundary state |B〉 are obtained from Eqs. (3.3) through the transformation (3.2). One
obtains











∂Xµ = −(M1)
µ
ν ∂̄X̄

ν
∣

∣

∂Σ1

ψµ = iη1(M1)
µ
νψ̃

ν
∣

∣

∣

∂Σ1

,











∂Xµ = −(M2)
µ
ν ∂̄X̄

ν
∣

∣

∂Σ2

ψµ = iη2(M2)
µ
νψ̃

ν
∣

∣

∣

∂Σ2

. (3.5)

To be complete and rigorous, one should also discuss the ghost and superghost part of
the boundary state. This part can be determined requiring the boundary state to be BRST
invariant invariant. As in the open string channel, the ghost and superghost contributions
to amplitudes exactly cancel those of the unphysical pair of bosonic and fermionic fields.

3.2 Boundary states

It is at this point quite easy to construct the boundary state |Bp〉 representing a Dp-brane.
We follow from now on the conventions of [95], setting the length of closed strings to 1
instead of 2π and the string tension equal to 1, that is 2πα′ = 1. For later convenience, we
shall work with the unusual complex coordinate z = σ+iτ . This is just a convenient change
of variable which restores the original sign in the bosonic b.c. but leaves the fermionic ones
unchanged. With these conventions, the closed string mode expansions become

Xµ(z) =
xµ

2
− z

2
pµ +

i√
4π

∑

n>0

1√
n

(aµne
2πniz − a†µn e

−2πniz) , (3.6)

X̄µ(z̄) =
xµ

2
+
z̄

2
pµ +

i√
4π

∑

n>0

1√
n

(ãµne
−2πniz̄ − ã†µn e

2πniz̄) , (3.7)

ψµ(z) =
∑

n>0

(ψµne
2πniz + ψ†µ

n e
−2πniz) , (3.8)

ψ̄µ(z̄) =
∑

n>0

(ψ̃µne
−2πniz̄ + ψ̃†µ

n e
2πniz̄) , (3.9)

with the standard commutation relations [aµm, a
†ν
n ] = [ãµm, ã

†ν
n ] = ηµνδmn and [xµ, pν ] = iηµν

for the bosons and anticommutation relations {ψµm, ψ†ν
n } = {ψ̃µm, ψ̃†ν

n } = ηµνδmn for the
fermions with appropriate moding in the RR and NSNS sectors. The Hamiltonian is

H =
p2

2
+ 2π

{ ∞
∑

n=1

n
(

a†n · an + ã†n · ãn
)

+
∞
∑

n>0

n
(

ψ†
n · ψn + ψ̃†

n · ψ̃n
)

− b

}

, (3.10)

with integer or half-integer fermion moding and b = 0, 1 in the RR and NSNS sectors. The
operators (−1)F and (−1)F̃ appearing in the GSO projection are

(−1)F =











ηLψ
11
0 (−1)

∑

n≥1
ψ†

n·ψn , RR

−(−1)
∑

n≥1/2
ψ†

n·ψn , NSNS

, (3.11)

(−1)F̃ =











ηRψ̃
11
0 (−1)

∑

n≥1
ψ̃†

n·ψ̃n , RR

−(−1)
∑

n≥1/2
ψ̃†

n·ψ̃n , NSNS

, (3.12)

where ηL, ηR = ±1 stand for the two possible chirality choices.

50



3.2.1 Static Dp-brane

The b.c. relate the left and right moving fields on the boundary corresponding to the Dp-
brane, and translate into conditions relating the left and right modes. The boundary state
is then defined as the eigenstate of these conditions and therefore reflects left and right
movers into each others. Taking the Dp-brane at τ = 0, one obtains

(

pµ + (Mp)
µ
νp
ν
)

|Bp, η〉 = 0 , (3.13)
(

aµn + (Mp)
µ
ν ã

†ν
n

)

|Bp, η〉 =
(

a†µn + (Mp)
µ
ν ã
ν
n

)

|Bp, η〉 = 0 , (3.14)
(

ψµn + iη(Mp)
µ
νψ̃

†ν
n

)

|Bp, η〉 =
(

ψ†µ
n + iη(Mp)

µ
νψ̃

ν
n

)

|Bp〉, η = 0 . (3.15)

The solution for the boundary states can be factorized into a bosonic and a fermionic part

|Bp, η〉 = |Bp〉B ⊗ |Bp, η〉F . (3.16)

Consider first the z.m.. For the bosons, Eq. (3.13) simply states that the boundary state
carry no momentum kα along the N directions, since the matrix 1/2(11 + M)µν projects
onto the N directions. The z.m. part of the bosonic boundary state, |Ωp〉B , is therefore a
superposition of D momentum states |ki〉. The precise wave function is determined by a
stronger version of Eq. (3.13) requiring that the Dp-brane be localized at D position Yi

(

xi − Y i
)

|Ωp〉B = 0 . (3.17)

The solution is easily obtained from the Fock space vacuum |0〉 as

|Ωp〉B = δ(9−p)
(

xi − Y i
)

|0〉 =

∫

d9−pk
(2π)9−p

eik·Y |ki〉 . (3.18)

For the fermions, there are z.m. only in the RR sector. In that case, the z.m. part of the
boundary state satisfies the n=0 part of Eq. (3.15) which can be written

(

ψα0 + iηψ̃α0

)

|Ωp, η〉RR = 0 ,
(

ψi0 − iηψ̃i0

)

|Ωp, η〉RR = 0 . (3.19)

It follows that
ψ11

0 |Ωp, η〉RR = (−1)p+1ψ̃11
0 |Ωp, η〉RR = |Ωp,−η〉RR . (3.20)

The state |Ωp, η〉RR can be explicitly constructed in various ways in the RR bi-spinor space.
We shall present first the standard construction following [130, 131, 132], and then rely in
Appendix D on an alternative construction better suited for fore-coming computations. We
shall indicate with |α〉 and ˜|α〉 the spinor states created out of the Fock vacuum from the spin
fields Sα and S̃α. Recall that Type IIA and Type IIB theories differ by the relative chirality
of these left and right spinors. The fermionic zero modes act as Γ-matrices, ψµ0 = Γµ/

√
2

and ψ̃µ0 = Γ̃µ/
√

2. Generically, the z.m. part of the RR boundary state will be of the form

|Ωp, η〉RR = Mαβ|α〉 ˜|β〉 . (3.21)

Imposing the b.c. Eqs. (3.19) determines the matrix M to be

M = CΓ0....Γp
1 − iηΓ11

1 − iη
. (3.22)
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In the NSNS sector there are no z.m. and one has simply an oscillator vacuum

|Ωp, η〉NSNS = |0〉 . (3.23)

It is now easy to constructed the complete bosonic and fermionic boundary states from
the vacua |Ωp〉B and |Ωp, η〉F through a Bogoliubov transformation implementing the b.c.
(3.14) and (3.15) for the oscillator modes. One finds

|Bp〉B = exp

{ ∞
∑

n=1

(

Mµνa
†µ
n ã

†ν
n

)

}

|Ωp〉B , (3.24)

|Bp, η〉F = exp

{

−iη
∞
∑

n>0

(

Mµνψ
†µ
n ψ̃

†ν
n

)

}

|Ωp, η〉F , (3.25)

with appropriate moding and z.m. boundary state |Ωp, η〉F in the RR and NSNS sectors.
The overall normalization of the boundary state is the only unknown quantity which has
to be fixed by comparison with open string channel amplitude. We leave it unfixed for the
moment.

The (−1)F and (−1)F̃ operators entering the GSO projection act as follows

(−1)F |Bp, η〉RR = ηL|Bp,−η〉RR , (3.26)

(−1)F̃ |Bp, η〉RR = ηR(−1)p+1|Bp,−η〉RR , (3.27)

(−1)F |Bp, η〉NSNS = −|Bp,−η〉NSNS , (3.28)

(−1)F̃ |Bp, η〉NSNS = −|Bp,−η〉NSNS . (3.29)

Consequently, the GSO-projected boundary state is

PP̃ |Bp, η〉RR =
1 + ηLηR(−1)p+1

4
|Bp, η〉RR +

ηL + ηR(−1)p+1

4
|Bp,−η〉RR , (3.30)

PP̃ |Bp, η〉NSNS =
1

2
|Bp, η〉NSNS − 1

2
|Bp,−η〉NSNS . (3.31)

To obtain a non-vanishing result in the RR sector, one needs ηLηR = (−1)p+1, in agreement
with the fact that even and odd p-branes can exist only in the Type IIA (ηLηR = −1) and
Type IIB (ηLηR = 1) theories. The previous equations then reduce to

|B̂p, η〉 = PP̃ |Bp, η〉 =















1

2

(|Bp, η〉 ± |Bp,−η〉
)

, RR

1

2

(|Bp, η〉 − |Bp,−η〉
)

, NSNS

. (3.32)

Notice that the RR boundary state has a piece which depends on the overall chirality ±
and encodes parity-violating couplings. The other piece in the RR sector, as well as the
NSNS sector, are instead independent of ηL and encode parity-conserving couplings.

The boundary state encodes the couplings of the Dp-brane to all the tower of closed
string states. Consider for instance the massless bosonic states |Ψ〉. In the RR sector, the
generic polarization is a bi-spinor Hαβ which can be decomposed into antisymmetric tensors
H(n) as

Hαβ =
10
∑

n=0

1

n!
(CH(n))µ1...µnΓµ1...µn

αβ . (3.33)
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Due to the GSO projection, only forms with even or odd rank are present, depending on
the chiralities of the two left and right R sectors. In the usual (−1/2,−1/2) picture which
can always be used when computing correlations on world-sheets without boundaries, H(n)

are field-strengths F(n) and the GSO projection relates them by Hodge duality ∗F(n) =
F(10−n). The appearance of the field strength rather than the potential reflects the fact
that fundamental strings couple only non-minimally to the RR forms, and do not carry a
true RR charge. Differently, in the (−1/2,−3/2) or (−3/2,−1/2) picture appropriate to
soak the superghost zero mode anomaly of a disk corresponding to a world-sheet boundary
ending on a D-brane, H(n) are potentials C(p), reflecting the fact that D-branes carry a
non-zero RR charge. In the NSNS sector, the generic polarization is a two index tensor ξµν .
It can be decomposed into trace, symmetric and antisymmetric parts

ξ(φ)
µν =

1

4
(ηµν − kµlν − kν lµ) , ξ(h)

µν = hµν , ξ(b)µν = bµν , (3.34)

corresponding to the dilaton φ, the graviton hµν and antisymmetric Kalb-Ramond tensor
bµν . k

µ is the momentum of the state in the transverse D directions (Mµ
νk

ν = 0) and lµ is
an auxiliary vector satisfying k · l = 1 and l2 = 0. The corresponding RR and NSNS states
are

|C〉RR = Hαβ |α〉 ˜|β〉|k〉 , (3.35)

|ξ〉NSNS = ξµν ψ
µ†
1/2ψ̃

†ν
1/2|k〉 . (3.36)

The conveniently normalized overlap 〈Ψ〉p = Tp〈B̂p|Ψ〉 then yields

〈ξ〉p = Vp+1T̂pξµνM
µν , (3.37)

〈C〉p = Vp+1T̂pTr[Γ0...ΓpC−1H] , (3.38)

which, using Eqs. (3.33) with H(n) = C(p) and (3.34), reproduce the correct Dp-brane

couplings T̂p, µ̂p and âp to massless RR and NSNS fields, given by Eqs. (1.76). One can
also compute directly the asymptotic fields by inserting a closed string propagator ∆ in the
overlap and Fourier transforming. For details, see [130].

3.2.2 Rotated and boosted Dp-brane

The boundary state corresponding to a rotated or boosted Dp-brane can be constructed
exactly in the same way as the static one, but start from rotated or boosted b.c.. Equiv-
alently, the rotated or boosted boundary state can be obtained simply by applying to the
static one a Lorentz transformation with negative angle or rapidity [132]. The closed string
Lorentz generators are Jµν = JµνB + JµνF with

JµνB = xµpν − xνpµ − i
∞
∑

n=1

(

a†µn a
ν
n − a†νn a

µ
n + ã†µn ã

ν
n − ã†νn ã

µ
n

)

, (3.39)

JµνF =



























− i

2
[ψµ0 , ψ

ν
0 ] − i

2
[ψ̃µ0 , ψ̃

ν
0 ] − i

∞
∑

n=1

(

ψ†µ
n ψ

ν
n − ψ†ν

n ψ
µ
n + ψ̃†µ

n ψ̃
ν
n − ψ̃†ν

n ψ̃
µ
n

)

, RR

−i
∞
∑

n=1/2

(

ψ†µ
n ψ

ν
n − ψ†ν

n ψ
µ
n + ψ̃†µ

n ψ̃
ν
n − ψ̃†ν

n ψ̃
µ
n

)

, NSNS

(3.40)
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Consider for instance a rotation of angle πα in the plane of two N and D directions xp

and xp+1. The boundary state |Bp, α〉 for the rotated D-brane is obtained by applying the
rotation exp{−παJpp+1} to the boundary state |Bp, 〉 of a static Dp-brane. Consider first
the effect on the z.m. parts of the boundary state. The z.m. part of JB rotates Eq. (3.17)
and Eq. (3.18) becomes

|Ωp, α〉B = δ(cos παxp+1 − sinπαxp)δ(8−p)
(

~x− ~Y
)

=

∫

d9−pk
(2π)9−p

eik·Y |k(α)〉 , (3.41)

where kµ(α) = (0, ..., 0,− sin πα kp+1, cos πα kp+1, kp+2, ..., k9−p) is transverse to the rotated
D-brane world-volume. The z.m. part of JF affects Eq. (3.21) in the RR sector. In
particular, the matrix M transforms to M(α) = ΣS(α)MΣ−1

S (α), where

ΣS(α) = cos
πα

2
11 − sin

πα

2
ΓpΓp+1 , (3.42)

is the spinor representation of the rotation. One finds

M(α) = CΓ0...Γp−1
(

cos παΓp + sinπαΓp+1
) 1 − iηΓ11

1 − iη
. (3.43)

Finally, the effect of J on the oscillator part of the boundary state amounts to transform
the matrix Mµ

ν to Mµ
ν(α) = (ΣV (α)MΣ−1

V (α))µν , where

(ΣV )µν(α) =

(

cos πα sinπα

− sinπα cosπα

)

. (3.44)

One finds

Mµ
ν(α) =















11p 0 0 0

0 cos 2πα − sin 2πα 0

0 − sin 2πα − cos 2πα 0

0 0 0 −118−p















. (3.45)

A boost can be analyzed exactly in the same way.

Proceeding as in the static case, one can compute the couplings and the asymptotic
fields for a rotated or boosted Dp-brane, finding the expected results dictated by Lorentz
covariance.

3.2.3 Dp-brane with fluxes

The boundary state corresponding to a Dp-brane with constant electromagnetic fluxes can
be constructed in a similar way. For instance, it can be obtained from that relative to a
rotated or boosted Dp-brane by T-duality. As shown is Chapter 2, a magnetic flux in some
N plane, say Fp−1p = B, amounts essentially to a rotation of opposite angle of left and
right movers. The angle is given by the relation 2πα′B = tanπα. The boundary state
Eq. (3.18) change only by an overall factor cos πα, whereas the matrices M entering Eq.
(3.21) and the matrix M appearing in Eqs. (3.24) and (3.25) transform through the spinor
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and vector representations of the left and right rotations, M(α) = ΣS(α)MΣ−1
S (−α) and

Mµ
ν(α) = (ΣV (α)MΣ−1

V (−α))µν . One obtains

M(α) = CΓ0...Γp−2
(

cosπαΓp−1Γp + sinπα 11
) 1 − iηΓ11

1 − iη
, (3.46)

and

Mµ
ν(α) =















11p−1 0 0 0

0 cos 2πα sin 2πα 0

0 − sin 2πα cos 2πα 0

0 0 0 −119−p















. (3.47)

The case of an electric field is similar.

An important consequence of turning on a magnetic field is that the Dp-brane can then
couple also to the RR (p−1)-form, beside the (p+1)-form. Turning on fluxes in n-planes,
one finds couplings to the RR (p+1−2m)-forms with m≤n [122] (see also [133]). These
couplings can be checked explicitly by computing overlaps of a generic RR state with the
boundary state. They correspond to the Wess-Zumino terms in the Dp-brane effective
action Eq. (1.72). A Dp-brane with electromagnetic fluxes in n planes can therefore be
interpreted as a bound state n Dq-branes with q = p, p−2, ..., p−2n.

3.3 Interactions

The boundary state formalism allows to compute the cylinder amplitude directly in the
closed string channel. Apart from an unknown normalization factor N , the amplitude is
obtained as the tree level propagation amplitude between the two GSO-projected boundary
states |B̂1, η1〉 and |B̂2, η2〉 describing the D-branes on which the cylinder ends. The closed
string propagator is conveniently written as

∆ =
1

H
=

∫ ∞

0
dle−lH , (3.48)

so that the amplitude reads

A = N
∫ ∞

0
dl
{

〈B̂1, η1|e−lH |B̂2, η2〉NSNS + 〈B̂1, η1|e−lH |B̂2, η2〉RR
}

. (3.49)

The GSO projection applied to a boundary state with parameter η produces a combina-
tion of two boundary states with parameters ±η according to Eqs. (3.32). As it must be,
〈B1, η|e−lH |B2, η

′〉 depends only on ηη′ = ±1, so that the amplitude receives four indepen-
dent contributions coming from the two possible relative signs in each sector. These four
contributions correspond to the four spin-structures that we shall call R+, R−, NS+ and
NS−. In each of the two sectors SS, where S=R,NS, the contribution of the spin structure
S± is indicated as

〈B1|e−lH |B2〉Sηη′ = 〈B1, η|e−lH |B2, η
′〉SS , (3.50)

and the amplitude can be written as

A = N
∫ ∞

0
dl

1

2

{

〈B1|e−lH |B2〉NS+ − 〈B1|e−lH |B2〉NS− + 〈B1|e−lH |B2〉R+

±〈B1|e−lH |B2〉R−
}

. (3.51)
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A suggestive and concise way of writing this is the following

A = N
∫ ∞

0
dl

1

2

∑

s

(±)Zs(l) , (3.52)

where we have defined the “partition function” in the spin structure s as

Zs(l) = 〈B1|e−lH |B2〉s . (3.53)

The name partition function is in this case an abuse of language, finding its significance
in the fact that the above expression encodes all the results of Polyakov’s path-integral on
the cylinder. As its open string analog, the partition function splits into the product of a
bosonic and a fermionic parts ZB(l) and ZF (l) corresponding to the bosonic and fermionic
components of the boundary state. Each of these can further be decomposed into z.m. and
oscillator contributions Z0(l) and Zosc(l).

As an example of the power of the boundary state formalism, we shall briefly summarize
the computation of these partition functions in the case of two parallel D-branes. Consider
first the bosonic z.m. contribution. For the case of two static and parallel Dp and D(p+2n)-
branes, one finds

ZB0 (l) = Vp+1

∫

d9−2n−p~k
(2π)9−n−p

ei
~k·~re−

k2

2 = Vp+1(2πl)
− 9−2n−p

2 e−
r2

2l , (3.54)

where ~r = ~Y1 − ~Y2 is the distance separating the Dp and the D(p+2n)-branes in the
(9−2n−p)-dimensional space. For constant velocities v1,2 = tanhπǫ1,2 in some D direc-
tion, say x9, this becomes

ZB0 (l, ǫ) =
Vp

sinhπǫ

∫

d8−n−p~k
(2π)8−2n−p e

i~k·~be−
k2

2 =
Vp

sinhπǫ
(2πl)−

8−2n−p
2 e−

b2

2l , (3.55)

where ~b = ~Y1 − ~Y2 is know the impact parameter and ǫ = ǫ1 − ǫ2 the relative rapidity. The
effect of rotations is similar.

Consider now the fermionic z.m. contribution. Using

〈Ωp, η|Ωp+n, η
′〉RR = 25δηη′δn,0 , (3.56)

〈Ωp, η|Ωp+n, η
′〉NSNS = 1 , (3.57)

one finds
ZNS±0 = 1 , ZR+

0 = 25δn,0 , ZR−0 = 0 . (3.58)

Finally, consider the oscillator contribution. This can be computed in the general case
in terms of the matrix (M1,2)

µ
ν characterizing each of the two D-branes. For the ten bosons,

one finds

ZBosc(l) =
∞
∏

n=1

det−1
(

11 + q2nMT
1 M2

)

, (3.59)

where q = e−2πl. Similarly, the ten fermions give the following contributions in the four
spin-structures

ZR±osc (l) =
∞
∏

n=1

det
(

11 ± q2nMT
1 M2

)

, (3.60)

ZNS±osc (l) =
∞
∏

n=1

det
(

11 ± q2n−1MT
1 M2

)

. (3.61)
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The ghost contributions can be summarized as follows. As for their oscillator part, the
ghosts and superghosts give a contribution which is the inverse of that of a pair of “normal”
bosons and fermions, corresponding to a 2×2 block M2 in M such that MT

2 M2 = 112. This
amounts to use an 8×8 light-cone matrix M in Eqs. (3.59), (3.60) and (3.61). As for the
z.m. contributions, the bosonic ghosts play no role. More precisely, they are “inserted” and
have be traded for an explicit integration over the world-sheet modulus l. The superghosts
are more subtle to treat. In the NSNS sector, nothing happens since the superghost are
antiperiodic and have no zero modes. In the RR sector instead, the superghosts are periodic
and have z.m.. As for the fermions, these z.m. are fake in the RR+ spin structure, in the
sense that they are z.m. only with respect to the string Fourier decomposition but not
on the covering torus. Their effect is simply to lower the factor 25 in Eq. (3.58) by a
factor 2, leaving 24. In the RR− spin-structure, the superghost z.m. are true z.m. also
on the covering torus. Naively, their determinant would give an infinite factor 1/0 = ∞
coming from these z.m.. However, from an odd spin-structure path-integral point of view,
the superghost determinant was born as a “primed” determinant with the z.m. excluded,
since it corresponds to the jacobian of the super-diffeomorphism gauge fixing necessary to
gauge away the non-harmonic part of the world-sheet gravitino. However, in this approach
it remains an integration over the harmonic zero modes part of the world-sheet gravitino,
which are nothing but the supermoduli. Since the gravitino couples to the supercurrent,
this leads to the well-known super-Teichmüller insertions of the world-sheet supercurrent.

A simple way out of the subtlety associated to the odd spin-structure z.m. is proposed
and discussed in great detail in [131], and consists in giving a regularization prescription
for canceling the z.m. contributions of superghosts and longitudinal unphysical fermions.
Heuristically, in the RR+ spin-structure, each pair of fermionic z.m. gives a factor 2 for
a NN,NN or DD,DD plane, and 0 for a ND,ND or DN,DN plane. Conversely, in the
RR− spin-structure, each pair of fermionic z.m. gives a factor 0 for a NN,NN or DD,DD
plane and a factor 2 for a ND,ND or DN,DN plane. The superghosts z.m. contribute
instead 1/2 for the RR+ spin-structure and 1/0 in the RR− spin-structure. Therefore,
canceling the 0 of the superghosts with the 0 of one pair of fermions, one finds for the Dp-
D(p+2n) system a total of 24−n0n in the RR+ and 2n04−n in the RR− spin-structure. This
construction seems to differ from the usual path-integral approach but allows to describe
correctly the D0-D8 system, which involves a peculiar odd spin-structure interaction [131].
An analogous subtlety arises also for the Dp-D(6−p) system in relative motion, in which
the odd spin-structure encodes the magnetic interaction [101]. We shall see that in this case
the path-integral approach with supercurrents insertion suggests a simple prescription to
obtain directly the peculiar magnetic phase-shift [101], whereas the regularization procedure
described above produce a result which is difficult to interpret as a phase-shift [134].

To complete the discussion, consider also the case in which additional vertex operators
are inserted on the cylinder world-sheet, focusing on the case in which only one of them
is present. The total superghost charge is 0, and in the even spin-structures the vertex
operator has to be taken in the 0 picture. In the odd spin-structre instead, the supercurrent
times δ(β) acts as a picture-changing operator and the vertex operator has to be taken in
the −1 picture. Notice that also in the even spin-structures one could formally take the
vertex operator in the −1 picture and insert a picture-changing operator, giving altogether
the 0 picture vertex operator. We have not been able to found a clear discussion of the
corresponding construction for the odd spin-structure, and we will therefore assume that
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also in this case the combination of the −1 picture vertex operator and the picture-changing
operator will give the 0 picture operator, while the superghost determinant is also in this
case the “primed” one, as for the ghosts. For a related discussion see [95].

Using the above results, it is straightforward to reproduce the amplitudes computed in
Chapter 3 in their closed string channel version. In order to obtain the correct normalization,
one has to take

N =
T̂ 2
p

24
. (3.62)

Notice that the partition function defined here within the boundary state formalism differs
by a factor 2# from that used in Chapter 2 in the closed channel factorization, # being the
number of direction with twisted b.c.. One could redefine the partition function to match it
with the definition obtained by performing a modular transformation form the open string
channel, but then one would get an overall normalization of the boundary state amplitude
which would depend on the number of twisted direction. We therefore prefer use the above
convention.
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Chapter 4

Compactification and point-like
D-branes

In this chapter we discuss D-branes and their dynamics in the framework of some simple
compactification schemes. We study several examples of D-branes wrapped on the compact
part of spacetime, yielding point-like objects in the lower-dimensional non-compact part
of spacetime. We compute the phase-shift for two of these point-like objects and perform
a detailed analysis of the amplitude for emitting a massless closed string state during the
interaction. Comparison with field theory computations allows the precise determination
of the couplings of the various point-like configurations to four-dimensional massless fields.
We follow mainly [99, 100]. See also [135, 136, 137]

4.1 Toroidal and orbifold compactifications

One of the most important problems in string theory is the fact that it is a consistent theory
only in ten dimensions. A way to reach a phenomenologically more realistic theory is to
imagine ten-dimensional spacetime M10 to be the product M10 = IR3,1 ×M6 of ordinary
four-dimensional flat Minkowski space IR3,1 and some compact manifold M6, whose typical
size L is much shorter than the length scale probed by present days experiments. Requiring
M6 to be Ricci-flat ensures that this ansatz is compatible with conformal invariance and is
therefore an acceptable solution of string theory. The ten-dimensional fields of string theory
decompose into their four-dimensional content by harmonic analysis on M6. Massless fields
in four dimensions are in one-to-one correspondence with zero modes of the wave operators
on M6, whereas higher harmonics give rise to massive Kaluza-Klein modes. In addition
to these, there are also winding modes coming from strings wrapped on one-cycles of M6,
whose mass scales with the inverse of the typical size of M6, m ∼ α′/L. Consequently,
the size L cannot be too small, since the proliferation of light winding modes would in
some sense redecompactify the theory in a T-dual version. The fraction of the original ten-
dimensional supersymmetry inherited by the four-dimensional low-energy effective theory
depends instead on the number of covariantly constant spinors on M6.

Consider in particular the two Type II theories compactified on a six-torus M6 = T 6.
Call Γ6 the lattice defining T 6 as the quotient T 6 = IR6/Γ6. The fields of the corresponding
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ten-dimensional LEEA decompose by simple dimensional reduction, and the original N=2
D=10 SUGRA reduces to N=8 D=4 SUGRA. As for the fields, the N=2 D=10 gravitational
multiplet becomes simply the N=8 D=4 gravitational multiplet. D=4 theories with less
supersymmetry can be obtained through the so-called orbifold construction, obtained by
gauging some discrete symmetry of Γ6. In particular, we will be interested in the ZZ2 and
ZZ3 orbifold compactifications, M6 = T 2 × T 4/ZZ2 and M6 = T 6/ZZ3, with N=4 and N=2
supersymmetry.

Consider first the construction of the T 4/ZZ2 orbifold. One starts with a four-torus T 4

which is the product T 4 = T 2
1 × T 2

2 of two identical two-tori T 2
i with modulus τ = i. Each

T 2
i = IR/Γ2, defined by the equivalence zi = zi +m+ nτ , is symmetric with respect to ZZ2

reflections g : zi → −zi. The Hamiltonian is invariant as well, so that one can gauge this
ZZ2 symmetry by projecting the Hilbert space of the theory onto ZZ2-invariant states. This
is done using the projector P = 1/2(1 + g). In particular, only 1/2 of the 32 supercharges
survives this projection, so that one has a N=4 residual supersymmetry in D=4. Modular
invariance at the one-loop level requires the inclusion of twisted sectors in the Hilbert space,
in which strings are closed only up to a ZZ2 gauge transformation. The ZZ2 actions is not
free, but has 22 fixed points in ẑi = k/2eiπ/4 with k=0, 1, where the space T 4/ZZ2 is singular
and no longer a manifold.

The construction of the T 6/ZZ3 orbifold is similar. One starts this time with a six-torus
T 6 which is the product T 6 = T 2

1 × T 2
2 × T 2

3 of three identical two-tori T 2
i with modulus

τ = e2πi/3. Each T 2
i = IR/Γ2, defined by the equivalence zi = zi+m+nτ , is now symmetric

with respect to ZZ3 rotations g : zi → e2πi/3zi. As before, the Hamiltonian is invariant
as well, so that one can gauge this ZZ3 symmetry by projecting the Hilbert space of the
theory onto ZZ3-invariant states with P = 1/3(1 + g + g2). In particular, only 1/8 of the
32 supercharges survives this projection, so that one has a N=2 residual supersymmetry in
D=4. Modular invariance at the one-loop level again requires the inclusion of twisted sectors
in the Hilbert space, in which strings are closed only up to a ZZ3 gauge transformation. As
before, the ZZ3 actions is not free, but has 33 fixed points in ẑi = k/3eiπ/6 with k=0,1,2,
where the space T 6/ZZ3 is no longer a manifold.

The need of including twisted sectors can be understood quite in general. Consider in
fact a generic ZZn projection P = 1/N(1 + g + ...+ gN−1). The one-loop partition function
of the projected theory is

Z(β) = Tr[Pe−βH ] =
1

N

N−1
∑

n=0

Tr[gne−βH ] . (4.1)

In the notation of Appendix B for partition functions on the torus, now for a complex pair
of fields, this corresponds to summing the following b.c.

Z(β) =
1

N

N−1
∑

n=0

gn

1

. (4.2)

It is clear that this cannot be modular invariant, unless one adds all the possible twists
along the other cycle of the torus,

Z(β) =
1

N

N−1
∑

m,n=0

gn

hm

, (4.3)
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corresponding exactly to adding the contribution of all the twisted sectors Hm corresponding
to a twist hn

Z(β) =
N−1
∑

m=0

TrHm [Pe−βH ] =
1

N

N−1
∑

m,n=0

Tr[gnhme−βH ] . (4.4)

Consider now a generic ZZN orbifold twisted sector in which strings close only up to
gm ∈ ZZN . The complex coordinate Zi, Zi∗ = (Xi ± iXi+1)/

√
2, has twisted periodicity

conditions
Zi(σ + 1) = e2πiαZi(σ) , Zi∗(σ + 1) = e−2πiαZi∗(σ) , (4.5)

with α = m/N . The mode expansion is

Zi(z) =
zi

2
+

i√
4π

{ ∞
∑

n=0

1√
n+ α

cine
2π(n+α)iz −

∞
∑

n=1

1√
n− α

c†in e
−2π(n−α)iz

}

, (4.6)

Z̃i(z̄) =
zi

2
+

i√
4π

{ ∞
∑

n=1

1√
n− α

c̃ine
−2π(n−α)iz̄ −

∞
∑

n=0

1√
n+ α

c̃†in e
2π(n+α)iz̄

}

, (4.7)

Zi∗(z) =
zi∗

2
+

i√
4π

{ ∞
∑

n=1

1√
n− α

ci∗n e
2π(n−α)iz −

∞
∑

n=0

1√
n+ α

c†i∗n e−2π(n+α)iz

}

, (4.8)

Z̃i∗(z̄) =
zi∗

2
+

i√
4π

{ ∞
∑

n=0

1√
n+ α

c̃i∗n e
−2π(n+α)iz̄ −

∞
∑

n=1

1√
n− α

c̃†i∗n e2π(n−α)iz̄

}

, (4.9)

with the commutation relations [cim, c
†i∗
n ] = [c̃im, c̃

†i∗
n ] = δm,n. In this notation, the † operator

is meant to indicate negative frequency mode creation operators, and acts independently
from the ∗ operation related to the complexification of the fields. The zero modes zi exist
only at fixed points of the orbifold, for which zi = gzi, and no momentum nor winding is
possible. Similarly, the complex combinations χi, χi∗ = (ψi ± iψi+1)/

√
2 of fermion fields

have the following periodicities in the RR and NSNS sectors

χi(σ + 1) = ±e2πiαχi(σ) , χi∗(σ + 1) = ±e−2πiαχi∗(σ) , (4.10)

with α = m/N . The corresponding mode expansions are

χi(z) =
∞
∑

n≥0

χine
2π(n+α)iz +

∞
∑

n>0

χ†i
n e

−2π(n−α)iz , (4.11)

χ̃i(z̄) =
∞
∑

n>0

χ̃ine
−2π(n−α)iz̄ +

∞
∑

n≥0

χ̃†i
n e

2π(n+α)iz̄ , (4.12)

χi∗(z) =
∞
∑

n>0

χi∗n e
2π(n−α)iz +

∞
∑

n≥0

χ†i∗
n e−2π(n+α)iz , (4.13)

χ̃i∗(z̄) =
∞
∑

n≥0

χ̃i∗n e
−2π(n+α)iz̄ +

∞
∑

n>0

χ̃†i∗
n e2π(n−α)iz̄ , (4.14)

with the anticommutation relations {χim, χ†i∗
n } = {χ̃im, χ̃†i∗

n } = δm,n, and n integer or half-
integer in the RR and NSNS sectors. The total contribution to the Hamiltonian from a
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twisted pair of bosons and fermions is

H =
p2

2
+ 2π

{ ∞
∑

n=0

(n+ α)
(

c†i∗n cin + c̃†i∗n c̃in

)

+
∞
∑

n=1

(n − α)
(

c†in c
i∗
n + c̃†in c̃

i∗
n

)

(4.15)

+
∞
∑

n=0

(n+ α)
(

χ†i∗
n χi∗n + χ̃†i

n χ̃
i
n

)

+
∞
∑

n=1

(n− α)
(

χ†i
nχ

i
n + χ̃†i∗

n χ̃i∗n
)

− b(α)

}

,

with n integer or half-integer for the fermions in the RR and NSNS sectors. The total normal
constant b(α) ordering can be computed using the ζ-function regularization Eq. (2.62). One
finds, for each twisted pair of fields which were initially periodic (P) or antiperiodic (A),
the following result

b(α) = ∓



















1

2

[

−1

6
+ α(1 − α)

]

, P

1

2

(

1

12
− α2

)

, A

, (4.16)

where the two overall signs refer to bosons and fermions respectively.

4.2 Interaction of point-like D-branes

We are interested in D-brane configurations which are point-like objects from the four-
dimensional point of view. In particular, the study of their dynamics will allow a first
important classification of their properties. Relying on simple extensions of the results of
Appendix C, it is possible to recognize the contributions of the exchange of the various
massless fields of the low-energy effective SUGRA from their dependence on the rapidity.
Due to the simple block-diagonal ansatz for the metric of the target spacetime, the boundary
state, as well as the partition function, will split into a contribution related to the universal
four-dimensional Minkowski part IR3,1 of spacetime, and an internal contribution related
to the six-dimensional compact part M6 of spacetime which will depend on the compact-
ification scheme and on which ten-dimensional D-brane has been wrapped on M6 and in
which way. The ghost and superghost contributions are also universal, and will therefore
be considered together with the universal Minkowski contribution.

� �
l

Figure 4.1: The cylinder amplitude.
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As shown in Chapter 3, the interaction amplitude between two identical Dp-branes in
relative motion is given by a cylindrical world-sheet as in Fig. 4.1 and reads

A =
T̂ 2
p

24

∫ ∞

0
dl

1

2

∑

s

(±)Zs(l, ǫ) , (4.17)

in terms of the partition functions in the various spin-structures

Zs(l, ǫ) = 〈B1, ǫ1, ~Y1|e−lH |B2, ǫ1, ~Y2〉s . (4.18)

Here ~Y1,2 are the positions in the (x2, x3) transverse plane and v1,2 = tanhπǫ1,2 the constant
velocities in the x1 direction. As discussed above, Zs(l, ǫ) will split into a universal non-

compact part Z
(nc)
s (l, ǫ), containing also the ghost and superghost contributions, and a

compact part Z
(c)
s (l). The details of the construction of the boundary state in each of the

cases that we will consider, as well as the explicit computation of the partition functions
entering the interaction amplitudes, are reported in Appendix D.

Consider first the universal Minkowski part. Since we are looking for point-like configu-
rations in four dimensions, we impose N b.c. in the time direction and D b.c. in all the three
space directions. As shown in Appendix D, the total bosonic and fermionic contributions
to the partition function are

Z
(nc)
B (l, ǫ) = 2

e−
b2

2l

(2πl)

η(2il)

ϑ1(iǫ|2il)
, (4.19)

Z
(nc)
Fs (l, ǫ) =

ϑα(iǫ|2il)
η(2il)

, (4.20)

with α = 2 for s=R+ and α = 3, 4 for s=NS±. For s=R− the result vanishes.

