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SUSY BREAKING AND SUGRA

Direct spontaneous SUSY breaking at the tree-level implies,
in a renormalizable and anomaly-free theory with rigid SUSY,
a sum rule on the mass spectrum:

STr[M?) = (-1)*(2J +1)m% =0

J
This predicts rather generically that one of the superparticles

is lighter than its ordinary partner, in contradiction with ex-

perimental observation.

The standard paradigm to evade this difficulty is to assume
that SUSY breaking occurs spontaneously in a hidden sector
with fields ®; and is transmitted to the visible sector with fields

(s only indirectly, through some suppressed interactions.

The effect of SUSY breaking on the visible sector can be
parametrized through super-renormalizable soft breaking terms,
which depend both on the details of the hidden sector theory

and on the mediation mechanism.

The relevant effective Lagrangian for phenomenology has then

the general form:
Leff = £susy + L:soft
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A natural mediation mechanism is provided by gravitational

interactions. The general setup becomes then that of SUGRA,
with local SUSY.

SUSY breaking occurs at some scale M in the hidden sector
and is transmitted to the visible sector through gravitational

interactions, whose strength is set by Mp > M.

The microscopic theory might be some superstring model. But
below Mp, and in particular at M, this can be effectively
described by a non-renormalizable SUGRA theory.

Soft terms originate from higher-dimensional operators that
mix visible fields (g to hidden fields ®; and are suppressed by

powers of Mp, and their energy scale is

MZ
Megoft, ﬁp

Chamseddine, Arnowitt, Nath

Barbieri, Ferrara, Savoy
Hall, Lykken, Weinberg

The main delicate features that are needed in order to get a
satisfactory situation are:

e Soft terms with mgn ~ Mgw and peculiarities.

e Cosmological constant with Moo < Mgw.

e Hidden scalars with m > Mgw and stable.



CHIRAL SUGRA MODELS

The two-derivative Lagrangian of a SUGRA theory involving n
chiral multiplets ®; is entirely specified by a single real function

G of these, and one can set Mp =1

The function G can be decomposed into of a non-holomorphic

Kahler potential K and a holomorphic superpotential W':
G(®;, ®]) = K(Ps, ®f) + log W (®:) + log W (®})

This decomposition is however ambiguous, due to the Kahler

symmetry changing K = K+ F+Fand W —- e ¥W.

It is very convenient to denote derivatives of G with respect

to ®; and cb;.f with indices % and %:

_0G , _8G
0°G 0°G 0°G
Gi;i = , G = , Gz =
' 00,00, Y aofodl’ Y T 99,00

Mixed holomorphic/antiholomorphic derivatives of G depend
only on K and define a Kahler geometry for the manifold

parametrized by the complex scalar fields ¢*.
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The metric and its inverse, the Chirstoffel connection and the

Riemann tensor are given by:
o _ ij _ (y-1ij
gz’j_Gija g7 =G""
k _ -1kl k _ -1kl
I =G""Gy, I =6G"Gg

Ri_‘ — G’_‘ — G-lngip§ 367‘

Jpq 1pq

Pure holomorphic or antiholomorphic derivatives of G depend
instead both on K and W, and determine the way supersym-

metry is possibly broken.

All the quantities can be written with covariant and contravari-

ant indices that are raised and lowered with the metric.

The complex auxiliary fields F* are fixed by their non-dynamical

equation of motion to the values:
It = eG/Z Gz

The scalar fields @¢* have a wave-function normalization given
by Z;; = g;5 and a potential, which determines their vev and

mass and controls spontaneous SUSY breaking, of the form:
V = e (G*Gi —3)

The flatness condition of vanishing cosmological constant is

that V' = 0 on the vacuum and implies that at that point:
9;G'GI =3

>



The first derivatives of the potential controlling its variations

can be computed as §; = V;V and are given by:
5 = e%(Gi+ G*V,iGk)

The stationarity conditions defining extrema of the potential

are §; = 0 and imply:
G; + G’“V,-Gk =0

The two types of second derivatives of the potential that deter-

mine the squared masses can be computed as m% = VZ-V3V

and mzzj = V,;V;V, and one easily finds:

m2 = @ (gﬁ + ViG* V3G, — Rz Gqu_)

