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ANOMALY INFLOW MECHANISM

Anomalies

Anomalies depend on characteristic classes of the tangent and

gauge bundles. In units of 27:

ch(F) = tr expiF

R D2 ) o R D2 D/2
A = 2 L(R) = 2 R) = W
(R) al;‘[l sinh \g/2’ (R) };‘[1 tanh A\, ’ e(R) al;‘[l

The anomaly A has to satisfy the WZ consistency condition. This
implies that it is the WZ descent of some closed form I(F, R).
Defining I = dI©® and 610 = dI(M) one has:

A = 2 / I

Inflow

It can happen that a consistent theory admits as vacuum a top.
defect carrying chiral zero modes. The anomaly arising on the

world-volume must be canceled by an inflow from the bulk.
Callan, Harvey

This is the case of consistent superstring vacua with D-branes and

O-planes, where no anomaly can arise but zero modes occur.
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In general, there can be a net world-volume quantum anomaly.
By consistency, this must be canceled by an equal and opposite

classical inflow of anomaly.

Classical anomalies arise in magnetic interactions. Consider some

defects M; in spacetime X, with the RR couplings:
S =— Z,Uz/ C NY;
i M;
with C =3, C(p) and Y =Y (F,R).

This is written as an integral over X by using the currents 7.
Locally, 7ag, ~ 8(z%) dz% A ... A §(zP) dzP, but globally Tay, is
determined by N(M;). The RR action is then

_ 1 ‘ (0)
S__E/XHA H—Ei:m/XTMi/\(C—HA}Q )

For consistency, the total top-form charge must vanish, and the

equation of motion and Bianchi identity are
d*H = ZHz‘TMi NY;
i
dH = _Z,U'z'TMi/\Yz'
i
Due to the modified Bianchi identity:
H=dC - pity, NYO
i

Since this must be gauge invariant, C must transform as

50=ZuiTMi/\Yz’(l)
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Consequently, the RR couplings are anomalous:
: =\ (1)
A= —zZ,uz-uj/XTMi N Ta; N (Yz/\Y})
,]
The magnetic interaction of M; and M; has therefore an anomaly

localized on the intersections M;j;. This follows from the property

™; N\ T™; = TM;; 7A\ e[N(MZJ)]

Finally, the classical anomaly inflow on each intersection M;; can

be written as A;; = 2me fMij Iz-(jl) in terms of

lij =~ LY N N elN(My)]

and must cancel the corresponding quantum anomaly.

Green, Harvey, Moore; Cheung, Yin



ANOMALY CANCELLATION ON D-BRANES
AND O-PLANES

Consider two parallel Dp-branes and/or Op-planes on M. The
anomalous fields living on their world-volumes can be read from

the potentially divergent one-loop amplitudes:

BB : Annulus = Chiral R spinors in the adjoint
BO : Mobius strip = Chiral R spinors in the fundamental
OO : Klein bottle = Self-dual RR forms

These fields are dimensionally reduced from D = 10to D = p + 1.

Chirality and anomalies only when N (M) is non-trivial.

The anomalies for these fields can be computed a la Fujikawa.
They are topological indices, which can be computed using index

theorems or via a path-integral representation in SQM.
Alvarez-Gaumé, Witten

Anomaly for a reduced chiral spinor
The anomaly of a chiral spinor reduced from X to M is
A = lim Tr [T+ 5 =P
t—0
By exponentiating 8, this can be written as A = 2miZM), where

Z = lim Tr TP+ e—t@”)z]
t—0
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Mathematically, Z is the index of a twisted spin complex:
Z = index(ip)

A (anti-)chiral spinor on X is a section of S’;'E(X). On M C X,

these decompose into

+ + + —
E* = (Szn ® Skan) © (SFan © Svan)
Considering also a gauge bundle, we have the two-term complex
ip: T|M,E*QV| —>T|M,E-QV]

The index theorem reads

index(i) = [ ch(V)ch(E* © B") Tj[[;((]\]‘j;)]
Explicit evaluation yields
z= [ c(F R) A e(R)

Physically, Z is a partition function. If we find some SQM with
Q@ = 4D and (=1)F =T'P+1 then Z becomes a Witten index:

Z=Tr|(-1)F ]

The appropriate SQM model is obtained by dimensionally reducing
the SNSM with (M, N,.... X, u,v,.... M, ,j,.... N):

=0
Y= g =k gt = g = gt
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The Lagrangian is:

1,0 : .
L= o 9w THE” + 5’% ("PH +w,"y & ¢‘)