Consider now the internal part. Due to the periodicity of the compact coordinates, the
bosonic zero modes along these directions get drastically modified. Consider first the posi-
tion zero mode xi. For a D direction, the b.c. is a periodic δ-function, instead of a usual one.
Decomposing in Fourier modes, this translate into the fact that the boundary state is now
a discrete superposition of closed string states with zero winding but arbitrary momentum
belonging to the momentum lattice Γ∗

6. Similarly, for a N direction, the b.c. allow now for
a non-zero Wilson line, which is noting but the T-dual of the position. Correspondingly,
the boundary state has to be a discrete superposition of closed string states with zero mo-
mentum but arbitrary winding belonging to the winding lattice Γ6. For simplicity, we will
neglect the role of Kaluza-Klein and winding modes, since their contribution will not be
relevant for the following discussions. In interactions, this contribution is just an overall
multiplicative correction to the partition function, which can be usually resummed to give a
modular function, that we shall simply omit to write in order to avoid heavy expressions. In
any case, neglecting these contributions is justified at energy corresponding to a length scale
much above the typical size L of the compact part of spacetime, as well as its T-dual α′/L.
By doing so, the contribution of the bosonic z.m. in the compact directions amounts to the
normalization V 2

p /VM6 . This factor is just what is needed to change the mass density Tp
of the Dp-brane into the mass M = TpVp of the corresponding four-dimensional point-like
object, and the ten dimensional coupling κ2

(10) into the four-dimensional one, obtained by
dividing by VM6 , κ

2
(4) = κ2

(10)/VM6 . Summarizing, the ten-dimensional factor VpT̂
2
p becomes
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in four dimensions T̂ 2
p V

2
p /VM6 = M̂2. The amplitude stays dimensionless, since the prop-

agator changes from ∆(9−p) to ∆(2). For orbifold twisted sectors, there is no momentum
nor winding, and one finds the same factor as above. Notice that since VT 6/ZZN

= VT 6/N ,

M̂ and the four-dimensional coupling κ2
(4) depend on the compactification scheme. For ZZN

compactification, they are N times bigger than for toroidal compactification.

For orbifold compactifications, one has to project the boundary state onto its invariant
part through the orbifold projector P . In the ZZN case, P = 1/N(1 + g + ... + gN−1), and
therefore one can first compute the partition function for a generic relative orbifold twist gn

and then average over all the elements of ZZN . Twisted sectors have to be considered only
at orbifold fixed-points. More precisely, twisting is consitent only with N,N or D,D b.c. in
the corresponding plane, and not with N,D or D,N b.c. breaking rotation invariance. In the
D,D case, the position Y of the D-brane must coincide with a fixed-point, whereas in the
N,N case one should sum over all the fixed points in the world-volume of the D-brane (we
will not consider this case). In each of the twisted sectors, if any, one has to project onto
the ZZN -invariant part. As in the untwisted sector, this can be done by first considering an
arbitrary orbifold twist gn and then averaging over all the elements of ZZN .

We will consider in parallel compactifications with M6 = T 6, T 2 × T 4/ZZ2 and T 6/ZZ3,
by adopting the following strategy. We will first compute the contribution to the partition
function of the fields along the compact directions, for arbitrary relative twists e2πiwa ,
a = 4, 6, 8 in all of the three pairs of compact coordinates. By appropriate choices, it will
then be easy to specialize to the various cases of interest. For instance, the toroidal case is
obtained simply by setting all the twists to zero, w4 = w6 = w8 = 0. The ZZ2 case is obtained
by setting the first twist to zero, w4 = 0, and averaging over w6 = w8 = 0, 1/2. Finally, the
ZZ3 orbifold case is obtained by averaging over w4 = w6 = w8 = 0, 1/3, 2/3. Similarly, for
the analysis of orbifold twisted sectors, on can consider a general situation with three twists
αa, a = 4, 6, 8 in all the three pairs of compact coordinates. For the ZZ2 orbifold, there is a
single twisted sector with α4 = 0 and α6 = α8 = 1/2, whereas for the ZZ3 orbifold, there are
two identical twisted sectors with α4 = α6 = α8 = 1/3 and α4 = α6 = α8 = 2/3.

Again, some details about the construction of the boundary state and the computation
of the corresponding partition functions are reported in Appendix D.

4.2.1 Dimensionally reduced D0-branes

The first and most obvious way to obtain a point-like object in D=4 is to start with a point-
like object in D=10, that is a D0-brane. We take therefore D b.c. in all the six compact
directions. As explained above, if the D0-brane sits at an orbifold fixed-point, one has to
consider also twisted sectors.

Untwisted sector

The total bosonic and fermionic contributions in the untwisted sector are

Z
(c)
B (l) =

1

VM6

1

η6(2il)
, (4.21)

Z
(c)
sF (l) =

ϑ3
α(0|2il)
η3(2il)

, (4.22)
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with α = 2 for s=R+ and α = 3, 4 for s=NS±.

Collecting Eqs. (4.19), (4.20), (4.21) and (4.22), the untwisted sector contribution to
the interaction amplitude between two D0-branes is found to be

A =
M̂2

24

∫ ∞

0

dl

2πl
e−

b2

2l Z(l, ǫ) , (4.23)

with

Z(l, ǫ) =
ϑ3(iǫ|2il)ϑ3

3(0|2il) − ϑ2(iǫ|2il)ϑ3
2(0|2il) − ϑ4(iǫ|2il)ϑ3

4(0|2il)
ϑ1(iǫ|2il)η9(2il)

. (4.24)

Notice that this is independent of the compactification scheme. Using the Riemann identity
Eq. (A.21), it is easy to show that A ∼ v3 for πǫ ≃ v ≪ 1, as a consequence of super-
symmetry. The result for the ZZ2 orbifold compactification is in agreement, in the orbifold
limit, with the phase-shift for D0-branes on K3 computed in [138] in terms of characters
of the internal N=4 superconformal field theory. In the large distance limit b ≫ ls, only
world-sheets with l → ∞ contribute to the amplitude. Since

Z(l, ǫ) −→
l→∞

6 + 2 cosh 2πǫ− 8 cosh πǫ

sinhπǫ
, (4.25)

one finds

A −→
b≫ls

M̂2
(

3

4
+

1

4
cosh 2πǫ− coshπǫ

)∫ ∞

−∞
dτ∆(3)(r(τ)) , (4.26)

where r(τ) =
√

b2 + sinh2 πǫ τ2 is the true four-dimensional distance.

Twisted sectors

The total bosonic and fermionic contributions in a generic twisted sector are

Z
(c)
B (l, αa) =

1

VM6

∏

a

η(2il)

ϑ
[

1
2
−αa
1
2

]

(0|2il)
, (4.27)

Z
(c)
sF (l) =

∏

a

ϑ
[a−αa

b

]

(0|2il)
η(2il)

, (4.28)

with a = 1/2, b = 0, 1/2 for s=R±, and a = 0, b = 0, 1/2 for s=NS±.

Collecting Eqs. (4.19), (4.20), (4.27) and (4.28), the twisted sector contribution to the
interaction amplitude between two D0-branes is found to be

A =
M̂2

24

∫ ∞

0

dl

2πl
e−

b2

2l Z(l, ǫ) , (4.29)

with

Z(l, ǫ) =











































1
2
∑

a,b=0

(−1)2(a+b)
ϑ
[a
b

]

(iǫ|2il)ϑ[ab
]

(0|2il)ϑ2
[a− 1

2
b

]

(0|2il)
ϑ
[

1
2
1
2

]

(iǫ|2il)ϑ2
[0

1
2

]

(0|2il)η3(2il)
, T 2 × T 4/ZZ2

1
2
∑

a,b=0

(−1)2(a+b)
ϑ
[a
b

]

(iǫ|2il)ϑ3
[a− 1

3
b

]

(0|2il)
ϑ
[

1
2
1
2

]

(iǫ|2il)ϑ3
[

1
6
1
2

]

(0|2il)η3(2il)
, T 6/ZZ3

. (4.30)
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The odd spin-structure a=b=1 never contributes, because of the fermionic zero modes in
the transverse plane. Using the Riemann identity Eq. (A.7), it is easy to show that A ∼ v
for πǫ ≃ v ≪ 1, as a consequence of supersymmetry. The fact that one has A ∼ v rather
than A ∼ v3 exhibits the fact that orbifold compactifications lead to low-energy effective
theories with less supersymmetry with respect to toroidal compactification. In the large
distance limit b≫ ls, only world-sheets with l → ∞ contribute to the amplitude. One finds

Z(l, ǫ) −→
l→∞















4 − 4 cosh πǫ

sinhπǫ
, T 2 × T 4/ZZ2

2 − 2 cosh πǫ

sinhπǫ
, T 6/ZZ3

, (4.31)

and since there is only one twisted sector in the ZZ2 case and two identical ones in the ZZ3

case, one has in total

A −→
b≫ls

M̂2

4
(1 − coshπǫ)

∫ ∞

−∞
dτ∆(3)(r(τ)) , (4.32)

both in the ZZ2 and the ZZ3 cases.

4.2.2 Wrapped D3-branes

Another way to obtain a point-like object in D=4 is to start from a p-extended object in
D=10, a Dp-brane, and wrap it on some p-cycle of M6. We shall consider the particular
case of a D3-brane. This is achieved by taking N b.c. in three of the six compact directions,
say xa, a = 4, 6, 8 and D in the other three, xa+1, a = 4, 6, 8. Each of the three complex
combinations Za of compact coordinates has therefore mixed boundary conditions, in the
sense that they correspond to a NN,DD plane, and will be sensitive to orbifold rotations.

Untwisted sector

The total bosonic and fermionic contributions in the untwisted sector are

Z
(c)
B (l, wa) =

V 2
3

VM6

η3(2il)
∏

a

2 sin 2πwa
ϑ1(2wa|2il)

, (4.33)

Z
(c)
sF (l, wa) =

ϑ3
α(2wa|2il)
η3(2il)

, (4.34)

with α = 1, 2 for s=R± and α = 3, 4 for s=NS±.

Collecting Eqs. (4.19), (4.20), (4.33) and (4.34), the untwisted sector contribution to
the interaction amplitude between two wrapped D3-branes is found to be

A =
M̂2

24

∫ ∞

0

dl

2πl
e−

b2

2l
1

N

∑

{wa}
Z(l, ǫ, wa) , (4.35)

with

Z(l, ǫ, wa) =
∑

α

(−1)1+α
ϑα(iǫ|2il)

∏

a ϑα(2wa|2il)
ϑ1(iǫ|2il)

∏

a ϑ1(2wa|2il)
∏

a

(2 sin 2πwa) . (4.36)
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Using the Riemann identity Eq. (A.21), it is easy to show that each contribution to the
amplitude at fixed relative twist wa vanishes at least like v for πǫ ≃ v ≪ 1. In order this
to be true, it is crucial that ±w4 ± w6 ± w8 = n for some combination of signs. This is
precisely the condition that one has to impose on the orbifold action in order that at least a
couple of supercharges survive the orbifold projection [15, 16]. Averaging over the allowed
twists, one finds A ∼ v3 for toroidal and ZZ2 orbifold compactification, but A ∼ v for ZZ3

orbifold compactification, in the limit πǫ ≃ v ≪ 1. In the large distance limit b ≫ ls, only
world-sheets with l → ∞ contribute to the amplitude. For a fixed orbifold relative twist,
one finds

Z(l, ǫ, wa) −→
l→∞

2
∑

a cos 4πwa + 2cosh 2πǫ− 8
∏

a cos 2πwa cosh πǫ

sinhπǫ
. (4.37)

Averaging over w4 = 0, w6 = w8 = 0, 1/2 in the ZZ2 case, and over w4 = w6 = w8 =
0, 1/3, 2/3 in the ZZ3 case, one finds finally

A −→
b≫ls



















M̂2
(

3

4
+

1

4
cosh 2πǫ− coshπǫ

)∫ ∞

−∞
dτ∆(3)(r(τ)) , T 6 , T 2 × T 4/ZZ2

M̂2

4
(cosh 2πǫ− cosh πǫ)

∫ ∞

−∞
dτ∆(3)(r(τ)) , T 6/ZZ3

. (4.38)

Twisted sectors

As discussed above, there is no contribution from orbifold twisted sectors. This means that
there is no coupling to twisted closed string states.

4.2.3 Non-relativistic behavior versus supersymmetry

We have seen in Chapter 2 that the non-relativistic behavior of the phase-shift for two D-
branes is intimately related to the supersymmetry preserved by the composite configuration.
In the following, we will discuss the potential V (r), rather than the phase-shift A which is
its integral over the trajectory,

A =

∫ ∞

−∞
dτV (r(τ)) . (4.39)

Recalling the results of Chapter 2, we see that V ∼ v4 for the Dp-Dp system preserving
16 supersymmetries and V ∼ v2 for the Dp-D(p+4) system, preserving 8 supersymmetries.
Be a reasoning analogous to that discussed in detail in Chapter 6, one can show that the
potential for a system preserving 2n supersymmetries, corresponding to n Green-Schwarz
fermionic z.m. on the cylinder, vanishes at least like V ∼ vn/2. Indeed, in the open string
channel, the vanishing of the static potential is due the path-integral over these z.m., repre-
senting the fermionic degeneracy associated to the residual supersymmetry. In order to get
a non-vanishing result, one has to perturb with some background breaking supersymmetry,
which in the string conformal field theory will correspond to an interaction term involving
fermionic z.m.. The leading behavior in the perturbation parameter is obtained by bringing
down from the exponential of the interaction in the path-integral the appropriate power of
the interaction needed to provide the n fermionic z.m. to be soaked. A constant velocity
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corresponds to an electromagnetic-like interaction involving at most two fermionic z.m., and
therefore the path-integral will be non-vanishing at order vn/2 as stated. The results for
the Dp-Dp and Dp-D(p+4) systems are recovered with n equal to 8 and 4. This general
result corresponds to the minimal cancellation imposed by supersymmetry, but one can
have additional accidental cancellations occurring in some special cases. For example, the
potential is even in the velocity by parity symmetry, and therefore when the exponent n/2
is odd, it jumps automatically to n/2 + 1 which is then even.

For the point-like configurations analyzed in this section, the situation is the following.
Since we always consider the interaction between identical D-branes, the corresponding
composite system preserve 1/2 of the relevant four-dimensional theory, which has a number
of supersymmetries which depends on the compactifications scheme. For compactification
on T 6, T 2×T 4/ZZ2 and T 6/ZZ3, one has 32, 16 and 8 supersymmetries respectively. According
to the discussion above, n is 8, 4 and 2 in the three cases and the potential should vanish
at least as v4, v2 and v2 respectively. Indeed, one finds the following behaviors.

Dimensionally reduced D0-branes

V (untw.) ∼ v4 , V (tw.) ∼ v2 . (4.40)

Wrapped D3-branes

V (untw.) ∼
{

v4 , T 6 , T 2 × T 4/ZZ2

v2 , T 6/ZZ3

, V (tw.) = 0 . (4.41)

4.2.4 Field theory interpretation

In order to give a field theory interpretation of the interaction amplitudes that we have
obtained, we will need a generalization to four dimensions of the results of Appendix C. For
later convenience, we work in momentum space. The kinematics for Feynman diagrams is
the following. In the eikonal approximation, the momenta of the two point-like D-branes
are (setting their mass to 1)

Bµ
1,2 =

(

coshπǫ1,2, sinhπǫ1,2,~0
)

. (4.42)

In the eikonal approximation, these D-branes can emit the momenta

kµ(ǫ1) =
(

sinhπǫ1 k
1, cosh πǫ1 k

1, ~kT
)

, (4.43)

qµ(ǫ2) =
(

sinhπǫ2 q
1, cosh πǫ2 q

1, ~qT
)

, (4.44)

transverse to themselves, k · B1 = q · B2 = 0. Momentum conservation requires kµ = qµ,
implying k1 = q1 = 0 and ~kT = ~qT .

Since they are point-like, the two D-branes can exchange scalars, vectors and gravitons.
The corresponding sources are, neglecting corrections due to the small momentum transfer,

S1,2 = â , Jµ1,2 = êBµ
1,2 , T µν1,2 = m̂Bµ

1,2B
ν
1,2 . (4.45)
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They are conserved, thanks to the property k · B1 = q · B2 = 0. Using the propagators of
Appendix C, the scalar, vector and gravitational fields generated by the D-brane are found
to be

φ1 =
â

k2
, Aµ1 =

ê

k2
Jµ1 , hµν1 = − m̂

k2

(

T µν1 − 1

2
ηµνT1

)

,

φ2 =
â

q2
, Aµ2 =

ê

q2
Jµ2 , hµν2 = − m̂

q2

(

T µν2 − 1

2
ηµνT2

)

.

(4.46)

The phase-shift is obtained by introducing the fields emitted by one of the D-brane, say the
first, in the effective lagrangian describing the coupling of the other brane, say the second.
The contribution from scalar exchange is encoded in

L(φ) = φS , (4.47)

and one finds

A(φ) = â2
∫ ∞

−∞
dτ∆(3)(r(τ)) . (4.48)

Similarly, the contribution from vector exchange is encoded in

L(A) = −AµJµ , (4.49)

and one finds

A(A) = −ê2 coshπǫ

∫ ∞

−∞
dτ∆(3)(r(τ)) . (4.50)

Finally, the contribution from vector exchange is encoded in

L(h) = −1

2
hµνT

µν , (4.51)

and one finds

A(h) =
m̂2

4
cosh 2πǫ

∫ ∞

−∞
dτ∆(3)(r(τ)) . (4.52)

Therefore, the phase-shift between two moving point-like objects coupling with charge
â to a scalar, charge ê to a vector and mass m̂ to the graviton, is

A =

(

â2 +
m̂2

4
cosh 2πǫ− ê2 coshπǫ

)

∫ ∞

−∞
dτ∆(3)(r(τ)) . (4.53)

Notice that the scalar, vector and graviton exchange give contributions proportional to
1, cosh πǫ and cosh 2πǫ. This peculiar dependence on the rapidity allows to recognize
unambiguously which kind of particles are exchanged between the two point-like objects in
the various constructions of the previous section. Comparing with the large distance limit
of the phase-shifts computed above, one can determine the coupling â, ê and m̂ in each
case. One finds the following results.

Dimensionally reduced D0-brane

In the untwisted sector, we recognize the exchange of scalars, vectors and gravitons, with
couplings

â =

√
3

2
M̂ , ê = M̂ , m̂ = M̂ . (4.54)
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This is interpreted as the coupling to the gravitational multiplet and possibly vector mul-
tiplets, of the relevant Type IIA SUGRA compactification. In the twisted sector instead,
only scalars and vectors are exchanged, with couplings

â =
1

2
M̂ , ê =

1

2
M̂ . (4.55)

This corresponds to the coupling to the additional vector multiplets arising from twisted
closed string states.

From the SUGRA point of view, this configuration should correspond to a vertical
dimensional reduction [51] of the ten-dimensional 0-brane solution down to four dimensions,
which is singular because of its coupling to the dilaton. The coupling to scalars is indicative
for a singular solution of the corresponding N=2, 4 and 8 SUGRAs with no horizon and
zero entropy.

Wrapped D3-brane

In the untwisted sector, we recognize the exchange of vectors and gravitons for all the
compactification schemes. The scalar exchange seems instead to be absent for the ZZ3

compactification. This is interpreted as the coupling to the gravitational multiplet of the
relevant Type IIB SUGRA only, which has scalars only for N=4 and N=8 supersymmetry
corresponding to toroidal and ZZ2 compactification, but not in the N=2 case corresponding
to the ZZ3 compactification. The couplings are















â =

√
3

2
M̂ , ê = M̂ , m̂ = M̂ , T 6 , T 2 × T 4/ZZ2

â = 0 , ê =
1

2
M̂ , m̂ = M̂ , T 6/ZZ3

. (4.56)

The only vector multiplets arising in these Type IIB compactifications come from the twisted
sectors. Since in this sector the amplitude is zero, we conclude that our configuration does
not couple to them.

From the SUGRA point of view, this configuration should correspond to a diagonal
dimensional reduction [51] of the ten-dimensional 3-brane solution down to four dimensions,
which is non-singular because of the absence of coupling to the dilaton. The absence of
any coupling to scalars in the ZZ3 case is suggestive for a regular N=2 charged Reissner-
Nordström (R-N) black hole solution with a horizon and a non-vanishing entropy, whereas
the presence of couplings to scalars for toroidal and ZZ2 compactifications suggests singular
solutions of the corresponding N=4 and 8 SUGRAs with no horizon and zero entropy.

The four dimensional SUGRA solutions corresponding to the dimensionally reduced D0-
brane and the wrapped D3-brane can be obtained as particular cases of a more general one.
Consider indeed a generic four-dimensional action of the following type

S =
1

2κ2
(4)

∫

d4x
√
g

(

R− 1

2
(∂φ)2 − 1

2 · 2!e
−bφF 2

(2)

)

. (4.57)

Taking b 6= 0 corresponds to a theory with a non-linearly coupled vector field, which should
be relevant for the dimensionally reduced D0-brane, whereas taking b = 0 corresponds to a
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truncated theory with a decoupled vector field, which should be relevant for the wrapped
D3-brane. The general electric extremal solution of this action is [49, 50, 51]

φ = α lnH(r) , ds2 = −H(r)−
β
2 dt2 +H(r)

β
2 d~x · d~x , A0 = γ

(

H(r)−1 − 1
)

. (4.58)

where

α =
2b

1 + b2
, β =

4

1 + b2
, γ =

2√
1 + b2

. (4.59)

and satisfy α2 + β2

4 − γ2 = 0 as a consequence of BPS saturation. H(r) satisfies the three-
dimensional Laplace equation, being therefore of the form H(r) = 1 + 2κ(4)N∆3(r), with
arbitrary N . The relevant asymptotic long range fields are



















φ = 2κ2
(4) a∆3(r)

h00 = κ2
(4)m∆3(r) , hij = κ2

(4)mδij∆3(r)

A0 = 2κ2
(4) e∆3(r)

(4.60)

with
a = αM , m = βM , e = γM . (4.61)

The corresponding hatted quantities are as usual defined by multiplying the non-hatted
ones by

√
2κ(4). The case of the D0-brane is obtained by taking b =

√
3 and N = M ,

which leads to â =
√

3/2 M̂ , m̂ = M̂ and ê = M̂ . The case of the D3-brane is instead
obtained by taking b = 0 and N = M/4, leading to â = 0, m̂ = M̂ and ê = M̂/2. A
crucial difference between the two, responsible for the absence of horizon and the vanishing
entropy for the former, and the finite horizon and entropy for the latter, is the power of the
harmonic function in the metric, ±1/2 and ±2 respectively.

4.3 Closed string radiation

The amplitude for the emission of a closed string state from two interacting point-like D-
brane configurations is described by a one-point function on the cylinder joining the two
D-brane configurations, as depicted in Fig. 4.2. In the boundary state formalism, this is

� � l0 = l� �
p�

Figure 4.2: The cylinder emission amplitude.
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given by the expectation value of the appropriate vertex operator between the two boundary
states describing the D-branes. The amplitude is indeed

A =
T̂ 2
p

24

∫ ∞

0
dl

∫

dz

∫

dz̄
1

2

∑

s

(±)〈〈V (z, z̄)〉〉s , (4.62)

where the symbol 〈〈...〉〉s denotes the non-connected correlation function obtained as

〈〈O〉〉s = 〈B, ǫ1, Y1|e−lHO|B, ǫ2, Y2〉s , (4.63)

whereas the symbol
∑

s(±) represents the sum over the spin-structures with the appropriate
signs. The integral over the position of the vertex operator is

∫

dz
∫

dz̄ =
∫ 1
0 dσ

∫ l
0dτ . On

symmetry grounds, the correlation does not depend on σ, and therefore on can omit the
corresponding integration.

We shall consider the emission of massless NSNS states with momentum pµ in four-
dimensional part of spacetime. The polarization can be either along the four non-compact
directions, ξµν , representing four-dimensional axions, dilatons and gravitons, or in the six
compact directions, ξab, representing four-dimensional scalars arising upon compactification.
In the following, we shall concentrate on the former case, the latter being a straightforward
generalization that we shall not discuss. The vertex operator for a massless NSNS state
with four-dimensional momentum pµ and polarization ξµν , with µ running from 0 to 3, can
be taken to be

V = ξij(∂X
i − 1

2
p · ψψi)(∂̄Xj +

1

2
p · ψ̄ψ̄j)eip·X , (4.64)

with z = σ + iτ and ∂ = ∂z. Exploiting gauge invariance, we have chosen purely space-like
transverse polarizations ξij , satisfying piξij = 0. The four-dimensional axion (a), dilaton
(φ) and graviton (h) are described by the following polarizations

ξ
(a)
ij =

1

2
ǫijk

pk

|~p| , ξ
(φ)
ij = δij −

pipj

~p2

ξ
(h)
ij = hij , hij = hji , hi i = 0 .

(4.65)

The bosonic and fermionic contributions to the correlation always factorize, as they do
for the boundary state. Consequently, the correlation that we have to evaluate reads

〈〈V 〉〉s = ξij

{

〈〈∂Xi∂̄Xjeip·X〉〉 +
1

2

[

〈〈∂Xieip·X〉〉〈〈p · ψ̄ψ̄j〉〉s − 〈〈∂̄Xjeip·X〉〉〈〈p · ψψi〉〉s
]

−1

4
〈〈p · ψψip · ψ̄ψ̄j〉〉s

}

. (4.66)

In order to evaluate this matrix element, it will be convenient to treat separately the bosonic
z.m. part, which will also fix the kinematics. Therefore, we split the bosonic fields as
Xµ = Xµ

0 +Xµ
osc, and correspondingly factorize the bosonic part of the boundary state as

|B〉B = |B0〉B ⊗ |Bosc〉B . Recall that Xµ
0 = xµ − iτpµ, ∂Xµ

0 = −pµ/2 and ∂̄Xµ
0 = pµ/2,

in terms of the center of mass position and momentum operators xµ and pµ. The four-
dimensional momentum content of the two boundary states is

kµ(ǫ1) =
(

sinhπǫ1 k
1, coshπǫ1 k

1, ~kT
)

,

qµ(ǫ2) =
(

sinhπǫ2 q
1, cosh πǫ2 q

1, ~qT
)

.
(4.67)
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whereas the four-momentum pµ of the emitted massless particle can be parameterized as

pµ = (p, cos θ p, ~pT = ~n sin θ p) . (4.68)

Acting on the second boundary state, the exponential wave function factor of the vertex
operator shifts the momentum qµ(ǫ2) by pµ, due to the position operator. The momentum
conservation δ-function is therefore

〈k(ǫ1)µ|(p + q(ǫ2))
µ〉 = (2π)4δ(4)

(

pµ − k(ǫ2)
µ + q(ǫ1)

µ
)

=
(2π)4

sinhπǫ
δ

(

k1 −
p(2)

sinhπǫ

)

δ

(

q1 −
p(1)

sinhπǫ

)

δ(2)
(

~pT − ~kT + ~qT
)

. (4.69)

The quantities p(1,2) are the energies of the outgoing particle in the rest frame of the first
and the second D-brane respectively

p(1,2) = (coshπǫ1,2 − sinπǫ1,2 cos θ)p . (4.70)

Eq. (4.69) implies a very particular and restricted kinematics. Indeed, the energies and lon-
gitudinal momenta carried by the two boundary states is completely fixed by the momentum
of the emitted particle. With reference to Eqs. (4.67)

k0 =
v1

v1 − v2
(1 − v2 cos θ) p , q0 =

v2
v1 − v2

(1 − v1 cos θ) p ,

k1 =
1

v1 − v2
(1 − v2 cos θ) p , q1 =

1

v1 − v2
(1 − v1 cos θ) p ,

(4.71)

whereas the transverse momenta are subject to the usual momentum conservation

~kT − ~qT = ~pT . (4.72)

The z.m. part of the exponential of the Hamiltonian acting on the first boundary state
gives an exponential momentum factor, 〈kµ(ǫ1)|e−lH0 = exp{−lk2(ǫ1)/2}〈kµ(ǫ1)|. Similarly,
acting on the second boundary state, the z.m. part of the exponential wave function factor
in the vertex operator gives an additional exponential factor due to the momentum operator,
exp{ip · X0}|qµ(ǫ2)〉 = exp{τp · q(ǫ2)}|qµ(ǫ2) + pµ〉. Finally, ∂Xµ

0 or/and ∂̄Xµ
0 insertions

give, acting for example on the first boundary state, simply additional momentum factors,
〈kµ(ǫ1)|∂Xµ

0 = −kµ(ǫ1)/2〈kµ(ǫ1)|, 〈kµ(ǫ1)|∂̄Xµ
0 = kµ(ǫ1)/2〈kµ(ǫ1)|. It is very convenient to

transform the modular integral over l and the vertex position integral over τ into integrals
over the proper times τ and l′ = l − τ of the closed strings emitted by the two D-branes.
Doing so, one has

∫ ∞

0
dl

∫ l

0
dτ =

∫ ∞

0
dτ

∫ ∞

0
dl′ . (4.73)

l′ = 0, τ = l corresponds to the boundary attached to the first brane, whereas τ = 0,
l′ = l corresponds to the boundary attached to the second brane. In the new variables, the
exponential factor coming from the bosonic z.m. becomes exp{−τq2(ǫ2)/2 − l′k2(ǫ1)/2},
where

k2(ǫ1) = ~k2
T +

p(2)2

sinh2 πǫ
, q2(ǫ2) = (~kT − ~pT )2 +

p(1)2

sinh2 πǫ
. (4.74)
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From now on, we will abbreviate kµ(ǫ1) = kµ and qµ(ǫ2) = qµ. Using Eq. (4.69) and
carrying out the momentum integrations, the z.m. contributions of the various bosonic
correlations entering the amplitude are found to be, in terms of the proper times τ and l′,

〈〈(∂Xµ)m(∂̄Xν)neip·X〉〉0 =
1

sinhπǫ

∫

d2~kT
(2π)2

ei
~kT ·~be−

q2

2
τe−

k2

2
l′
(

−k
µ

2

)m (kν

2

)n

, (4.75)

with m,n = 0, 1. Neglecting Kaluza-Klein and winding modes, as in previous section, the
compact bosonic z.m. contribute only a factor V 2

p /VM6 , turning T̂ 2
p into M̂2.

The other bosonic correlations, involving the remaining oscillator part of the fields, as
well as the fermionic correlation functions, have to be computed explicitly. Actually, it
is convenient to work with connected Green functions, indicated as 〈...〉, rather than the
non-connected correlations 〈〈...〉〉. These are defined by factorizing the partition functions

Zs(l) = 〈B, ǫ1|e−lH |B, ǫ2〉s , (4.76)

as

〈O〉 =
〈B, ǫ1|e−lHO|B, ǫ2〉s
〈B, ǫ1|e−lH |B, ǫ2〉s

. (4.77)

With these definitions, one has simply 〈〈O〉〉 = 〈O〉Zs. Actually, there is a subtlety in
the odd spin-structure, where the partition function can vanish because of the fermionic
zero modes. To cope with this difficulty, it will be enough to first select operators with
enough fermion fields to give a non-vanishing non-connected correlation 〈〈...〉〉, and define
the corresponding connected correlation 〈...〉 by factorizing the partition function with all
the dangerous fermionic z.m. inserted, in order to have a non-vanishing result. Since we
have already taken into account the bosonic zero modes, with partition function we will
now mean the contributions of the bosonic oscillators and the fermions

ZBosc = 〈B, ǫ1|e−lH |B, ǫ2〉Bosc , (4.78)

ZFs = 〈B, ǫ1|e−lH |B, ǫ2〉Fs . (4.79)

Furthermore, one can use Wick’s theorem to reduce all the correlations to the following
connected two-point functions

〈XµXν〉osc =
〈B, ǫ1|e−lHXµXν |B, ǫ2〉Bosc

〈B, ǫ1|e−lH |B, ǫ2〉Bosc
, (4.80)

〈ψµψν〉s =
〈B, ǫ1|e−lHψµψν |B, ǫ2〉Fs

〈B, ǫ1|e−lH |B, ǫ2〉Fs
. (4.81)

In the odd spin-structure, the insertion of the fermionic z.m. is understood both in the
numerator and in the denominator, as well as in the partition functions.

Finally, the general amplitude is written as

A =
M̂2

4 sinhπǫ

∫ ∞

0
dτ

∫ ∞

0
dl′
∫

d2~kT
(2π)2

ei
~kT ·~be−

q2

2
τe−

k2

2
l′〈eip·X〉oscN (4.82)

where

N =
1

4
ZBosc

∑

s

ZFs Ms , (4.83)
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and

Ms = ξij

{

〈∂Xi∂̄Xj〉osc − 〈∂Xip ·X〉osc〈∂̄Xjp ·X〉osc

+
1

4

(

〈p · ψp · ψ̄〉s〈ψiψ̄j〉s − 〈p · ψψi〉s〈p · ψ̄ψ̄j〉s + 〈p · ψ̄ψi〉s〈p · ψψ̄j〉s
)

+
i

2

(

〈∂Xip ·X〉osc〈p · ψ̄ψ̄j〉s − 〈∂̄Xjp ·X〉osc〈p · ψψi〉s
)

−1

2
ki
(

i〈∂̄Xjp ·X〉osc +
1

2
〈p · ψ̄ψ̄j〉s

)

+
1

2
kj
(

i〈∂Xip ·X〉osc −
1

2
〈p · ψψi〉s

)

−1

4
kikj

}

. (4.84)

The proper time integrations in the amplitude (4.82) will eventually produce factors like
1/q2 or 1/k2 or both, corresponding to the denominators of the propagators of the massless
particles emitted by the branes. Notice that the momentum integration could be explicitly
carried out. Using Eqs. (4.74), one obtains

∫

d2~kT
(2π)2

ei
~kT ·~be−

q2

2
τe−

k2

2
l′ =

1

2πl
e−

(~b+i~pT τ)2

2l e−
p(1)2τ+p(2)2l′

2 sinh2 πǫ . (4.85)

Because of the term exp{−b2/(2l)}, at fixed transverse distance b, world sheets with l ≪ b2

give an exponentially suppressed contribution. In particular, the large distance limit b→ ∞
implies l → ∞, and selects the part of the amplitude where the fields are massless. Keeping
in mind this information, it will nevertheless be convenient to work with the amplitude in
its original form, before the momentum integration. Using the general properties and the
definitions given in Appendix D, it is easy to show that when ξij is antisymmetric, as for
the axion, only the odd spin-structure can contribute to the amplitude, whereas vice versa,
when ξij is symmetric, as for the dilaton and the graviton, only the even spin-structure can
contribute.

Consider first the case of the odd spin-structure. In order to get a non-vanishing result,
it is necessary to soak up all the zero modes but those in the light-cone directions, which are
twisted by the velocity. In particular, the internal partition function can be non-vanishing
for example in the twisted sector of the ZZ3 orbifold compactification, since in that case there
are no zero modes in the compact directions. For the non-compact directions, the z.m. part
of the matrix element in the transverse (x2, x3) plane gives a vanishing result, unless two
transverse fermions are inserted. Therefore, the effective operator to use for computing
Modd is obtained from Eq. (4.84) by factorizing in all possible ways the two transverse
fermionic z.m. required in our definition of connected correlation in the R− spin-structure.
More precisely, the insertion of ψ2

0ψ
3
0 , ψ̃

2
0ψ

3
0 , ψ

2
0ψ̃

3
0 and ψ̃2

0ψ̃
3
0 gives the constant factors i/2,

1/2, 1/2 and −i/2. Consequently, only terms with at least two fermion fields will contribute.
Splitting the bosons in left and right movers Xµ and X̄µ, one finds

Modd
R− =

1

8
ξ[ij]

{

ǫij〈p · ψp · ψ̄〉R− + 2i ǫikpkk
j (4.86)

+4 ǫikpk

(

〈∂Xjp · (X + X̄)〉osc −
1

2
〈ψjp · ψ̄〉R− − i

2
〈ψjp · ψ〉R−

)}

.

where ǫij = ǫij1 is the Levi-Civita tensor in the transverse plane. To compute the am-
plitude, we need the partition functions of the bosonic oscillators and of the fermions in
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the R− spin-structure. The bosonic and fermionic oscillator cancel as usual by world-sheet
supersymmetry, leaving only the contribution of the fermionic z.m.. Since there are no
fermionic z.m. in the compact directions in the relevant ZZ3 twisted sector case, and the two
transverse fermionic z.m. have been inserted, we are left with the constant contribution of
the light-cone fermionic z.m., giving

ZBZ
F
R− = 2 sinhπǫ . (4.87)

This just cancels the corresponding factor in the denominator of the amplitude coming from
the bosonic z.m. in the light-cone directions.

Consider next the case of the even spin-structures. It will prove of great help in this case
to integrate by parts the two-derivative bosonic term in the correlation (4.84). By using
∂̄ = i

2∂τ |l = i
2(∂τ |l′ − ∂l′ |τ ), since ∂̄ acts on a function of z − z̄ = 2iτ , and observing that

the partition function behaves like a constant with respect to the latter derivative since it
depends only on l = τ + l′, one gets

∫ ∞

0
dτ

∫ ∞

0
dl′e−

q2

2
τe−

k2

2
l′〈eip·X〉osc〈∂Xi∂̄X̄j〉osc

= − i

2

∫ ∞

0
dτ

∫ ∞

0
dl′〈∂XiX̄j〉osc(∂τ − ∂l′)

{

e−
q2

2
τe−

k2

2
l′〈eip·X〉osc

}

(4.88)

= −
∫ ∞

0
dτ

∫ ∞

0
dl′e−

q2

2
τe−

k2

2
l′〈eip·X〉osc〈∂XiX̄j〉osc

{

〈p · ∂Xp · X̄〉osc +
i

4
(k2 − q2)

}

.