L)

]

m2. = @ (VZ'GJ' + V,G; + %G’“{V,-, Vj}Gk)

The stability condition ensuring that the extremum is really a
local minimum is that the whole 2n-dimensional squared-mass

matrix is positive definite:

2 9
m-—. m
()
m2 = ;J 29 >0
mg mg;

The constraints implied by this condition are difficult to work
out explicitly. The only systematic approach is to diagonalize

it and study the behavior of all the eigenvalues.
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The fermion fields 1)* split into 1 Goldstino linear combination
1 = Gy)* that is absorbed by the gravitino field, and n — 1
physical orthogonal combinations 1;’ The normalization of

their wave-function is Zﬁ = g;5, and their mass is encoded in:
. 1
myj = eC (VZ'GJ' + gGiGj)

More precisely, the 2n-dimensional mass matrix is given by

0 ’ﬁ’bij

S
I

mg; 0

Finally, the graviton and gravitino fields A*¥ and %* have
canonical wave-function normalizations Zgrs = 1 and Z3/5 = 1,

and masses given by:

2 _ _ ,G/2
Mgrs = 0, m3/2—e/

The mass matrices that emerge have a rich structure that
depends in a quite involved way on G, or K and W. However,
they satisfy a quite simple sum rule, fixing the supertrace of

the squared mass matrix for the whole theory:

~

STrM? = 24% m% — 2 g% gP g, Mg — 4 m2 /2

ZeG(n —1—-R; GiG’j)

Cremmer, Ferrara, Girardello, Van Proeyen
Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen

Bagger, Witten



FLATNESS AND STABILITY CONSTRAINTS

It would be interesting to have some simple criterium for the
conditions of flatness and stability to hold, to discriminate

between non-suitable and potentially suitable models.

More precisely, it would be useful to have a simple condition
depending on K but not W, to constrain the type of geometry
independently of the mechanism of SUSY breaking.

The supertrace sum rule does not help much. It gives an
information about the trace of the scalar’'s m?, but only with
respect to the trace of the fermion’s frnt. This is useful only

for the visible sector, not the hidden one.

Our strategy is to look for some simple necessary condition for
having m2 > 0 for the scalars, that relies just on its structure

and does not invoke the fermion’s m.

The crucial fact that we exploit is that all the upper-left sub-
matrices of a positive definite matrix must be positive definite.
In our case, this implies in particular that the n-dimensional

submatrix m% should be positive definite:
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This condition means that V2 one must have mZ 2¢z3 > 0.

iJ
One can then look for a specific 2* that leads to a particularly

simple condition. The right choice is 2* = G*, for which:

m% G'G? = €°(6 — Rizq G'G'GPGY)

t)pq

The corresponding necessary condition m% GiGJ > 0 reduces

then to the extremely simple curvature constraint:

R;,- G'G'GPGT < 6

tJpq

Notice that the special direction 2¢ = G* considered to derive
the necessary condition m% G'GY > 0 concerning the scalars
corresponds to the Goldstino direction for the fermions, and

correspondingly m;; G*G’ = 0.

Summarizing, we conclude that at any stationary point of the
potential the following two conditions must be satisfied in or-

der to have a chance to reach a satisfactory situation:

Flatness: g;; GG’ =3 (necessary & sufficient)
Stability: Ry, G'GIGPGT < 6 (necessary)

tpq

The metric g;; and the curvature R,3,; depend only on K and
characterize the geometry. The quantities G* depend also on
W, and control the SUSY breaking direction, in view of the

relation G* = F*/mygs.



For a given underlying geometry, the above two relations con-
strain respectively the overall amount and the direction of
SUSY breaking that is compatible with the requirements of
flatness and stability.

One can imagine fixed tensors g;; and R;3,; and scan over
all the possible vectors G*. The length of this vector is then
fixed by the metric, whereas its orientation is constrained to

lie within a certain critical cone specified by the curvature.

