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• Viable SUSY breaking in SUGRA theories.

• Constraints for minimal chiral SUGRA models.

• Constraints for gauge invariant SUGRA models.

• Interplay between F and D breaking effects.



SUSY BREAKING AND SUGRA

In a viable SUGRA model, the vacuum state must be associated with
a stationary point of the scalar potential where SUSY is spontaneously
broken.

To get a realistic situation, there are however two additional conditions
that must certainly be imposed:

• Flatness: The energy of the vacuum should be negligibly small,
and reproduce the tiny value of the cosmological constant.

• Stability: The squared masses for small fluctuations around the
vacuum should be positive.

The natural question is then whether these two conditions can be used to
restrict the class of models of potential interest.
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MINIMAL SUGRA MODELS

A model with chiral multiplets Φi is specified by a real Kähler potential K
and a holomorphic superpotentialW . It has a Kähler symmetry for which
(K,W ) → (K+∆+∆̄, e−∆W ), and depends only on:

G = K + logW + log W̄

In the superconformal formulation, with a chiral compensator multiplet Φ,
the Kähler symmetry becomes manifest, with Φ → e∆/3Φ. One can
then set (K,W ) → (G, 1), and write the Lagrangian in the form:

L =

∫

d4θ
[

−3 e−G/3
]

Φ†Φ +

(
∫

d2θΦ3 + h.c.

)

The component action is obtained by freezing Φ to gauge fix the extra
conformal symmetries.
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The scalar fields φi behave as coordinates of a Kähler manifold, whose
metric can be used to raise and lower chiral indices and is given by the
second derivatives of G:

gij̄ = Gij̄

The auxiliary fields F i are instead completely determined by the first
derivatives of G:

F i = −eG/2Gi

The kinetic term is given by

T = gij̄ ∂µφ
i∂µφj̄

The potential has instead the form:

V = eG
(

GkGk − 3
)

Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen
Bagger, Witten
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Vacuum

The flatness condition is V = 0 and it implies that:

GkGk − 3 = 0

The stationarity conditions can be written as ∇iV = 0 and imply:

Gi +Gk∇iGk = 0

The stability conditions amount finally to imposing
(

m2
ij̄ m2

ij

m2
īj̄ m2

īj

)

> 0

where the blocks m2
ij̄ = ∇i∇j̄V and m2

ij = ∇i∇jV are given by:

m2
ij̄ = eG

[

gij̄ + ∇iGk∇j̄G
k −Rij̄pq̄ G

pGq̄
]

m2
ij = eG

[

2 ∇(iGj) +Gk∇(i∇j)Gk

]
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Supersymmetry is spontaneously broken, and the gravitino mass is:

m3/2 = eG/2

The would-be Goldstino fermion is identified with the linear combination
η = fiψ

i, where:

fi =
1√
3

Fi

m3/2
= − 1√

3
Gi

For fixed gij̄, the quantities fi can be treated as independent variables
without any particular constraint.

Flatness condition

The flatness condition is the constraint that the Goldstino vector should
have unit length:

gij̄ f
if j̄ = 1
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Stability condition

The stability condition is more complicated and can be studied only model
by model, by explicit diagonalization.

It is however possible to find simpler but weaker conditions for stability,
which are necessary but not sufficient, by looking at particular directions
in scalar field space.

In this case, there is only one special complex direction that appears in
the problem and that we could use: the Goldstino direction Gi.

Looking at the two independent real directions (Gi, Gī) and (iGi,−iGī),
one deduces the condition m2

ij̄G
iGj̄ > 0. Using the flatness and the

stationarity conditions, this gives:

Rij̄pq̄ f
if j̄fpf q̄ <

2

3
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Constraints

Summarizing, a stationary point can lead to a satisfactory situation only if
two simple flatness and stability conditions are satisfied at it.