Taking into account that ξij has in this case to be symmetric, and using the manipulation
described above, the effective correlation Ms that one is left with is

Meven
s = ξ(ij)

{

−〈∂XiX̄j〉osc〈p · ∂Xp · X̄〉osc + 〈∂Xip · (X + X̄)〉osc〈∂Xjp · (X + X̄)〉osc

+
1

4

(

〈p · ψp · ψ̄〉s〈ψiψ̄j〉s − 〈p · ψψi〉s〈p · ψ̄ψ̄j〉s + 〈p · ψ̄ψi〉s〈p · ψψ̄j〉s
)

+
1

2

(

i〈∂Xip · (X + X̄)〉osc +
1

2
ki
)

(

〈p · ψψj〉s + 〈p · ψ̄ψ̄j〉s
)

+iki〈∂Xjp · (X + X̄)〉osc −
i

4
(k2 − q2)〈∂XiX̄j〉osc −

1

4
kikj

}

. (4.89)

Due to the increased difficulty to handle exact expressions, we will limit in this case our
analysis to the large distance limit b→ ∞, corresponding to l → ∞, in which only the mass-
less modes will contribute and we expect the low energy effective field theory to reproduce
all the results. Since l = τ + l′, in this limit at least one among τ and l′ is large and thus
a massless state is propagating between the two D-branes, which are far away from each
other. If τ → ∞ and l′ is finite, the particle is emitted near the first D-brane; if l′ → ∞ and
τ is finite, it is emitted near the second D-brane. If both τ, l′ → ∞, the particle is emitted
far from both D-branes.

In order to compute the quantity N entering the amplitude, we need the behavior of the
partition functions in the limit l → ∞, which can be easily obtained from the results of the
previous section. Due to a possible e2πl enhancement factor in the NS partition functions,
one has to keep a sub-leading term in the corresponding contraction. Conversely, in the
RR partition functions, no enhancement is possible and one can work at leading order. We
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shall therefore use the notation

MR+ = MR , MNS± = M(1)
NS ± e−2πlM(2)

NS . (4.90)

The appearance of a ± in the sub-leading term has been anticipated from the results
obtained by explicit computation. On finds the following results for the various four-
dimensional point-like configurations considered in the previous section.

Untwisted sector for D0-branes and D3-branes on T 6 or T 2 × T 4/ZZ2

One finds

ZBZ
NS±
F −→

l→∞
e2πl ± 2 (cosh 2πǫ+ 3) ,

ZBZ
R+
F −→

l→∞
16 cosh πǫ , (4.91)

and therefore

N = (cosh 2πǫ+ 3)M(1)
NS +

1

2
M(2)

NS − 4 cosh πǫMR . (4.92)

Twisted sectors for D0-branes

In the orbifold twisted sectors, one has (counting a single twisted sector in the ZZ2 case and
two identical ones in the ZZ3 case)

ZBZ
NS±
F −→

l→∞
± 2 ,

ZBZ
R+
F −→

l→∞
4 cosh πǫ , (4.93)

and therefore
N = M(1)

NS − cosh πǫMR . (4.94)

D3-branes on T 6/ZZ2

One finds in this case

ZBZ
NS±
F −→

l→∞
e2πl ± 2 cosh 2πǫ ,

ZBZ
R+
F −→

l→∞
4 cosh πǫ , (4.95)

and therefore

N = cosh 2πǫM(1)
NS +

1

2
M(2)

NS − cosh πǫMR . (4.96)

In the large distance limit l → ∞, the two-point functions entering Ms have constant
parts as well as poles in τ and l′. Since Ms is quadratic in the two-point function, one gets
in principle constant, simple pole and double pole behaviors. However, it is a matter of fact
that the double poles always cancel between bosonic and fermionic contributions, and the
simple poles appear only in the very particular form

f(τ) =
e−4πτ

1 − e−4πτ
, f(l′) =

e−4πl′

1 − e−4πl′
. (4.97)
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The bosonic exponential, whose explicit expression is reported in Eq. (D.63), reduces in
the limit l → ∞ to Eq. (D.64), that we repeat here for convenience

〈eip·X〉osc =
[

1 − e−4πτ
]− p(2)2

2π
[

1 − e−4πl′
]− p(1)2

2π . (4.98)

Using this result, one can derive useful identities between various kind of terms in Ms by
integrations by parts in the proper time integrals. For instance, since

∫ ∞

0
dτe−

q2

2
τ
[

1 − e−4πτ
]− p(2)2

2π

{

q2

4
+ p(2)2 e−4πτ

1 − e−4πτ

}

=

= −1

2

∫ ∞

0
dτ∂τ

{

e−
q2

2
τ
[

1 − e−4πτ
]− p(2)2

2π

}

= 0 , (4.99)

∫ ∞

0
dl′e−

k2

2
l′
[

1 − e−4πl′
]− p(1)2

2π

{

1

4
k2 + p(1)2 e−4πl′

1 − e−4πl′

}

=

= −1

2

∫ ∞

0
dl′∂l′

{

e−
k2

2
l′
[

1 − e−4πl′
]− p(1)2

2π

}

= 0 . (4.100)

One can establish the following rules in the amplitude Ms

f(τ)
.
= −1

4

q2

p(2)2
, f(l′)

.
= −1

4

k2

p(1)2
. (4.101)

Using these relations, the contractions can be reduced to a function of the sole momenta,
without any dependence on the proper times τ and l′, and the amplitude (4.82) becomes

A −→
b→∞

M̂2

sinhπǫ

∫

d2~kT
(2π)2

ei
~kT ·~bI1(p, q)I2(p, k)N (p, k, q) . (4.102)

The kinematical integrals I1,2 over the two proper times can be explicitly carried out. One
finds the usual dual structure with a double series of poles

I1(p, q) =
1

2

∫ ∞

0
dτe−

q2

2
τ
[

1 − e−4πτ
]− p(2)2

2π =
1

8π

Γ
[

q2

8π

]

Γ
[

−p(2)2

2π + 1
]

Γ
[

q2

8π − p(2)2

2π + 1
] ,

I2(p, k) =
1

2

∫ ∞

0
dl′e−

k2

2
l′
[

1 − e−4πl′
]− p(1)2

2π =
1

8π

Γ
[

k2

8π

]

Γ
[

−p(1)2

2π + 1
]

Γ
[

k2

8π − p(1)2

2π + 1
] .

(4.103)

These are the typical factors arising in the two-point functions on world-sheets with the
disk topology [139, 140, 141, 142]. In the low energy limit p→ 0, these reduce to the usual
propagator denominators of the particles emitted by the two D-branes,

I1(p, q) −→
p→0

1

q2
, I2(p, k) −→

p→0

1

k2
. (4.104)

We will show that the general structure of the quantity N is

N = F (bulk) + sinhπǫ1
k2

p(1)
F (rad) − sinhπǫ2

q2

p(2)
F (rad) . (4.105)
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Correspondingly, the amplitude in the low-energy limit becomes

A −→
b→∞

M̂2

sinhπǫ

∫

d2~kT
(2π)2

ei
~kT ·~b

{

F (bulk)

k2q2
+ sinhπǫ1

F (rad)

p(1)q2
− sinhπǫ2

F (rad)

p(2)k2

}

. (4.106)

The k2 and q2 denominators correspond to the propagator of the particlea emitted by the D-
branes. We shall see that the p(1,2) denominators correspond to the eikonal approximation
of the propagator of a virtual D-brane which has been excited by absorbing a particle
coming from the other D-brane and then emits the out-going particle in a bremsstrahlung
process. Therefore, F (bulk) corresponds to the residue of a double-pole process in which two
intermediate massless particles emitted by the two D-branes annihilate far away from the D-
branes to produce the final out-going particle, as illustrated in Fig. 4.3. F (rad) corresponds
instead to the residue of a single-pole process in which one massless state is emitted by one
of the brane and is absorbed by the other which, after traveling some time in an excited
state, re-decays by emitting the final state, as illustrated in Figs. 4.4 and 4.5.

p�k� q�
Figure 4.3: Bulk annihilation.

4.3.1 Axion

The axion is described by the antisymmetric polarization tensor ξ
(a)
ij = 1/2ǫijkp

k/p. As
discussed above, only the odd spin-structure is relevant and can give a non-vanishing con-
tribution only in the twisted sector of the ZZ3 orbifold compactification. We therefore start
from Eq. (4.86), working exactly. Using Eqs. (D.79) relating correlations of periodic
fermions and bosons by world-sheet supersymmetry, it is easy to see that in the (...) of Eq.
(4.86), the oscillator part of the last two fermionic terms cancels against the two bosonic
correlations, leaving in (...) only the z.m. part of the two fermionic correlations. These,
as well as the z.m. part of the first correlation of fermions, can be easily evaluated using
the results of Appendix D and, together with the constant term, give a function of the
momenta and the rapidities. Using again world-sheet supersymmetry, Eqs. (D.79), the
remaining oscillator part of the first fermionic correlation can be rewritten as the derivative
of the oscillator part of a bosonic correlation. Using the explicit form of the polarization
tensor, some straightforward algebra yields the very simple result

MR− =
1

8
cos θ

[

−∂τ 〈p ·Xp · X̄〉osc +
i

2

(

k2 − q2
)

]

. (4.107)
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p� q�
Figure 4.4: Radiation from the first D-brane.

p�k�
Figure 4.5: Radiation from the second D-brane.

Finally, using Eq. (4.87) and observing that ∂τ |l = ∂τ |l′ − ∂l′ |τ , the amplitude for the
emission of an axion can be written as

A(a) =
i

4
cos θ

∫ ∞

0
dτ

∫ ∞

0
dl′
∫

d2~kT
(2π)2

ei
~k·~b(∂τ − ∂l′)

{

e−
q2(ǫ2)

2
τe−

k2(ǫ1)

2
l′〈eip·X〉osc

}

. (4.108)

Here, as in the following, possible surface terms at τ, l′ = 0 will be dropped by making
an analytic continuation from p2 < 0 of formula (D.64) for 〈eip·X〉osc. The amplitude is
therefore a total derivative and vanishes identically

A(a) = 0 . (4.109)

Thus, there is no on-shell axion emission during the interaction of two moving D-branes,
even in the case of the ZZ3 orbifold compactification. This result is in qualitative agreement
with [135], where the amplitude for axion production due to the interaction of an incoming
graviton with two parallel D-branes at rest was computed. Indeed, the corresponding
amplitude has no poles in the axion-graviton momentum transfer squared, and therefore no
on-shell axion is produced.
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4.3.2 Dilaton

The dilaton is described by the symmetric polarization tensor ξ
(φ)
ij = δij−pipj/~p2. Therefore,

as discussed above, only the even spin-structures will be relevant and we start from Eq.
(4.89), working in the large distance limit. Using the explicit form for the polarization
tensor and the notation defined in Appendix D, the correlation Ms in the three even spin-
structures is found to be

Ms =
p2

4
sin2 θ

{

(Kǫ −K)2 − (F sǫ − F s)2 − L2
ǫ +Gs2ǫ − (U sǫ −Wǫ)

2

−2 (U sǫ −Wǫ)
[

Lǫ − cos θ (Kǫ −K)
]

}

+p2
[

(KKǫ − F sF sǫ ) − cos θ (KLǫ − F sGsǫ)
]

+
1

8

(

k2 − q2
) [

sin2 θKǫ +
(

1 + cos2 θ
)

K
]

+
p

2
hi1k

i
[

Lǫ − cos θ (Kǫ −K) + (U sǫ −Wǫ)
]

− 1

4
hijk

ikj . (4.110)

In the limit l → ∞, one can use Eqs. (D.91), (D.95) and (D.98) to obtain an explicit
expression. Notice that the non exponential terms −π(ǫ1 − ǫ2)/(2πl), present in both U sǫ
and Wǫ, always cancel. In order to simplify the result, a crucial role is played by the
following kinematic relation involving the dilaton polarization

sinh 2πǫ pξ
(φ)
i1 ki = −1

2
cos θ sinh 2πǫ

(

k2 − q2
)

+ p2 sin2 θ sinh2 πǫ+ p(1)2 + p(2)2 , (4.111)

sinhπǫ2 p
(2)ξ

(φ)
i1 ki = −1

2
cos θ sinhπǫ2

(

k2 − q2
) p(2)

p
+

(

k0

p
− 1

)

p(2)2 , (4.112)

sinhπǫ1 p
(1)ξ

(φ)
i1 ki = −1

2
cos θ sinhπǫ1

(

k2 − q2
) p(1)

p
+

(

q0

p
+ 1

)

p(1)2 , (4.113)

ξ
(φ)
ij k

ikj = − 1

4p2
(k2 − q2)2 +

k0

p
q2 − q0

p
k2 . (4.114)

As discussed at the beginning of the section, one has to work to order O(e−2πl) in the R+
spin-structure and to order O(e−4πl) in the NS± ones. In the notation of Eq. (4.90), after
heavy algebra one finds, in the notation (4.90)

MR =
1

4p2

(

k2 − q2
)

{

1

4

(

k2 − q2
)

− p(2)2f(τ) + p(1)2f(l′)
}

−k
0

p

(

q2

4
+ p(2)2f(τ)

)

+
q0

p

(

k2

4
+ p(1)2f(l′)

)

−1

2
cos θ tanhπǫ

{

1

4

(

k2 − q2
)

− p(2)2f(τ) + p(1)2f(l′)
}

, (4.115)

M(1)
NS =

1

4p2

[(

k2 − q2
)]

{

1

4

(

k2 − q2
)

− p(2)2f(τ) + p(1)2f(l′)
}

−k
0

p

(

q2

4
+ p(2)2f(τ)

)

+
q0

p

(

k2

4
+ p(1)2f(l′)

)

, (4.116)

M(2)
NS = −2 cos θ sinh 2πǫ

{

1

4

(

k2 − q2
)

− p(2)2f(τ) + p(1)2f(l′)
}

. (4.117)
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The terms in (...) and {...} vanish by using the equivalence relations Eqs. (4.101), meaning
that the amplitude for the emission of a dilaton is a total derivative in the large distance
limit, and therefore vanishes

A(φ) = 0 . (4.118)

Thus, there is no on-shell dilaton emission during the interaction of two moving D-branes,
in the large distance limit.

4.3.3 Graviton

The graviton is described by a symmetric and traceless polarization tensor ξ
(h)
ij = hij which,

in four dimensions, has two physical components. As discussed above, only the even spin-
structures will be relevant and we start from Eq. (4.89), working in the large distance
limit. Using the notation defined in Appendix D, the correlation Ms in the three even
spin-structures is found to be

Ms =
p2

4
h11

{

(

K2
ǫ −K2 − L2

ǫ

)

−
(

F s2ǫ − F s2 −Gs2ǫ

)

− (U sǫ −Wǫ)
2

−2 (U sǫ −Wǫ)
[

Lǫ − cos θ (Kǫ −K)
]

}

+
1

8

(

k2 − q2
)

h11 (Kǫ −K)

+
p

2
hi1k

i
[

Lǫ − cos θ (Kǫ −K) + (U sǫ −Wǫ)
]

− 1

4
hijk

ikj . (4.119)

In the limit l → ∞, one can use Eqs. (D.91), (D.95) and (D.98). Again, the non-exponential
terms −π(ǫ1 − ǫ2)/(2πl), present in both U sǫ and Wǫ, always cancel. As before, one has to
work to order O(e−2πl) in the R+ spin-structure and to order O(e−4πl) in the NS± ones.
In the notation of Eq. (4.90), one finds

MR = −1

4
hijk

ikj

− sinhπǫ2

[

p(2)hi1k
i +

1

4
sinhπǫ2

(

k2 − q2
)

h11

]

f(τ)

+ sinhπǫ1

[

p(1)hi1k
i +

1

4
sinhπǫ1

(

k2 − q2
)

h11

]

f(l′)

+
p

2
tanhπǫ

{

1

2
hi1k

i + sinhπǫ2 p
(2)h11f(τ) − sinhπǫ1 p

(1)h11f(l′)
}

, (4.120)

M(1)
NS = −1

4
hijk

ikj

− sinhπǫ2

[

p(2)hi1k
i +

1

4
sinhπǫ2

(

k2 − q2
)

h11

]

f(τ)

+ sinhπǫ1

[

p(1)hi1k
i +

1

4
sinhπǫ1

(

k2 − q2
)

h11

]

f(l′) , (4.121)

M(2)
NS = 2 p sinh 2πǫ

{

1

2
hi1k

i + sinhπǫ2 p
(2)h11f(τ) − sinhπǫ1 p

(1)h11f(l′)

−1

4
tanhπǫ p h11

}

. (4.122)
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Using the equivalence relations Eqs. (4.101), one can trade the f(τ) and f(l′) poles for
momenta. The terms which have both of momentum squared, k2 or q2, and a pole, f(τ) or
f(l′), can be neglected since they are less singular. The results for the functions F (bulk) and
F (1,2) for the various D-brane configurations we are considering are conveniently organized
by splitting the contributions of the RR and NSNS sectors, which come below with a − and
a + sign respectively outside the [...].

Untwisted sector for D0-branes and D3-branes on T 6 or T 2 × T 4/ZZ2

F (bulk) =
3

4

[

hijk
ikj
]

+
1

4

[

cosh 2πǫhijk
ikj − 2p sinh 2πǫhi1k

i + 2p2 sinh2 πǫh11

]

−
[

cosh πǫhijk
ikj − p sinhπǫhi1k

i
]

, (4.123)

F (rad) =
3

4

[

hi1k
i
]

+
1

4

[

cosh 2πǫhi1k
i − p sinh 2πǫhi1k

i
]

−
[

coshπǫhi1k
i − p

2
sinhπǫhi1k

i
]

. (4.124)

Twisted sectors for D0-branes

F (bulk) =
1

4

[

hijk
ikj
]

− 1

4

[

coshπǫhijk
ikj − p sinhπǫhi1k

i
]

, (4.125)

F (rad) =
1

4

[

hi1k
i
]

− 1

4

[

cosh πǫhi1k
i − p

2
sinhπǫhi1k

i
]

. (4.126)

D3-branes on T 6/ZZ2

F (bulk) =
1

4

[

cosh 2πǫhijk
ikj − 2p sinh 2πǫhi1k

i + 2p2 sinh2 πǫh11

]

−1

4

[

coshπǫhijk
ikj − p sinhπǫhi1k

i
]

, (4.127)

F (rad) =
1

4

[

cosh 2πǫhi1k
i − p sinh 2πǫhi1k

i
]

−1

4

[

cosh πǫhi1k
i − p

2
sinhπǫhi1k

i
]

. (4.128)

For collinear emission at θ = 0, the results simplify a lot since then hi1 = h11 = 0.
Indeed, in this simple case the correlation is independent of the spin structure, Ms =
−1/4hijk

ikj , and therefore the partition function factorizes. There are no poles and there-
fore no bremstrahlung terms, and one finds simply

F (bulk)(θ = 0) =
1

16
hijk

ikjZ(ǫ) , F (rad)(θ = 0) = 0 . (4.129)

where Z(ǫ) is the appropriate total partition function.
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4.3.4 Non-relativistic behavior versus supersymmetry

As in the case of the pure phase-shift, the non-relativistic behavior of the emission amplitude
is intimately related to the supersymmetry preserved by the configuration of D-branes in in-
teraction. Again, to get a non-vanishing result in a Green-Schwarz path-integral treatment,
one has to soak the n fermionic z.m. corresponding to the 2n preserved supersymmetries.
In the present case, this can happen either by means of the velocity or through the vertex
operator of the emitted particle. As before, each power of the velocity is accompanied by
two fermionic z.m.. In the vertex operator of the emitted NSNS particles, one can instead
have three kind of terms, with 0, 2 and 4 fermionic fields. When taking these to be an-
ticommuting z.m., each term will correspond to particular restrictions of the polarization.
For example, in the case of the graviton, the terms with 0, 2 and 4 fermionic z.m. should
correspond to hij , hi1 and h11. Discarding the sinhπǫ factor in the amplitude, and therefore
concentrating on the functions F, one finds a result which vanishes schematically at least
like F ∼ vn/2hij+v

n/2−1hi1 +vn/2−2h11. Indeed, one finds the following behaviors (we omit
the numerical coefficients we are here not interesting)

Untwisted sector for D0-branes and D3-branes on T 6 or T 2 × T 4/ZZ2

F (bulk) ∼ v4hijk
ikj + v3phi1k

i + v2p2h11 , (4.130)

F (rad) ∼ v4hi1k
i + v3ph11 . (4.131)

Twisted sectors for D0-branes

F (bulk) ∼ v2hijk
ikj + vphi1k

i , (4.132)

F (rad) ∼ v2hi1k
i + vph11 . (4.133)

D3-branes on T 6/ZZ2

F (bulk) ∼ v2hijk
ikj + vphi1k

i + v2p2h11 , (4.134)

F (rad) ∼ v2hi1k
i + vph11 . (4.135)

Notice that the radiation terms are suppressed by an additional power of the velocity
with respect to the bulk terms. For collinear emission one has

F (bulk)(θ = 0) ∼ vmhijk
ikj , (4.136)

F (rad)(θ = 0) ∼ 0 . (4.137)

with m=2 or 4 depending on the case at hand. In this case, it is straightforward to estimated
the total radiated energy. Carrying out the momentum integration by keeping only the most
singular terms, and assuming a typical size of the compact part of spacetime equal to the
string length, L ∼ ls, one finds A ∼ gslsv

m−1f(~p ·~b/v) exp{−~p ·~b/v}, where f is a slowly
varying function. The probability that the two interacting branes radiate a graviton, at
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fixed impact parameter ~bT , is dP = |A|2d3p/p, and the total radiated energy is therefore
〈E〉 =

∫

d3p|A|2. A simple estimate gives

〈E〉 ∼ g2
s l

2
s

v1+2n

b3
. (4.138)

4.3.5 Field theory interpretation

In order to give a field theory interpretation of the emission amplitudes that we have ob-
tained, we proceed as in previous section. Consider first the radiation terms. In the eikonal
approximation, bremsstrahlung processes like these suffer from a certain ambiguity in their
definition. Moreover, in order to compute the true single-pole part, one should also compute
the diagrams as in Fig. 4.3 contributing to the bulk part exactly, beside those correspond-
ing really to radiation as in Figs 4.4 and 4.5, and extract the single-pole part. For these
reasons, we shall not analyze the radiation term in detail. Notice only that the structure of
their denominator is correct. Indeed, the propagator of an excited D-brane with an excess
of momentum pµ to be eventually radiated, and mass set to one, is 1/[(B1,2 +p)2+1]. In the
limit p → 0 required by the eikonal approximation, this reduces to 1/(2p(1,2)). Therefore,
the denominators of the radiation processes on the first and second D-brane are 1/(p(1)q2)
and 1/(p(2)k2), as anticipated. Let us now concentrate on the double-pole bulk term, whose
denominator is 1/(q2k2). In field theory, this corresponds to all possible diagrams in which
two particles are emitted from the two D-branes and annihilate into the final particle in
the bulk, far away from both D-branes, as in Fig. 4.3. The axion and dilaton emission
aplitudes are vanishing since there are no SUGRA vertices with a single axion or dilaton
and two other particles. For the graviton, there are couplings of a single graviton to pairs
of particles, through the effective energy momentum tensor. Since point-like D-branes only
couple scalars, vectors and gravitons, there are three possible diagrams, with two scalars,
two vectors or two gravitons emitted by the two D-branes and annihilating into the final
graviton.

The fields corresponding to the intermediate particles emitted by the two D-branes are
given by Eqs. (4.46), but now the kinematics is different and momentum conservation
implies kµ − qµ = pµ, and translates into the relations (4.71) and (4.72). The emission
amplitude is obtained by introducing the fields emitted by the two D-branes in the effective
Lagrangian describing the three-particle couplings of the latter two with the out-going
graviton. One keeps only terms with the leading double-pole singularity, neglecting eventual
single-pole contact degenerations. The contribution from scalars is encoded in

L(hφφ) = −1

2
hµν∂

µφ∂νφ , (4.139)

and one finds
F

(bulk)
(φ) = â2hijk

ikj . (4.140)

Similarly, the contribution from vectors is encoded in

L(hAA) = −1

2
hµν

(

FµαF να − 1

4
ηµνFααF

β
β

)

(4.141)

and one finds
F

(bulk)
(A) = −ê2

[

cosh πǫ hijk
ikj − sinhπǫ phi1k

i
]

. (4.142)
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Finally, the contribution from graviton exchange is encoded in (see e.g. [143, 144])

L(hhh) = ∂µhαβh
ν
α∂νh

β
µ −

1

2
hαβ∂

µhβν∂µh
ν
α +

1

2
hαβ∂

νhµα∂µh
β
ν +

1

2
hαβ∂µh

β
α∂

µh

+
1

4
∂µh

α
β∂

νhβαh
µ
ν +

1

2
∂ν∂

µhhβµh
ν
β −

1

4
h∂νh

α
β∂

βhνα +
1

8
h∂βhµν∂βh

ν
µ

−1

8
h∂µh∂µh− 1

4
h∂ν∂βhh

β
ν +

1

2
hµν∂

α∂βh
ν
µh

β
α . (4.143)

One has to choose in all possible ways one of the gravitons to be the on-shell out-going
one, and the other two to be the off-shell gravitons coming from the two branes. After very
heavy algebra, and neglecting single pole contact terms, one obtains

F
(bulk)
(h) =

m̂2

4

[

cosh 2πǫhijk
ikj − 2p sinh 2πǫh1ik

i + 2p2 sinh2 πǫh11

]

. (4.144)

Therefore, the total contribution to F (bulk) is

F (bulk) = â2
[

hijk
ikj
]

+
m̂

4

[

cosh 2πǫhijk
ikj − 2p sinh 2πǫhi1k

i + 2p2 sinh2 πǫh11

]

−ê2
[

coshπǫhijk
ikj − p sinhπǫhi1k

i
]

. (4.145)

Comparing with the results obtained in the large distance limit, one can determine the
coupling â, ê and m̂ for the various configurations, finding perfect agreement with those
extracted in previous section from the phase-shift.
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Chapter 5

Point-like D-branes as black holes

In this chapter, we further investigate the nature of the four-dimensional configurations
discussed in Chapter 4. We present a general description of electromagnetic RR interactions
between pairs of magnetically dual Dp and D(6−p)-branes, showing that the electric-electric
and/or magnetic-magnetic interaction is encoded in the RR even spin structure and the
electric-magnetic interaction in the RR odd spin structure. We then discuss in detail the
case of the self-dual D3-brane wrapped on T 6 and T 6/ZZ3, and related its electric and
magnetic charges to the orientation of the original ten-dimensional D3-brane. We then
discuss an explicit construction of a SUGRA solution corresponding to a 3-brane wrapped on
a generic Calabi-Yau threefold, reproducing the right structure of four-dimensional charges
in the orbifold case. Final evidence for the identification of this wrapped D3-brane with a
dyonic R-N black hole is obtained by computing one-point functions of the four-dimensional
SUGRA fields. We follow [101] and [102]. See also [145].

5.1 RR interaction for dual Dp-D(6−p)-branes

As already discussed, the RR sector of closed strings contains gauge forms which couple
to D-branes. A Dp-brane is electrically charged with respect to the (p+1)-form C(p+1),
and magnetically charged with respect to the (7−p)-form C(7−p), with elementary charge
µp. Similarly, a D(6−p) is electrically charged with respect to the (7−p)-form C(7−p), and
magnetically charged with respect to the (p+1)-form C(7−p), with elementary charge µ6−p.
Dp-branes and D(6−p)-branes can therefore have both an electric-electric and magnetic-
magnetic interaction among themselves, and an electric-magnetic and magnetic-electric in-
teraction between each other.

More in general, consider generic dyonic objects [146, 147, 148] carrying both an elec-
tric and a magnetic charge with respect to some gauge fields. Their electric-electric and
magnetic-magnetic interaction, to which we shall refer as diagonal, can be defined in the
usual way through potentials, whereas their electric-magnetic and magnetic-electric interac-
tion, to which we shall refer as off-diagonal, is more difficult to defined since the presence of
both electric and magnetic charges does not allow for globally defined potentials. A general
theoretical framework for describing in a unified way both the diagonal and the off-diagonal
interaction has been developed long ago in ref. [149, 150]. We will review shortly this
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general framework, which is in fact very well suited for discussing D-brane RR interactions,
showing that some recently derived results for dyons in various dimensions [151, 152] are
naturally obtained within this scheme.

5.1.1 Interactions of charges, monopoles and dyons

As well known, the electromagnetic potential generated by a magnetic monopole cannot be
defined everywhere; in the case of a p-extended object in D spacetime dimensions, there
exists a Dirac hyper-string on which the potential is singular. As a consequence, the phase-
shift of another electrically charged q-extended object along a closed trajectory in this
monopole background, which would be a gauge-invariant quantity if the potential were well
defined, suffers from an ambiguity. In fact, the requirement that the phase-shift should
remain unchanged mod 2π leads to the famous Dirac quantization condition eg = 2πn.

It is possible to define a mod 2π gauge-invariant phase shift also for open trajectories by
considering a pair of charge and anti-charge instead of a single charge. Since an anti-charge
traveling forward in time is equivalent to a charge traveling backward, this system can in fact
be considered as a single charge describing a closed trajectory 1. The phase-shift for such
a configuration in the monopole background is then a gauge-invariant quantity (provided
Dirac’s quantization condition holds). Actually, this is the setting that can be most easily
analyzed in the string theory framework, since it corresponds to D-branes moving with
constant velocities. Indeed the available techniques for computing explicitly D-brane inter-
actions allows to deal only with rectilinear trajectories, more in general with hyperplanes
as world-surfaces.

The phase-shift for a system of a charge and an anti-charge moving along two parallel
straight trajectories in a monopole background is a special case of the general analysis car-
ried out in ref. [149, 150] that we shall briefly review. We will consider dual pairs of branes,
namely p-branes and (D−4−p)-branes (with D being the dimension of the corresponding
spacetime). It is convenient to describe the interactions formally in the Euclidean signature
(which can be then continued to the Lorentz one). With such a metric one can consider
closed world-surfaces of the branes, as they would correspond, in Lorentz spacetime, to
brane-antibrane pairs, as explained above.

The world-surface Σ(p+1) of the p-brane is (p+1)-dimensional and it couples to the
(p+1)-form gauge potential A(p+1). We introduce the notation:

∫

Σ(p+1)

A(p+1) = Σ(p+1) ·A(p+1) . (5.1)

This can be rewritten as

Σ(p+1) ·A(p+1) = Σ(p+2) · F(p+2) , (5.2)

where F is the field strength F(p+2) = ∇A(p+1) and Σ(p+2) is an arbitrary (p+2)-dimensional
surface whose boundary ∂Σ(p+2) is Σ(p+1). In formulæ :

Σ(p+2) · ∇A(p+1) = ∂Σ(p+2) · A(p+1) = Σ(p+1) ·A(p+1) . (5.3)

1If one consider only the usual electric-electric part of the interaction, one can even consider a single

infinite straight trajectory; the corresponding phase-shift is gauge-invariant provided we require any gauge

transformation to vanish at infinity.
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The diagonal (electric-electric and/or magnetic-magnetic) interaction of two p-branes,
whose world surfaces are Σ′

(p+1) and Σ(p+1) respectively, can be written as

Idiag =
(

e′e+ g′g
)

Σ′
(p+2) · PΣ(p+2) =

(

e′e+ g′g
)

Σ′
(p+1) ·DΣ(p+1) , (5.4)

where e, e′ (g, g′) are the electric (magnetic) charges carried by the two branes, D is the
propagator, that is the inverse of the Laplace-Beltrami operator ∆ = ∂∇+∇∂, i.e. ∆D = 1,
and P = ∇D∂. In the Euclidean path-integral, this interaction appears at the exponent,
the integrand being exp{−Idiag}.

The off-diagonal interaction of two mutually dual branes, a p-brane and a (D−4−p)-
brane, in D = 2(q+1) dimensions (the case p = q−1 is self-dual) is instead given by

Ioff = eg′Σ′
(D−2−p) · ∗PΣ(p+2) + e′gΣ(p+2) · ∗PΣ′

(D−2−p) . (5.5)

Here ∗F = ǫ/2qF means the Hodge dual of the form F , obtained by contracting its com-
ponents with the antisymmetric tensor. It is crucial to observe that the Hodge duality
operation depends on the dimension D=2(q+1) of spacetime (that we shall suppose to be
even in any case). In fact, the ǫ tensor satisfies (ǫ/2q)2 = (−1)q+1 11 and ǫT = (−1)q+1ǫ.
Using these properties, one can see that P +(−1)q+1∗P ∗ = 11 in the space of antisymmetric
tensors, as it is equivalent to the Hodge decomposition. Therefore ∗P + P ∗ = ∗11. Now,
the insertion of the ∗11 between Σ′

(D−2−p) and Σ(p+2) yields a contact term given by their

intersection number. Assuming by a Dirac veto that this number is zero, we get ∗P
.
= −P ∗.

Finally, transposing the second term in Eq. (5.5) and using the above properties, we get
finally

Ioff =
(

eg′ + (−1)qe′g
)

Σ′
(D−2−p) · ∗PΣ(p+2)

=
1

2

(

eg′ + (−1)qe′g
)

(

Σ′
(D−2−p) · ∗PΣ(p+2) + (−1)qΣ(p+2) · ∗PΣ′

(D−2−p)
)

. (5.6)

In order for the path integral over exp{iIoff} to be well defined, it is necessary to impose
the Dirac quantization condition [151]

(

eg′ + (−1)qe′g
)

= 2πn . (5.7)

The point is that Ioff depends on the (supposed irrelevant) choice of the unphysical
Σ′

(D−2−p), which is only constrained to have the physical brane world-surface Σ′
(D−3−p)

as its boundary: ∂Σ′
(D−2−p) = Σ′

(D−3−p). However, the path-integral integrand is in this

case exp{iIoff} and this has no ambiguity. Indeed,

Ioff = (2πn)Σ′
(D−2−p) · ∗∇DΣ(p+1) . (5.8)

Now, if we change Σ′
(D−2−p) keeping its boundary fixed, the ensuing change of Ioff can be

written as δIoff = (2πn)∂V(D−1−p) · ∗∇DΣ(p+1), where the boundary of V(D−1−p) is the
union of the old Σ′

(D−2−p) and the new one. By integrating by parts, using ∇∗ = ∗∂ and
∂Σ(p+1) = 0 since we consider closed world surfaces, we get

δIoff = (2πn)V(D−1−p) · ∗Σ(p+1) = 2π(integer) , (5.9)

since V(D−1−p) · ∗Σ(p+1) is the intersection number of the closed hypersurface Σ(p+1) and
the hypervolume V(D−1−p) and is therefore an integer. Notice that relaxing the Dirac veto,
Eq. (5.6) is a consistent expression provided eg′ + (−1)qe′g = 4πn.
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5.1.2 Compactification

The above properties remain valid also when we compactify some of the D dimensions, in
particular compactifying six of the ten dimensions of string theory. Objects whose extended
dimensions are wrapped in the compact directions will appear point-like in four-dimensional
spacetime. In particular, we will be interested in the case of the D3-brane wrapped on
T 6 and T 6/ZZ3. The D3-brane of Type IIB is a special case since it is both electrically
and magnetically charged with respect to the self-dual RR 4-form; this peculiarity will be
relevant in our study giving rise, both before and after the compactification, to dyonic states.
From the four-dimensional spacetime point of view, these will look like dyons with electric
and magnetic charges determined by the D3-brane’s different orientations in the compact
directions. For instance, if two interacting D-branes are parallel in the compact directions,
then it is easy to see (we will be explicit in the following) that Ioff = (2πn)Σ′

(D−2−p) ·∗∇DΣ(p+1) = 0 and this will be interpreted in four dimensions by saying that there is no
off-diagonal interaction between to ”parallel” dyons, that is having the same ratio (magnetic
charge)/(electric charge). In fact, two such dyons behave with respect to each other as purely
electrically charged particles. It is amusing to notice that although the Dirac quantization
condition is automatically implemented, as we said, once the off-diagonal interaction is
correctly normalized in ten dimensions, it might look somewhat non-obvious at first sight
in four dimensions. We will explore the ensuing pattern of charge quantization in the
following subsections.

In the following, we are going to consider the off-diagonal interaction of two pairs of D3-
branes-antibranes, wrapped on the compact part of spacetime and moving linearly in the
non-compact part of spacetime (the brane’s parameters will be labeled by B, the antibrane’s
ones by A and the index i = 1, 2 labels the two pairs). We will take the trajectories in
spacetime to describe a line in the (t, x) plane. In each of the two pairs, the brane and the
antibrane are parallel to each other. This means that each pair is described by two parallel
four-dimensional hyperplanes. The directions ~α(i) in the three compact planes (xa, xa+1)

are specified by the angles θ
(i)
a (a = 4, 6, 8), common to the brane and the antibrane, so

that α
(i)
a = cos θ(i) and α

(i)
a+1 = sin θ(i). In the (t, x) plane, the direction ~w(i) of each pair

is specified by the rapidity ǫ(i), so that w
(i)
t = sinhπǫ(i) and w

(i)
x = coshπǫ(i). The (t, x)

trajectory of the D-branes of the pair i is taken in the positive t-direction and is located at
position y

(i)
B , z

(i)
B in the transverse (y, z) plane, while the trajectory of the antibrane is taken

in the negative t-direction and is located at position y
(i)
A , z

(i)
A . It is convenient to introduce

a complex variable ξ = y + iz. The positions of the brane and the antibrane of the two
pairs in the transverse (y, z) plane is depicted in Fig. 5.1.