The strategy to derive these constraints is to first determine
the direction that minimizes the quartic form Rz, GiGIGPGT
for fixed value of the quadratic form g, GG, and then check

how far apart from it the former stays small enough.

This variational problem is hard to solve in full generality.
However, it is possible to obtain very simple and strong results
for the subclass of models based on spaces that are factorized

or homogeneous.
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FACTORIZABLE SPACES

Suppose that the n-dimensional scalar manifold is the product
of n 1-dimensional manifolds. The function K splits then
into a sum of terms depending on a single field, while W can
instead still be arbitrary:
K= En: K® (o, 1)
k=1
W =W(®y,...,0,)

This assumption represents a Kahler-invariant constraint on
G, implying that all its mixed derivatives vanish unless they

are purely holomorphic or antiholomorphic:
G;=0, i, 7 not equal
Gir =G =0, i, J, k not equal

Gijii = Gijr = Ggrr =0, 4,4, k,1 not equal

In this situation, the metric and curvature tensors become both
diagonal and have only n non-vanishing components. This
simplifies the problem sufficiently much to be able to solve it

exactly.
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The non-vanishing components of the metric are g; = G,

and those of the curvature tensor are related to these by:

where the crucial parameters are the n curvature scalars R;

associated to each complex scalar field:

Gin GG
Ri=m ——&

The two flatness and stability conditions derived before then

simplify to the following expressions:

Flatness: Z 0?2 =
k

Stability: ZRk e; < 2
k

OV

in terms of the new positive real variables
o2 _ GiG" _ GiGy

The variational problem defined by the two conditions thus

(no sum)

simplifies from a quartic to a quadratic problem, and can be

solved exactly.

It is straightforward to show that when R; > 0 these con-

straints can admit solutions only if the following curvature

ZRk >—

12

bound is satisfied:



If this necessary condition is satisfied, the solutions correspond

to the following domain in the space of variables:

o7 € [67~,67"]

where:
r
R; 1+\/ 'I(ZR )(ZRk ——)
sl Ri<S
(_)224- _ ZR];I ’ 2
k
3
1S 2
\ 1, R > 5
e R
: R4<—
CHES %:Rz? AT
0, ZR,‘} > —
\ k#£i

The SUSY breaking direction must therefore lie in a certain
Goldstino cone specified by the curvature scalars. lts axis is
the preferred direction minimizing the quartic curvature form:
R-l

ZRk

and its solid angle grows with the excess of effective inverse

@20

curvature Y Rl with respect to the threshold 3/2.
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The most important qualitative result is that the direction of
SUSY breaking must align more along the directions of low

curvature than those of high curvature.

More precisely, a given ©; can become as large as 1 only if its
curvature satisfies R;! > 3/2 on its own, and as low as 0 only
if the curvature of the remaining fields satisfy 3 ; R > 3/2

on their own.

This means that whether the relevance of a particular chiral
multiplet ®; for SUSY breaking is high or low depends on
whether the corresponding inverse curvature R;! is large or

small with respect to the threshold value 3/2.

This also implies that the mass/auxiliary m;/F*® of a chiral
multiplet ®; can be small/large only if R;! > 3/2 and on the
contrary large/small only if 3744 Rl > 3/2.
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MINIMAL STRING MODULI SPACES

In string models, a good candidate for the hidden sector is the

universal sector containing the neutral moduli.

The vev of the scalars in these superfields control the coupling
constant and the geometry of the manifold of extra dimen-
sions, and are of order 1. The corresponding auxiliary fields

could then represent the original seed for SUSY breaking.

Kaplunovky, Louis

At leading order in the derivative and loop expansion, the

Kahler potential K in this sector has the general form
K = —Z N ln(q)k + <I>,Tc)
k

Witten
The form that the superpotential W can possibly take is less
universal and is mainly related to effects like gaugino conden-

sation and fluxes. We therefore keep it arbitrary.