It is convenient redefine the fields to locally switch to flat indices, with
gIJ̄ = δIJ̄ . The two conditions become then simply:

Flatness: δIJ̄ f
If J̄ = 1

Stability: RIJ̄P Q̄ f
If J̄fPf Q̄ <

2

3

The flatness condition fixes the overall amount of SUSY breaking. The
stability condition requires the existence of directions with R < 2/3, and
constrains the direction of SUSY breaking to be close to these.

Gomez-Reino, Scrucca
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GAUGE INVARIANT SUGRA MODELS

A model with chiral multiplets Φi and vector multiplets V a is specified by
a real Kähler function G, a set of holomorphic Killing vectors Xi

a and a
holomorphic gauge kinetic matrix Hab.

In the superconformal formulation, the Lagrangian has the form:

L =

∫

d4θ
[

−3 e−G/3
]

Φ†Φ +

(
∫

d2θΦ3 + h.c.

)

+

(
∫

d2θ
1

4
HabW

aαW b
α + h.c.

)

Gauge transformations act on superfields as

δΦi = ΛaXi
a δV a = −i(Λa − Λ̄a)

The local charges are encoded in:

Q j
ai = −∇iX

j
a
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The function G must be invariant: δG = 0. This implies:

Ga = −iXi
aGi = iX ī

aGī

The first and second derivatives of these relations imply that:

Xai +Xk
a∇iGk +Gk∇iX

k
a = 0 Xai = −i∇iGa

∇iXaj̄ + ∇j̄Xai = 0 Qaij̄ = −∇i∇j̄Ga

The functionHab must instead transform in such a way to cancel possible
residual quantum anomalies: δHbc = iΛaAabc. This implies:

Xi
a∇iHbc = iAabc

The scalar fields φi parametrize now a symmetric Kähler manifold. The
metric for chiral indices is given by the second derivatives of G:

gij̄ = Gij̄
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The vector fields Aa
µ gauge the symmetries associated to the isometries

Xi
a. The real part of Hab effectively acts as a metric for vector indices,

while its imaginary part gives additional parameters:

hab = ReHab θab = ImHab

The auxiliary fields F i and Gi are given by the first derivatives of G:

F i = −eG/2Gi Da = −Ga

The kinetic terms are:

T = gij̄

(

∂µφ
i −Xi

aA
a
µ

)(

∂µφī −X ī
aA

aµ
)

− 1

4
hab F

a
µνF

bµν − 1

4
θab F

a
µνF̃

bµν

The potential has instead the form:

V = eG
(

GkGk − 3
)

+
1

2
GaGa

Cremmer, Ferrara, Girardello, Van Proeyen
Bagger
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Vacuum

The flatness condition is V = 0 and it implies that:

GkGk +
1

2
e−GGaGa − 3 = 0

The stationarity conditions can be written as ∇iV = 0 and imply:

Gi +Gk∇iGk + e−G
[

Ga
(

∇i−
1

2
Gi

)

Ga +
1

2
habiG

aGb
]

= 0

The stability conditions amount in this case to imposing the slightly weaker
requirement:

(

m2
ij̄ m2

ij

m2
īj̄ m2

īj

)

≥ 0

The equality sign holds for the would-be Goldstone bosons, which are
absorbed by the vector fields.
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The blocks m2
ij̄ = ∇i∇j̄V and m2

ij = ∇i∇jV are now given by the
following more complicated expressions:

m2
ij̄ = eG

[

gij̄ −Rij̄pq̄G
pGq̄ + ∇iGk∇j̄G

k
]

+
[1

2

(

GiGj̄−gij̄

)

GaGa+
(

G(ihabj̄)+h
cdhacihbdj̄

)

GaGb

− 2GaG(i∇j̄)Ga − 2Gahbchab(i∇j̄)Gc

+hab∇iGa∇j̄Gb +Ga∇i∇j̄Ga

]

m2
ij = eG

[

2 ∇(iGj) +Gk∇(i∇j)Gk

]

+
[1

2

(

GiGj −∇(iGj)

)