According to the general construction, the diagonal and off-diagonal interactions Idiag
and Ioff are given by Eqs. (5.4) and (5.6) respectively. In order to integrate along the hyper-

surfaces, let us suppose first that the angles θ
(2)
a are different from the angles θ

(1)
a . Consider

the propagator D, that we shall from now write as ∆(D)(r) =
∫

dDk/(2π)D∆̃(k)eikr with

∆̃(k) = 1/k2 =
∫∞
0 dle−lk

2
. The integration along the planes in the compact space and along

the (t, x) plane will result in putting to zero all the compact and the (t, x) components of
the momentum k. Hence, after those integrations, the propagator D will be reduced to the
Fourier transform of ∆̃(k) where only ky, kz are different from zero, that is the two dimen-
sional propagator ∆(2)(r) in the plane (y, z). Thus, the only possible derivatives occurring
in the previous equation will be in the (y, z) plane. Actually, by doing the integration over
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Figure 5.1:

l as the last one, the other integrations factorize into the product of integrations along the
planes (t, x), (y, z) and the three compact planes (xa, xa+1) respectively. In the following, it
will be convenient to use the two-dimensional complex propagator (λ is an infrared cut-off)

D2(ξ, ξ
′) =

1

2π
ln
ξ − ξ′

λ
. (5.10)

whose real part is ∆(2)(ξ, ξ
′) = ReD2(ξ, ξ

′).

In the diagonal case, the integration in the (t, x) plane gives

I
(t,x)
diag = (~w(1) · ~w(2))

∫

dt(1)
∫

dt(2)
∫

d2~kt,x
(2π)2

ei(t
(1) ~w(1)−t(2) ~w(2))·~kt,xe−l

~k2
t,x

=
~w(1) · ~w(2)

|~w(1) ∧ ~w(2)| = cothπ
(

ǫ(1) − ǫ(2)
)

. (5.11)

Similarly, the integrations in the three (xa, xa+1) planes give

I
(comp)
diag =

~α(1) · ~α(2)

|~α(1) ∧ ~α(2)| =
V (1)V (2)

Vol(T 6/ZZ3)

∏

a

cos (θ(1)
a − θ(2)

a ) . (5.12)

where V (1,2) are the volumes of the wrapped 3-branes. This factor turns the ten-dimensional
charges e′e+ g′g into the four-dimensional dyon charge combination e(1)e(2) + g(1)g(2). The

remaining integrations in the (y, z) plane are over the straight lines joining the brane in ξ
(i)
B

and the antibrane in ξ
(i)
A for each of the two pairs i = 1, 2, and give,

I
(y,z)
diag =

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) · ∂ξ(1)
∫ ξ

(2)
A

ξ
(2)
B

dξ(2) · ∂ξ(2)ReD2(ξ
(1), ξ(2))

=
1

2π
Re ln

(

ξ
(1)
A − ξ

(2)
A

ξ
(1)
B − ξ

(2)
A

· ξ
(1)
B − ξ

(2)
B

ξ
(1)
A − ξ

(2)
B

)

=
1

2π
ln
ad

bc
. (5.13)

In the off-diagonal case, the integration in the (t, x) plane gives

I
(t,x)
off = (~w(1) ∧ ~w(2))

∫

dt(1)
∫

dt(2)
∫

d2~kt,x
(2π)2

ei(t
(1) ~w(1)−t(2) ~w(2))·~ke−l(

~k2
t,x)

=
~w(1) ∧ ~w(2)

|~w(1) ∧ ~w(2)| = ±1 . (5.14)
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The result is therefore ±1 (the degenerate case where the trajectories (1) and (2) are parallel
should be taken to be zero). The integrations in the (xa, xa+1) planes give instead

I
(comp)
diag =

~α(1) · ~α(2)

|~α(1) ∧ ~α(2)| =
V (1)V (2)

Vol(T 6/ZZ3)

∏

a

sin (θ(1)
a − θ(2)

a ) . (5.15)

This factor turns the ten-dimensional charges eg′+e′g into the four-dimensional dyon charge
combination e(1)g(2) − g(1)e(2) = 2πn. The remaining integrations in the (y, z) plane give in
this case

I
(y,z)
off =

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)
∫ ξ

(2)
A

ξ
(2)
B

dξ(2) · ∂ξ(2)ReD2(ξ
(1), ξ(2))

=
1

2π
Im ln

(

ξ
(1)
A − ξ

(2)
A

ξ
(1)
B − ξ

(2)
A

· ξ
(1)
B − ξ

(2)
B

ξ
(1)
A − ξ

(2)
B

)

=
β − α

2π
=
δ − γ

2π
. (5.16)

There are here two important observations that we can make. First, considering pairs
of branes-antibranes automatically eliminates any infrared divergence. Second, since the
combination of charges contributes 2π times an integer, the off-diagonal interaction is given,

apart from this integer, by the difference of the angles by which any curve joining ξ
(1)
B and

ξ
(1)
A is seen from ξ

(1)
B and ξ

(1)
A , or vice versa. We thus see explicitly that Ioff is defined

modulo 2π. Concluding, the total diagonal and off-diagonal interactions are given by

Idiag =

(

e(1)e(2) + g(1)g(2)
)

tanhπ(ǫ(1) − ǫ(2))
ReD2 , (5.17)

Ioff = ±
(

e(1)g(2) − g(1)e(2)
)

ImD2 , (5.18)

with

D2 = ln

(

ξ
(1)
A − ξ

(2)
A

ξ
(1)
B − ξ

(2)
A

· ξ
(1)
B − ξ

(2)
B

ξ
(1)
A − ξ

(2)
B

)

. (5.19)

Notice the interesting fact that in D=2(q+1)=10, where the gauge field is a q=4 even
form, the 3-brane is a dyon in the sense that it has e = g = µ3 =

√
2π and that it has both

a diagonal and an off-diagonal interaction with itself. In fact, the off-diagonal interaction
is in this case proportional to e(1)g(2) + e(2)g(1) (whereas for q odd it is proportional to
e(1)g(2) − e(2)g(1)) and different from zero also for e(1) = e(2), g(1) = g(2). On the contrary,
for D=2(q+1)=4, where the gauge field is a q=1 odd form, two “parallel” dyons having
equal charges e(1) = e(2) and g(1) = g(2) do not have any off-diagonal interaction, the latter
being proportional to e(1)g(2) − e(2)g(1).

It turns out from our analysis that the D=10 off-diagonal interaction, proportional to
eg, becomes automatically proportional to e(1)g(2) − e(2)g(1) upon compactification down
to D=4. This happens because the off-diagonal interaction is proportional to the factor
∏

a sin(θ
(1)
a − θ

(2)
a ), which is zero when the branes (1) and (2) are seen by a non-compact

observer to be parallel in the sense that e(1) = e(2) and g(1) = g(2). More in general, notice
that the off-diagonal interaction between two dyons (1) and (2) is symmetric both for q
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even and for q odd, under the exchange of every quantum number, (1) ↔ (2). In fact, the
transverse (y, z) contribution to the amplitude, that is D2, is symmetric, D2(1, 2) = D2(2, 1),
whereas each pair of the remaining non-transverse directions (t, x) and (xa, xa+1) gives an
antisymmetric contribution; therefore, since e(1)g(2) + (−1)qe(2)g(1) is symmetric for q even
and antisymmetric for q odd, the total amplitude turns out to be symmetric in both cases
(see Eq. (5.6)).

5.1.3 The interactions in string theory

As already noticed, the diagonal electric-electric and/or magnetic-magnetic interaction be-
tween two Dp-branes is a well defined quantity also for open trajectories. In this case, in fact,
there is no strict necessity of considering interactions among pairs of Dp-brane-antibrane
(although this is advisable to avoid infrared problems). In string theory, the diagonal RR
interaction of just one Dp-brane at ξ(1) and another Dp-brane at ξ(2) is encoded in the RR+
spin-structure cylinder amplitude

Adiag =
µ̂2
p

24

∫ ∞

0
dl〈B(1)

p , ξ(1)|e−lH |B(2)
p , ξ(2)〉RR+ , (5.20)

For convenience, we have rescaled the modulus l by a factor 2 in order to get a factor 2 in
the definition of H, in order to have p2 for the z.m. part, rather that p2/2. This gives an
overall factor of 2 which has changed the normalization, and a torus modulus equal to 4il
rather than 2il.

Also the off-diagonal RR interaction can be expressed in string theory within the bound-
ary state formalism. Intuitively, it is quite obvious that the off-diagonal interaction must be
encoded in the RR− spin-structure, which indeed produces the correct topological structure
of the interaction, and gives a potentially non-vanishing result for dual pair of a Dp-brane
and a D(6−p)-brane, as we shall see. More precisely, the situation for the odd spin-structure
cylinder amplitude for this configuration of D-branes is the following. The Dp-D(6−p) sys-
tem can have a maximum of 6 ND directions, when the Dp and the D(6−p)-branes are
taken to be completely orthogonal. In these directions there are no true z.m. and therefore
the contribution of the fields along these directions the odd spin-structure partition function
is non-vanishing. More in general, the same remains true as long as one keeps non-zero rel-
ative angles or fluxes in these directions. There are then the two light-cone directions t and
x which are tilted by the velocity and therefore the corresponding bosonic and fermionic
pairs of fields again have no true z.m. and give a non-vanishing contribution to the partition
function. Finally, there always remains a pair of DD transverse directions, y and z, in which
there are true z.m., in particular fermionic ones which give a vanishing result. It is therefore
clear that some modification of the simple cylinder amplitude is required in order to obtain
a sensitive result. This is related to the already discussed necessity of considering the more

complex system of a D-brane-antibrane pair, say located at ξ
(1)
B,A in the transverse plane,

with one D(6−p)-brane (or antibrane) located at ξ(2) in the transverse plane. According to
the general description developed in previous section, this interaction is expressed by an in-
tegral over a Dirac string joining ξ

(1)
B and ξ

(1)
A , which we represent parametrically by ξ(1)(s),

s = (0, 1). We shall propose the following string theory expression for the phase-shift

Aoff =
µ̂pµ̂6−p

24

∫ ∞

0
dl

∫ 1

0
ds 〈B(1)

p , ǫ(1), ξ(1)(s)|J(s)J̄(s)e−lH |B(2)
6−p, ǫ

(2), ξ(2)〉RR− , (5.21)
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where J and J̄ are the left and right moving supercurrents, whose matter part is J = ∂Xµψµ
and J̄ = ∂̄Xµψ̄µ. Along the Dirac string, ∂, ∂̄ = ∂s∓ i∂τ , where ∂τ is the normal derivative,
that is along the direction τ orthogonal to the Dirac string; τ is therefore the (Euclidean)
world-sheet evolution time of the closed superstring.

The odd spin-structure correlation is non-vanishing due to the supercurrent insertion.
Only the z.m. of the matter part contributes, providing the transverse fermionic z.m. inser-
tion ψy0ψ̃

z
0 (or z, y interchanged) required to get a non-vanishing result. Since the fermionic

correlation gives an antisymmetric result, one is left with an antisymmetric bosonic corre-
lation which is zero except for the z.m. part

〈B(1)
p |J(s)J̄(s)e−lH |B(2)

(6−p)〉RR− = 2i〈B(1)
p |(∂sy∂τz − ∂sz∂τy)ψ

y
0 ψ̃

z
0e

−lH |B(2)
6−p〉RR− . (5.22)

Recall that in the the odd spin-structure, the contribution to the partition function of
the bosonic and fermionic oscillator modes cancel by world-sheet supersymmetry. With
our normalization, the fermionic z.m. insertion gives 〈ψy0 ψ̃z0〉 = −〈ψz0ψ̃y0〉 = 1/2. The
(y, z) bosonic z.m. give instead the correct position dependence of the amplitude. In-
deed, notice that ds (∂sy, ∂sz) = (dy, dz) along the integration line, and that as an op-
erator (∂τy, ∂τz) = −(∂y, ∂z), since the ∂τ derivatives of the coordinates are canonical
momenta acting as derivatives on the corresponding coordinate. Therefore, it follows that
ds (∂sy∂τz − ∂sz∂τy) = dy∂z − dz∂y = dξ ∧ ∂ξ. Moreover, for the transverse bosonic modes
∫∞
0 dl〈ξ(1)(s)|e−lH |ξ(2)〉 = ∆(2)(ξ

(1)(s), ξ(2)). Finally, one obtains

∫ ∞

0
dl

∫ 1

0
ds 〈B(1)

p |J(s)J̄(s)e−lH |B(2)
(6−p)〉

(y,z)
RR− =

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)∆(2)(ξ
(1), ξ(2)) , (5.23)

which reproduces precisely the expected result for the off-diagonal interaction. In the case
of the self-dual D3-brane wrapped on the compact part of spacetime, the details of the
computation of off-diagonal interaction follows closely the general pattern described in pre-
vious subsection. The fermionic z.m. in the light-cone and compact directions give a
non-vanishing result due to the non-vanishing relative rapidity ǫ(1)− ǫ(2) and relative angles

θ
(1)
a − θ

(2)
a which, together with the constant contribution of the bosonic z.m., changes the

ten-dimensional coupling into the four-dimensional one.

A comment is in order about the subtle treatment of the fermionic and superghost z.m.
in the odd spin-structure. As already discussed in Chapter 3, two different approaches are
possible for the odd spin-structure cylinder amplitude. In the path-integral approach to
the superstring, it is known [155] that the integral over the supermoduli produces super-
current insertions. Actually, in the cylinder case there is only one modulus, the previously
introduced l, and correspondingly one has only one supermodulus and one supercurrent
insertion (the sum J + J̄). In the case at hand, however, one is forced to consider simulta-
neously the interaction of a D-brane-antibrane pair with a given D-brane (or antibrane). It
is therefore not so surprising to see the occurrence of the pair of supercurrents J and J̄ as if
the interaction would correspond to some extent to the torus topology, rather than cylinder
one. Another suggestive observation in this directions is that string world-sheets, or in the
low-energy limit particle world-lines, are associated in the some sense to the flux lines of
the interactions they mediate. The diagonal electric interaction between two D-branes is
described by flux lines starting from one D-brane and ending on the other D-brane, whereas
the off-diagonal interaction between a pair of D-brane-antibrane with another D-brane is
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described by flux lines closing through the Dirac string stretched between the D-brane-
antibrane pair. In any case, it is a fact that the boundary state amplitude Eq. (5.21)
reproduces exactly the correct result for the off-diagonal electric-magnetic interaction.

Another approach consists in canceling the transverse fermionic z.m. with the corre-
sponding superghost z.m., as described in [131, 134]. By doing so, the problem of the
fermionic z.m. is cured in a very simple way, and one obtains a non-vanishing result for the
odd spin-structure cylinder amplitude. However, this cannot be interpreted in any sensitive
way as a phase-shift. Probably, the naive result that one obtains in that way corresponds
to integrating the modulus of the Lorentz force over the trajectory, without considering the
wedge product with actually prevents magnetic interactions to change the energy and is the
source of the complications discussed in this section.

5.2 Wrapped D3-branes as dyons

In this section, we will apply the formalism developed in previous section to various con-
figurations obtained from the D3-brane. We will first study the diagonal and off-diagonal
interactions of the self-dual D3-brane in ten dimensions, and then turn to the point-like
objects studied in Chapter 4 which can be obtained by wrapping the D3-brane on T 6 and
T 6/ZZ3.

5.2.1 D3-branes in ten dimensions

Let us start from a D3-brane configuration with N. b.c. in the directions x0 = t and xa,
and D in x1 = x, x2 = y, x3 = z and xa+1, with a = 4, 6, 8. The directions xa, xa+1 will
eventually become compact. Consider then two of these D3-branes moving with velocities
v(1,2) = tanhπǫ(1,2) along the x1 direction, at transverse positions ~Y (1,2), and tilted in the

(xa, xa+1) planes with generic angles θ
(1,2)
a . The cylinder amplitude reads

A =
µ̂2

3

24

∫ ∞

0
dl
∑

α

(±)〈B(1), ǫ(1), θ(1)
a , ~Y (1)|e−lH |B(2), ǫ(2), θ(2)

a , ~Y (2)〉α . (5.24)

The bosonic z.m. part of the boundary state is

|B0, ǫ, θa, ~Y 〉B =

∫

d6~k

(2π)6
ei
~k·~Y |kµ(ǫ, θ)〉 , (5.25)

with kµ(ǫ, θ) = (sinhπǫk1, cosh ǫk1, k2, k3, cos θak
a, sin θak

a). Integrating over the momenta
and taking into account momentum conservation which for non-vanishing tilts denoted by

ǫ = ǫ(1) − ǫ(2) and θa = θ
(1)
a − θ

(2)
a , forces all the D momenta but k2, k3 to be zero, the

amplitude factorizes as usual into a bosonic and a fermionic partition functions

A =
µ̂2

3

16 sinh |πǫ|∏a sin |θa|

∫ ∞

0

dl

4πl
e−

b2

4l

∑

α

ZBZ
α
F , (5.26)

where µ3 =
√

2π is the D3-brane tension, ~b = ~Y
(1)
T − ~Y

(2)
T (b = |ξ(1) − ξ(2)|) is the transverse

impact parameter and

ZαB,F = 〈B(1), ǫ(1), θ(1)
a |e−lH |B(2), ǫ(2), θ(2)

a 〉αB,F . (5.27)
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One has only oscillator modes in the bosonic case, since the z.m. have been already taken
into account. Also, according to the discussion of previous section, we will imagine that
in the odd spin-structure the two transverse fermionic z.m. are soaked up due to the
supercurrent insertions (but we will omit to write explicitly the integral over the Dirac
string in these intermediate steps). The amplitude A can be written as a world-sheet
integral

A = µ̂2
3

∫ ∞

−∞
dτ
∏

a

∫ ∞

−∞
dξa

∫ ∞

0

dl

(4πl)3
e−

r2

4l
1

16

∑

α

ZBZ
α
F , (5.28)

in terms of the true distance r =
√

~b2 + sinh2 πǫ τ2 +
∑

a sin2 θa ξ2a. In the limit ǫ, θa → 0,

translational invariance along the directions x1, xa is restored and the integral over the
world-sheet produces simply the volume V3+1 of the D3-branes. The remaining part of the
boundary state is the same as that constructed in Appendix D. The total partition functions
are

ZB = η(2il)4
2i sinhπǫ

ϑ1(iǫ|4il)
∏

a

2 sin θa

ϑ1

(

θa
π |4il

) , (5.29)

ZevenF = η(4il)−4
∑

α=2,3,4

(−1)1+αϑα(iǫ|4il)
∏

a

ϑα

(

θa
π
|4il
)

, (5.30)

ZoddF = η(4il)−4ϑ1(iǫ|4il)
∏

a

ϑ1

(

θa
π
|4il
)

. (5.31)

For the even part, the l → ∞ relevant in the large distance limit b→ ∞, is

ZBZ
even
F −→

l→∞
16 cosh πǫ

∏

a

cos θa − 4

(

cosh 2πǫ+
∑

a

cos 2θa

)

. (5.32)

In the odd part, instead, there is the usual cancellation between bosonic and fermionic
oscillators and one has simply

ZBZ
odd
F = 16i sinh πǫ

∏

a

sin θa .

Recall finally that the bosonic fields present in the supercurrents alter the z.m. part of the
amplitude precisely in the right way to allow the interpretation of the previous section.

Summarizing, the diagonal interaction between two D3-branes at positions ξ(1) and ξ(2)

in the transverse plane is, at large distances,

Idiag = µ̂2
3 coth πǫ

∏

a

cot θa∆(2)|ξ(1) − ξ(2)| , (5.33)

The off-diagonal interaction between a D3-brane at transverse position ξ(2) and a pair of

D3-brane and D3-antibrane at ξ
(1)
B and ξ

(1)
A is instead the same all distances and given by

Ioff = ±µ̂2
3

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)∆(2)|ξ(1) − ξ(2)| . (5.34)

Here ∆(d)(r) is the Green function in d dimensions

∆(d)(r) =

∫

ddk

(2π)d
ei
~k·~r

k2
=

∫ ∞

0

dl

(4πl)d/2
e−

r2

4l . (5.35)
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5.2.2 D3-branes on T 6 and T 6/ZZ3

In this section we shall apply the general construction that we have introduced to the case
of the Type IIB D3-brane wrapped on the orbifold T 6/ZZ3. Compactifying the directions
xa, xa+1, a = 4, 6, 8 on T 6, one gets N=8 supersymmetry, which is further broken down
to N=2 by the ZZ3 identification. The orbifold T 6/ZZ3 is a singular limit of a CY manifold
with Hodge numbers h(1,1) = 9 and h(1,2) = 0. The standard counting of hyper and vector
multiplets for Type IIB compactifications then yields nV = h1,2 and nH = h(1,1) +1 [19, 20]
and the LEEA is therefore D=4 N=2 SUGRA coupled to 10 hypermultiplets and 0 vector
multiplets (see [153, 154] and references therein). In particular, the only vector field arising
in the compactification, namely the graviphoton, comes from the self-dual RR 4-form Cµνρσ
under which the D3-brane is already charged in 10 dimensions. We have seen in Chapter 4
that the wrapped D3-brane configuration corresponds to a solution which does not couple to
any scalar, but only to the graviton and the graviphoton of the N=2 gravitational multiplet.

We shall generalize here the phase-shift computation of Chapter 4 by considering D3-
branes wrapping with arbitrary angles on the compact directions. The boundary states
describing these D3-brane differ from the one constructed for the non-compact D3-brane
essentially through the usual quantization of the momentum along a compact direction.
There are only minor changes with respect to the construction described in Appendix D,
for the compact part of the boundary state.

Let us start concentrating on a single T 2 factor, then. The only lattice compatible with
the eventual ZZ3 gauging is the triangular one, with modulus τ = R exp{iπ3 }. The lattice of

windings L̄ = Lx+ iLy is given by L̄ = mτ +nR = (R/2)(2n+m)+ i(
√

3/2)Rm, with m,n
integers, that is

Lx =
R

2
Nx , Ly =

√
3

2
RNy , (5.36)

where Nx, Ny are integers of the same parity. The lattice of momenta is as usual determined
by the requirement that the plane wave exp{ip ·X} is well defined when X is shifted by a
vector belonging to the winding lattice, and one finds

px =
2π

R
nx , py =

2π√
3R

ny , (5.37)

where nx, ny are again integers of the same parity.

We choose in each T 2 an arbitrary D direction x′ at angle θ with the x direction and
an orthogonal N direction y′ forming an angle Ω = θ + π/2 with the x direction, and fix
its length. This amounts to choose an arbitrary vector L̄ in the winding lattice, which is
identified by the pair (Nx, Ny) or, more conveniently for the following, by the orthogonal
pair (n̄y,−n̄x), which corresponds to the orthogonal direction of allowed momenta (see Fig.
5.3). In this way

Lx = −L sin θ , Ly = L cos θ , (5.38)

cos θ = −
√

3R

2L
n̄x , sin θ = − R

2L
n̄y , (5.39)

where

L = |L̄| =
R

2

√

n̄2
y + 3n̄2

x . (5.40)
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We are now interested in the bosonic z.m. contribution. For simplicity, let us recall
the result for the non-compact case. The boundary state for the bosonic z.m. in a given
(xa, xa+1) plane is

|B0, θ, ~Y 〉B = δ
(

x′0 − Y ′) |0〉

=

∫∫

dpxdpy
(2π)

e−i(px·Yx+py·Yy)δ (cos θ py − sin θ px) |px, py〉 . (5.41)

The δ-function selects momenta parallel to the D direction we have chosen. Indeed if ω is the
direction of the generic ~p momentum, the argument of the δ-function becomes proportional
to sin(θ − ω). Using of the normalization 〈px, py|qx, qy〉 = (2π)2δ(px − qx)δ(py − qy) one
recovers the following vacuum amplitude

〈B(1)
0 , θ(1), ~Y (1)|e−lH |B(2)

0 , θ(2), ~Y (2)〉B =

=

∫∫

dpxdpye
−i(px·∆Yx+py·∆Yy)δ

(

cos θ(1)py − sin θ(1)px
)

δ
(

cos θ(2)py − sin θ(2)px
)

=
1

sin |θ(1) − θ(2)| . (5.42)

In discretizing this result we adopt the following strategy. Let us begin by suppos-
ing θ(1) 6= θ(2). First we substitute in Eq. (5.42) the previously derived expressions for
the discretized quantities ~p and θ and extract some jacobians from the Dirac δ-functions,
obtaining

〈B(1)
0 , θ(1)|e−lH |B(2)

0 , θ(2)〉B =
L(θ(1))L(θ(2))

(
√

3/4)R2

s.p.
∑

nx,ny

δ
(

n̄(1)
x ny − n̄(1)

y nx
)

δ
(

n̄(2)
x ny − n̄(2)

y nx
)

.

Since in this case the solution of the condition enforced by the δ-functions is nx = ny = 0,
all the momenta are zero and the exponential drops as in the continuum case. The Dirac
δ-function containing only integers can now be turned to a Kronecker one. However, since
the latter is insensitive to an integer rescaling whereas the former transforms with an integer
jacobian, we shall keep an arbitrary integer constant in this step:

δ
(

n̄(1)
x ny − n̄(1)

y nx
)

δ
(

n̄(2)
x ny − n̄(2)

y nx
)

= Nδ
n̄

(1)
x ny,n̄

(1)
y nx

δ
n̄

(2)
x ny,n̄

(2)
y nx

= Nδnx,0δny ,0 .(5.43)

Therefore

〈B(1)
0 , θ(1)|e−lH |B(2)

0 , θ(2)〉B = N
L(θ(1))L(θ(2))

Vol(T 2)
. (5.44)

98



with Vol(T 2) = (
√

3/2)R2. The integer N is fixed to 1 by the requirement that for θ(1) = θ(2)

the amplitude reduces to the “winding” L2/Vol(T 2). Actually, in order to achieve the above
limit, an infinite L(θ) is in general required because of the discreteness of the allowed angles,
even if in the strictly parallel case finite L(θ)’s are possible. Indeed, one can check that

L(θ(1))L(θ(2)) sin |θ(1) − θ(2)| = |n̄(1)
x n̄

(2)
y − n̄

(1)
y n̄

(2)
x |Vol(T 2). In this way the continuum

and discrete results differ by the integer jacobian |n̄(1)
x n̄

(2)
y − n̄

(1)
y n̄

(2)
x | (which vanishes for

θ(1) = θ(2)). The final result is then

〈B(1)
0 , θ(1)|e−lH |B(2)

0 , θ(2)〉B =
L(θ(1))L(θ(2))

Vol(T 2)
=

|n̄(1)
x n̄

(2)
y − n̄

(1)
y n̄

(2)
x |

sin |θ(1) − θ(2)| . (5.45)

The above result could have been obtained starting directly from the compact boundary
state, that is, by first discretizing the continuum boundary state (5.41) and then computing
the amplitude. The correct discrete boundary state turns out to be

|B0, θ, ~Y 〉B = L(θ)
s.p.
∑

nx,ny

1

(
√

3/2)R2
e−

2π
R
i(nxYx+nyYy/

√
3)δ (n̄xny − n̄ynx) |nx, ny〉 , (5.46)

and reproduces correctly Eq. (5.45) with the definition 〈nx, ny|mx,my〉 =
√

3R2δnx,mxδny ,my .

T 6 case

Postponing for the moment the ZZ3 identification, let us now consider as an instructive inter-
mediate result the case of T 6. The result Eq. (5.45) can be generalized in a straightforward
way giving for the total contribution from the compact part of the bosonic z.m.

〈B(1)
0 , θ(1)

a |e−lH |B(2)
0 , θ(2)

a 〉B =
V (1)V (2)

Vol(T 6)
, (5.47)

where V (1,2) are the volumes of the two D3-branes. This factor is reabsorbed in the definition
of a four-dimensional mass M̂ (θa = θ

(1)
a − θ

(2)
a )

M̂2 = µ̂2
3

V (1)V (2)

Vol(T 6)
= 2π

∏

a

|n̄(1)
a n̄

(2)
a+1 − n̄

(1)
a+1n̄

(2)
a |

sin |θa|
. (5.48)

The contribution of the fermions does not change during the compactification and the
amplitude (5.26) becomes in this case

A =
M̂2

sinh |πǫ|

∫ ∞

0

dl

4πl
e−

b2

4l
1

16

∑

s

ZBZ
s
F , (5.49)

and can be rewritten this time as a one-dimensional world-sheet integral

A = M̂2
∫ ∞

−∞
dτ

∫

dl

(4πl)3/2
e−

r2

4l
1

16

∑

s

ZBZ
s
F , (5.50)

in terms of the four-dimensional distance r =

√

~b2 + sinh2 πǫ τ2.
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Eqs. (5.33) for the large distance diagonal interaction between two D-branes at positions
ξ(1) and ξ(2), and (5.34) for the scale-independent off-diagonal interaction between a D-brane

at transverse position ξ(2) and a pair of D-brane and D-antibrane at ξ
(1)
B and ξ

(1)
A , modify

to

Idiag = αeven coth πǫ∆(2)|ξ(1) − ξ(2)| , (5.51)

Ioff = ±αodd
∫ ξ

(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)∆(2)|ξ(1) − ξ(2)| , (5.52)

with
αeven = M̂2

∏

a

cos θa , αodd = M̂2
∏

a

sin θa . (5.53)

Recalling (5.48) and noticing that

cot θa =
√

3
3n̄

(1)
a n̄

(2)
a + n̄

(1)
a+1n̄

(2)
a+1

n̄
(1)
a n̄

(2)
a+1 − n̄

(1)
a+1n̄

(2)
a

, (5.54)

the two couplings can also be written as

αeven = 2π
∏

a

√
3
(

3n̄(1)
a n̄(2)

a + n̄
(1)
a+1n̄

(2)
a+1

)

,

αodd = 2π
∏

a

(

n̄(1)
a n̄

(2)
a+1 − n̄

(1)
a+1n̄

(2)
a

)

. (5.55)

As expected, the orientation of the D3-branes in ten dimensions affects the effective
electric and magnetic couplings of the corresponding point-like objects in four dimensions.
Notice that the Dirac quantization condition for the off-diagonal coupling αodd, which is
satisfied in ten dimensions with the minimal allowed charges, remains satisfied in four with
an integer which depends on the D-branes’ orientation. This result can also be understood
in terms of the relevant N=8 supergravity. Notice in fact that

∏

a

cos θa =
1

4

4
∑

i=1

cosφi ,
∏

a

sin θa = −1

4

4
∑

i=1

sinφi , (5.56)

with φi = φ
(1)
i − φ

(2)
i and

φ
(1,2)
1 = θ

(1,2)
4 + θ

(1,2)
6 + θ

(1,2)
8 , φ

(1,2)
2 = −θ(1,2)

4 − θ
(1,2)
6 + θ

(1,2)
8 ,

φ
(1,2)
3 = θ

(1,2)
4 − θ

(1,2)
6 − θ

(1,2)
8 , φ

(1,2)
4 = −θ(1,2)

4 + θ
(1,2)
6 − θ

(1,2)
8 .

(5.57)

The effective couplings can thus be rewritten as

αeven =
4
∑

i=1

(

ê
(1)
i ê

(2)
i + ĝ

(1)
i ĝ

(2)
i

)

, αodd =
4
∑

i=1

(

ê
(1)
i ĝ

(2)
i − ĝ

(1)
i ê

(2)
i

)

, (5.58)

with

ê
(1)
i =

M̂

2
cosφ

(1)
i , ê

(2)
i =

M̂

2
cosφ

(2)
i , (5.59)

ĝ
(1)
i =

M̂

2
sinφ

(1)
i , ĝ

(2)
i =

M̂

2
sinφ

(2)
i . (5.60)
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This second consideration allows to keep track of the coupling to the various vector fields.
In fact, it happens that the ten vectors fields arising from dimensional reduction of the RR
4-form, couple to the wrapped D3-brane only through four independent combinations of

fields, with electric and magnetic charges parameterized by the four angles φ
(1,2)
i . Since the

electric and magnetic charges corresponding to a given φ
(1,2)
i cannot vanish simultaneously,

the 3-brane cannot decouple from any of the four effective gauge fields, in agreement with
a pure SUGRA argument achieved in ref. [156].

Therefore, wrapping a D3-brane on T 6 on obtains a four-parameter family of inequivalent
four-dimensional dyons, whose effective couplings depend on the orientation of the D3-brane
in the compact part of spacetime. Notice finally that when two of these branes have equal

φ
(1,2)
i ’s (yielding vanishing φi’s) their diagonal coupling no longer depends on the angles

and the off-diagonal one vanish, as appropriate for identical dyons in D = 4 dimensions.

T 6/ZZ3 case

Let us discuss finally the orbifold case. As explained in Chapter 4, the only effect of the ZZ3

identification is to project the boundary state obtained in the T 6 case onto its ZZ3-invariant
part. This projection can be easily performed by first computing the amplitude on T 6

with a relative twist wa in the orientations, θa → θa + 2πwa, and then averaging on all
the possible wa’s. Recall moreover that the twists wa in the three (xa, xa+1) planes satisfy
∑

awa = 2πn in order to preserve at least one supersymmetry.

Since the bosonic z.m. contribution (5.47) does not depend explicitly on the angles,
the only modification introduced by the ZZ3 identification is in the volume: Vol(T 6/ZZ3) =
Vol(T 6)/3. For the fermions, instead, one simply sets θa → θa + 2πwa. Under this relative
rotation one has, modulo irrelevant integer multiples of 2π

φ1 → φ1 + 2π(w4 + w6 + w8) = φ1 ,

φ2 → φ2 + 2π(−w4 − w6 + w8) = φ2 + 4πw8 ,

φ3 → φ3 + 2π(w4 − w6 − w8) = φ3 − 4πw4 ,

φ4 → φ4 + 2π(−w4 + w6 − w8) = φ4 + 4πw6 . (5.61)

The averaging procedure has the important consequence of projecting out the contribution
depending on the non-invariant φ2, φ3, φ4, with respect to the T 6 case. Indeed,

1

3

∑

{wa}

∏

a

cos(θa + 2πwa) =
1

4
cosφ1 ,

1

3

∑

{wa}

∏

a

sin(θa + 2πwa) = −1

4
sinφ1 . (5.62)

One is therefore left with the contribution of the sole e1, g1 charges

αeven =
(

ê
(1)
1 ê

(2)
1 + ĝ

(1)
1 ĝ

(2)
1

)

, αodd =
(

ê
(1)
1 ĝ

(2)
1 − ĝ

(1)
1 ê

(2)
1

)

. (5.63)

Thus, after the ZZ3 gauging, only one pair of electric and magnetic charges survives, con-
sistently with the fact that, as already pointed out at the beginning of this section, only
one vector field survives to the projection in the low energy effective theory, namely the
graviphoton. The Dirac quantization still holds, like in the T 6 case. Indeed, due to the
cancellation of the 1/3 in the projection with the 3 coming from the volume, the averaging
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procedure is equivalent to superpose three replica of the D3-brane forming 2π/3 angles be-
tween them. Since the Dirac quantization condition holds for each of pair of these, it holds
also for the sum of the interactions.

Summarizing, wrapping a D3-brane on T 6/ZZ3 one obtains a one-parameter family of
four-dimensional dyons whose effective couplings depend on the orientation of the D3-brane
in the compact part of spacetime. Recall finally that, as discussed in Chapter 4, the ZZ3

projection, which reduces the four independent gauge fields to one, is also responsible for
the decoupling of the scalars fields from the D3-brane. Thus, the D3-brane wrapped on
T 6/ZZ3 looks like an extremal R-N configuration, being a source of gravity and Maxwell
field only.

5.3 R-N black hole as D3-branes wrapped on CY threefolds

In this section, we will confirm the evidence found by computing interactions that the
D3-brane wrapped on T 6/ZZ3 is a R-N black hole of the low-energy N=2 SUGRA. More
in general, we will show how an extremal R-N black hole solution can be obtained by
wrapping a dyonic 3-brane solution of Type IIB SUGRA on a CY manifold. In the orbifold
limit T 6/ZZ3, we explicitly show the correspondence between the solution of the SUGRA
equations of motion and the D3-brane boundary state description of such a black hole
already discussed several times.

5.3.1 Black hole and CY compactification

In the last couple of years there has been much effort in finding a microscopic description of
both extremal and non-extremal black holes arising as compactifications of different p-brane
solutions of ten-dimensional SUGRA theories. This has been done by considering various
solitonic configurations in string theory, such as bound states of D-branes and solitons of
different kinds [71] or as intersecting (both orthogonally and at angles) D-branes alone
[157, 158]. As far as the microscopic description is concerned, these studies have been
mainly devoted to toroidal compactifications and less has been said about CY ones. On
the contrary, from a macroscopic SUGRA point of view, these black hole solutions have
been known for a long time in both cases and many progresses have been made in the
last few years (see [159, 160, 161] and many subsequent works). Different problems arise
when trying to find an appropriate D-brane description of these solutions in a non-flat
asymptotic space. Moreover, some general results that are valid in the toroidal case no
longer hold for CY compactifications. In particular, it is not straightforward to generalize
the so called harmonic function rule and it is also no longer true that the minimum number
of “different” charges (that is, carried by different microscopic objects) must be four in
order to obtain a regular black hole in four dimensions.