(Vw2 9) + o B P iy
Gauge backgrounds can be taken into account as in the standard

case, through additional terms.
Due to (—1)¥, all the fields are periodic and
Zz/Dm“/sz“/Dpie_S
P P P
Fort — 0, Z is dominated by constant paths:
Tt = xf + &M
Y= h H N, g =g+ N
It is enough to keep quadratic interactions and only terms with the

maximum number of 9g's. Introducing also a gauge background,

one finds:
L4f = %(g’ugﬂ + A M+ MM 4 iR E4EX + RY; XN
1 . .
+§R;i¢%,¢3 +iF
where
1 1
Ry = §Ruzpa($0)¢g¢g : Rl"i = 5&@1(%0)%21#3
1

F = §Fuz(x0)¢g¢g



Evaluating the path-integral one finds:

d/2
d Aot /2

—2
@)= 11 sinh Agt /2

a=1

7 N

detp(ini;0r + Ri;) / difiy exp {5%%%}

Z= / dxf / dipy trexp {iF't}

N 7

ﬁ sinh ALt/2 ll)_/f Vi
a=1 )‘at/Q a=d/2 ’
Finally, one obtains:
Z = / ch(F) A fl(R) A e(R)
M A(R)

Cheung, Yin; Scrucca, Serone

Anomaly for a reduced self-dual tensor

The anomaly of a self-dual tensor reduced from X to M can be
written as
]. . —tD2
A—Z%I_I}(I)TI‘[I*D setP|
where *p is the Hodge operator and D =d +df on all of X.
The dynamics is constrained to M C X thanks to the transverse

reflection 1.



By exponentiating 8, this can be written as A = 2miZ() | with

/Z = —1 lim Tr [I %) e_wz]

& t—0

Mathematically, Z is a G-index of the signature complex:

Z = —% index(DY)

More precisely, we have:
D, : P[X, A T*X] — F[X, A T*X]
G: X — X (I : (z#, ') — (2, —x’))
G = Z is orientation-preserving since D and d must be even. It

leaves M C X fixed and acts as +1 in T'(M) and —1 in N(M).

The G-signature theorem gives:
+ — + —_ C
index(DY) = [ ch(E* © E7) h(F* © F~) Td[T(MC),
M ch(F) e[T(M)]

where

EXr=*\T*M 6 Ffr=*AN*M
F=q;(—1)ANN*M

By explicit evaluation one finds:

__ 1 LB o
4=3 ME(R’)A <2




Physically, Z is again a partition function. We need a SQM with
H = D? and a symmetry Q = xp, so that Z becomes a SUSY

index:

Z=_1tm [me—tH]
8

The appropriate SQM is the trivial dimensional reduction of the

SNSM:

L=19MN(-’I3) Nt o > Z %M(% + wy (@)Y & M)

2 a=1,2

+ Rue(2) 1 1 vy v

where:
Q: (¢17¢2) - (_¢17¢2)
I: (2%, 0% 4, o) — (0, —2%;4h, —9)
Due to Q2 I, the fields acquire non-standard periodicities and
1 : i i
2= oo oo ot ot
8PwaP¢1A¢1szsze
Fort — 0, Z is dominated by constant paths:
o' =gh+ &, Tt =¢
v =
Y=, h=dot
Again, it is enough to keep terms quadratic in the fluctuations

and with a maximum number of fermionic zero modes.
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One finds:
Lot = > [g,ﬂ F EE I AL + iy + i Xy

+ Ry, (1€5¢% + X508 + Ry (1668 + Aéx';)]

1 . .
+5 R0
where
1 1
Ry = §Ruzpa($0)¢g¢g : Rj';i = 5&@@(%0)%21#3

Evaluating the path-integral one finds:

d/2
d Aot /2
AR
(mt) al;ll tanh A4t /2

~

/d:c /d¢ detp zn,“, )detA(znwa +RM,,)

det 4(in;;0r )detp(mu(') +R 4 o
d { ‘R4 l}
det 4(ni;0% + zR’ / % P i5%0%0
/;rd/z tanh \/¢/2 %,li-/f Nt/2
a=1 )‘at/z a=d/2

Finally, this can be rewritten as:

Scrucca, Serone
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Anomalous couplings

The anomalies on parallel Dp-branes and/or Op-planes on M are

Ipp = Chn®ﬁ(F) N\ é((}}:,)) N\ e(R’)
Ipo = chpea(2F) A g((g’,)) A e(R)
_ _1L®R)
00 = _gf(R’) A e(R)