The above situation is of the separable type, and we can there-
fore apply the results we derived. The curvature scalars are
constant and related to the numerical coefficients n; as:

2 n;

R/L n; z 2
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The necessary condition Y Ri! > 3/2 on the curvatures then

implies the simple numerical constraint:
an >3
k

The most relevant moduli are the dilaton S, controlling the
coupling, and the global Kahler modulus T', controlling the
volume of the compact dimensions. In the limit of small cou-

pling and large volume where S and T are large, one finds:

ng=1, nr=3

It follows that S does not satisfy the curvature bound on its
own, whereas T saturates it marginally. This implies that S
cannot dominate SUSY breaking, unless large corrections arise,

whereas T could do so, even with small corrections.

Keeping both fields in the low-energy effective action, one finds
that mg cannot be much smaller than mr, and Fg cannot be
too large compared to Fr. More precisely, the Goldstino angle

6 must be between 0 and 7 /4, and correspondingly:
|Fs|/ReS < 1
|Fr|/ReT /3

This demonstrates that the scenario where S dominates over

0<

T cannot be realized, at least in the controllable limit where
both are large.
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HOMOGENEOUS SPACES

Suppose that the n-dimensional scalar manifold has the form
of a coset space G/H, where G is the global isometry group
and H the local stability group. The function K has then

some special form, but W can be arbitrary:
K = K@/ (@, 0!, ..., &, &)
W = W((I)l,...,q)n)

There exists finitely many such coset Kahler manifolds for each

given dimensionality n, and they have been classified.

In this situation, the metric and curvature tensors are invariant
under the global transformations of the group G, and their
components are actually related. The problem simplifies then

again sufficiently much to be able to solve it exactly.

To study non-factorizable cases it is convenient to rewrite the
flatness and stability conditions derived before, by considering
the square of the first one and reorganizing also the second

one, in the form:

Flatness: g,5 gpg tP 7 = 1

()

Stability: Ry t? 97 < =

OV
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We have introduced the holomorphic symmetric tensors
. 1 .. .
t" =-G'G
3
This is however not a regular change of variables. Indeed,
the n(n + 1)/2 components of t¥ become equivalent to the
n independent G* only by imposing the n(n — 1)/2 quadratic

constraints:
(# = £ i g

The problem does therefore not trivially reduce from a quartic

to a quadratic problem, but becomes rather cubic.

The proceed we consider the map t¥ — R'J tP? on symmetric
tensors and diagonalize it. For homogeneous spaces, this is
easy to do since distinct proper subspaces must be associated

to distinct irreducible representations of H.

The generic tensor ¥ can then be decomposed as

th =) ¢

r

in terms of orthogonal components t¥ satisfying:
i j _ ij
RJ tM1 = R, ¢¥

The form of these eigentensors and their eigenvalues are know
in all the cases. Note that R =5, R;.

Calabi, Vesentini
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We can then finally rewrite our conditions as:

Flatness: ZE,;‘: =1
T

GV

Stability: Y R,Z% <
T
where now

=4 _ o o P 430
—r gij 9pq tr t'r

These new variables also suffer from additional constraints.
The form of these constraints depends however on the model,
and one has to perform a case by case analysis.

Treating the =% as independent results in milder necessary

conditions where some part of the original information has

been lost. When R, > 0, one finds then the restriction:
3
_1 <
ma.x{R,. } > 5
For factorizable cases only n of the R, are non-zero, and the

other n(n — 1)/2 vanish. The condition is then trivial.

For maximally symmetric cases where all the R, are identical,

the constraints clearly coincide with that of a single field.

For less symmetric cases where some of the R, are distinct,

the constraint could get milder.
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ENHANCED STRING MODULI SPACES

The simplest geometry that can occur for n moduli fields ®;

in a string model is described by
K = —Z N ln(q)k + <I>,Tc)
k

This corresponds to a product of isomorphic one-dimensional

spaces with a coset structure of the type:

& SU(1,1)
M=

We found in this case the necessary condition:
an >3
k

There exist several generalizations of this kind of geometry

that can occur in string models. They are also coset spaces,

and can therefore be studied efficiently as well.