We will be interested in discussing R-N black hole in four dimensions within a CY
compactification (whose relevance for obtaining non-singular four-dimensional black hole
was already pointed out, see for instance ref. [162]). The R-N solution defined as the usual
non-singular black hole solution of Maxwell-Einstein gravity, can also be seen as a particular
solution of a wider class of field theories in four dimensions in which the only fields having
a non-trivial coordinate dependence are the metric gµν and a gauge field Aµ, whereas any
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other field is taken to be constant. In particular, in four-dimensional N=2 SUGRA this
solution, known as double-extreme black hole [163], arises in the specific case in which one
assumes that the moduli fields belonging to vector multiplets (as well as those belonging
to hyper-multiplets which are anyhow constant in any N=2 black hole solution) take the
same constant values from the horizon to spatial infinity. In order to be consistent with
the field equations such constant values are not arbitrary but must coincide with the so
called fixed values: these are determined in terms of the electric and magnetic charges of all
the existing gauge fields by a variational principle that extremizes the central charge and
leads to classical formulæ expressing the horizon area as a quartic invariant of the U-duality
group (see for instance [156, 164, 165, 166] and references therein).

When ten-dimensional SUGRA is compactified on a CY threefold MCY
3 , one obtains

D=4 N=2 SUGRA coupled to matter. As well known, the field content of the four-
dimensional theory and its interaction structure is completely determined by the topological
and analytical type of MCY

3 but depends in no way on its metric structure. Indeed the stan-
dard counting of hyper and vector multiplets tells us that nV = h(1,2) and nH = h(1,1) + 1,
the numbers h(p,q) being the dimensions of the Dolbeault cohomology groups. Furthermore,
the geometrical datum that completely specifies the vector multiplet coupling, namely the
choice of the special Kähler manifold and its special Kähler metric, is provided by the mod-
uli space geometry of complex structure deformations. To determine this latter no reference
has ever to be made to the Kähler metric gij⋆ installed on MCY

3 (for a review of this well
established results see for instance [167]). Because of this crucial property careful thought
is therefore needed when one tries to oxidize the solutions of D=4 N=2 SUGRA obtained
through compactification on MCY

3 to bona fide solutions of the original D=10 Type IIB
SUGRA. To see the four-dimensional configuration as a configuration in ten dimension one
has to choose a metric on the internal manifold in such a way to satisfy the full set of
ten-dimensional equations.

5.3.2 The 3-brane wrapped on T 6/ZZ3 as a SUGRA solution

In this subsection we will explicitly show how an four-dimensional extreme R-N black hole
solution can be obtained by compactifying the self-dual 3-brane on MCY

3 = T 6/ZZ3, which
is the orbifold limit of a CY manifold with Hodge numbers h(1,1) = 9 and h(1,2) = 0. In
this case, the effective four-dimensional theory is D=4 N=2 SUGRA coupled to 10 hyper-
multiplets and 0 vector multiplets, the only vector field in the game being the graviphoton.
Since there are no vector multiplet scalars, the only regular black hole solution is the
double-extreme one. From a SUGRA point of view, this is somewhat obvious and the same
conclusion holds for every Type IIB compactification on CY manifolds with h(1,2) = 0. The
interest of the T 6/ZZ3 case lies in the fact that an explicit and simple D-brane boundary
state description is available. It would be obviously very interesting to find more compli-
cated configurations which correspond to regular N=2 black hole solutions for which an
analogous D-brane description can be found.

We will start by showing that the oxidization of a double-extreme black-hole solution of
N=2 SUGRA to a bona fide solution of Type IIB SUGRA is possible and quite straightfor-
ward. It just suffices to choose for the CY metric the Ricci-flat one whose existence in every
Kähler class is guaranteed by Yau’s theorem [168]. Our exact solution of Type IIB SUGRA
in ten dimensions corresponds to a 3-brane wrapped on a 3-cycle of the generic threefold
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MCY
3 and dimensionally reduced to four dimensions is a double-extreme black hole. Let us

then argue how this simple result is obtained.

As well known, prior to the recent work by Bandos, Sorokin and Tonin [169] Type
IIB SUGRA had no supersymmetric spacetime action. Only the field equations could be
written as closure conditions of the supersymmetry algebra [170]. The same result could
be obtained from the rheonomy superspace formalism as shown in [171, 172]. Indeed, the
condition of self-duality for the RR 5-form F(5) that is necessary for the equality of Bose
and Fermi degrees of freedom cannot be easily obtained as a variational equation and has
to be stated as a constraint. In the new approach of [169] such problems are circumvented
by introducing more fields and more symmetries that remove spurious degrees of freedom.
However, for our purposes these subtleties are not relevant since our goal is that of showing
the existence of a classical solution. Hence, we just need the field equations which are
unambiguous and reduce, with our ansatz, to the following ones:

RMN = TMN , ∇MF
MABCD
(5) = 0 , (5.64)

where TMN = 1/(2 · 4!)F 2
(5)MN is the energy-momentum tensor of the RR 4-form A(4) to

which the 3-brane couples and F(5) the corresponding self-dual field strength, satisfying
the constraint ∗F(5) = F(5). It is noteworthy that if we just disregarded the self-duality
constraint and we considered the ordinary action of the system composed by the graviton
and an unrestricted 4-form

S =
1

2κ2
(10)

∫

d10x
√
g(10)

(

R(10) −
1

2 · 5!F
2
(5)

)

, (5.65)

then, by ordinary variation with respect to the metric, we would anyhow obtain, as source
of the Einstein equation, a traceless stress-energy tensor:

TMN =
1

2 · 4!

(

F 2
(5)MN − 1

2 · 5gMNF
2
(5)

)

. (5.66)

The tracelessness of TMN is peculiar to the 4-form and signals its conformal invariance. This,
together with the absence of couplings to the dilaton, allows for zero curvature solutions in
ten dimensions.

For the metric, we make a block-diagonal ansatz with a Ricci-flat compact part depend-
ing only on the internal coordinates ya (this corresponds to choosing the unique Ricci-flat
Kähler metric on MCY

3 ), and a non-compact part which depends only on the corresponding
non-compact coordinates xµ

ds2 = g(4)
µν (x)dxµdxν + g

(6)
ab (y)dyadyb . (5.67)

For g
(4)
µν we take the extremal R-N black hole solution, as will be justified below. This ansatz

is consistent with the physical situation under consideration. In general, the compact com-
ponents of the metric depend on the non-compact coordinates xµ, being some of the scalars
of the N = 2 effective theory. More precisely, using complex notation, the components
gij⋆ are related to the h(1,1) moduli parameterizing the deformations of the Kähler class
while the gij (gi⋆j⋆) ones are related to the h(1,2) moduli parameterizing the deformations
of the complex structure. In Type IIB compactifications, as already stressed, such moduli
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belong to hyper and vector multiplets respectively. In our case, however, there are no vector
multiplet scalars, that would couple non-minimally to the gauge fields (it is usually said
that they “dress” the field strengths), and the hypermultiplet scalars can be set to zero
since they do not couple to the unique gauge field in the problem, namely the graviphoton
(therefore gab(x, y) = gab(y)).

The 5-form field strength can be generically decomposed in the basis of all the harmonic
3-forms of the CY manifold Ω(i,j)

F(5)(x, y) = F 0
(2)(x) ∧ Ω(3,0)(y) +

h(2,1)
∑

k=1

F k(2)(x) ∧ Ω
(2,1)
k (y) + c.c. . (5.68)

In the case at hand, however, only the graviphoton F 0
(2) appear in the general ansatz (5.68),

without any additional vector multiplet field strength F k(2), and conveniently normalizing

one can take (from now on F 0
(2) = F(2))

F(5)(x, y) =
1√
2
F(2)(x) ∧

(

Ω(3,0) + Ω̄(0,3)
)

. (5.69)

Notice that this same ansatz is the consistent one for any double-extreme solution even for
a more generic CY (i.e. with h(1,2) 6= 0).

With these ansätze, Eq. (5.64) reduces to the usual four-dimensional Einstein equation
with a graviphoton source, the compact part being identically satisfied. The latter leads to
a non-trivial consistency condition that our ansatz has to fulfill. Indeed, Eq. (5.64) taken
with compact indices gives rise (after integration on the compact manifold) in general to
various equations for the scalar fields. Indeed, the compact part of the ten-dimensional
Ricci tensor Rab is made of the CY Ricci tensor (that with our choice of the metric is zero
by definition) plus mixed components (i.e. Rµaµb) containing, in particular, kinetic terms of
the scalars. The corresponding compact components of the energy-momentum tensor on
the right hand side of the equation would represent coupling terms of the scalars with the
gauge fields. In our case, however, these mixed components of Rab are absent. Therefore,
the complete ten-dimensional Ricci tensor vanishes (Rab = 0) and self-consistency of the
solution requires that also the complete energy-momentum tensor Tab should vanish. This
follows from our ansatz (5.69) as it is evident by doing an explicit computation. This
conclusion can also be reached by observing that the kinetic term of the 4-form does not
depend on gab when gij = 0, see Eq. (5.70) below.

The four-dimensional Lagrangian is obtained by carrying out explicitly the integration
over the CY. Indeed, choosing the normalization of Ω(3,0) and Ω̄(0,3) such that ||Ω(3,0)||2 =
V 2

3 /VCY (since the volume of the corresponding 3-cycle is precisely the volume V3 of the
wrapped 3-brane) one has (za = (ya + iya+1)/

√
2 and d6y = id3zd3z̄)

∫

CY
d6y

√
g(6) = VCY , i

∫

CY
Ω(3,0) ∧ Ω̄(0,3) = V 2

3 =

∫

CY
d6y

√
g(6)

∥

∥

∥Ω(3,0)
∥

∥

∥

2
. (5.70)

In terms of κ2
(4) = κ2

(10)/VCY one then finds

S =
1

2κ2
(4)

∫

d4x
√
g(4)

(

R(4) −
1

2 · 2!
V 2

3

VCY
FµνF

µν

)

. (5.71)
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In the more general case corresponding to Eq. (5.68), the integration over the CY gives rise
to a gauge field kinetic term of the standard form ImNΛΣF

ΛFΣ + ReNΛΣF
Λ∗FΣ, where

Λ,Σ = 0, 1, ..., h(1,2) . In our simpler case, there is only F 0
(2) = F with ImN00 = V 2

3 /VCY .
As well known, the four-dimensional Maxwell-Einstein equations of motion following from
this Lagrangian admit the extremal R-N black hole solution (in coordinates in which the
horizon is located at r = 0)











g00 = −H(r)−2 , gmn = δmnH(r)2

Fm0 =

√
VCY
V3

cosα∂mH(r)H(r)−2 , Fmn =

√
VCY
V3

sinα ǫmnp ∂
pH(r)

. (5.72)

where m,n, p = 1, 2, 3 and H(r) = 1 + 2κ2
(4)M∆(3)(r). Notice that the kinetic term of the

gauge field Aµ is not canonically normalized, and therefore the effective charges appearing
in scattering amplitude are rescaled by a factor V3/

√
VCY . Taking into account this fact,

the couplings are

m̂ = M̂ , ê =
M̂

2
cosα , ĝ =

M̂

2
sinα . (5.73)

and satisfy the extremality condition m̂2 = (ê2 + ĝ2)/4. As usual, hatted charges are
expressed in inverse units of the effective coupling

√
2κ(4). The parameter M̂ depends

directly on the 3-brane tension µ̂3 through the relation M̂ = V3/
√
VCY µ̂3, and the arbitrary

angle α depends on the way the 3-brane is wrapped on the CY. At the quantum level, the
electric and magnetic charges ê and ĝ are quantized as a consequence of Dirac’s condition
êĝ = 2πn. Correspondingly, the angle α can take only discrete values and this turns out to
be automatically implemented in the compactification, as seen in previous section.

5.3.3 The D3-brane wrapped on T 6/ZZ3 in string theory

The problem of describing curved D-branes, such as D-branes wrapped on a cycle of the in-
ternal manifold in a generic compactification of string theory, is in general too difficult to be
solved. In fact, Polchinski’s description of D-branes as hypersurfaces on which open strings
can end relies on the possibility of implementing the corresponding boundary conditions in
the CFT describing open string dynamics. Very little has been done for a generic target
space compactification (for a recent discussion of this and related issues, see [173, 174]) but
there exist special cases, such as orbifold compactifications, which capture all the essential
features of more general situations, in which ordinary techniques can be applied.

The phase-shift computations of Chapter 4 lead to evidence that the D3-brane wrapped
on T 6/ZZ3 represents a R-N black hole. Moreover, the results of the previous section clearly
show that this black hole is actually dyonic. An equivalent but more direct way to see that
this configuration indeed correctly fits the general solution R-N × CY discussed above, is
to compute one-point functions 〈Ψ〉 = 〈Ψ|B〉 of the massless fields of SUGRA and compare
them to the linearized long range fields of the SUGRA R-N black hole solution (5.72). This
second method presents the advantage of yielding direct informations on the couplings to
the massless fields of the low energy theory.

Recall that the original ten-dimensional coordinates are organized as follows: the four
non-compact directions x0, x1, x2 and x3 span IR4, whereas the six compact directions xa,
xa+1, a = 4, 6, 8, span T 6/ZZ3. The three T 2’s composing T 6 are parameterized by the
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3 pairs xa, xa+1, and the ZZ3 action is generated by 2π/3 rotations in these planes. The
boundary state |B〉 of the D3-brane wrapped on a generic ZZ3-invariant 3-cycle is obtained
from the boundary state |B3(θ0)〉 of a D3-brane in ten dimensions with N directions x0

and x′a(θ0), where the x′a(θ0) directions form an arbitrary common angle θ0 with the xa

directions in each of the 3 planes (xa, xa+1) (actually, we could have chosen 3 different angles
in the 3 planes, but only their sum will be relevant, as could be inferred from Eq. (5.80)
below). First, one projects onto the ZZ3-invariant part and then compactifies the directions
xa, xa+1. The ZZ3 projection is implemented by applying the projector P = 1/3(1 + g + g2)
on |B3(θ0)〉, where g = exp{i2π/3(J45 + J67 + J89)} is the generator of the ZZ3 action and
Jaa+1 is the xa, xa+1 component of the angular momentum operator. This yields

|B〉 =
1

3

∑

{∆θ}
|B3(θ = ∆θ + θ0)〉 , (5.74)

where the sum is over ∆θ = 0, 2π/3, 4π/3. It is obvious form this formula that |B〉 is a
periodic function of the parameter θ0 with period 2π/3. Therefore, the physically distinct
values of θ0 are in [0, 2π/3] and define a one parameter family of ZZ3-invariant boundary
states, corresponding to all the possible harmonic 3-forms on T 6/ZZ3, as we will see. Recall
from previous section that requiring a fixed finite volume V3 for the 3-cycle on which the
D3-brane is wrapped implies discrete values for θ0. The compactification process restricts
the momenta entering the Fourier decomposition of |B〉 to belong the momentum lattice
of T 6/ZZ3. Since the massless supergraviton states |Ψ〉 carry only space time momentum,
the compact part of the boundary state will contribute a volume factor which turns the
ten-dimensional D3-brane tension µ̂3 =

√
2π into the four-dimensional black hole mass

M̂ = V3/
√
VCY µ̂3, and some trigonometric functions of θ0 to be discussed below.

Using the technique described in Chapter 3 (see [130]), the relevant one-point func-
tions on |B3(θ)〉 for the graviton and 4-form states |h〉 and |A〉 with polarization hMN and
AMNPQ, are

〈B3(θ)|h〉 = −M̂ T hMN M
MN (θ) , (5.75)

〈B3(θ)|A〉 = −M̂
8
T AMNPQMab(θ) ΓMNPQ

ba . (5.76)

Here T is the total time. The numerical coefficients appearing in (5.75) have been chosen at
our convenience by relying on the phase-shift computations of Chapter 4, where the relative
normalization is easily fixed, as already discussed. The matrices M(θ) = Σ(θ)MΣT (θ) are
obtained from the usual ones corresponding to Neumann boundary conditions along x0, x4,
x6 and x8

MMN = diag(−1,−1,−1,−1, 1,−1, 1,−1, 1,−1) , Mab = Γ0468
ab , (5.77)

through a rotation of angle θ in the three planes (xa, xa+1), generated in the vector and
spinor representations of each SO(2) subgroup of the rotation group SO(8) by

ΣV (θ) =

(

cos θ sin θ

− sin θ cos θ

)

, ΣS(θ) = cos
θ

2
11 − sin

θ

2
Γaa+1 . (5.78)
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After some simple algebra, one finds

〈B3(θ)|h〉 = M̂ T

{

h00 + h11 + h22 + h33 −
∑

a

[

cos 2θ
(

haa − ha+1a+1
)

− 2 sin 2θ haa+1
]

}

,

〈B3(θ)|A〉 = 2M̂ T

{

cos3 θ
(

A0468 −A0479 −A0569 −A0578
)

+ sin3 θ
(

A0579 −A0568 −A0478 −A0469
)

(5.79)

+ cos θ
(

A0479 +A0569 +A0578
)

+ sin θ
(

A0568 +A0478 +A0469
)

}

.

The one-point functions for the D3-brane wrapped on T 6/ZZ3 are then obtained by
averaging over the allowed ∆θ’s: 〈Ψ〉 = 1/3

∑

{∆θ}〈B3(θ)|Ψ〉. One easily finds the only
non-vanishing averages of the trigonometric functions appearing in Eqs. (5.79) to be

1

3

∑

{∆θ}
cos3 θ =

1

4
cos 3θ0 ,

1

3

∑

{∆θ}
sin3 θ = −1

4
sin 3θ0 , (5.80)

so that finally, meaning now with h and A all the four-dimensional fields arising from the
graviton and the 4-form respectively upon compactification,

〈h〉 = M̂ T
(

h00 + h11 + h22 + h33
)

, (5.81)

〈A〉 =
M̂

2
T
(

cos 3θ0A
0 − sin 3θ0B

0
)

, (5.82)

where we have defined the graviphoton fields

Aµ = Aµ468 −Aµ479 −Aµ569 −Aµ578 , (5.83)

Bµ = Aµ579 −Aµ568 −Aµ478 −Aµ469 . (5.84)

Using the self-duality of the 5-form field strength in ten dimension, one can easily derive
that FµνB = ∗FµνA , so that Aµ and Bµ are not independent fields, but rather magnetically
dual. Using the Aµ field, we get the electric and magnetic charges

ê =
M̂

2
cos 3θ0 , ĝ =

M̂

2
sin 3θ0 , (5.85)

or vice versa using the Bµ field. Comparing with Eqs. (5.73) one finds that α = 3θ0 and
therefore the ratio between e and g depends on the choice of the 3-cycle, as anticipated.
Also, as explained, only discrete values of θ0 naturally emerge requiring a finite volume.
The identifications (5.85) are in agreement with the diagonal and off-diagonal phase-shifts
found in the previous section between two of these configurations with different θ0’s, call

them θ
(1,2)
0 . Indeed,

Aeven ∼ M̂2

4
cos 3

(

θ(1) − θ(2)
)

= ê(1)ê(2) + ĝ(1)ĝ(2) , (5.86)

Aodd ∼
M̂2

4
sin 3

(

θ(1) − θ(2)
)

= ê(1)ĝ(2) − ĝ(1)ê(2) . (5.87)
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Notice that all the compact components hab of the graviton have canceled in (5.81),
reflecting the fact the black hole has no scalar hairs. Moreover, the one-point function
(5.82) of the RR 4-form is precisely of the form of our ansatz (5.69), with the unique
holomorphic and antiholomorphic 3-forms Ω(3,0) and Ω̄(0,3) showing up. Indeed

Ω(3,0) = Ω dz4 ∧ dz6 ∧ dz8 , Ω̄(0,3) = Ω∗ dz̄4 ∧ dz̄6 ∧ dz̄8 , (5.88)

so that the real 3-form appearing in (5.69) is given by

Ω(3,0)+Ω̄(0,3) = ReΩ
(

ω468 − ω479 − ω569 − ω578
)

+ImΩ
(

ω579 − ω568 − ω478 − ω469
)

(5.89)

where ωabc = 1/
√

2 dya∧dyb∧dyc. The precise correspondence between the boundary state
result (5.82) and the purely geometric identity (5.89) is then evident. The combination
of components of the 4-form appearing in (5.82) is proportional to the integral over the
D3-brane world-volume W1+3

〈A〉 =
µ̂3

2
Re

∫

W1+3

(A+ iB) ∧ Ω(3,0) =

∫

W1

(êA+ ĝB) . (5.90)

This formula yields an interesting relation between the parameters µ̂3, M̂ , θ0 and the com-
plex component Ω in (5.88) defining the 3-cycle. One gets Ω = (M̂/µ̂3) exp{−i3θ0}. Notice
that one correctly recovers |Ω| = V3/

√
VCY , the arbitrary phase being the sum of the ar-

bitrary overall angles θ0 appearing in the boundary state construction. Finally, dropping
the overall time T , inserting a propagator ∆ = 1/~q2 and Fourier transforming Eqs. (5.81)
with the identification (5.90), one recovers the asymptotic gravitational and electromagnetic
fields of the R-N black hole, Eqs. (5.72).

This definitively confirms that our boundary state describes a D3-brane wrapped on
T 6/ZZ3, falling in the class of regular four-dimensional R-N extremal black holes obtained
by wrapping the self-dual D3-brane on a generic CY threefold. This boundary state en-
codes the leading order couplings to the massless fields of the theory, and allows the direct
determination of their long range components, falling off like 1/r in four dimensions. The
sub-leading post-Newtonian corrections to these fields arise instead as open string higher
loop corrections, corresponding to string world-sheets with more boundaries. From a clas-
sical field theory point of view, this is the standard replica of the source in the tree-level
perturbative evaluation of a non-linear theory. In a series expansion for r → ∞, a generic
term going like 1/rl comes from a diagram with l open string loops, that is l branches
of a tree-level closed string graph (each branch brings an integration over the transverse
3-momentum, two propagators and a SUGRA vertex involving two powers of momentum,
yielding an overall contribution of dimension 1/r).

As pointed out by the authors of [162], heuristically speaking the reason why single
D-brane black holes are non-singular in CY compactifications, as opposed to the toroidal
case, is that the brane is wrapped on a topologically non-trivial manifold and therefore can
intersect with itself. This intersection mimics the actual intersection of different D-branes
necesary in toroidal compactifications to get a non-singular solution. In our case, such anal-
ogy is particularly manifest since the boundary state ZZ3-invariant projection (5.74) could be
seen as a three D3-branes superposition at (2π/3) angles in a T 6 compactification. As illus-
trated in [175, 176] such intersection would preserve precisely 1/8 of the supersymmetry, as
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a single D3-brane does on T 6/ZZ3. For toroidal compactification this is not enough, because
at least four intersecting D3-branes are needed in order to get a regular solution [157, 158].
Finally, since this extremal R-N configuration is constructed with a single D3-brane, it
naturally arises the question of understanding the microscopic origin of its entropy.
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Chapter 6

Spin effects in D-brane dynamics

In this chapter, we study the spin-dependence in Dp-Dp and Dp-D(p+4) dynamics using the
the boundary state formalism in the Green-Schwarz (G-S) formulation of superstring theory,
by applying broken supersymmetry transformations to the usual scalar boundary state. We
focus on the leading terms for small velocities v, which are found to behave as v4−n/r7−p+n

and v2−n/r3−p+n for Dp-Dp and the Dp-D(p+4). These interactions receive contributions
only from BPS intermediate states, massive states contributions canceling as a consequence
of the residual supersymmetry. This implies the scale-invariance of these leading spin-effects,
supporting the equivalence between their matrix model and supergravity descriptions. We
give also a field theory interpretation of our results, that allows in particular to deduce the
gyromagnetic ratio g = 1 and its quadrupole analog g̃ = 1. We follow [103] and especially
[104].

6.1 Boundary states in the G-S formalism

In this section we shall review the boundary state formalism in the G-S formulation of
superstring theory [177, 178, 179] (see also [180]) and construct the boundary state for a
generic spinning Dp-brane.

Consider the Type II theory in the light-cone gauge, and concentrate for instance on the
IIB chiral version for which the notation is somewhat friendlier. One has X+ = x+ + p+τ
whereas X− is completely fixed in terms of the transverse fields and after fixing the κ-
symmetry, one is left with two left and right spinors Sa and S̃a, in the 8s representation
of SO(8). The Fock space is constructed by applying negative frequency creation operators
to a vacuum representing the Clifford algebra of the fermionic z.m. Sa0 and S̃a0 . The
representation is 8v ⊕ 8c both for the left and right parts, and the fermionic z.m. acts as
SO(8) γ-matrices

Sa0 |i〉 =
1√
2
γiaȧ|ȧ〉 , Sa0 |ȧ〉 =

1√
2
γiaȧ|i〉 , (6.1)

S̃a0
˜|i〉 =

1√
2
γiaȧ

˜|ȧ〉 , S̃a0
˜|ȧ〉 =

1√
2
γiaȧ

˜|i〉 . (6.2)

Recall finally that the 32 supersymmetry charges of the theory in absence of D-branes are
directly related to the fermion fields Sa and S̃a playing the role of the spin-fields of the
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covariant RNS formulation, and are given by

Qa =
√

2p+

∮

dσSa , Qȧ =
1

√

p+
γiȧa

∮

dσ∂XiSa , (6.3)

Q̃a =
√

2p+

∮

dσS̃a , Q̃ȧ =
1

√

p+
γiȧa

∮

dσ∂̄XiS̃a . (6.4)

and satisfy the N=2 supersymmetry algebra.

The fields in the ± light-cone directions automatically satisfy D b.c. due to the light-
cone gauge [178, 179], whereas the b.c. for the fields in the i = 1, 2, ..., 8 transverse directions
can be chosen freely. It is therefore possible to define a configuration similar but not quite
identical to a Dp-brane by choosing N b.c. for the directions µ = 1, 2, ..., p + 1 and D b.c.
for the directions I = p + 2, ..., 8 − p. In this way one obtains the right number of N and
D directions, but the 0 directions is D, so that “time” is temporarily identified with one
of the transverse N directions, say the 1 direction. In order to recover the usual covariant
description with the 0 direction as time, it will be sufficient to perform the double analytic
continuation 0 ↔ i 1 in the final results.

The boundary state describing a Dp-brane configuration in the sense described above is
defined as the eigenstate of appropriate b.c. for the bosonic and fermionic fields. The
bosonic b.c. are the conventional N,D ones, and are chosen as discussed above. The
fermionic b.c. are then unambiguously determined by the requirement that the boundary
states must preserve a combination of left and right supersymmetries, that is 1/2 of the
original 32. Let us therefore introduce the following generic combinations of left and right
supercharges

Qa± =
1√
2

(

Qa ± iMabQ̃
b
)

, (6.5)

Qȧ± =
1√
2

(

Qȧ ± iMȧḃQ̃
ḃ
)

, (6.6)

acting as creation-annihilation operators with the algebra

{

Qa+, Q
b
−
}

= 2p+δab ,
{

Qȧ+, Q
ḃ
−
}

= P−δȧḃ , (6.7)
{

Qa+, Q
ȧ
−
}

=
1√
2

[

γiaȧp
i + (MγiMT )aȧp̃

i
]

. (6.8)

We then impose the following BPS conditions on the boundary state

Qa+|B〉 = 0 , Qȧ+|B〉 = 0 ⇒ Qa+, Q
ȧ
+ unbroken , (6.9)

Qa−|B〉 6= 0 , Qȧ−|B〉 6= 0 ⇒ Qa−, Q
ȧ
− broken . (6.10)

The bosonic b.c. imply
(αin +Mijα̃

j
−n)|B〉 = 0 , (6.11)

where

Mij =

(−11p+1 0

0 117−p

)

. (6.12)
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For the fermionic b.c., we make the reasonable ansatz

(San + iMabS̃
b
−n)|B〉 = 0 . (6.13)

involving the same matrix appearing also in the broken and unbroken supercharge combina-
tions. Consistency with the BPS conditions (6.9) and (6.10) then implies the orthogonality
and triality conditions

(MMT )ab = δab , (MγiMT )aȧ = Mijγ
j
aȧ , (6.14)

which yield finally the solutions

Mab = (γ1γ2...γp+1)ab , Mȧḃ = (γ1γ2...γp+1)ȧḃ . (6.15)

The solution for the boundary state |B〉 is obtained through the Bogoliubov transformation

|B〉 = exp
∑

n>0

(

1

n
Mijα

i
−nα̃

j
−n − iMabS

a
−nS̃

b
−n

)

|B0〉 (6.16)

from the z.m. part |B0〉 implementing the b.c. on the fermionic z.m., which is given by

|B0〉 = Mij|i〉 ˜|j〉 − iMȧḃ|ȧ〉
˜|ḃ〉 . (6.17)

Finally, the localized configuration space boundary state is as usual a superposition of D
momentum eigenstates

|B,~x〉 = (2π
√
α′)4−pδ(9−p)(~x− ~Y )|B〉 ⊗ |~0〉

= (2π
√
α′)4−p

∫

d9−pq
(2π)9−p

ei~q·
~Y |B〉 ⊗ |~q〉 . (6.18)

Being BPS states, Dp-branes fill supermultiplets realizing the broken half of the super-
symmetries. By performing an arbitrary broken supersymmetry transformation to the above
scalar boundary state, one can obtain informations one the couplings of every component
of this Dp-brane supermultiplet. In particular, D0-branes fill a short-multiplet containing
28 = 256 components grouped in the 44⊕84⊕128 representations of the little group SO(9)
for massive states, with “spin” 1, 3/2 and 2, which is precisely the Kaluza-Klein reduction
of the mass gravitational multiplet of D=11 SUGRA, with 28 = 256 components grouped
into the same representations of the little group SO(9), now for massless states.

In the formalism of previous section, the boundary state represents the semiclassical
source formed by an “in” and an “out” Dp-brane. Its overlap 〈B|Ψ〉 with a string state |Ψ〉
represents therefore semiclassical 3-point functions as shown in Fig. 6.1. The generic state
obtained by applying a generic supersymmetry transformation to the scalar one is

|B, η〉 = eηQ
− |B〉 =

16
∑

m=0

1

m!
(ηQ−)m|B〉 . (6.19)

where we have used the SO(9) notation η = (ηa, η̃ȧ) and Q− = (Q−
a , Q

−
ȧ ). The free fermionic

number η parameterizes all the possible semiclassical currents obtained by choosing arbi-
trarily the incoming and outcomming Dp-branes among the 28 components of the Dp-brane
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multiplet. Notice that in principle there could be 216 possibilities, but restricting to linearly
realized supersymmetries corresponding to the z.m. part of the supercharges, there actually
only 28, as we shall see. The sum in Eq. (6.19) is a generalized multipole expansion in pow-
ers of the fermionic number η carrying the dimensions M−1/2. Terms with a even or odd
number of Q− are relevant for globally bosonic or fermionic currents, coupling to bosonic
or fermionic closed string states ΨB and ΨF respectively. The situation is similar also for
p-brane solutions of Type II SUGRAs. Indeed, the p-brane solution has a Killing spinor
corresponding to the unbroken supersymmetries, and zero modes, corresponding to the bro-
ken supersymmetries. These are related to orthogonal projections of the supersymmetry
parameter η.

〈ΨB |B〉 = ΨB

BB

BB

〈ΨF |Q−|B〉 = ΨF

BB

BF

〈ΨB |Q−Q−|B〉 = ΨB

BF

BF

Figure 6.1:

The generic boundary state (6.19) encodes all two-brane one-particle couplings, relevant
in a general inelastic scattering of Dp-branes which can change their spin. For elastic
scatterings, to which we will limit our attention here, only those terms with an even power
of Q− are relevant, and the current will be automatically bosonic. Moreover, each pair of
supercharges gives, in light-cone notation,

(ηQ−)2 = (ηaQ
−
a + η̃ȧQ

−
ȧ )2 = ηaηbQ

−
aQ

−
b + η̃ȧη̃ḃQ

−
ȧQ

−
ḃ

+ 2ηaη̃ḃQ
−
aQ

−
ḃ
. (6.20)

Each of the three distinct factors has the dimension of a momentum and is proportional re-
spectively to p+, p− = ~p2/p+ and ~p. Clearly, this corresponds precisely to the decomposition
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of scalar products into light-cone components, and the role of the first two contributions
is simply to supply appropriate terms that, when added to the third contribution corre-
sponding to the SO(8) part of the scalar products, will reconstruct the complete SO(9, 1)
scalar products. We have checked that this indeed always happens to work perfectly. For
simplicity, in the following we will simply omit to write the first two kind of terms and focus
on the third kind, since this will be sufficient to clearly fix the complete result. Before going
on, let us further comment on the analogy of the expansion in Eq. (6.19) and a multipole
expansion, which is particularly clear in the special case we are considering here. Indeed,
for a bosonic current associated to an “elastic” current, the term with 2n supercharges will
produce, when acting on the boundary state, components with n powers of the D momen-
tum q, which are the momentum space representation of an n-derivative n-pole coupling.
In field theory, this corresponds to the expansion of the source in powers of the transfered
momentum q.

Consider therefore the operator

Vη = ηaη̃ȧQ
−
aQ

−
ȧ . (6.21)

When applied n times to the scalar boundary state |B〉, corresponding to 2n supersymmetry
transformations, it produce the SO(8) part of n-pole term in the bosonic Dp-brane current

|B〉(n) = V n
η |B〉 . (6.22)

In total, the SO(8) part of the boundary state |B, η〉 describing the whole current is

|B, η〉 =
8
∑

n=0

(

2n
n

)

V n
η

(2n)!
|B〉 =

8
∑

n=0

1

(n!)2
|B〉(n) . (6.23)

Consider now the action of the z.m. part Vη0 of Vη, which will be relevant in the following.
After simple algebra one finds

|B0〉(n) = V n
η0|B0〉 = qi1...qin

[

η[a1(η̃γ
i1)a2 ...ηa2n−1(η̃γ

in)a2n]

]

S−a1
0 ...S−a2n

0 |B0〉 , (6.24)

where S±a
0 = (Sa0 ± iMabS̃

b
0)/

√
2 and satisfy {S±a

0 , S∓b
0 } = δab. Since {S−a

0 , S−b
0 } = 0, it

follows that V n
η0 6= 0 only for n ≤ 4, corresponding to the fact that there are 28 and not 216

different currents at the linearized level. Using the b.c. implemented by the boundary state
|B0〉 and the antisymmetry of the factor in [...], each S−

0 can be converted into
√

2S0, in
terms of the sole right-moving fermionic z.m.. Furthermore, the z.m. S0 satisfy the following
Fiertz identity (which is essentially a decomposition into commutator and anticommutator)

Sa0S
b
0 =

1

2
δab +

1

4
γijabR

ij
0 , (6.25)

in terms of the SO(8) generators

Rij0 =
1

4
Sa0γ

ij
abS

b
0 . (6.26)

Using this property, the effective form of V n
η0 acting on |B0〉 is found to be

V n
η0 = qi1...qin ω

i1...in
j1...j2n

(η)Rj1j20 ...R
j2n−1j2n

0 , (6.27)
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with

ωi1...inj1...j2n
(η) =

1

2n

[

η[a1(η̃γ
i1)a2 ...ηa2n−1(η̃γ

in)a2n]

]

γj1j2a1a2 ...γ
j2n−1j2n
a2n−1a2n

(6.28)

encoding the dependence on the supersymmetry parameter.

Finally, using the explicit form of the action of the generators Rij0 in the 8v and 8c

representations,

Rmn0 |i〉 = (δniδmj − δmiδnj)|j〉 , (6.29)

Rmn0 |ȧ〉 = −1

2
γmn
ȧḃ

|ḃ〉 , (6.30)

the boundary state can be written in the standard form

|B0〉(n) = M
(n)
ij |i〉 ˜|j〉 − iM

(n)

ȧḃ
|ȧ〉 ˜|ḃ〉 , (6.31)

in terms of the matrices

M
(n)
ij = 2n qi1 ...qin ω

i1...in
ik1k1...kn−1kn−1kn

(η)Mknj , (6.32)

M
(n)

ȧḃ
=

1

2n
qi1...qin ω

i1...in
j1...j2n

(η)(γj1j2 ...γj2n−1j2nM)ȧḃ . (6.33)

For the oscillator part, one can proceed in a similar way. However, the algebra becomes
more heavy and since we we will use only the z.m. part, we do not discuss it.

It is straightforward to generalize the above construction two a bosonic current corre-
sponding to Dp-branes moving with a constant velocity v = tanhπǫ. The corresponding
boundary state is obtained by applying a simple Lorentz transformation to the static one.
Assuming that before the analytic continuation the “time” is identified with the 1 direction
and the velocity is along the 8 direction, the boundary state for the “moving” Dp-brane
is actually obtained through the rotation |B, η, ǫ〉 = exp{−iπǫJ18}|B, η〉 The z.m. part of
the angular momentum operator is J ij0 = xipj − xjpi − 2iRij0 . The bosonic part changes
the momentum spectrum of the boundary state, whereas the fermionic part acts directly on
|B0〉(n), with the net effect of rotating the matrices (6.32) and (6.33) appearing in the static

boundary state (6.31) as M (n) →M (n)(ǫ) = Σ(ǫ)M (n)ΣT (ǫ), where Σ(ǫ) is the appropriate
representation of the SO(8) rotation, that is

ΣV (ǫ) =









cos πǫ 0 − sinπǫ

0 116 0

sinπǫ 0 cos πǫ









, ΣS(ǫ) = cos
πǫ

2
11 − sin

πǫ

2
γ18 . (6.34)

Again, for the oscillators one could proceed in the same way.