Assigning the anomalous couplings:
Spo = \/2_#/0 AYso
one gets the inflows
Igg =Yg AYp Ae(R)
Iso = —(Ys AYo+ Yo AY5) Ae(R)
Ioo = -Yo AYp A e(R)

Anomaly cancellation requires
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STRING THEORY COMPUTATION OF THE
ANOMALOUS COUPLINGS

Duality arguments

The presence of most of the anomalous couplings was predicted

by various string dualities.
Bershadski, Sadov, Vafa; Dasgupta, Jatkar, Mukhi

Direct computation of the couplings

The actual appearance of anomalous couplings for D-branes and

O-planes can be checked on the disk and the crosscap.

One can also compute topological RR magnetic interactions on

Li; Craps, Roose; Stefanski

the annulus, Mobius strip and Klein bottle in the odd spin struc-
ture, and extract the couplings by factorization. Technically, this

is very similar to the anomaly computation.

Morales, Scrucca, Serone
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Direct computation of anomalies and inflows

One can compute anomalies by evaluating amplitudes with ex-
ternal photons and/or gravitons, one of them being pure gauge.
This measures the clash of gauge invariance and gives directly the

anomaly. Only potentially divergent diagrams can contribute.

In string theory, these amplitudes are the annulus, Mobius strip
and Klein bottle, in the RR odd spin-structure. Tadpole cancella-

tion guarantees finiteness and implies anomaly cancellation.

The amplitudes we want to compute have the form:
A= / dt < V’lphy. V'zphy. V,fhy' Vunphy. (TF + TF) >
0

The insertion of Twr + TF is due to the gravitino zero mode, and
the vertices must have total superghost charge —1. The ghosts
determine the measure in moduli space, but drop out from the
correlation.

We take all the VP"-'s in the O-picture, with transverse polariza-

tions £ or €y

VPR = g5y de (XM_|_ ip.¢¢M) oipX

Vgphy' =§MN /d2z (8XM+ ip- ¢M) (5XN+ ip-1 ,‘;N) P X
The V¥mPhy. must then be in the —1-picture, with longitudinal

polarization &y = pym or Emn = PMNIN + DNTIM-
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Interesting, it can then be written as
Y unphy. _ [Q + Q, Vunphy.]
Omitting the ghosts:
’ hy. _ » p- X
V;‘"p Y=1n 74 dt e’

Vgunphy' = 2iNMm / d’z [(8 +0) XM+ ip-(p — )¢ — z;)M] S

Using standard arguments, one can move () + Q onto the other

operators in the correlation. The VP™-'s are supersymmetric, but
[Q+Q,TF+TF] =Tp+Tp

The net effect of T + TB is to take the derivative of the remain-

ing correlation with respect to ¢.

We are then left with a total derivative in moduli space:
00 d N
_ phy. yphy. phy. Yrunphy.
.A—/O dt = (VEM VP LV

In consistent models, this vanishes, reflecting a cancellation be-
tween one-loop anomalies and tree-level inflows associated to the

same surface.

At finite p’s, only the ultraviolet boundary ¢ — 0 can contribute.
This should vanish, but the computation is too difficult. To get a
field theory interpretation, we can restrict to the leading order in
p— 0.
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The correlation becomes then t-independent and there are two
equal contributions from £ — 0 and ¢t — oo cancel, reflecting

anomaly cancellation through the inflow mechanism.

In this limit, since the correlation vanishes unless all the fermionic

zero modes are inserted, one can use

Vel = }4 dr F
Vet = }4 &z Ry [ XM(0+ 0) XN+ (v — )M (v — )]

These hold both for physical and unphysical vertices:

1 1 v
Phy. : F = 5 v ’I,bg’l,bg, Run = §RMNMV %bg%

Unphy.: FF'=1n, Ryn =DpuNN + PNTM

The generating functional is a twisted partition function in the
backgrounds F'+n and Ryn + pumn + pnny-  The correct
number of physical vertices is automatically selected, the unphys-

ical one being obtained by restricting to the term linear in 7.

The role of the unphysical vertex is to take the descent of the

remaining partition function, and the anomaly polynomial is finally

I=27

This is the analog of Fujikawa's method.

Scrucca, Serone
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The anomaly polynomials on D-branes and O-planes are then

given by:
]_ _
Ipp = Z = ; Ty (-1)F ]
1 _
Ino = Zy = ; T [ (-1)F ™|

oo = Zic = £ g [Q1 (<17 &

These are supersymmetric indices, and only massless modes con-
stant in o contribute. Effectively, one recovers precisely the SQM

models seen before.