For instance, standard moduli can get mixed to extra moduli
as well as matter fields, and one can have situations with n?2

moduli fields ¢;; and nm matter fields X4 where:
K = —nglndet (CI)Z'J' + CI);-rj — Z X;rana)
a

Ellis, Kounnas, Nanopoulos

Ferrara, Kounnas, Porrati
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This corresponds to an n(n + m)-dimensional space that is a

coset manifold of the type:
SU(n,n +m)
U(1l) x SU(n) x SU(n + m)

The question we want to adress is:

M =

ng) restricted 7

It is convenient to perform a holomorphic field redefinition
and a Kahler transformation to describe the theory in terms

of n(n + m) new superfields ®;, with
K=- Nall In det( Z D, ® )

The corresponding metric and Rieman tensors are given by:
9iai3 = h’ h’

R.

Ran
iajBpyds — T(h’ﬁ hyi ha5 hvﬂ + hig hy; haﬂ h’y5)

in terms of the two submetrics

1/2 ” 1/2 -1
ij = nal/l ( ¢¢ )zg ) ,6 - nal/l (1_¢T¢)aﬁ
and the overall curvature scale

2 Nan
R311=— = Rall—_

Tan

Zumino

Van Holten
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Consider now the action of the holomorphic Rieman tensor
Ran -
R = = (55070553 + 0,075367)
on holomorphic tensors of the form:

yiaip _ L mviayip
3

These tensors are symmetric under the exchange of the first
and second pairs of indices, and can be decomposed into two
irreducible components that are respectively symmetric and

antisymmetric in the exchange of each type of indices:
1, .
b9 _ L (GioGr8 + GG)
These are eigentensors of the Rieman tensor with eigenvalues

R+ and degeneracies d4 given by:

nntl) (n+m)(n+mx1)

Ry ==xRy, dt=
+ 1, G+ 5 5

The flatness and stability conditions read then:
Flatness: Ei +2t =1

2
Stability: =% — =2 < 3 ~ Ry
where
1/4
(tmjﬂ t+ia jﬂ)
1

. . /
181/4 [(Gzana) (GmGjaGJ'BGIBZ-)] 1/4
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If =4+ and =_ were independent, there would always exist so-
lutions. But this is not the case, and one finds again some

constraints on the model.

To derive explicitly these constraints, it is convenient to go
back to the original form of the two conditions in terms of the

unconstrained variables G* which read:
Flatness: G*Gio = 3
Stability: G*GaG*PGi < 6 R}
The problem can be further simplified by switching to tangent

space indices, which are contracted with &;7 and 4 45 rather

than h;; and haﬂ This is done with the subvielbeins:
€iJ = n;{l‘l(]l 66"y, Eap =y (1—¢'9), 4’
=g (1=¢);;” , Eag =g’ (1-¢'¢) 34’
The two conditions can then be rewritten as
Flatness: Tr(@%j) =1
Stability: ’I‘r(@‘} j) . Rau

by introducing the new positive-definite Hermitean matrix of

variables

o2 _ G8Gay _ G hagGPe;5
1J 3 3
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Finally, one can consider the unique matrix Z;7 € SU(n) that
allows to diagonalize this Hermitian matrix of variables @%j

and use it to rewrite:
2__ 2D rzt
O17 (Z@ 4 )Ij
The two conditions reduce then simply to
Flatness: Z 0% =
2

Stability: ZRall O%% < =

(o0

One obtains therefore exactely the same type of conditions as
for n standard moduli ®; with identical curvatures R; = Ry,
implying n; = ngy.

The SUSY breaking direction is constrained to lie within a

certain cone, whose orientation depends on the location of

the stationary point, and the curvature condition yields:

nngy > 3

We conclude that extra off-diagonal moduli or matter fields
that enhance the space do not allow to evade the restrictions

occurring for standard factorized moduli.
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CONCLUSIONS AND OUTLOOK

e In models with only chiral multiplets, there exist a
very simple and strong necessary condition for stabil-

ity that constrains the curvature of the geometry and
the SUSY breaking direction.

e The consequences of these constraints can be worked
out in detail for factorizable and homogeneous ge-
ometries, as those occurring for instance in the mod-

uli sector of string models.

e |t would be of great interest to generalize this study
to models involving also vector multiplets gauging

isometries of the scalar manifold.
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