In principle, since the angular momentum operator is quadratic in the string modes, one
could find explicitly the moving boundary state and work exactly in the rapidity ǫ. However,
this leads to heavy algebra and masks the extremely important role of supersymmetry in the
cancellations which occur in the computation of interactions. Rather, in the following we
shall proceed perturbatively in the rapidity, expanding the boost operator in power series
for ǫ→ 0. The corresponding vertex operator is simply

Vǫ = −iπǫJ18 , (6.35)

116



whose fermionic z.m. part is
Vǫ0 = −2πǫR18

0 . (6.36)

In this way, the exact result for the boundary state |B, η, ǫ〉 describing a current of Dp-
branes with supersymmetry parameter η and moving with rapidity ǫ is given by the infinite
series

|B, η, ǫ〉 =
∞
∑

m=0

V m
ǫ

m!
|B, η〉 =

8
∑

n=0

∞
∑

m=0

V n
η V

m
ǫ

(n!)2m!
|B〉 , (6.37)

in terms of the static scalar boundary state |B〉.

6.2 One-point functions

The first important information that one can extract form the boundary state constructed
in previous section is on the spin-dependent non-minimal couplings of the Dp-brane current
to closed string states. In particular, we shall compute the one-point functions Ψ(n) =
〈Ψ|B0〉(n) of all the massless closed string fields |Ψ〉, in order to extract the new cou-
plings occurring at each multipole order. Inserting a propagator, one can also compute the
asymptotic fields of the corresponding p-brane solution of SUGRA, obtaining the complete
dependence on the spin.

Recall that in the G-S formulation of the Type II superstring, the massless bosonic
states (in the covariant language) are written as

|ΨNSNS〉 = ξmn|m〉 ˜|n〉 , ξmn ∼ δmn φ+ gmn + bmn , (6.38)

|ΨRR〉 = Cȧḃ|ȧ〉
˜|ḃ〉 , Cȧḃ ∼

∑

k

1

k!
C(k)
m1...mk

γm1...mk

ȧḃ
. (6.39)

Apart form normalizations, that we shall disregard in this section, one finds

ΨNSNS
(n) = qi1 ...qin ξ

ijωi1...inik1k1...kn−1kn−1kn
(η)Mknj , (6.40)

ΨRR
(n) = qi1 ...qin

∑

k

1

k!
C(k)
m1...mk

ωi1...inj1...j2n
(η)TrS [γm1...mkγj1j2...γj2n−1j2nM ] . (6.41)

These expressions encode all the coupling to RR and NSNS states (again in the covariant
language), organized in a multipole expansion, n = 0, 1, .., 4. At the n-th multipole order,
there are n power of the transfered momentum qi which, upon Fourier transforming, will
become n derivatives, reflecting a non-minimal coupling. Denoting N indices with µ, ν, ...
and D indices with I, J, ..., and using the symmetry properties of the tensor ωi1...inj1...j2n

(η)
entering the boundary state, one finds the following couplings

ΨNSNS
(n) ⇒

{

φ, gµν , gIJ , bµI , n even

gµI , bµν , bIJ , n odd
, (6.42)

ΨRR
(n) ⇒ C(k) , k = p+ 1 − 2n, ..., p + 1 + 2n . (6.43)

Let us consider more in detail each case separately.
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n=0 : universal coupling

The n=0 boundary state encodes the usual universal couplings which are independent of
the spin of the Dp-brane and are therefore the same for each component of the Dp-brane
supermultiplet. One finds

ΨNSNS
(0) = ξijM

ij , (6.44)

ΨRR
(0) =

∑

k

1

k!
C(k)
m1...mk

TrS [γm1...mkM ] . (6.45)

These SO(8) expressions can be covariantized by performing the double analytic continua-
tion described in previous section and generalizing the SO(8) matrices M ij and Mab to the
SO(9,1) ones Mµν , with −1 entry in each N direction and +1 entry in each D direction,
and M = Γ0...Γp. One finds simply

ΨNSNS
(0) = ξµνM

µν , (6.46)

ΨRR
(0) =

∑

k

1

k!
C(k)
µ1...µk

TrS [γµ1...µkM] . (6.47)

These expressions lead to the usual couplings to the dilaton and the graviton in the NSNS
sector and to the (p+1)-form in the RR.

n=1 : dipole coupling

The n=1 boundary state encodes the dipole couplings which depend directly on the spin of
the Dp-brane and are therefore different for each component of the Dp-brane supermultiplet.
One finds

ΨNSNS
(1) = ξikM

k
j (ηγijlη̃) ql , (6.48)

ΨRR
(1) =

∑

k

1

k!
C(k)
m1...mk

TrS[γm1...mkγijM ] (ηγijlη̃) ql . (6.49)

In order to covariantize these expression, we need to introduce an SO(9,1) Majorana-Weyl
supersymmetry parameter ψ, which in a chiral representation is given by ψ = (η0) with

η =
(

ηa
η̃ȧ

)

. Defining

Jµνρ = ψ̄Γµνρψ , (6.50)

the covariant expression is found to be

ΨNSNS
(1) = ξµσM

σ
ν J

µνρ qρ , (6.51)

ΨRR
(1) =

∑

k

1

k!
C(k)
µ1...µk

TrS [Γµ1...µkΓµνM]Jµνρ qρ . (6.52)

These expressions lead to non-minimal couplings to various NSNS and RR fields depending
on the D-brane.
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n=2 : quadrupole coupling

The n=2 boundary state encodes the quadrupole couplings. Proceeding as before, one finds
expressions which can again be covariantized quite easily, obtaining

ΨNSNS
(2) = ξµσM

σ
ν J

µραJν βρ qαqβ , (6.53)

ΨRR
(2) =

∑

k

1

k!
C(k)
µ1...µk

TrS [Γµ1...µkΓν1ν2Γν3ν4M]Jν1ν2αJν3ν4β qαqβ . (6.54)

n=n : n-pole coupling

Looking at the previous expressions for n=0, 1, 2, it is easy to guess the result for generic
n. Indeed, defining the fermionic bilinears

Kµν(q) = Jµνρ qρ , /K(q) = JµνρΓµν qρ , (6.55)

one finds

ΨNSNS
(n) = TrV [ξMKn(q)]

= ξµσM
σ
νK

µ
α1

(q)Kα1
α2

(q)...Kαn
ν(q) , (6.56)

ΨRR
(n) = TrS [CM/Kn(q)]

=
∑

k

1

k!
C(k)
µ1...µk

TrS [Γµ1...µkΓν1ν2...Γν2n−1ν2nM]Kν1ν2(q)...Kν2n−1ν2n(q) . (6.57)

Notice that the tensor structure is unique, due the Fiertz identity Kµν(q)K
µν(q) = 0.

This concludes our analysis of the spin-dependent one-point functions. The asymptotic
fields for the complete p-brane solution can be obtained simply by inserting a propagator.
The correct normalizations can be extracted very efficiently from the interactions amplitude
that we shall discuss below.

6.3 Leading interactions and spin effects

A second important application of the boundary state that we have constructed is the
computation of the phase-shift for a generic D-brane scattering, yielding the complete spin-
dependent interaction potential between D-branes. We will work perturbatively in the
rapidity, showing that the leading non-relativistic terms of each n-pole interaction are de-
termined by the sole fermionic z.m. and are therefore scale-invariant. We focus on the
Dp-Dp and Dp-D(p+4) systems preserving 16 and 8 supercharges respectively.

6.3.1 Dp-Dp system

Consider the usual system of two parallel Dp-branes moving with rapidities ǫi and super-
symmetry parameters ηi. The phase-shift is

Ap,p =
1

16

∫ ∞

0
dt 〈Bp, η1, ǫ1, ~Y1|e−2πα′tp+(P−−p−)|Bp, η2, ǫ2, ~Y2〉 , (6.58)
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where

P− =
1

2p+

[

(pi)2 +
1

α′

∞
∑

n=1

(αi−nα
i
n + α̃i−nα̃

i
n + nSa−nS

a
n + n S̃a−nS̃

a
−n)

]

(6.59)

is the light-cone Hamiltonian. Defining ǫ = ǫ1−ǫ2 and~b = ~Y1− ~Y2, and computing explicitly
the bosonic z.m. part, this can be written as

Ap,p =
Vp (4π2α′)4−p

16 sinhπǫ

∫ ∞

0
dt

∫

d8−pq
(2π)8−p

ei~q·
~b e−πα

′t~q2Z0(ηi, ǫi)Zosc(t, ηi, ǫi) , (6.60)

where we have defined the partition functions of the fermionic z.m. and of all the bosonic
and fermionic oscillator as

Z0(ηi, ǫi) = 〈Bp0, η1, ǫ1|Bp0, η2, ǫ2〉 , (6.61)

Zosc(t, ηi, ǫi) = 〈Bposc, η1, ǫ1|e−2πα′tp+P− |Bposc, η2, ǫ2〉 . (6.62)

In order to understand the role of supersymmetry, let us reconsider first the simple case
ηi = 0 and ǫi = 0, and then analyze the effect of switching on ηi 6= 0 and/or ǫi 6= 0.

ηi = 0 and ǫi = 0

In the simple case in which both Dp-branes are at rest and one neglects their spin, the
amplitude vanishes as a consequence of the 16 unbroken supersymmetries. In the G-S
formalism, this is very well encoded in the fermionic z.m., which are indeed associated to
the surviving supercharges. In fact, the contribution of the fermionic z.m. gives a vanishing
result, whereas the oscillator contribution is simply 1, since the bosonic and fermionic
contributions cancel

Z0 = TrV [11] − TrS [11] = 8 − 8 = 0 , (6.63)

Zosc(t) =
∞
∏

n=1

(1 − e−2πtn)8

(1 − e−2πtn)8
= 1 . (6.64)

Recalling that for ǫi = 0, translational invariance in the time direction is recovered

Vp
sinhπǫ

∆(8−p)(b) −→
ǫ→0

Vp+1∆(9−p)(r) , (6.65)

one finds finally
Ap,p = Vp+1 T̂

2
p (1 − 1)∆(9−p)(r) , (6.66)

where T̂p =
√

2π(4π2α′)(3−p)/2. Notice that this expression is vanishing, but in some sense
exact in α′, since all the oscillator contributions have simplified.

ηi = 0 and ǫi 6= 0

The effect of a relative velocity, as we have seen already several times, is to break definitively
the residual supersymmetry which was left over in the static case. One finds in this case
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the following results for the partition functions

Z0(ǫ) = TrV [MT (ǫ2)M(ǫ1)] − TrS [MT (ǫ2)M(ǫ1)] = (6 + 2 cos 2πǫ) − 8 cos πǫ

= 16 sin4 πǫ

2
∼ v4 , (6.67)

Zosc(t, ǫ) =
∞
∏

n=1

|1 − eiπǫ/2e−2πtn|8
|1 − eiπǫe−2πtn|2(1 − e−2πtn)6

∼ 1 , (6.68)

Performing the analytic continuation ǫ → iǫ, one correctly recovers the amplitude already
discussed in Chapter 2

Ap,p =
Vp
8

(4π2α′)4−p
∫ ∞

0

dt

(4πα′t)
8−p
2

e−
b2

4πα′t
ϑ4

1(i
ǫ
2 |2it)

ϑ1(iǫ|2it)η9(2it)
. (6.69)

The important point to notice here is that the behavior for ǫ→ 0 is completely determined
by supersymmetry. This statement can be understood as follows. Notice first that the
fermionic z.m. partition function Z0(ǫ) can be thought as receiving a non-trivial contribution
only from the left-movers, the right movers being related to the right-movers by the b.c.
implemented by the boundary state. It can therefore be rewritten as a z.m. trace of a Type
I theory associated to the right movers

Z0(ǫ) = TrS0[e
Vǫ0 ] . (6.70)

This is precisely the analogous of the integral over fermionic z.m. in the open string path-
integral giving the amplitude as a one-loop effective action. Here Vǫ0 = −2πǫiR

1i
0 is the

z.m. part of the vertex operator associated to the rapidity, whose exponential reconstructs
the boost operator. As well known from Type I one-loop amplitudes, the z.m. trace is
vanishing unless at least 8 fermionic z.m. are inserted. The first non vanishing trace is
conveniently summarized by considering the insertion of the fermionic z.m. part Rij0 of 4
SO(8) generators, each of them being bilinear in the fermionic z.m.. One finds

ti1...i8 = TrS0 [R
i1i2
0 Ri3i40 Ri5i60 Ri7i80 ]

= −1

2
ǫi1...i8 − 1

2

[

δi1i4δi2i3δi5i8δi6i7 + perm.
]

+
1

2

[

δi2i3δi4i5δi6i7δi8i1 + perm.
]

, (6.71)

where “perm.” means permutations over the pairs i2n−1i2n and antisymmetrization within
each pair. Now each vertex operator Vǫ0 provides two fermionic z.m. and therefore, expand-
ing the boost operator eVǫ in powers of ǫ, we see that the leading contribution to Z0(ǫ) for
ǫ→ 0 comes form the ǫ4 term which has just enough fermionic z.m., that is 8, to give a non-
vanishing contribution in the trace. Thus, one immediately finds the behavior Z0(ǫ) ∼ |v|4,
without needing to first compute the exact result. Adopting the same strategy both for the
z.m. and the oscillator, we expand the whole boost operator eVǫ in powers of ǫ and write
the partition functions as infinite series of vertex operator correlation functions

Z0(ǫ) =
∞
∑

m=0

1

m!
〈Bp0|V m

ǫ0 |Bp0〉 , (6.72)

Zosc(t, ǫ) =
∞
∑

q=0

1

q!
〈Bposc|V q

ǫ e
−2πα′tp+P−|Bposc〉 . (6.73)
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Since we are interested in computing the leading order behavior, the effect of the boost
on the bosonic z.m. can be omitted. By doing so, one obtains directly the non-relativistic
potential times the total time, instead of the non-relativistic integrated phase-shift. It is
now clear that the leading term of the total Z(t, ǫ) = Z0(ǫ)Zosc(t, ǫ) for ǫ → 0 receives a
unique contribution corresponding to m = 4 e q = 0 in Eqs. (6.72) and (6.73), and one
finds

Z(t, ǫ) −→
ǫ→0

1

4!
TrS0 [V

4
ǫ0] , (6.74)

which is independent of the modulus t. Importantly enough, the oscillator part is the same
as in the static case, and continues to give 1, all the dependence on the rapidity coming
from the fermionic z.m. part. This means that only the exchange of BPS states (in this
case the massless states associated to the fermionic z.m.) contribute, since all the massive
states cancel a priori. The non-relativistic amplitude is therefore

Ap,p =
|v|4
8
Vp+1 T

2
p ∆(9−p)(r) , (6.75)

and is exact in α′, that is scale-invariant.

Obviously, this result could have been inferred by simply taking the non-relativistic limit
of the exact amplitude, as done in Chapter 2. The interest of the present discussion is that
it can now be applied to the complete spin-dependent amplitude, whose exact form in the
rapidity is very complicated and unknown.

ηi 6= 0 and ǫi 6= 0

The dependence on the supersymmetry parameter ηi can be treated by using the same
strategy as for the rapidity dependence, expanding the supersymmetry transformations in
powers of ηi. In this case, there is only a finite number of terms, due to the anticommuting
properties of ηi, and the partition functions can be written as

Z0(η1,2, ǫ) =
n1+n2≤4
∑

n1,n2

∞
∑

m=0

1

(n1!)2(n2!)2m!
〈Bp0|V n1

η10V
n2
η20V

m
ǫ0 |Bp0〉 , (6.76)

Zosc(t, η1,2, ǫ) =
p1+p2≤8
∑

p1,p2

∞
∑

q=0

1

(p1!)2(p2!)2q!
〈Bposc|V p1

η1 V
p2
η2 V

q
ǫ e

−2πα′tp+P− |Bposc〉 . (6.77)

Consider now some fixed values for the numbers n1 +p1 and n2 +p2 of broken supersymme-
tries applied to the two boundary states. In order to get the maximum of fermionic z.m.,
we take also p1 = p2 = 0 to get the maximum possible n1 and n2. Then, since n1 + n2 ≤ 4,
in order to have Z0(η1,2, ǫ) 6= 0 one has to consider terms with m ≥ 4−n1−n2. The leading
behavior of the total partition function Z(t, ǫ) = Z0(ǫ)Zosc(t, ǫ) for ǫ → 0 is therefore ob-
tained by taking the minimum number of Vǫ0 insertions for the z.m. part, m = 4−n1 −n2,
and no Vǫ insertion for the oscillator part, q = 0, which will therefore give 1 as in the static
case. Therefore, one finds

Z(t, ǫ) −→
ǫ→0

1

(n1!)2(n2!)2(4 − n1 − n2)!
TrS0[V

n1
η10V

n2
η20V

4−n1−n2
ǫ0 ] , (6.78)
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which is independent of the modulus t. Each Vη0 brings a power of the transfered momentum
q which, when integrating over the momentum in the amplitude, will produce a derivative
on the propagator ∆(9−p). The leading behavior of the amplitude is therefore

A(n1,n2)
p,p ∼ η2n1

1 η2n2
2 |v|4−n1−n2∂n1+n2∆(9−p)(r) ∼ η2n1

1 η2n2
2

v4−n1−n2

r7−p+n1+n2
. (6.79)

Notice in particular that there is a static spin-spin interaction. All these interactions have
a simple power-law behavior and are exact in α′, that is scale-invariant. The explicit
expressions for the amplitudes can be easily worked out in terms of the tensor ti1...i8 arising
from the trace over the fermionic z.m. and the tensor ωi1...inj1...j2n

(η) entering the effective form
of V n

η0. One finds the following results

A(0,0)
p,p =

Vp+1

8 · 4! T̂
2
p vm1vm2vm3vm4 t

1m11m21m31m4 ∆(9−p)(r) , (6.80)

A(1,0)
p,p =

Vp+1

8 · 3! T̂
2
p vm1vm2vm3 t

i1i21m11m21m3 ωj1i1i2(η1) ∂j1∆(9−p)(r) , (6.81)

A(2,0)
p,p =

Vp+1

8 · 2!3 T̂
2
p vm1vm2 t

i1...i41m11m2 ωj1j2i1...i4
(η1) ∂j1∂j2∆(9−p)(r) , (6.82)

A(1,1)
p,p =

Vp+1

8 · 2! T̂
2
p vm1vm2 t

i1...i41m11m2 ωj1i1i2(η1)ω
j2
i3i4

(η2) ∂j1∂j2∆(9−p)(r) , (6.83)

A(3,0)
p,p =

Vp+1

8 · 3!2 T̂
2
p vm1 t

i1...i61m1 ωj1j2j3i1...i6
(η1) ∂j1∂j2∂j3∆(9−p)(r) , (6.84)

A(2,1)
p,p =

Vp+1

8 · 2!2 T̂
2
p vm1 t

i1...i61m1 ωj1j2i1...i4
(η1)ω

j3
i5i6

(η2) ∂j1∂j2∂j3∆(9−p)(r) , (6.85)

A(4,0)
p,p =

Vp+1

8 · 4!2 T̂
2
p t

i1...i8 ωj1...j4i1...i8
(η1) ∂j1∂j2∂j3∂j4∆(9−p)(r) , (6.86)

A(3,1)
p,p =

Vp+1

8 · 3!2 T̂
2
p t

i1...i8 ωj1j2j3i1...i6
(η1)ω

j4
i7i8

(η2) ∂j1∂j2∂j3∂j4∆(9−p)(r) , (6.87)

A(2,2)
p,p =

Vp+1

8 · 2!4 T̂
2
p t

i1...i8 ωj1j2i1...i4
(η1)ω

j3j4
i5...i8

(η2) ∂j1∂j2∂j3∂j4∆(9−p)(r) . (6.88)

6.3.2 Dp-D(p+4) system

Consider now the system of two parallel Dp and D(p+4)-branes with rapidities ǫi and
supersymmetry parameters ηi. The phase-shift is given by

Ap,p+4 =
1

16

∫ ∞

0
dt 〈Bp, η1, ǫ1, ~Y1|e−2πα′tp+(P−−p−)|Bp+4, η2, ǫ2, ~Y2〉 . (6.89)

As before, it can be rewritten as

Ap,p+4 =
Vp (4π2α′)−

p(4−p)
2

16 sinhπǫ

∫ ∞

0
dt

∫

d4−pq
(2π)4−p

ei~q·
~b e−πα

′t~q2Z0(ηi, ǫi)Zosc(t, ηi, ǫi) , (6.90)

where now

Z0(ηi, ǫi) = 〈Bp0, η1, ǫ1|Bp+40, η2, ǫ2〉 , (6.91)

Zosc(t, ηi, ǫi) = 〈Bposc, η1, ǫ1|e−2πα′tp+P− |Bp+4osc, η2, ǫ2〉 . (6.92)
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Again, we reconsider first the simple case ηi = 0 and ǫi = 0, and then analyze the effect of
switching on ηi 6= 0 and/or ǫi 6= 0.

ηi = 0 and ǫi = 0

When both the Dp and the D(p+4)-branes are at rest and one neglects their spin, the ampli-
tude vanishes as a consequence of the 8 unbroken supersymmetries. In the G-S formalism,
this is again encoded in the fermionic z.m., associated to the surviving supercharges. In
fact, the contribution of the fermionic z.m. gives a vanishing result, whereas in the oscillator
contribution bosons and fermions cancel to give simply 1. One finds

Z0 = TrV [N ] − TrS[N ] = (2 − 2) − 0 = 0 , (6.93)

Zosc(t) =
∞
∏

n=1

(1 − e−2πtn)4(1 + e−2πtn)4

(1 − e−2πtn)4(1 + e−2πtn)4
= 1 , (6.94)

where we have defined the matrices

N ij = (MT
p Mp+4)

ij =









11p+1 0 0

0 −114 0

0 0 113−p









, (6.95)

Nȧḃ = (MT
p Mp+4)ȧḃ = (γp+2...γp+5)ȧḃ . (6.96)

Using these results, the static amplitude is found to be

Ap,p+4 = Vp+1 T̂pT̂p+4 (1 − 1)∆(5−p)(r) . (6.97)

ηi = 0 and ǫi 6= 0

The effect of a relative velocity is again to break the residual supersymmetry which was left
over in the static case. One finds

Z0(ǫ) = TrV [MT
p (ǫ2)Mp+4(ǫ1)] − TrS [MT

p (ǫ2)Mp+4(ǫ1)] = (2 − 2 cos 2πǫ) − 0

= 16 cos2 πǫ

2
sin2 πǫ

2
∼ 4v2 , (6.98)

Zosc(t, ǫ) =
∞
∏

n=1

|1 − eiπǫ/2e−2πtn|4|1 + eiπǫ/2e−2πtn|4
|1 − eiπǫe−2πtn|2(1 − e−2πtn)2(1 + e−2πtn)4

∼ 1 . (6.99)

Performing the analytic continuation ǫ → iǫ one finally recovers the correct amplitude
already discussed in Chapter 2,

Ap,p+4 =
Vp
8

(4π2α′)−
p(4−p)

2

∫ ∞

0

dt

(4πα′t)
4−p
2

e−
b2

4πα′t
ϑ2

1(i
ǫ
2 |2it)ϑ2

2(i
ǫ
2 |2it)

ϑ1(iǫ|2it)ϑ2
2(0|2it)η3(2it)

. (6.100)

Again, the behavior for ǫ → 0 is completely determined by supersymmetry. The fermionic
z.m. partition function Z0(ǫ) can again be written as a z.m. trace of a Type I theory
associated to the right mover, but now with only four z.m.. More precisely,

Z0(ǫ) = Tr′S0
[eVǫ0 ] = TrS0[e

Vǫ0N ] , (6.101)
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where N is the operator corresponding to Eqs. (6.95) and (6.96). The trace is vanishing
unless at least 4 fermionic z.m. are inserted, and the first non-vanishing is

ti1...i4 = Tr′S0
Ri1i20 Ri3i40

= 2 ǫi1...i4p+2...p+5 + 2
[

δi1p+2δi2p+3δi3p+4δi4p+5 + perm.
]

+2
[

δi1i3N i2i4 + perm.
]

. (6.102)

Each vertex operator Vǫ0 provides two fermionic z.m. and therefore, expanding the boost
operator eVǫ in powers of ǫ, the leading contribution to Z0(ǫ) for ǫ → 0 comes from the ǫ2

term which has just enough fermionic z.m., that is in this case 4, to give a non-vanishing
contribution. In this way we recover Z0(ǫ) ∼ 4|v|2, as we already know from the exact
amplitude. Adopting the same strategy the oscillators, we expand the whole boost operator
eVǫ in powers of ǫ and write the partition functions as infinite series of vertex operator
correlation functions

Z0(ǫ) =
∞
∑

m=0

1

m!
〈Bp0|V m

ǫ0 |Bp+40〉 , (6.103)

Zosc(t, ǫ) =
∞
∑

q=0

1

q!
〈Bposc|V q

ǫ e
−2πα′tp+P− |Bp+4osc〉 . (6.104)

We see that the leading contributions to the total partition function Z(t, ǫ) = Z0(ǫ)Zosc(t, ǫ)
for ǫ→ 0 comes from the term with m = 2 and q = 0. The oscillators cancel as in the static
case, and one finds

Z(t, ǫ) −→
ǫ→0

1

2!
Tr′S0

[V 2
ǫ0] , (6.105)

which is independent of the modulus t. This means that again only the exchange of BPS
states contribute, since all the massive modes have canceled. The non-relativistic amplitude

Ap,p+4 =
|v|2
2
Vp+1 T̂pT̂p+4 ∆(5−p)(r) (6.106)

is therefore exact in α′, that is scale-invariant.

ηi 6= 0 and ǫi 6= 0

In the general case, we use the same strategy and write the partition functions as

Z0(η1,2, ǫ) =
n1+n2≤6
∑

n1,n2

∞
∑

m=0

1

(n1!)2(n2!)2m!
〈Bp0|V n1

η10V
n2
η20V

m
ǫ0 |Bp+40〉 , (6.107)

Zosc(t, η1,2, ǫ) =
p1+p2≤12
∑

p1,p2

∞
∑

q=0

1

(p1!)2(p2!)2q!
〈Bposc|V p1

η1 V
p2
η2 V

q
ǫ e

−2πα′tp+P−|Bp+4osc〉 . (6.108)

Consider as before some fixed values for the number n1 + p1 and n2 + p2 of broken super-
symmetries applied to the two boundary states. Again we take p1 = p2 = 0 in order to
maximize n1 and n2 and get the maximum of fermionic z.m. Moreover, let us concentrate
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on the cases with n1 + n2 ≤ 2. In order in order to have Z0(η1,2, ǫ) 6= 0 one has to con-
sider terms with m ≥ 2 − n1 − n2. The leading behavior of the total partition function
Z(t, ǫ) = Z0(ǫ)Zosc(t, ǫ) for ǫ → 0 is obtained by taking the minimum number of Vǫ0 inser-
tions for the z.m. part, m = 2 − n1 − n2, and no Vǫ insertion for the oscillator part, q = 0,
which will therefore give 1 as in the static case. One finds

Z(t, ǫ) −→
ǫ→0

1

(n1!)2(n2!)2(2 − n1 − n2)!
Tr′S0

[V n1
η10V

n2
η20V

2−n1−n2
ǫ0 ] , (6.109)

which is independent of the modulus t. As before, each Vη0 brings a power of the transfered
momentum q which will eventually produce a derivative on the propagator ∆(5−p). The
behavior is therefore

A(n1,n2)
p,p+4 ∼ η2n1

1 η2n2
2 |v|2−n1−n2∂n1+n2∆(5−p)(r) ∼ η2n1

1 η2n2
2

v2−n1−n2

r3−p+n1+n2
. (6.110)

All these interactions are exact in α′, that is scale invariant. They can be expressed in
terms of the tensor ti1...i4 emerging from the z.m. trace and the tensor ωi1...inj1...j2n

(η) coming
from V n

η0. One finds the following expressions

A(0,0)
p,p+4 =

Vp+1

8 · 2! T̂pT̂p+4 vm1vm2 t
1m11m2 ∆(5−p)(r) , (6.111)

A(1,0)
p,p+4 =

Vp+1

8
T̂pT̂p+4 vm1 t

i1i21m1 ωj1i1i2(η1) ∂j1∆(5−p)(r) , (6.112)

A(2,0)
p,p+4 =

Vp+1

8 · 2!2 T̂pT̂p+4 t
i1...i4 ωj1j2i1...i4

(η1) ∂j1∂j2∆(5−p)(r) , (6.113)

A(1,1)
p,p+4 =

Vp+1

8
T̂pT̂p+4 t

i1...i4 ωj1i1i2(η1)ω
j2
i3i4

(η2) ∂j1∂j2∆(5−p)(r) . (6.114)

6.4 Field theory interpretation

In the present section we discuss the field theory interpretation of our results. We will
show in particular that the knowledge of all the one-point functions of the massless fields of
Type IIA/B supergravity allows to infer the complete and generic asymptotic form of the
corresponding p-brane solution. Moreover, the spin-effects in scattering amplitudes that
we have computed and the supersymmetric cancellation of some of their leading orders
proves to constitute an extremely efficient way to fix unambiguously the various coefficients
entering the solution, and in particular the relative strength of the NSNS attraction and
the RR repulsion (the fact that normalizations are better encoded in scattering amplitude
than in one-point functions, especially through the vanishing of leading order, was already
appreciated in Polchinski’s computation of the Dp-brane charge [56]). As we will see, this
approach yields a powerful technique to extract informations about a generic component
of the p-brane multiplet. The analogous computation in supergravity would consist in
performing supersymmetry transformations to the usual p-brane solution, to determine all
the spinning superpartners; this requires looking up to eight variations, a program that, as
can be appreciated from previous works [181, 182, 183], is out of reach within the component
fields formalism.
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From the results obtained for the one-point functions, one can extract the NSNS and
RR asymptotic fields for a generic component of the Dp-brane multiplet. These can be
written as a multipole expansion in momentum space:

ξµν = κ2
(10)

[

A0M
µν +A1J

µσαMν
σ qα +A2J

µαρJσβρM
ν
σ qαqβ + ...

]

, (6.115)

Cµ1...µk

(k) =
κ2

(10)

k!
[B0TrS [Γµ1...µkM] +B1TrS [Γµ1...µkΓν1ν2M]Jν1ν2αqα

+ B2TrS [Γµ1...µkΓν1ν2Γν3ν4M]Jν1ν2αJν3ν4βqαqβ + ...
]

. (6.116)

We have restored the ten-dimensional Plank constant κ2
(10) for convenience. Dots stand for

six and eight supercharge insertions, corresponding to three and four powers of momentum,
that we shall not consider. The constants Ai, Bi could in principle be fixed by correctly
normalizing the one-point functions; however, this is highly awkward, and since any final
conclusion will eventually depend in a crucial way on these constants, we will take advantage
of our results for the scattering amplitude to fix them unambiguously.

From now on we specialize to the D0-brane, for which M0
0 = −1, M i

j = δij and M = Γ0;
the other cases can be treated in the same way. Recall that in the NSNS sector, a generic
field ξµν is decomposed into trace, symmetric and antisymmetric parts φ, hµν and bµν as

ǫ(φ)
µν =

1

4
(ηµν − qµlν − qν lµ) , ǫ(h)

µν = ξ(µν) , ǫ(b)µν = ξ[µν] , (6.117)

where lµ is a vector satisfying q · l = 1, l2 = 0. The asymptotic fields in the NSNS sector
are then found to be

φ =
3

2
κ2

(10)MG9(r) +
1

4
κ2

(10)CJ
mpqJnpq∂m∂n∆(9)(r) + ... ,



















h00 = κ2
(10)M∆(9)(r) + κ2

(10)CJ
m0qJn0q∂m∂n∆(9)(r) + ...

hij = δijκ
2
(10)M∆(9)(r) + κ2

(10)CJ
m ρ
i Jnjρ∂m∂n∆(9)(r) + ...

h0i = 2κ2
(10)AJ

m
0i ∂m∆(9)(r) + ...

,







bij = κ2
(10)AJ

m
ij ∂m∆(9)(r) + ...

b0i = 2κ2
(10)CJ

m
0qJ

n q
i ∂m∂n∆(9)(r) + ...

, (6.118)

whereas Eq. (6.116) in the RR sector become






C0 = 2κ2
(10)Q∆(9)(r) + κ2

(10)DJ
mρτJnρτ∂m∂n∆(9)(r) + ...

Ci = 2κ2
(10)BJ

m
0i ∂m∆(9)(r) + ...

,







C0ij = κ2
(10)BJ

m
ij ∂m∆(9)(r) + ...

Cijk = 2κ2
(10)DJ

m
0[iJ

n
jk]∂m∂n∆(9)(r) + ...

. (6.119)

The constants Ai, Bi have been redefined and called M,A,B,Q,C,D for later convenience,
and again, dots stand for higher derivative terms associated to further supercharge inser-
tions.

Comparing Eqs. (6.118) and (6.119) with the usual 0-brane solution [184] and the general
result valid in D dimensions derived in [185], we conclude that M is the mass and Q the
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electric charge, so the charge-mass ratio is α = Q/M , whereas 2AJ0ij = Jij is the angular
momentum and BJ0ij = µij the magnetic moment, so that the gyromagnetic ratio, defined
by the relation µij = (gQ)/(2M)J ij , is given by g = (MB)/(QA). Also, the electric and
gravitational dipole moments vanish, since they would correspond to one-derivative terms
in C0 and h00, hij respectively. The presence of two-derivative terms in the gravitational
and gauge fields signals potential quadrupole moments for D-particles. Notice however that
the quadrupole term in C0 vanishes due to the Fiertz identity JmµνJnµν = 0, and therefore
the corresponding quadrupole moment is zero. Keeping in mind this fact, we nevertheless
define the quadrupole analog g̃ of gyromagnetic ratio g, constructed as the ratio of the
electric and gravitational quadrupole moments as g̃ = 4(MD)/(QC).

It is now straightforward to show how the semiclassical analysis of the phase-shift be-
tween two of these configurations can be used to determine in a simple way the value of
the gyromagnetic ratio g and its quadrupole analogue g̃ associated to D0-branes. Accord-
ing to [186, 183], massive Kaluza-Klein states present a common value g = 1, contrarily
to the usual and natural [187, 188, 189] value g = 2 shared by all the known elementary
particles (neglecting radiative corrections, of course). This particular signature of Kaluza-
Klein states can be useful to establish the eleven-dimensional nature of D0-branes, implying
g = 1. This consistency check has been recently performed in [183] considering D0-branes
as extended extremal 0-brane solution of IIA supergravity. We present an alternative and
independent argument that relies on the stringy nature of D0-branes as points on which
open strings can end. In particular, much in the same way as the cancellation of the static
and quadratic velocity parts in the universal amplitude A(0,0) implies a charge-mass ratio
α = 1, we will show that g = 1 is the only possible value compatible with the cancellation
of the linear term in velocity in the first spin effect A(1,0). Similarly, we will show that our
stringy analysis predicts for the quadrupole analog the value g̃ = 1 from the cancellation of
the static contribution to the second spin effect A(2,0).

The string theory results for the non-relativistic amplitude is

A0,0 = A(0,0)
0,0 + A(1,0)

0,0 + A(2,0)
0,0 + ... . (6.120)

The results obtained in previous section for the these spin-effects can be explicated, finding
the following covariant results for two D0-branes

A(0,0)
0,0 =

|v|4
8
Vp+1 T̂

2
p ∆(9)(r) , (6.121)

A(1,0)
0,0 =

Vp+1

4
T̂ 2
p |v|2vi J ij

0 ∂j∆(9)(r) , (6.122)

A(2,0)
0,0 =

Vp+1

96
T̂ 2
p |v|2(2Jm0qJn0q − JmpqJnpq + 4JmρiJ

n
ρj v̂

iv̂j)∂m∂n∆(9)(r) . (6.123)

To compute the phase-shift in field-theory, we use the world-line effective action of a
scalar 0-brane probe

S = −M
∫

dτ e−φ
√

−gµνẊµẊν −Q

∫

dτCµẊ
µ , (6.124)

which in the weak-field limit κ(10) → 0 reduces to

S0 =

∫

dτ

(

Mφ+
1

2
MhµνẊ

µẊν −QCµẊ
µ
)

. (6.125)
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This can also be obtained as the dimensional reduction to D=10 of the D=11 superparticle
action. It is straightforward to check that this reproduces the universal part of the asymp-
totic fields of the 0-brane for a static source X0 = τ , Xi = 0. To compute the interaction
between a scalar and a spinning 0-branes, one simply evaluates the above effective action
for the moving scalar probe with X0 = coshπǫ τ , Xi = v̂i sinhπǫ τ , in the background of
the spinning one. Expanding for v → 0 one finds

S =

∫

dτ
∑

n≥0

vnVn , (6.126)

with

V0 = Mφ+
1

2
Mh00 −QC0 ,

V1 = Mh0iv̂
i −QCiv̂

i , V2 =
1

2
M(h00 + hij v̂

iv̂j) − 1

2
QC0 ,

V3 = Mh0iv̂
i − 1

2
QCiv̂

i , V4 =
1

2
M(h00 + hij v̂

iv̂j) − 3

8
QC0 ,

... (6.127)

Comparing with the string theory result, one finds in particular the following implications

V0,2|∆ = 0 ⇒ M = Q ⇒ α = 1

V1|∂∆ = 0 ⇒ MA = QB ⇒ g = 1

V0|∂2∆ = 0 ⇒ MC = 4QD ⇒ g̃ = 1

. (6.128)

As an important consistency check, we have explicitly verified that with these values the
correct tensor structures come out.