One therefore reproduces the results for the anomalies and the

anomalous couplings.
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ORIENTIFOLD MODELS

In Zyx orientifolds, there are in general D-branes and F-planes.

The element gF € Zy acts as a rotation of 2mkv; in the i-th
compact two-torus, and as conjugation by the matrix % on the
Chan-Paton factors associated to D-branes. Similarly, €2 is ac-

companied by some matrix yq.

The twist has the form v; = (n1,n2,...)/N, >;n; =0 mod 2.
The tadpole cancellation conditions fixes v, vq and the spectrum.
One needs always 32 D9-branes to cancel the 09-plane tadpole,
and for N even also 32 D5-branes to cancel the 05-plane tadpoles.

The anomalies on the D-branes and F-planes are given by:
1 s

Ipp =7y = Z > Trg! [ ~1)" _tH]

k 0 p,g=9,5
1 N-1

Ipr = Zy = Z > Trz [Qg -1)" _tH]
N 20 p=o5

1 N-1 N-1

IFF _ Z.,K' _ Z Z T["(m) [ 1)F+F‘ e—tH]
k 0 m=0

For open strings, a trace over Chan-Paton factors is understood.
For closed strings, only the m = 0, N/2 twists really contribute.
In each sector, there is a degeneracy Ng ,, the # of F-points fixed

under £ and m twists.
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Anomalies

The evaluation of the partition functions is straightforward, and

one finds:
1 N ~
Igh = AN Z Cpq (vs) chy, (Fp) A chy, (Fy) A A(R)

1 N-1

m m
FF = ’U
8N ’

where chy, (F') = tr [’Yk expiF| is the Zy-twisted Chern class in
the Chan-Paton representation, and the Ci(v;)'s are given by:

(
[I@2sin7kv;) , pg = 99,55
Cil(wi) =/
[[@2sin7kvi) , pg= 95,59
/5
(
[[@sin7kv), p=9
C,?(’Uz) =<
[[(@2sin7mkv;)[[(2cos ki), p=5
i//5 il5
T](@sin2nkv;) , m =0
Cy™(vi) = i . : 2
\5k;0,N/2 ]_;[4 -+ k,ﬂ%ﬂ i (2sinwkv;)*, m = N/2
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One can check that the anomalies from charged open string states

and neutral closed string states are indeed given by

Icharged — Z ngB_I_ Z I%F

p’q=5a9 p=519

Leutral = Z I I(J‘n;z
m=0,N/2

For Icharged, this is easy to understand qualitatively and in general,

since the only charged anomalous particles are chiral spinors.

For the simplest models, the gauge group has the form
G = [U(’l”1) X U(’rz) X ... X 50(81) X 50(82) X ]2

The Chan-Paton representation is a sum of fundamental represen-
tations: pocp = (r1 D f'1) ) (1‘2 D f'z) PD..o5s1Ps2P....

All the representations appearing in the spectrum can be decom-
posed into fundamentals, and the Chern classes decompose ac-

cordingly. In particular:

chg () = % [ch(F) & cha(2F)

For Ieutrai, the situation is more complicated, since all the types
of anomalous particle can arise. Interestingly, the total is always

proportional to the anomaly of a self-dual tensor.

This is due to the fact that a subset of gravitational anomalies

associated to the torus amplitude vanishes.
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Anomalous couplings

In the transverse channel, the string amplitudes are interpreted as

inflows mediated by RR fields in all the twisted sectors.

The factorization is as follows:

N-1 I ]
k=0 .
N-1 I ]
k=0 .
N-1 i ]
e @)
k=0 .

This implies anomalous couplings for D-branes and F-planes:

® _ [T [ A#i A v ®

% \/%Zz/cﬂmypp
=]

S _ \/7 Z / CRik Ay 2H)
Zk—

where CK)ix = Sp C k)z"’

Np = H(Z sin mkv;)?
i//p

Ny, = [ (2sin wkv;)?

1
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The corresponding inflow is

BB _ Z NpﬂqY Y(k)
5, =2 Z NP, (2’9) (2k)

m 2k 2k+2m
I8 = X MV AV

It is then possible to extract the Y's in the anomalous couplings.