GaGa+
(

G(ihabj)+h
cdhacihbdj

)

GaGb

− 1

2
habijG

aGb − 2GaG(i∇j)Ga − 2Gahbchab(i∇j)Gc

+hab∇iGa∇jGb +Ga∇i∇j̄Ga

]
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Supersymmetry is spontaneously broken, and the gravitino mass has the
same expression as before:

m3/2 = eG/2

The would-be Goldstino fermion is η = fiψ
i + daλ

a, where:

fi =
1√
3

Fi

m3/2
= − 1√

3
Gi da =

1√
6

Da

m3/2
= − 1√

6
e−GGa

Gauge symmetries are also spontaneously broken, and the vector mass
matrix is:

M2
ab = 2 gij̄X

i
aX

j̄
b = 2 gij̄ ∇iGa∇j̄Gb

The would-be Goldstone bosons are σa = vaiφ
i + vaīφ

ī, where:

vai =
Xai

√

Xk
aXak
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For fixed gij̄, Xi
a and hab, the quantities fi and da can be thought as

variables, but with some relations involving the parameters:

xi
a =

Xi
a

m3/2
mab =

1

2

Mab

m3/2
qaij̄ =

Qaij̄

m3/2
aabc =

Aabc

m3/2

There is a dynamical relation holding at stationary points, which is implied
by stationarity along the directions Xi

a:

qaij̄ f
if j̄ −

√

2

3

[

2m2
ab +

(

3f ifi−1
)

hab

]

db + aabc d
bdc = 0

Kawamura

There is then a kinematical relation holding at any point, which is implied
by gauge invariance of G:

da = − i
√

2
xi

afi =
i

√
2
xī

afī

There is finally a kinematical bound, implied by this relation:

|da| ≤ maa

√

f ifi
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Flatness condition

The flatness condition is again simply the constraint that the Goldstino
vector should have unit length:

gij̄ f
if j̄ + hab d

adb = 1

Stability condition

The stability condition is as before a complicated condition, which can be
studied only model by model, by explicit diagonalization.

However, once again it is possible to find simpler but weaker conditions
for stability, which are necessary but not sufficient, by looking at particular
directions in scalar field space.

In this case, there are two kinds of special complex directions that appear:
the projected Goldstino direction Gi and the Goldstone directions Xi

a.
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Looking at the real directions (Gi, Gī) and (iGi,−iGī), one deduces
the condition m2

ij̄G
iGj̄ ≥ 0. Using the flatness and the stationarity

conditions, this yields:

Rij̄pq̄ f
if j̄fpf q̄ + 2

(

habhcd − 1

2
h i

ab hcdi

)

dadbdcdd

− 2hcdhacihbdj̄ f
if j̄ dadb +

√

3

2
aabc d

adbdc

− 8

3

(

m2
ab − 1

2
hab

)

dadb ≤ 2

3

Looking at the real directions (Xi
a, X

ī
a) and (iXi

a,−iX ī
a), one finds that

the former are flat directions whereas the latter imply the extra conditions
m2

ij̄X
i
aX

j̄
a ≥ 0, which have however a complicated form.

No extra useful condition
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Constraints

As before, a stationary point can lead to a satisfactory situation only if two
simple flatness and stability conditions are satisfied at it.

It is convenient redefine the fields to locally switch to flat indices, with
gIJ̄ = δIJ̄ and hAB = δAB. For simplicity, we also assume a constant
and diagonal gauge kinetic function. The two conditions read then:

Flatness: δIJ̄ f
If J̄ = 1−

∑

Ad
2
A

Stability: RIJ̄P Q̄ f
If J̄fPf Q̄ ≤ 2

3
+

8

3

∑

A

(

m2
A− 1

2

)

d2
A−2

(

∑

A
d2

A

)2

The flatness condition fixes as before the amount of SUSY breaking. The
stability condition constrains instead the directions of SUSY breaking.