A comment is in order on how our boundary state formalism for describing higher spin
Dp-branes is related to the supergravity description, where p-branes appear as solitonic
solutions. As already said, the asymptotic fields found by applying the procedure of this
section correspond to supergravity solutions obtained by taking supersymmetric variations
of the usual scalar ones. This has been partially done in [183] for the D0-brane solution,
where the second supersymmetry variation was used to compute the angular momentum
dependence of hµν and Cµ. Using the same strategy, we have similarly checked that the
angular momentum contributions to the higher forms bµν and Cµνρ (which have not been
considered in [183]) correctly reproduce those in Eqs. (6.118) and (6.119). We have also
checked that the fourth supersymmetry variation reproduces all the two-derivative terms
we find, but it is unrealistic to compute and trust the coefficient because of the increasing
complexity of the involved expressions.

Finally, another interesting outcome of the knowledge of the asymptotic fields (6.118),
(6.119) is the possibility to derive the supersymmetric completion of the linearized 0-brane
world-line effective action (6.125) in an arbitrary Type IIA background, at least for weak
fields. The complete action will be of the form

S = S0 + Sη2 + Sη4 + ... . (6.129)

For example, it is not difficult to verify that, in much the same way as the part of the
asymptotic fields going like ∆ can be derived from the action (6.125), the part of the fields
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going like ∂∆ can be derived from the following non-minimal couplings

Sη2 =

∫

dτ

(

−∂ih0jJ
0ij +

1

4
∂ibjkJ

ijk + ∂iCjJ
0ij − 1

4
∂iC0jkJ

ijk
)

. (6.130)

The covariant form this action should be obtained by replacing each 0 index by a contraction
with the momentum Ẋµ; in such a way, the fields generated by a moving 0-brane are given
by the boost of those produced by a static one. One obtains

Sη2 =

∫

dτ

(

ΓρσµẊ
µẊνJ σ

ρ ν +
g

12
FµνρσẊ

µJνρσ +
1

12
HµνρJ

µνρ +
g

2
FµνẊ

ρJµνρ

)

(6.131)

where Fµν = 2∂[µCν], Fµνρσ = 4∂[µCνρσ] and Hµνρ = 3∂[µbνρ]. The coefficients have been
further checked by computing the static force contribution of order ∂2∆ between two spin-
ning 0-branes, that vanishes as expected. Finally, notice that if and only if g = 1, the action
(6.131) is the Kaluza-Klein dimensional reduction to D=10 of a D=11 action containing
only the first two terms.

6.5 Scale-invariance and the SYM-SUGRA correspondence

An extremely important issue in the study of D0-brane dynamics is about the conjecture
of [79] that the dynamics of M-theory in the infinite momentum frame (IMF) is governed
by the degrees of freedom of a large number of D0-branes. The essence of the conjecture
is a relation between effective loop interactions in the SYM gauge theory describing nearby
D0-branes and tree interaction between D0-branes in SUGRA, seen as Kaluza-Klein states
coming from compactification of D=11 SUGRA on a circle. The IMF automatically provides
a kinematics which automatically selects the non-relativistic limit of the theory, keeping only
the leading order interactions. Form a field theory point of view, the matching between SYM
and SUGRA computations seems at first sight miraculous. Actually, the matching of the
v → 0 limit of the leading tree-level SUGRA interactions and the SYM one-loop effective
action is dictated by supersymmetry.

Form the results of this chapter, the nature of the SYM-SUGRA correspondence emerges
in a very clear way. Indeed, we have shown that all the leading non-relativistic interactions,
including all the effects related to spin, are completely determined by a trace over fermionic
z.m.. This leads to the extremely important conclusion that these interactions are exact in
α′ and are valid at any distance. This means in particular that the two truncations to the
exact cylinder amplitude to open and closed string massless states, corresponding to the
SYM and SUGRA low-energy effective theories relevant at short and large distances, agree in
the non-relativistic limit, implying the exact matching between the complete spin-dependent
SUGRA interactions and the complete one-loop SYM effective action. Significantly enough,
the simple power-low non-relativistic interactions discussed here depend in no way on the
string scale ls, and the apparently miraculous matching of the limits r ≪ lS (SYM) and
r ≫ ls (SUGRA) is actually a trivial consequence of the fact that these leading interactions
are completely determined by supersymmetry. In [190], it was indeed demonstrated that
the leading non-relativistic terms of the D0-brane effective action is completely fixed by
requiring sixteen unbroken supersymmetries. This implies that whatever microscopic theory
one uses to describe D0-brane dynamics, it has to reproduce this leading terms in the LEEA.
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Moreover, these leading terms enjoy a non-renormalization theorem protecting them form
additional corrections.

It is nevertheless interesting to check that the detailed tensor structure of our results
is reproduced both in SUGRA and in SYM. To this aim, it is convenient to explicit the

amplitudes A(n1,n2)
0,0 in terms of the SO(9) spinor

(

ηa

η̃ȧ

)

that we shall call here θ (instead of

η). One finds, after heavy algebra and using several SO(9) Fiertz identities (for details see
[191, 192]), the following complete interaction potential

V =
1

8

[

v4 + 2i v2vm(θγmnθ) ∂n − 2vp vq(θγ
pmθ)(θγqnθ) ∂m∂n

−4i

9
vi(θγ

imθ)(θγnlθ)(θγplθ) ∂m∂n∂p (6.132)

+
2

63
(θγmlθ)(θγnlθ)(θγpkθ)(θγqkθ) ∂m∂n∂p∂q

]

∆(9)(r) .

The first, second, third and last terms of this potential have been calculated in the SYM
context in [89], [193], [194] and [195] respectively. All the terms and coefficients have been
shown also to agree with the eikonal approximation of the complete four-supergraviton
scattering amplitude in SUGRA [191, 192]. Finally, let us notice that the scattering of D0-
branes can be mapped to the scattering of fundamental strings by a chain of duality. More
precisely, compactifying on a circle and performing a T-duality, the four D-particles are
turned into four D-strings winding around the circle, which are finally turned to F-strings
by an S-duality transformation. The spin dependent terms in the D0-brane scattering
amplitude are then related to the the corresponding spin-dependent terms in the wound F-
strings scattering amplitude, and the correct dependence on the distance, spin and velocity
comes out [196].

Since the leading part of the D0-brane effective action is completely determined by su-
persymmetry, it cannot be used to probe significantly the matrix model conjecture. Rather,
one has to study sub-leading interactions corresponding to two or more loops in the SYM
effective action, and compare them to tree-level post-Newtonian SUGRA corrections. In the
two-body case, perfect agreement of the leading non-relativistic behavior has been found
up to two loops [197, 198], but again, it seems [199] that supersymmetry constrains the
corrections in such a way to determine them almost completely, as happening at one-loop.
The first really non-trivial check invoques three-body interactions, which starts receiving
contributions at two-loops on the SYM side. Due to the extreme complexity of the com-
putation there has been a variety of partial results, but finally perfect agreement has been
found between SYM and SUGRA [200].

The strategy that we have used to study spin-effects in D-brane dynamics can be sum-
marized as follows. Instead of considering the full configuration of moving branes, where
supersymmetry is broken, we have perturbed through appropriate vertex operators the su-
persymmetric vacuum associated to the static Dp-Dp and Dp-D(p+4) systems, deriving
in this way important results on the structure of the exact (in powers of α′) leading spin
interactions in a velocity expansion. The cylinder amplitudes corresponding to these in-
teractions collapses to its zero mode contribution, supporting an equivalent description in
terms of either the open (matrix model) or closed (supergravity) massless degrees of free-
dom. This strategy is actually quite general and can be easily extended to several other
D-brane configurations preserving some supersymmetry, like those studied for example in
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[201, 202, 203, 204, 205, 206, 207], where a similar short-long distance matching of the
leading interactions was observed, in the leading cylinder amplitude. Again, the reason of
the matching lies in the fact that they are actually scale-invariant and completely deter-
mined by supersymmetry. Indeed, starting form a supersymmetric D-brane configuration
with a vanishing interaction energy and a given number of fermionic z.m., and perturbing
it through a supersymmetry breaking deformation associated to some small parameter ǫ, it
is clear that the leading order interactions in a expansion in powers of ǫ will be determined
by the sole fermionic z.m. and will therefore be scale-invariant.
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Conclusion

In this thesis, we have studied various aspects of D-brane dynamics in string theory, using
prevalently the boundary state formalism. For instance, we have studied four-dimensional
point-like objects arising as wrapped or dimensionally reduced D-branes in toroidal and orb-
ifold compactifications. From the velocity dependence of the phase-shift, it clearly emerges
that these four-dimensional configurations couple in general to the scalar fields of the cor-
responding LEEA, and correspond therefore to singular extremal black hole solutions. The
D3-brane wrapped on T 6/ZZ3 seems to be an interesting exception, since the orbifold projec-
tion kills any coupling to scalars, yielding a regular R-N extremal black hole solution. The
same conclusions are obtained by studying the emission of a massless closed string state form
two of these D-brane configurations in interaction. In the large distance limit, the emission
amplitude is in perfect agreement with SUGRA. A careful analysis shows that actually the
point-like object obtained by wrapping a D3-brane is a dyon. A detailed analysis of the
electric and magnetic phase-shifts allows to compute the electric and magnetic charges as
functions of the orientation of the D3-brane in the internal compact space. Comparison
with SUGRA is achieved by constructing an explicit ten-dimensional solution, with a met-
ric factorizing in a four-dimensional dyonic R-N extremal black hole and a six-dimensional
CY internal part. Final evidence for the identification of this configuration with a wrapped
D3-brane is obtained by computing the one-point functions of all the massless fields, lead-
ing to couplings which are in exact agreement with those extracted from the phase-shifts.
Finally, we have studied leading spin-effects in D-brane dynamics for small velocities v,
finding contributions of the form v4−n/r7−p+n and v2−n/r3−p+n for the Dp-Dp and the
Dp-D(p+4) systems preserving 16 and 8 supersymmetries in the static limit. These inter-
actions receive contributions only from massless BPS intermediate states, massive states
canceling as a consequence of supersymmetry. This implies the scale-invariance of these
leading spin-effects and in particular the equivalence between their SYM and SUGRA de-
scriptions. The supersymmetry cancellations occurring in the interaction potential imply
a particular value for the gyromagnetic ratio g = 1 and its quadrupole analog g̃ = 1 for
D0-branes, in agreement with their eleven-dimensional Kaluza-Klein nature.
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Appendix A

ϑ-functions

In this appendix we quote some important definitions and properties about Jacobi elliptic
ϑ-functions.

A.1 ϑ
[

a
b

]

-functions.

A.1.1 Definition

The function ϑ
[a
b

]

(v|τ) is defined as the infinite series

ϑ

[

a

b

]

(v|τ) =
∑

n∈ZZ

q
1
2
(n−a)2e2πi(n−a)(v−b) , (A.1)

where a, b ∈ [0, 1] and q = e2πiτ . Equivalently, there is also an infinite product representation

ϑ

[

a

b

]

(v|τ) = qa
2
e2πia(b+v)

∞
∏

n=1

(

1 − q2n
)

∞
∏

n=1

[(

1 + q2(n+a)−1e2πi(b+v)
) (

1 + q2(n−a)−1e−2πi(b+v)
)]

. (A.2)

It has the obvious properties

ϑ

[

a+ 1

b

]

(v|τ) = ϑ

[

a

b

]

(v|τ) , ϑ

[

a

b+ 1

]

(v|τ) = e2πiaϑ

[

a

b

]

(v|τ) , (A.3)

so that the periods a and b are actually defined essentially modulo 1.

A.1.2 Transformation properties

The functions ϑ
[a
b

]

(v|τ) are essentially the most general functions with definite monodromy
around the cycles on a torus of modulus τ . In fact, under the shift v → v + ατ + β which
circles α and β times the two cycles of the torus, the functions ϑ

[a
b

]

(v|τ) transform as follows

ϑ

[

a

b

]

(v + ατ + β|τ) = e−2πiα(v−b+ α
2
+β)ϑ

[

a− α

b− β

]

(v|τ) . (A.4)
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In particular, if α and β are integers, the function simply picks up a phase around the two
cycles of the torus. Under modular transformations of the torus, one has

ϑ

[

a

b

]

(v|τ + 1) = e−πia(a−1)ϑ

[

a

b+ a− 1
2

]

(v|τ) , (A.5)

ϑ

[

a

b

]

(
v

τ
| − 1

τ
) =

√
−iτe2πi(ab+ v2

τ
)ϑ

[

b

−a

]

(v|τ) . (A.6)

A.1.3 Riemann identity

The functions ϑ
[a
b

]

(v|τ) satisfy the extremely important identity

1

2

1
2
∑

a,b=0

(−1)2(a+b)
4
∏

i=1

ϑ

[

a+ hi
b+ gi

]

(vi|τ) = −
4
∏

i=1

ϑ

[

1
2 − hi
1
2 − gi

]

(v′i|τ) , (A.7)

where hi and gi are subject to the condition
∑

i hi = n and
∑

i gi = 0, and the arguments
v′i are given by

v′1 =
1

2
(v1 + v2 + v3 + v4) , v′2 =

1

2
(v1 + v2 − v3 − v4) ,

v′3 =
1

2
(v1 − v2 + v3 − v4) , v′4 =

1

2
(v1 + v2 − v3 − v4) .

(A.8)

A.2 ϑα-functions.

A.2.1 Definition

The function ϑ
[a
b

]

(v|τ) for the special values a, b = 0, 1/2 are particularly important, so that
they have a name:

ϑ1(v|τ) = ϑ

[

1
2
1
2

]

(v|τ) , ϑ2(v|τ) = ϑ

[

1
2

0

]

(v|τ) ,

ϑ3(v|τ) = ϑ

[

0

0

]

(v|τ) , ϑ4(v|τ) = ϑ

[

0
1
2

]

(v|τ) .
(A.9)

It is worth to report their important infinite product representations which are particular
cases of Eq. (A.2)

ϑ1(v|τ) = 2 sinπv q
1
4

∞
∏

n=1

(

1 − q2n
)

∞
∏

n=1

[(

1 − q2ne2πiv
) (

1 − q2ne−2πiv
)]

, (A.10)

ϑ2(v|τ) = 2 cos πv q
1
4

∞
∏

n=1

(

1 − q2n
)

∞
∏

n=1

[(

1 + q2ne2πiv
) (

1 + q2ne−2πiv
)]

, (A.11)

ϑ3(v|τ) =
∞
∏

n=1

(

1 − q2n
)

∞
∏

n=1

[(

1 + q2n−1e2πiv
) (

1 + q2n−1e−2πiv
)]

, (A.12)

ϑ4(v|τ) =
∞
∏

n=1

(

1 − q2n
)

∞
∏

n=1

[(

1 − q2n−1e2πiv
) (

1 − q2n−1e−2πiv
)]

. (A.13)
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Another very important modular function related to bosonic partition functions is the
Dedekind η-function

η(τ) = q
1
24

∞
∏

n=1

(

1 − q2n
)

. (A.14)

It is related to the θα-functions by the useful relation

ϑ′1(0|τ) = 2πη3(τ) . (A.15)

A.2.2 Transformation properties

The monodromy properties around the cycles of the torus follow from Eq. (A.4). The
important modular transformation Eq. (A.6) becomes

ϑ1(
v

τ
| − 1

τ
) =

√
iτe2π

v2

τ ϑ1(v|τ) , (A.16)

ϑ2(
v

τ
| − 1

τ
) =

√
iτe2π

v2

τ ϑ4(v|τ) , (A.17)

ϑ3(
v

τ
| − 1

τ
) =

√
−iτe2π v2

τ ϑ3(v|τ) , (A.18)

ϑ4(
v

τ
| − 1

τ
) =

√
−iτe2π v2

τ ϑ2(v|τ) , (A.19)

whereas the η-function transforms as

η(−1

τ
) =

√
−iτη(τ) . (A.20)

A.2.3 Identities

The Riemann identity Eq. (A.7) specialized to hi, gi = 0,±1
2 yields important relations

between ϑα-functions. For instance, taking hi = 0, gi = 0, or h1,2 = 0, h3,4 = ±1/2, gi = 0,
or hi = 0, g1,2 = 0, g3,4 = ±1/2, one finds

4
∏

i=1

ϑ1(vi|τ) −
4
∏

i=1

ϑ2(vi|τ) +
4
∏

i=1

ϑ3(vi|τ) −
4
∏

i=1

ϑ4(vi|τ) = −2
4
∏

i=1

ϑ1(v
′
i|τ) , (A.21)

2
∏

i=1

ϑ1(vi|τ)
4
∏

i=3

ϑ4(vi|τ) −
2
∏

i=1

ϑ2(vi|τ)
4
∏

i=3

ϑ3(vi|τ)

+
2
∏

i=1

ϑ3(vi|τ)
4
∏

i=3

ϑ2(vi|τ) −
2
∏

i=1

ϑ4(vi|τ)
4
∏

i=3

ϑ1(vi|τ) = −2
2
∏

i=1

ϑ1(v
′
i|τ)

4
∏

i=3

ϑ4(v
′
i|τ) , (A.22)

2
∏

i=1

ϑ1(vi|τ)
4
∏

i=3

ϑ2(vi|τ) −
2
∏

i=1

ϑ2(vi|τ)
4
∏

i=3

ϑ1(vi|τ)

−
2
∏

i=1

ϑ3(vi|τ)
4
∏

i=3

ϑ4(vi|τ) +
2
∏

i=1

ϑ4(vi|τ)
4
∏

i=3

ϑ3(vi|τ) = −2
2
∏

i=1

ϑ1(v
′
i|τ)

4
∏

i=3

ϑ2(v
′
i|τ) , (A.23)
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with v′i given by Eq. (A.8). Further important special cases are

ϑ2(v|τ)ϑ3
2(0|τ) − ϑ3(v|τ)ϑ3

3(0|τ) + ϑ4(v|τ)ϑ3
4(0|τ) = 2ϑ4

1(
v

2
|τ) , (A.24)

ϑ2(v|τ)ϑ2(0|τ)ϑ2
3(0|τ) − ϑ3(v|τ)ϑ3(0|τ)ϑ2

2(0|τ) = 2ϑ2
1(
v

2
|τ)ϑ2

4(
v

2
|τ) , (A.25)

ϑ4(v|τ)ϑ4(0|τ)ϑ2
3(0|τ) − ϑ3(v|τ)ϑ3(0|τ)ϑ2

4(0|τ) = 2ϑ2
1(
v

2
|τ)ϑ2

2(
v

2
|τ) . (A.26)
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Appendix B

Partition functions

In this appendix, we summarize the partition functions on the torus for bosons and fermions
with all the possible periodicities around the two cycles and generic twists.

B.1 Untwisted partition functions

Indicating with the symbol

P2

P1

(B.1)

the contribution of a boson or a fermion with periodicities P1 and P2 around the two cycles
of the torus, one finds

Bosons

P

P

: ZBosc(t) = q−
1
12

∞
∏

n=1

(

1 − q2n
)−1

=
1

η( it2 )
, (B.2)

P

A

: ZBosc(t) = q
1
24

∞
∏

n=1

(

1 − q2n−1
)−1

=

√

√

√

√

η( it2 )

ϑ4(0| it2 )
, (B.3)

Fermions

P

P

: ZF (P−)(t) =
1√
2
q

1
12

∞
∏

n=0

(

1 − q2n
)

=

√

√

√

√

ϑ1(0| it2 )

iη( it2 )
= 0 , (B.4)

A

P

: ZF (P+)(t) =
1√
2
q

1
12

∞
∏

n=0

(

1 + q2n
)

=

√

√

√

√

ϑ2(0| it2 )

η( it2 )
, (B.5)

P

A

: ZF (A−)(t) = q−
1
24

∞
∏

n=0

(

1 − q2n+1
)

=

√

√

√

√

ϑ4(0| it2 )

η( it2 )
, (B.6)

A

A

: ZF (A+)(t) = q−
1
24

∞
∏

n=0

(

1 + q2n+1
)

=

√

√

√

√

ϑ3(0| it2 )

η( it2 )
, (B.7)

where q = e−πt.
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B.2 Twisted partition functions

More in general, indicating with the symbol

P2

P1±γ

(B.8)

the contribution of a boson or a fermion with periodicities P1 and P2 around the two cycles
of the torus, with an additional twist ±γ around the first cycle, one finds

Bosons

P

Pγ

× P

P−γ

: ZB(t, γ) = q−
1
6
+γ(1−γ)

∞
∏

n=0

(

1 − q2(n+γ)
)−1

∞
∏

n=1

(

1 − q2(n−γ)
)−1

=
η( it2 )

ϑ
[

1
2
−γ
1
2

]

(0| it2 )
= q−γ

2 iη( it2 )

ϑ1(
iγt
2 | it2 )

, (B.9)

P

Aγ

× P

A−γ

: ZB(t, γ) = q
1
12

−γ2
∞
∏

n=1

(

1 − q2(n+γ)−1
)−1

∞
∏

n=1

(

1 − q2(n−γ)−1
)−1

=
η( it2 )

ϑ
[−γ

1
2

]

(0| it2 )
= q−γ

2 η( it2 )

ϑ4(
iγt
2 | it2 )

, (B.10)

Fermions

P

Pγ

× P

P−γ

: ZF (P−)(t, γ) = q
1
6
−γ(1−γ)

∞
∏

n=0

(

1 − q2(n+γ)
)

∞
∏

n=1

(

1 − q2(n−γ)
)

=
ϑ
[

1
2
−γ
1
2

]

(0| it2 )

η( it2 )
= qγ

2 ϑ1(
iγt
2 | it2 )

iη( it2 )
, (B.11)

A

Pγ

× A

P−γ

: ZF (P+)(t, γ) = q
1
6
−γ(1−γ)

∞
∏

n=0

(

1 + q2(n+γ)
)

∞
∏

n=1

(

1 + q2(n−γ)
)

=
ϑ
[ 1

2
−γ
0

]

(0| it2 )

η( it2 )
= qγ

2 ϑ2(
iγt
2 | it2 )

η( it2 )
, (B.12)

P

Aγ

× P

A−γ

: ZF (A+)(t, γ) = q−
1
12

+γ2
∞
∏

n=1

(

1 − q2(n+γ)−1
)

∞
∏

n=1

(

1 − q2(n−γ)−1
)

=
ϑ
[−γ

1
2

]

(0| it2 )

η( it2 )
= qγ

2 ϑ4(
iγt
2 | it2 )

η( it2 )
, (B.13)

A

Aγ

× A

A−γ

: ZF (A−)(t, γ) = q−
1
12

+γ2
∞
∏

n=1

(

1 + q2(n+γ)−1
)

∞
∏

n=1

(

1 + q2(n−γ)−1
)

=
ϑ
[−γ

0

]

(0| it2 )

η( it2 )
= qγ

2 ϑ3(
iγt
2 | it2 )

η( it2 )
, (B.14)

where q = e−πt.
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Appendix C

Field-theory computations

In this appendix we report some field theory results which are relevant for the interpretation
of string theory results for D-brane dynamics.

C.1 Asymptotic fields of a Dp-brane

A Dp-brane localized at position ~Y in transverse space represents a source a dilaton, p-form
and gravitational sources

J(φ)(x) = âpδ
(9−p)(~x− ~Y ) , (C.1)

J
µ1...µp+1

(C) (x) = µ̂pǭ
µ1...µp+1δ(9−p)(~x− ~Y ) , (C.2)

Jµν(h)(x) = T̂pη̄
µνδ(9−p)(~x− ~Y ) , (C.3)

where η̄µν and ǭµ1...µp+1 are the Minkowski and Levi-Civita tensors on the Dp-brane world-
volume, with indices running from 0 to p. The asymptotic fields in units of

√
2κ(10) at some

point ~Z are then given by

φ =

∫

d10x∆(φ)(Z − x)J(ψ)(x) , (C.4)

Cµ1...µp+1 =
1

(p+ 1)!

∫

d10x∆
µ1...µp+1,ν1...νp+1

(C) (Z − x)J(C)µ1...µp+1
(x) , (C.5)

hµν = −1

2

∫

d10x∆µν,ρσ
(h) (Z − x)J(h)µν(x) , (C.6)

in terms of the dilaton, p-form and graviton propagators. Taking the Feynman and De
Donder gauge for the p-form and graviton, the propagators in d dimensions are

∆(φ) = ∆(d) , (C.7)

∆
µ1...µp+1,ν1...νp+1

(C) =
(

ηµ1ν1 ...ηµp+1νp+1 + ant.
)

∆(d) , (C.8)

∆µν,ρσ
(h) =

(

ηµρηνσ + ηµσηνρ − 2

d− 2
ηµνηρσ

)

∆(d) , (C.9)
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where

∆(d)(x) =

∫

ddp

(2π)d
eip·x

p2
=

1

4πd/2
Γ

(

d− 2

2

)

1

xd−2
. (C.10)

Taking d = 10, multiplying by
√

2κ(10) to get the correct units and explicating the couplings
one finds, in the Einstein frame































φ =
3 − p

2
κ2

(10)Tp∆(9−p)(r)

Cµ1...µp+1 = 2κ2
(10)Tpǫ

µ1...µp+1

(p+1) ∆(9−p)(r)

hαβ =
p− 7

4
κ2

(10)Tpη
αβ∆(9−p)(r) , hij =

p+ 1

4
κ2

(10)Tpδ
ij∆(9−p)(r)

, (C.11)

with ~r = ~Z − ~Y . The result in the string frame is easily obtained through the shift hµνS =
hµνE + 1/2ηµνφ. One finds



























φ =
3 − p

2
κ2

(10)Tp∆(9−p)(r)

Cµ1...µp+1 = 2κ2
(10)Tpǫ

µ1...µp+1

(p+1) ∆(9−p)(r)

hαβ = −κ2
(10)Tpη

αβ∆(9−p)(r) , hij = κ2
(10)Tpδ

ij∆(9−p)(r)

. (C.12)

Here Tp is the true tension of the Dp-brane.

C.2 Interaction between static D-branes

With the knowledge of the sources Eqs. (C.1)-(C.3) associated to a Dp-brane and the
propagators Eqs. (C.7)-(C.9), it is easy to compute the interaction amplitude between two
D-branes.

C.2.1 Dp-Dp static interaction

Two static Dp-branes can interact exchanging the dilaton and graviton in the NSNS sector
and the (p+1)-form in the RR sector. The interaction amplitude is

A =

∫

d10x

∫

d10x̃

[

J(φ)(x)∆(φ)(x− x̃)J̃(φ)(x̃) +
1

4
J(h)(x) · ∆(h)(x− x̃) · J̃(h)(x̃)

−J(C)(x) · ∆(C)(x− x̃) · J̃(C)(x̃)

]

, (C.13)

where J and J̃ refer to the first and the second Dp-branes at positions ~Y1 and ~Y2. One finds

A = Vp+1T̂
2
p

[

(

3 − p

4

)2

+
(p + 1)(7 − p)

16
− 1

]

∆(9−p)(r)

= Vp+1T̂
2
p (1 − 1)∆(9−p)(r) , (C.14)

where ~r = ~Y1 − ~Y2.
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C.2.2 Dp-D(p+4) static interaction

A Dp-brane and a D(p+4)-brane can interact exchanging only the dilaton and graviton in
the NSNS sector, since there is no form in the RR sector coupling to both of them. The
interaction amplitude is therefore

A =

∫

d10x

∫

d10x̃

[

J(φ)(x)∆(φ)(x− x̃)J̃(φ)(x̃) +
1

4
J(h)(x) · ∆(h)(x− x̃) · J̃(h)(x̃)

]

, (C.15)

where J and J̃ refer to the Dp-brane and D(p+4)-brane at transverse positions ~Y1 and ~Y2.
One finds

A = Vp+1T̂pT̂p+4

[

−(3 − p)(p + 1)

16
+

(p + 1)(3 − p)

16

]

∆(5−p)(r)

=
(3 − p)(p+ 1)

16
Vp+1T̂

2
p (1 − 1)∆(5−p)(r) . (C.16)

C.3 Interaction between moving D-branes

The sources Eqs. (C.1)-(C.3) can be generalized to a Dp-brane moving with constant
velocity v = tanhπǫ through a Lorentz transformation. Taking for simplicity the velocity
in the x9 direction, the longitudinal δ-function becomes δ(cosh πǫ x9 − sinhπǫ x0), whereas
the polarizations transform by multiplying for each index with the matrix

(ΣV )µν(ǫ) =

(

coshπǫ − sinhπǫ

− sinhπǫ coshπǫ

)

. (C.17)

One can then repeat the same computations as in the static case for the interaction between
two D-brane moving with constant velocities v1,2 = tanhπǫ1,2. Being ǫ = ǫ1−ǫ2 the relative
rapidity, the Lorentz transformation gives a cosh πǫ dependence to the RR gauge form
exchange, since its antisymmetric polarization transform as a vector in the (x0, x9) boost
plane, and a cosh 2πǫ to the exchange of the 0,9 components of the graviton, which transform
as a rank two tensor. The dilaton exchange, as well as the exchange of the transverse
components of the graviton, do not produce any dependence on the rapidity since they
transform as scalars in the boost plane. The rotated argument of the longitudinal δ-function
produces an overall sinhπǫ in the denominator instead of the total time of interaction.

C.3.1 Dp-Dp interaction

One finds

A =
Vp

sinhπǫ
T̂ 2
p

[

(

3 − p

4

)2

+
(p + 1)(7 − p) − 4 + 4 cosh 2πǫ

16
− coshπǫ

]

∆(8−p)(b)

=
Vp

sinhπǫ
T̂ 2
p

(

3

4
+

1

4
cosh 2πǫ− coshπǫ

)

∆(8−p)(b)

= 2VpT̂
2
p

sinh4 πǫ
2

sinhπǫ
∆(8−p)(b) , (C.18)

where ~b = ~Y1 − ~Y2.
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C.3.2 Dp-D(p+4) interaction

One finds

A =
Vp

sinhπǫ
T̂pT̂p+4

[

−(3 − p)(p+ 1)

16
+

(p + 1)(3 − p) − 4 + 4 cosh 2πǫ

16

]

∆(4−p)(b)

=
Vp

sinhπǫ
T̂pT̂p+4

(

−1

4
+

1

4
cosh 2πǫ

)

∆(4−p)(b)

=
1

2
VpT̂pT̂p+4

sinh πǫ
2

sinhπǫ
∆(4−p)(b) , (C.19)

C.4 U(1) Effective actions

Consider the one-loop effective action of a U(1) gauge theory in D dimensions coupled
to a particle of mass m, charge e and gyromagnetic ratio g. Generically, this particle
will correspond to some irreducible representation of the ten-dimensional Poicarré group
which can be constructed with Wigner’s method from a corresponding representation of
the massive little group SO(D−1). The Euclidean effective action in the constant field
approximation is

Γ(A) = STr ln

(

D2 +m2 +
eg

2
ΣµνF

µν
)

. (C.20)

Here Dµ = ∂µ − ieAµ is the usual covariant derivative and Σµν are the generators of the
Lorentz group SO(D−1,1) in the representation corresponding to the particle running in
the loop. The supertrace STr counts bosons and fermions with opposite signs, and involves
both a functional and a representation trace. Using the usual formula

lnX =

∫ ∞

0

dt

t
e−tX , (C.21)

the effective action (C.20) can be rewritten as

Γ(A) =

∫ ∞

0

dt

t
Z(t, A) , (C.22)

where
Z(t, A) = STre−tH (C.23)

is formally the partition function at temperature t for a particle in a magnetic field in D
space dimensions with Hamiltonian

H = (p− eA)2 +m2 +
eg

2
ΣµνF

µν . (C.24)

The corresponding Euclidean lagrangian is

L =
1

4
q̇µq̇µ +m2 + ieAµq̇

µ +
eg

2
ΣµνF

µν , (C.25)

which is equivalent through a canonical transformation to the more conventional

L = m
√

−q̇µq̇µ + ieAµq̇
µ +

eg

2
ΣµνF

µν . (C.26)
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As well known, the partition function Z(t) admits a path-integral representation. The
dependence on the representation factorizes (since Fµν is supposed constant) and one can
write Z(t, A) = Zr(t, A)Ẑ(t, A). The universal part can be written as a path-integral over
bosonic world-line coordinates

Ẑ(t, A) =

∫

Dqµ(τ) exp

{

−m
∫ t

0
dτ
√

−q̇µq̇µ + ieAµq̇
µ
}

= e−m
2t
∫

Dqµ(τ) exp

{

−
∫ t

0
dτ

1

4
q̇µq̇µ + ieAµq̇

µ
}

. (C.27)

The representation dependent part is simply

Zrep(t, A) = STr exp

{

−teg
2

ΣµνF
µν
}

. (C.28)

For spinor representations, one can write this as a path-integral over fermionic world-line
coordinates. The string world-sheet bosonic and fermionic fields are nothing but the gen-
eralization of the world-line fields appearing here, allowing the description of modes with
arbitrary mass and “spin”.

The partition functions Eqs. (C.27) and (C.28) can be easily evaluated in the simple case
in which there is a constant flux only in some plane, say Fii+1 = B. The contributions to the
universal part of the partition function Eq. (C.27) from each of D coordinates is as follows.
Each of the D-2 transverse coordinates gives simply the contribution of a free particle with
mass 1/2 and temperature t in one dimension with volume V1, Zfree = V1/

√
4πt. The

two coordinates in the flux plane give instead essentially the contribution of a harmonic
oscillator with frequency w = 2eB and temperature t, Z ′

osc = V2/(4πt)eBt/ sinh eBt. The
normalization is fixed by the requirement that in the limit B → 0, Zosc → Z2

free, reflecting
the degeneracy corresponding to the arbitrariness of the center of the Landau orbit in the
flux plane. Finally,

Ẑ(t, A) = VDe
−m2t(4πt)−

D
2

eBt

sinh eBt
. (C.29)

In Eq. (C.28), only the Cartan generator λ = Σii+1 corresponding to the SU(2) subalgebra
of the flux plane appears. For this reason, Zrep(t, A) depends only on the SU(2) content of
the representation. Since a generic representation of SO(D−1) will decompose into various
SU(2) representations depending on D, it is enough to study the generic spin j SU(2)
representation. As well known, this representation is (2j+1)-dimensional, and the helicity
λ has eigenvalues mλ = −j,−j + 1, ...j − 1, j. The supertrace appearing in Eq. (C.28) is
then straightforward to evaluate, and one finds [127, 12]

Zj(t, A) = STre−egBtλ = (−1)2j
j
∑

mλ=−j
e−egBtmλ

= (−1)2j
sinh(2j + 1)egBt2

sinh egBt
2

. (C.30)
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For example

Z0(t, A) = 1 Z 1
2
(t, A) = −2 cosh

egBt

2
,

Z1(t, A) = 2 cosh 2
egBt

2
+ 1 , Z 3

2
(t, A) = −2 cosh 3

egBt

2
− 2 cosh

egBt

2
,

...

(C.31)

Therefore, the result for a loop of a generic particle is

Γ(A) =
VD

(4π)
D
2

∫ ∞

0

dt

t1+
D
2

e−m
2t eBt

sinh eBt
Zrep(

egBt

2
) , (C.32)

where Zrep can be obtained from Zj by decomposing the representation in SU(2) spin j
representations. The case of an electric field F0i = E is obtained by analytic continuation
by setting B = iE.

Consider now the contribution to the effective action from a loop of some supermultiplet
representing an N extended supersymmetry with n supercharges. The numerator ZN is in
this case independent of the spacetime dimensionality D and for the multiplet with lowest
possible spins one finds [127, 12]

Zrep(
egBt

2
) =

(

2 sinh
egBt

4

)
n
4

. (C.33)

In a light-cone gauge path-integral à la Green-Schwarz, with spacetime fermions whose
fermionic z.m. are directly associated to the linearly realized supersymmetry, this factors
comes out directly form the integral over fermionic z.m..

Contact with the SYM effective actions relevant to D-brane dynamics is now straight-
forward. The only subtlety is that there is in this case only a one-dimensional translational
invariance, rather than a two-dimensional one, in the “flux” plane (because it corresponds
to a NN and a DD directions and not two NN directions as for a true electromagnetic field).
Correspondingly, the contribution of the two coordinates in the flux plane is now the prod-
uct of a free particle contribution Zfree and that of a true harmonic oscillator Zosc. Taking
D=p+1, m = b/(2πα′), e = 1/(2πα′), g = 2 as appropriate for string modes and B = iπǫ,
one finds indeed

A =
Vp

2(4π)
p
2

∫ ∞

0

dt

t
p+2
2

e−( b
2πα′ )

2
t

(

2 sin πǫ
4πα′ t

)n
4

sin πǫ
2πα′ t

, (C.34)

with n=16 for the Dp-Dp interaction and n=8 for the Dp-D(p+4) interaction.
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Appendix D

Boundary states and propagators

In this appendix, we report some details about the construction of the boundary state for
the D=4 point-like D-brane configurations studied in Chapter 4.