Defining €}, = signy/ Ny, € = signy/ Ny, one finds:

\/|2 sin wkv;|

1l -~
Yy = ’;; ? chy, (ex Fp) A y/A(R)

\/|2 sin wkv;|

i//p

Y(Zk) = 2% ¢ H \/| cot whv;| \/ L(R/4)

Scrucca, Serone

GS mechanism of anomaly cancellation

All one-loop anomalies are automatically canceled by a tree-level

inflow, through a GS mechanism involving all the C®).

The GS term is given by the sum of all the D-branes and F-planes
anomalous couplings.
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N =1 D =6 models

These models have been constructed as Type |IB on T4/{Q, Zx},
for N =2,3,4,6. The spectrum is:

Open: - Vector: If/2 (G =TI,U(ne) X I[1,SO(ny))
- Hyper: If/z (p =na(na —1)/2, (na, np))
Closed: - Gravitational: I3/5 + I4
- Hyper (ng): —I1/2

(nH + nr = 21)
- Tensor (ng): —I1/9 — I

Bianchi,Sagnotti; Gimon,Polchinski; Gimon,Johnson

Using the D = 6 relation I3/9 — 211/9 — 814 = 0, one gets:
Ichafrged — Zp ChP(F) A\(R)

1 ~
Ineutral = - g (9 - nT) L(R)

The inflow has a factorized structure:

ISe = Z i A Y +Z LY A

RR tensors RR scalars

7

The corresponding GS couplings are:
Sgs = Zt/bt N It(4) + Zh/ (thfl(f) + {5;, N I,(lZ))
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The I,(ZZ) coupling modifies the kinetic terms of the RR scalars ¢p:
the U(1) fields A associated to I,(f) enter as shifts in the field
strengths Hy, = d¢yp, — Ap, and the RR scalars are gauge-variant.
The SUSY partners of the I,EZ) couplings are D-terms involving
the other three NSNS scalars ¢y, of each neutral hyper multiplet.

The corresponding U(1) vector multiplets become massive through

super-Higgsing of the hyper multiplets.

Harvey,Moore;

Berkooz, Leigh, Polchinski, Schwarz, Seiberg, Witten

The It(4) couplings are related by SUSY to the gauge kinetic terms
Za%fa(got) tr Fg which depend on the NSNS scalar partners ¢

of the RR tensors b; in the tensor multiplets.
Sagnotti

One can deduce the gauge kinetic functions f;(¢¢) from It(4)(Fa).

The results for f,((p:) are in agreement with a direct computation.
Antoniadis,Bachas,Dudas

At the points fa({w:)) = 0 in moduli space, the effective gauge

coupling diverges, and tensionless strings appear in the spectrum.

Duff, Minasian, Witten
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N =1D =4 models

These models have been constructed as Type IIB on T¢/{2, Zy},
for N =3,6,7,12. The spectrum is:

Open: - Vector: If/2 (G =T1I,U(na) x [1, SO(np))
- Chiral; Ilp/z (,0 = na(na - 1)/27 (na7 nb))

Closed: - Gravitational: I3/,

- Chiral: I1/2

Angelantonj,Bianchi,Pradisi,Sagnotti,Stanev; Kakushadze,Shiu;
Aldazabal Font,Ibanez,Violero

On gets:
Icharged — Z Chp(F) A\(R)
Ineutrar = 0

The inflow contains only one type of term:

1§= 3,10 A 10

7

"~

RR scalars

The corresponding GS terms are:

Sas = Zc/ (¢c [c(4) + Q;c N Ic(2))
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The Ic(2) couplings do again shift the field-strengths of the RR
scalars ¢, and spontaneously break the corresponding U(1)'’s.
Their SUSY partners are FI D-terms involving the NSNS scalar

@ of each neutral chiral multiplet.
Ibafez, Rabadan,Uranga

The Ié4) couplings are as before related by SUSY to gauge kinetic
terms, Zaifa(%) tr F2, which now depend on the same NSNS

scalars (.

Again, the results for fa(¢c) are in agreement with a direct com-

putation.
Antoniadis,Bachas,Dudas

In these models, the same scalars ¢, occur both in the Fl terms

and in the gauge kinetic functions, and their vev's {p.) are fixed.
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CONCLUSIONS

e [he anomalous couplings are determined by anomaly
cancellation.
World-volume anomalies are canceled through the

inflow mechanism.

e Anomalies and inflows can be computed directly in
string theory.

The anomalous couplings follow then by factorization.

e Anomalies, inflows and anomalous couplings can be
studied in generic orientifold models.
The GS mechanism is realized as inflow mechanism.
Important informations on the effective action of

orientifold models can be obtained.
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