The fI represent the basic qualitative seed for SUSY breaking, whereas
the dA provide additional quantitative effects.
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Indeed, the dA are not independent from the fI , but rather related to
them as follows:

Dynamical relation: dA =

√

3

8

qaIJ̄ f
If J̄

m2
A − 1

2
+

3
2
fIfI

Kinematical relation: dA = − i
√

2
xI

A fI

Kinematical bound: |dA| ≤ mA

√

fIfI

These 3 relations are gradually weaker and simpler, and can be used to
set up 3 different types of analyses of the constraints.

The effect of vector multiplets is generically to alleviate the constraints
and results in a lowering of the effective curvature for chiral multiplets.
One needs then R̃ < 3/2, which is a milder constraint.

Gomez-Reino, Scrucca (to appear)
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RELATIVE EFFECT OF F AND D BREAKING

It is useful to introduce the new variables:

zI =
fI

√

1 −
∑

B
d2

B

ǫA =
dA

√

1 −
∑

B
d2

B

The flatness and stability constraints can then be rewritten as:

δIJ̄ z
IzJ̄ = 1

RIJ̄P Q̄ z
IzJ̄zP zQ̄ ≤ 2

3
K

where:

K = 1 + 4
∑

Am
2
A ǫ

2
A + 4

∑

A

(

m2
A − 1

)

ǫ2A
∑

Bǫ
2
B

The dynamical relation between auxiliary fields becomes:

ǫA

√

1+
∑

Bǫ
2
B

[

1+m2
A− 3

2

∑

Bǫ
2
B

1+
∑

Bǫ
2
B

]

=

√

3

8
qAIJ̄ z

IzJ̄
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The kinematical bound implies instead that:

|ǫA| ≤ mA

Small deviations

Whenever |ǫA| ≪ 1, the dynamical relation can be linearized and:

ǫA ≃
√

3

8

1

1+m2
A

qAIJ̄ z
IzJ̄

Moreover, keeping only the leading term in K, one finds:

K ≃ 1 +
3

2

∑

A

[

mA

1+m2
A

]2
∣

∣

∣
qAIJ̄ z

IzJ̄
∣

∣

∣

2

The net effect of vector multiplets is then to change the effective curvature
for chiral multiplets to:

R̂IJ̄P Q̄ ≃ RIJ̄P Q̄ −
∑

A

[

mA

1+m2
A

]2

qAI(J̄ qAP Q̄)
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Large deviations

Whenever |ǫA| ∼ 1, one can combine the dynamical relation and the
kinematical bound to derive the upper bound:

|ǫA|
√

1+
∑

Bǫ
2
B ≤

√

3

8

1+
∑

B m
2
B

1+m2
A+

(

m2
A− 1

2

)

∑

Bm
2
B

∣

∣

∣
qAIJ̄ z

IzJ̄
∣

∣

∣

Dropping the negative term in K, one finds then:

K ≤ 1 +
3

2

∑

A

[

mA

(

1+
∑

Bm
2
B

)

1+m2
A+

(

m2
A− 1

2

)

∑

Bm
2
B

]2
∣

∣

∣
qAIJ̄ z

IzJ̄
∣

∣

∣

2

This can be used to get a simpler but weaker form of the constraints,
where the net effect of vector multiplets is encoded in:

R̂IJ̄P Q̄ ≃ RIJ̄P Q̄−
∑

A

[

mA

(

1+
∑

Bm
2
B

)

1+m2
A+

(

m2
A− 1

2

)

∑

B
m2

B

]2

qAI(J̄ qAP Q̄)
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CONCLUSIONS AND OUTLOOK

• In a generic SUGRA model with chiral and vector multiplets, there
exist necessary conditions for flatness and stability that strongly
constrain the geometry and the SUSY breaking direction.

• When F breaking dominates, the constraints are simple and
rather strong. What matter is the Kähler curvature.

• The effect of an additional D breaking to alleviate the constraints.
What matter is then a smaller effective Kähler curvature.
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