D.1 Boundary state and partition functions

As explained in Chapter 4, the boundary state, as well as the partition functions, split into
a universal Minkowski part and a compact part depending on the compactification scheme
and on which ten-dimensional D-brane configuration one starts with.

D.1.1 Non-compact part

As for the universal four-dimensional part, one has N b.c. in the time direction and D b.c.
in all the three space directions. Call ~Y1,2 the positions in the (x2, x3) transverse plane
and v1,2 = tanhπǫ1,2 the constant velocities in the x1 direction. It will be convenient to
group the fields along the time direction and the longitudinal direction, that we shall take
to be for simplicity x1, into the light-cone combinations X± = (X0 ± X1)/

√
2 and ψ± =

(ψ0 ± ψ1)/
√

2, whose modes satisfy [a±n , a
†∓
m ] = −δm,n and {ψ±

n , ψ
†∓
m } = −δm,n. Similarly,

the fields along the two transverse directions are grouped into the complex combinations
Y, Y ∗ = (X2 ± iX3)/

√
2 and ξ, ξ∗ = (ψ2 ± iψ3)/

√
2, whose modes satisfy [bn, b

†∗
m ] = δm,n

and {ξn, ξ†∗m} = δm,n.

Consider first the bosons. The z.m. part of the bosonic boundary state is

|B0, ǫ〉B = δ(cosh πǫ x1 − sinhπǫ x0)δ(2)
(

~x− ~Y
)

=

∫

d3k

(2π)3
eik·Y |k(ǫ)〉 , (D.1)

where kµ(ǫi) = (sinhπǫi k
1, cos πǫi k

1, k2, k3). Notice that a static D-brane can transfer
momentum but no energy, whereas a moving D-brane can transfer both of them in a combi-
nation orthogonal to its own four-momentum. Correspondingly, the zero mode contribution
to the partition function is

〈B0|e−lH |B0, ǫ〉B =
1

sinhπǫ

∫

d2~k

(2π)2
ei
~k·~be−

~k2

2 =
1

sinhπǫ

e−
b2

2l

(2πl)
, (D.2)
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where~b = ~Y1−~Y2 is now the impact parameter in the (x2, x3) transverse plane and ǫ = ǫ1−ǫ2
the relative rapidity. Consider next the bosonic oscillators. The static b.c. would be imply

(

a±n + ã†∓n
)

|Bosc〉B = 0 , (D.3)
(

bn − b̃†n
)

|Bosc〉B =
(

b∗n − b̃†∗n
)

|Bosc〉B = 0 , (D.4)

which are solved by

|Bosc〉B = exp

{

−
∞
∑

n=1

(

a†+n ã†+n + a†−n ã†−n + b†nb̃
†∗
n + b†∗n b̃

†
n

)

}

|0〉 . (D.5)

The effect of the velocity is to transform the light-cone oscillators, which pick up an imagi-
nary phase, a±n → e±πǫia±n , so that the boosted boundary state reads

|Bosc, ǫi〉B = exp

{

−
∞
∑

n=1

(

e2πǫia†+n ã†+n + e−2πǫia†−n ã†−n + b†nb̃
†∗
n + b†∗n b̃

†
n

)

}

|0〉 . (D.6)

It is straightforward to compute the contribution of the bosonic oscillators of the (0,1) and
(2,3) pairs. One finds, taking into account the corresponding zero-point energy

〈Bosc, ǫ1|e−lH |Bosc, ǫ2〉B(0,1) = q−
1
12

∞
∏

n=0

[(

1 − q2ne2πǫ
) (

1 − q2ne−2πǫ
)]−1

, (D.7)

〈Bosc, ǫ1|e−lH |Bosc, ǫ2〉B(2,3) = q−
1
12

∞
∏

n=0

(

1 − q2n
)−2

, (D.8)

where q = e−2πl. The contribution of the b,c ghosts exactly cancels that of the (2,3) pair,
so that the total bosonic part of the non-compact partition function is

Z
(nc)
B (l, ǫ) = 2

e−
b2

2l

(2πl)

η(2il)

ϑ1(iǫ|2il)
. (D.9)

Consider now the fermions. In the NSNS sector there are no z.m., and the corresponding
boundary state can be taken to be simply the Fock vacuum. In the RR sector, the static
zero mode b.c. are

(

ψ±
0 + iηψ̃∓

0

)

|B0, η〉RR = 0 , (D.10)
(

ξ0 − iηξ̃0
)

|B0, η〉RR =
(

ξ∗0 − iηξ̃∗0
)

|B0, η〉RR = 0 , (D.11)

and the state |B0, η〉RR solving these b.c. can be constructed from the vacua |ω〉 and ˜|ω〉
satisfying ψ+

0 |ω〉 = ξ0|ω〉 = 0 and ψ̃+
0

˜|ω〉 = ξ̃∗0
˜|ω〉 = 0. One finds

|B0, η〉F =











exp

{

iη
(

ψ−
0 ψ̃

−
0 + ξ∗0 ξ̃0

)

}

|ω〉 ⊗ ˜|ω〉 , RR

|0〉 , NSNS

. (D.12)
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The effect of a boost is two transform the light-cone z.m. as ψ±
0 → e±πǫiψ±

0 . Also the spinor

vacua are not invariant, but transform as |ω〉 → eπǫi/2|ω〉 and ˜|ω〉 → eπǫi/2 ˜|ω〉 so that the
boosted version of the z.m. boundary state is

|B0, ǫi, η〉F =











eπǫi exp

{

iη
(

e−2πǫiψ−
0 ψ̃

−
0 + ξ∗0 ξ̃0

)

}

|ω〉 ⊗ ˜|ω〉 , RR

|0〉 , NSNS

. (D.13)

The corresponding contributions to the partition functions are found to be

〈B0, ǫ1, η|e−lH |B0, ǫ2, η
′〉F(0,1) =

{

(eπǫ + ηη′e−πǫ) , RR

1 , NSNS
, (D.14)

〈B0, ǫ1, η|e−lH |B0, ǫ2, η
′〉F(2,3) =

{

(1 + ηη′) , RR

1 , NSNS
. (D.15)

For the oscillator modes, the static b.c. would be
(

ψ±
n + iηψ̃†∓

n

)

|Bosc, η〉F = 0 , (D.16)
(

ξn − iηξ̃†n
)

|Bosc, η〉F =
(

ξ∗n − iηξ†∗n
)

|Bosc, η〉F = 0 , (D.17)

with integer or half-integer moding in the RR or NSNS sectors. These are solved by

|Bosc, η〉F = exp

{

iη
∑

n>0

(

ψ†+
n ψ̃†+

n + ψ†−
n ψ̃†−

n + ξ†nξ̃
†∗
n + ξ†∗n ξ̃

†
n

)

}

|0〉 , (D.18)

with appropriate moding. As for the bosons, the effect of the velocity is to transform the
light-cone oscillators, which pick up the same imaginary phase, ψ±

n → e±πǫiψ±
n , so that the

boosted boundary state reads

|Bosc, ǫi〉F = exp

{

iη
∑

n>0

(

e2πǫiψ†+
n ψ̃†+

n + e−2πǫiψ†−
n ψ̃†−

n + ξ†nξ̃
†∗
n + ξ†∗n ξ̃

†
n

)

}

|0〉 . (D.19)

The contribution to the partition function from the fermionic oscillators of the (0,1) and
(2,3) pairs is

〈Bosc, ǫ1, η|e−lH |Bosc, ǫ2, η′〉F(0,1) = qb
∞
∏

n>0

[(

1 + ηη′q2ne2πǫ
) (

1 + ηη′q2ne−2πǫ
)]

, (D.20)

〈Bosc, ǫ1, η|e−lH |Bosc, ǫ2, η′〉F(2,3) = qb
∞
∏

n>0

(

1 + ηη′q2n
)2

, (D.21)

with integer and half-integer moding and b = 1/12 or −1/6 in the RR and NSNS sectors,
and as before q = e−2πl. The contribution of the β, γ superghosts exactly cancels that of
the (2,3) pair, so that the total fermionic part of the non-compact partition function is, in
each spin structure s,

Z
(nc)
Fs (l, ǫ) =

ϑα(iǫ|2il)
η(2il)

, (D.22)

with α = 1, 2 for s=R± and α = 3, 4 for s=NS±. Actually, for s=R−, the result vanishes
because of the (2,3) fermionic z.m..
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D.1.2 Compact part

In the compact direction, the bosonic zero modes get drastically modified. As discussed
in Chapter 4, the z.m. part of the bosonic boundary state is a discrete superposition of
Kaluza-Klein and winding states, weighted by the position in the D directions and the
Wilson line in the N directions. One finds, in short notation

|B0, ~Y , ~W 〉B =
Vp
VM6

∑

~k∈Γ∗
6, ~w∈Γ6

ei(
~k·~Y+~w· ~W )|~k, ~w〉 , (D.23)

where we have normalized the states |~k, ~w〉 such that 〈~k, ~w|~k′, ~w′〉 = Vpδ~k,~k′, δ~w,~w′. The
normalization of the boundary state comes from the discretization of the Fourier transform
in the continuum boundary state. For simplicity, we keep only the part with zero momentum
and winding, neglecting all the higher modes. By doing so, the above boundary state reduces
simply to

|B0〉B =
Vp
VM6

|~0,~0〉 . (D.24)

In this limit, the contribution of the bosonic z.m. in the compact directions is just

〈B0|e−lH |B0〉B =
V 2
p

VM6

, (D.25)

instead of the continuum result Vp(2πl)
p/2−3e−b

2/(2l). Notice, as a dimensional check, that
the latter continuum expression has the same dimensions since l carries the dimensions of
a length squared. The remaining of the compact contribution has to be analyzed case by
case. The fields associated to the six compact directions are grouped into the complex
combinations Za, Za∗ = (Xa ± iXa+1)/

√
2 and χa, χa∗ = (ψa ± iψa+1)/

√
2, for a=4,6,8.

The corresponding modes satisfy [can, c
†b∗
m ] = δabδm,n and {χan, χ†b∗

m } = δabδm,n.

D0-brane: untwisted sector

The bosonic oscillators in the compact directions satisfy the following b.c.
(

can − c̃†an
)

|Bosc〉B =
(

ca∗n − c̃†a∗n

)

|Bosc〉B = 0 , (D.26)

which are solved by

|Bosc〉B = exp

{

−
∞
∑

n=1

∑

a

(

c†an c̃
†a∗
n + c†a∗n c̃†an

)

}

|0〉 . (D.27)

This boundary state is already invariant under orbifold rotation. Indeed, under generic
rotations in the three compact planes, the modes of the complex combinations of fields we
are using pick up definite phases, can → e2πizacan, and the boundary state is invariant. This
is so because the rotations occur in NN,NN planes, and amount to an irrelevant redefinition
of the coordinates. The contribution of the bosonic oscillators of each compact pair is found
to be

〈Bosc|e−lH |Bosc〉B(a,a+1) = q−
1
12

∞
∏

n=0

(

1 − q2n
)−2

. (D.28)
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Considering also the factor contributed by the zero modes, the total bosonic part of the
compact partition function is

Z
(c)
B (l) =

1

VM6

1

η6(2il)
. (D.29)

Consider now the fermions. In the NSNS sector, there are no fermionic z.m., so that
the z.m. part of the boundary state is simply the Fock vacuum. In the RR sector, the zero
mode b.c. are

(χa0 − iηχ̃a0) |B0, η〉RR = (χa∗0 − iηχ̃a∗0 ) |B0, η〉RR = 0 . (D.30)

The state |B0, η〉RR can be constructed from the vacua |ω〉 and ˜|ω〉 satisfying χa0|ω〉 = 0 and
χ̃a∗0

˜|ω〉 = 0. One finds

|B0, η〉F =















exp

{

iη
∑

a

χa∗0 χ̃
a
0

}

|ω〉 ⊗ ˜|ω〉 , RR

|0〉 , NS

. (D.31)

Under orbifold rotation, χa0 → e2πzaiχa0 and |ω〉 → |ω〉 and ˜|ω〉 → ˜|ω〉, and the z.m. boundary
state is already invariant. The corresponding contribution to the partition function is, for
each pair

〈B0, η|e−lH |B0, η
′〉F(a,a+1) =

{

(1 + ηη′) , RR

1 , NSNS
. (D.32)

Similarly, the b.c. for the fermionic oscillators are

(

χan − iηχ̃†a
n

)

|Bosc, η〉F =
(

χa∗n − iηχ̃†a∗
n

)

|Bosc, η〉F = 0 , (D.33)

with integer or half-integer moding in the RR and NSNS sectors, and are solved by

|Bosc, η〉F = exp

{

iη
∞
∑

n>0

∑

a

(

χ†a
n χ̃

†a∗
n + χ†a∗

n χ̃†a
n

)

}

|0〉 . (D.34)

As its bosonic counterpart, this is already invariant under orbifold rotations, under which
χan → e2πizaχan. The contribution of each compact pair of fermionic oscillators is found to
be

〈Bosc, η|e−lH |Bosc, η′〉F(a,a+1) = q−b
∞
∏

n=0

(

1 + ηη′q2n
)2

, (D.35)

with integer and half-integer moding and b = 1/12 or −1/6 in the RR and NSNS sectors.
Finally, the total fermionic part of the compact partition function is

Z
(c)
sF (l) =

ϑ3
α(0|2il)
η3(2il)

, (D.36)

with α = 1, 2 for s=R± and α = 3, 4 for s=NS±.
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D0-brane: twisted sectors

Consider now a generic orbifold twisted sector, concentrating on one compact pair with
twist αa. Due to the non-integer moding, the fields have in general no longer zero modes
(in the notation of the Chapter 4, there is a mode with n=0, but it is no longer hermitian).
The bosonic oscillators in the compact directions satisfy the following b.c.

(

can − c̃†an
)

|Bosc〉B =
(

ca∗n − c̃†a∗n

)

|Bosc〉B = 0 , (D.37)

which are solved by

|Bosc〉B = exp

{

−
∞
∑

n=1

∑

a

(

c†an c̃
†a∗
n + c†a∗n c̃†an

)

}

|0〉 . (D.38)

Again, this boundary state is already invariant under orbifold rotations, under which can →
e2πzaican. The contribution of the bosonic oscillators of each compact pair is

〈Bosc|e−lH |Bosc〉B(a,a+1) = q
1
2 [−

1
6
+αa(1−αa)]

∞
∏

n=0

(

1 − q2(n+αa)
)−1

∞
∏

n=1

(

1 − q2(n−αa)
)−1

(D.39)

Considering also the factor coming from the zero modes, the total contribution of the
compact bosons to the partition function is finally

Z
(c)
B (l, αa) =

1

VM6

∏

a

η(2il)

ϑ
[

1
2
−αa
1
2

]

(0|2il)
. (D.40)

Consider next the fermions. The b.c. are
(

χan − iηχ̃†a
n

)

|Bosc, η〉F =
(

χa∗n − iηχ̃†a∗
n

)

|Bosc, η〉F = 0 , (D.41)

with n integer or half-integer in the RR and NSNS sectors, and are solved by

|Bosc, η〉F = exp

{

iη
∞
∑

n>0

∑

a

(

χ†a
n χ̃

†a∗
n + χ†a∗

n χ̃†a
n

)

}

|0〉 . (D.42)

Again, this is already invariant under orbifold rotations, under which χan → e2πzaiχan. The
contribution of each compact pair of fermionic oscillators is found to be

〈Bosc, η|e−lH |Bosc, η′〉F(a,a+1) = q−b(αa)
∞
∏

n=0

(

1 + ηη′q2(n+αa)
)

∞
∏

n=1

(

1 + ηη′q2(n−αa)
)

,

(D.43)
with n integer and half-integer and b(αa) = 1/2[−1/6+αa(1−αa)] or 1/2(1/12−α2

a) in the
RR and NSNS sectors. Finally, the total fermionic part of the compact partition function
is

Z
(c)
sF (l) =

∏

a

ϑ
[a−αa

b

]

(0|2il)
η(2il)

, (D.44)

with a = 1/2, b = 0, 1/2 for s=R±, and a = 0, b = 0, 1/2 for s=NS±.
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D3-brane: untwisted sector

The bosonic oscillators in the compact directions satisfy now the following b.c.
(

can + c̃†a∗n

)

|Bosc〉B =
(

can + c̃†a∗n

)

|Bosc〉B = 0 , (D.45)

which are solved by

|Bosc〉B = exp

{ ∞
∑

n=1

∑

a

(

c†an c̃
†a
n + c†a∗n c̃†a∗n

)

}

|0〉 . (D.46)

As expected, this boundary state is not invariant under orbifold rotation, under which
can → e2πizacan. Rather, it becomes

|Bosc, za〉B = exp

{ ∞
∑

n=1

∑

a

(

e4πizac†an c̃
†a
n + e−4πizac†a∗n c̃†a∗n

)

}

|0〉 . (D.47)

The contribution of the bosonic oscillator of each of compact pair is

〈Bosc, za|e−lH |Bosc, z′a〉B(a,a+1) = q−
1
12

∞
∏

n=0

∣

∣

∣1 − q2ne4πiwa

∣

∣

∣

−2
, (D.48)

where wa = za − z′a is the relative twist. Considering also the factor coming from the zero
modes, the total bosonic part of the compact partition function is

Z
(c)
B (l, wa) =

V 2
3

VM6

η3(2il)
∏

a

2 sin 2πwa
ϑ1(2wa|2il)

. (D.49)

Consider now the fermions. In the NSNS sector there are no z.m., and the corresponding
boundary state is simply the Fock vacuum. In the RR sector, the zero mode b.c. are

(χa0 + iηχ̃a∗0 ) |B0, η〉RR = (χa∗0 + iηχ̃a0) |B0, η〉RR = 0 , (D.50)

and the state |B0, η〉RR can be constructed from the vacua |ω〉 and ˜|ω〉 satisfying now
χa0|ω〉 = 0 and χ̃a0

˜|ω〉 = 0. On finds,

|B0, η〉F =















exp

{

−iη
∑

a

χa∗0 χ̃
a∗
0

}

|ω〉 ⊗ ˜|ω〉 , RR

|0〉 , NSNS

. (D.51)

Under orbifold rotation, one has χa0 → e2πzaiχa0 and |ω〉 → eiπza |ω〉, ˜|ω〉 → eiπza ˜|ω〉. The
z.m. boundary state therefore becomes

|B0, za, η〉F =















e2πiza exp

{

−iη
∑

a

e−4πizaχa∗0 χ̃
a∗
0

}

|ω〉 ⊗ ˜|ω〉 , RR

|0〉 , NSNS

. (D.52)

The corresponding contribution to the partition function is, for each pair

〈B0, za, η|e−lH |B0, z
′
a, η

′〉F(a,a+1) =

{
(

e2πiwa + ηη′e−2πiwa
)

, RR

1 , NSNS
. (D.53)
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Similarly, the b.c. for the fermionic oscillators are
(

χan + iηχ̃†a∗
n

)

|Bosc, η〉F =
(

χa∗n + iηχ̃†a
n

)

|Bosc, η〉F = 0 , (D.54)

with integer or half-integer moding in the RR and NSNS sectors, and are solved by

|Bosc, η〉F = exp

{

−iη
∞
∑

n>0

∑

a

(

χ†a
n χ̃

†a
n + χ†a∗

n χ̃†a∗
n

)

}

|0〉 . (D.55)

As its bosonic counterpart, this is not invariant under orbifold rotations, under which χan →
e2πizaχan. Rather, it becomes

|Bosc, za, η〉F = exp

{

−iη
∞
∑

n>0

∑

a

(

e4πizaχ†a
n χ̃

†a
n + e−4πizaχ†a∗

n χ̃†a∗
n

)

}

|0〉 . (D.56)

The contribution of each compact pair of fermionic oscillators is found to be

〈Bosc, za, η|e−lH |Bosc, z′a, η′〉F(a,a+1) = q−b
∞
∏

n=0

∣

∣

∣1 + ηη′q2ne4πiwa

∣

∣

∣

2
, (D.57)

with integer and half-integer moding and b = 1/12 or −1/6 in the RR and NSNS sectors.
Finally, the total fermionic part of the compact partition function is

Z
(c)
sF (l, wa) =

ϑ3
α(2wa|2il)
η3(2il)

, (D.58)

with α = 1, 2 for s=R± and α = 3, 4 for s=NS±.

D3-brane: twisted sector

As discussed in Chapter 4, mixed b.c. are incompatible with twisting. There is therefore
no coupling to closed string states of orbifold twisted sectors.

D.2 Two-point functions

In this section, we use the universal non-compact part of the boundary state constructed in
previous section to compute the connected two-point functions needed in the computations
of Chapter 4.

Consider first the bosonic oscillators. We shall abbreviateXµ(z) = Xµ and X̄µ(z̄) = X̄µ.
Since correlation functions only depend on the relative distance between the arguments, the
two-point function of two left or two right fields at the same point is a constant, whereas
the two-point function of a left and a right moving fields at image points only depends on
z− z̄ = 2iτ . In agreement with the b.c. implemented by the boundary states, we introduce
the following notation

〈X0X̄0〉osc = 〈X1X̄1〉osc = Aǫ(τ, l) ,

〈X2X̄2〉osc = 〈X3X̄3〉osc = A(τ, l) ,

〈X0X̄1〉osc = 〈X1X̄0〉osc = Bǫ(τ, l) ,

〈X0X0〉osc = 〈X̄0X̄0〉osc = −〈X1X1〉osc = −〈X̄1X̄1〉osc = Cǫ(l) ,

〈X2X2〉osc = 〈X̄2X̄2〉osc = 〈X3X3〉osc = 〈X̄3X̄3〉osc = −C(l) , (D.59)
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with A(τ, l) = Aǫ(τ, l)|ǫ1=ǫ2=0 and C(τ, l) = Cǫ(τ, l)|ǫ1=ǫ2=0. These two-point functions
can be computed using the non-compact part of the boundary state constructed in pre-
vious section, and the definition Eq. (4.80). Carrying out some heavy oscillator algebra
and resumming the results, one finds, using also l′ = l − τ , infinite series of logarithms
corresponding to the propagation of the whole tower of bosonic modes

Aǫ =
1

4π

∞
∑

n=0

{

cosh 2π[(ǫ1 − ǫ2)n− ǫ2] ln(1 − q2ne−4πτ )

+ cosh 2π[(ǫ2 − ǫ1)n− ǫ1] ln(1 − q2ne−4πl′)

}

, (D.60)

Bǫ = − 1

4π

∞
∑

n=0

{

sinh 2π[(ǫ1 − ǫ2)n− ǫ2] ln(1 − q2ne−4πτ )

+ sinh 2π[(ǫ2 − ǫ1)n− ǫ1] ln(1 − q2ne−4πl′)

}

, (D.61)

Cǫ =
1

2π

∞
∑

n=1

cosh 2π[(ǫ1 − ǫ2)n] ln(1 − q2n) . (D.62)

In the last expression, we have discarded a normal ordering constant that will never con-
tribute in the amplitude because of p2 = 0. The equal-point correlator Cǫ can be deduced
from the other correlators by using the b.c. to reflect left and right movers at the boundaries.
The bosonic exponential correlation is given by

〈eip·X〉osc = e−
1
2
pµpν〈(X+X̄)µ(X+X̄)ν〉osc = e−[(p20+p

2
1)Aǫ+~p2T (A+Cǫ−C)+2p0p1Bǫ] (D.63)

and, using p = p0 and cos θ = p1/p, can be recast in the following form

〈eip·X〉osc =
∞
∏

n=1

[

1 − q2n
]− p2

π
sinh2 π[(ǫ1−ǫ2)n] sin2 θ

×
∞
∏

n=0

[

1 − q2ne−4πτ
]− p2

2π
cosh2 π[(ǫ1−ǫ2)n−ǫ2]{1+tanh π[(ǫ1−ǫ2)n−ǫ2] cos θ}2

×
∞
∏

n=0

[

1 − q2ne−4πl′
]− p2

2π
cosh2 π[(ǫ2−ǫ1)n−ǫ1]{1+tanh π[(ǫ2−ǫ1)n−ǫ1] cos θ}2

. (D.64)

Consider now correlations involving one derivative, and introduce

〈∂X0X̄0〉osc = 〈∂X1X̄1〈osc= −〈∂̄X̄0X0〉osc = −〈∂̄X̄1X1〉osc =
i

2
Kǫ(τ, l) ,

〈∂X2X̄2〉osc = 〈∂X3X̄3〈osc= −〈∂̄X̄2X2〉osc = −〈∂̄X̄3X3〉osc = − i

2
K(τ, l) ,

〈∂X0X̄1〉osc = 〈∂X1X̄0〉osc = −〈∂̄X̄1X0〉osc = −〈∂̄X̄0X1〉osc =
i

2
Lǫ(τ, l) ,

〈∂X0X1〉osc = −〈∂̄X̄0X̄1〉osc =
i

2
Wǫ(l) , (D.65)

with K(τ, l) = Kǫ(τ, l)|ǫ1=ǫ2=0. These correlators can be computed as before by using the
non-compact part of the boundary state constructed in previous section and the definition
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Eq. (4.80). Due to the derivative, one obtains in this case infinite series of poles, rather
than logarithms

Kǫ = −
∞
∑

n=0

{

cosh 2π[(ǫ1 − ǫ2)n− ǫ2]
q2ne−4πτ

1 − q2ne−4πτ

− cosh 2π[(ǫ2 − ǫ1)n− ǫ1]
q2ne−4πl′

1 − q2ne−4πl′

}

, (D.66)

Lǫ =
∞
∑

n=0

{

sinh 2π[(ǫ1 − ǫ2)n− ǫ2]
q2ne−4πτ

1 − q2ne−4πτ

− sinh 2π[(ǫ2 − ǫ1)n− ǫ1]
q2ne−4πl′

1 − q2ne−4πl′

}

, (D.67)

Wǫ = −π(v1 − v2)

2πl
− 2

∞
∑

n=1

sinh 2π[(ǫ1 − ǫ2)n]
q2n

1 − q2n
. (D.68)

Again, the equal-point correlator Wǫ can be deduced from the other correlators by using
the b.c..

Consider now the fermions. Again, we shall abbreviate ψµ(z) = ψµ and ψ̄µ(z̄) = ψ̄µ.
As for the bosons, correlation functions only depend on the relative distance between the
arguments. Therefore the two-point function of two left or two right fields at the same
point is a constant, whereas the two-point function of a left and a right moving fields at
image points only depends on z − z̄ = 2iτ . Taking into account the b.c. implemented by
the boundary states, and setting the sign η appearing in the fermionic b.c. always equal to
1 for the first boundary state (since only the relative sign ηη′ is relevant) according to the
discussion of Chapter 3, we introduce

〈ψ0ψ̄0〉s = 〈ψ1ψ̄1〉s = iF sǫ (τ, l) ,

〈ψ2ψ̄2〉s = 〈ψ3ψ̄3〉s = iF s(τ, l) ,

〈ψ0ψ̄1〉s = 〈ψ1ψ̄0〉s = iGsǫ(τ, l) ,

〈ψ0ψ1〉s = 〈ψ̄0ψ̄1〉s = U sǫ (l) , (D.69)

with F s(τ, l) = F sǫ (τ, l)|ǫ1=ǫ2=0. Each of the correlators is splitted into z.m. and oscillator
parts

F sǫ = F 0s
ǫ + F̃ sǫ , Gsǫ = G0s

ǫ + G̃sǫ , U sǫ = U0s
ǫ + Ũ sǫ . (D.70)

Proceeding as in the bosonic case, these correlation functions can be computed by using
the non-compact part of the boundary state constructed in the previous section and the
definition (4.81). The z.m. contributions are found to be

F 0R+
ǫ = −1

2

coshπ(ǫ1 + ǫ2)

coshπ(ǫ1 − ǫ2)
, F 0R−

ǫ = −1

2

sinhπ(ǫ1 + ǫ2)

sinhπ(ǫ1 − ǫ2)
, F 0NS±

ǫ = 0 , (D.71)

G0R+
ǫ = −1

2

sinhπ(ǫ1 + ǫ2)

cosh π(ǫ1 − ǫ2)
, G0R−

ǫ = −1

2

cosh π(ǫ1 + ǫ2)

sinhπ(ǫ1 − ǫ2)
, G0NS±

ǫ = 0 , (D.72)

U0R+
ǫ = +

1

2
tanhπ(ǫ1 − ǫ2) , U0R−

ǫ = +
1

2
coth π(ǫ1 − ǫ2) , U0NS±

ǫ = 0 . (D.73)
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The oscillator part yields as in the bosonic case infinite series of simple poles, corresponding
to the propagation of the whole tower of fermionic modes. One finds

F̃R±ǫ = −
∞
∑

n=0

(∓)n
{

cosh 2π[(ǫ1 − ǫ2)n − ǫ2]
q2ne−4πτ

1 − q2ne−4πτ

± cosh 2π[(ǫ2 − ǫ1)n− ǫ1]
q2ne−4πl′

1 − q2ne−4πl′

}

,

G̃R±ǫ =
∞
∑

n=0

(∓)n
{

sinh 2π[(ǫ1 − ǫ2)n− ǫ2]
q2ne−4πτ

1 − q2ne−4πτ

± sinh 2π[(ǫ2 − ǫ1)n− ǫ1]
q2ne−4πl′

1 − q2ne−4πl′

}

, (D.74)

ŨR±ǫ = −π(ǫ1 − ǫ2)

2πl
− 2

∞
∑

n=1

(∓)n sinh 2π[(ǫ1 − ǫ2)n]
q2n

1 − q2n
, (D.75)

in the RR sector and

FNS±ǫ = −
∞
∑

n=0

(∓)n
{

cosh 2π[(ǫ1 − ǫ2)n− ǫ2]
qne−2πτ

1 − q2ne−4πτ

± cosh 2π[(ǫ2 − ǫ1)n− ǫ1]
qne−2πl′

1 − q2ne−4πl′

}

, (D.76)

GNS±ǫ =
∞
∑

n=0

(∓)n
{

sinh 2π[(ǫ1 − ǫ2)n− ǫ2]
qne−2πτ

1 − q2ne−4πτ

± sinh 2π[(ǫ2 − ǫ1)n− ǫ1]
qne−2πl′

1 − q2ne−4πl′

}

, (D.77)

UNS±ǫ = −π(ǫ1 − ǫ2)

2πl
− 2

∞
∑

n=1

(∓)n sinh 2π[(ǫ1 − ǫ2)n]
qn

1 − q2n
, (D.78)

in the NSNS sector. The equal-point correlators U sǫ can be deduced from the other corre-
lators by using the b.c. to reflect left and right movers at the boundaries.

Notice that world-sheet supersymmetry is enforced between the bosons and the odd
spin-structure fermions. Since Kv = F̃R−v , Lv = G̃R−v and Wv = F̃R−v , we explicitly check
the relations

〈∂XµX̄ν〉osc =
1

2
〈ψµψ̄ν〉R−osc ,

〈∂XµXν〉osc =
i

2
〈ψµψν〉R−osc ,

〈∂̄X̄µXν〉osc =
1

2
〈ψ̄µψν〉R−osc ,

〈∂̄X̄µX̄ν〉osc = − i

2
〈ψ̄µψ̄ν〉R−osc . (D.79)

The periodicities of the fermionic propagators in the four spin structures, which should
follow from an involution from the torus to the cylinder [208], can be understood by consid-
ering the light-cone combinations ψ± = (ψ0 ± ψ1)/

√
2 and in particular their propagators
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〈ψ±(z)ψ̄±(z̄)〉s = P sǫ(±), which are given by

P sǫ(±) =
i

4
(F sǫ ±Gsǫ) . (D.80)

Using the explicit form of F sǫ and Gsǫ , one can then check the transformation around the
two cycles of the covering torus with modulus 2il, w → w+m+n2il with w = z− z̄ = 2iτ ,
that is τ → τ − i

2m+ nl. One finds

PR+
ǫ(±)(τ −

i

2
m+ nl, l) = (−1)ne±2πnǫPR+

ǫ(±)(τ, l) ,

PR−ǫ(±)(τ −
i

2
m+ nl, l) = e±2πnǫPR−ǫ(±)(τ, l) ,

PNS+
ǫ(±) (τ − i

2
m+ nl, l) = (−1)n(−1)me±2πnǫPNS+

ǫ(±) (τ, l) ,

PNS−ǫ(±) (τ − i

2
m+ nl, l) = (−1)me±2πnǫPNS−ǫ(±) (τ, l) . (D.81)

These transformation rules for m = 0 correspond to the boundary conditions at the two
ends of the cylinder for the ψ± which are

ψ±(z)|τ=0 = −iηe±2πǫ2ψ̄∓(z̄)|τ=0 ,

ψ±(z)|τ=l = −iηe±2πǫ1ψ̄∓(z̄)|τ=l . (D.82)

where the two possible sign choices η = ± on the r.h.s. correspond to the ± spin-structures.
The local behavior of these functions for τ → 0 is found to be

P sǫ(±)(τ, l) →
1

8πiτ
e±2πǫ2 . (D.83)

It is convenient to rescale the fermions according to ψ± → ψ̂± = e∓v2ψ±, their propaga-
tors becomming P̂ sǫ(±) = e∓2πǫ2P sǫ(±). The monodromy properties do not change, but the
boundary conditions now become

ψ̂±(z) = −iη ˆ̄ψ
∓
(z̄) , z = z̄ ,

ψ̂±(z) = −iηe±2π(ǫ1−ǫ2) ˆ̄ψ
∓
(z̄) , z = z̄ + 2il , (D.84)

and the local behavior for τ → 0 simplifies to the conventional one

P̂ sǫ(±)(τ, l) →
1

4πw
. (D.85)

It is now clear how to do the twisted involution to pass from the covering torus to the
cylinder: the twisted boundary conditions on the cylinder are obtained from a non-trivial
phase transformation around the long cycle of the torus with imaginary angle iǫ. Actually,
the monodromy properties of the functions P̂ sǫ(±), together with their local behavior, imply
them to be combinations of twisted ϑ-functions, with argument w = 2iτ , modulus 2il and
imaginary twist iǫ. In fact, one can check that

P̂R+
ǫ(±)(w, l) =

1

4π

ϑ2(w ± iǫ|2il)ϑ′1(0|2il)
ϑ1(w|2il)ϑ2(±iǫ|2il)

, (D.86)

P̂NS+
ǫ(±) (w, l) =

1

4π

ϑ3(w ± iǫ|2il)ϑ′1(0|2il)
ϑ1(w|2il)ϑ3(±iǫ|2il)

, (D.87)

P̂NS−ǫ(±) (w, l) =
1

4π

ϑ4(w ± iǫ|2il)ϑ′1(0|2il)
ϑ1(w|2il)ϑ4(±iǫ|2il)

. (D.88)
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In the odd spin-structure case, the propagator is not analytic and can therefore not be
unambiguously determined following this procedure.

In order to study the amplitudes in the large distance limit, we need the l → ∞ asymp-
totics of the correlations. For the bosonic correlations with one derivative, one finds

K̃ǫ −→
l→∞

− cosh 2πǫ2
e−4πτ

1 − e−4πτ
− cosh 2πǫ1

e−4πl′

1 − e−4πl′
, (D.89)

L̃ǫ −→
l→∞

− sinh 2πǫ2
e−4πτ

1 − e−4πτ
− sinh 2πǫ1

e−4πl′

1 − e−4πl′
, (D.90)

W̃ǫ −→
l→∞

−π(ǫ1 − ǫ2)

2πl
− 2 sinh 2π(ǫ1 − ǫ2) e

−4πl , (D.91)

and the bosonic exponential becomes

〈eip·X〉osc −→
l→∞

[

1 − e−4πτ
]− p(2)2

2π
[

1 − e−4πl′
]− p(1)2

2π . (D.92)

The fermionic propagators in the four spin-structures reduce to

F̃R±ǫ −→
l→∞

− cosh 2πǫ2
e−4πτ

1 − e−4πτ
∓ cosh 2πǫ1

e−4πl′

1 − e−4πl′
, (D.93)

G̃R±ǫ −→
l→∞

− sinh 2πǫ2
e−4πτ

1 − e−4πτ
∓ sinh 2πǫ1

e−4πl′

1 − e−4πl′
, (D.94)

ŨR±ǫ −→
l→∞

−π(ǫ1 − ǫ2)

2πl
± 2 sinh 2π(ǫ1 − ǫ2) e

−4πl , (D.95)

and

FNS±ǫ −→
l→∞

− cosh 2πǫ2
e−2πτ

1 − e−4πτ
∓ cosh 2ǫ1

e−2πl′

1 − e−4πl′

+ e−2πl
[

± cosh 2π(ǫ1 − 2ǫ2) e
−2πτ + cosh 2π(ǫ2 − 2ǫ1) e

−2πl′
]

, (D.96)

GNS±ǫ −→
l→∞

− sinh 2πǫ2
e−2πτ

1 − e−4πτ
∓ sinh 2πǫ1

e−2πl′

1 − e−4πl′

+ e−2πl
[

∓ sinh 2π(ǫ1 − 2ǫ2) e
−2πτ − sinh 2π(ǫ2 − 2ǫ1) e

2πl′
]

, (D.97)

UNS±ǫ −→
l→∞

−π(ǫ1 − ǫ2)

2πl
± 2 sinh 2π(ǫ1 − ǫ2) e

−2πl . (D.98)
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