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e VARIOUS SPACE-TIME 0-BRANES IN 4D ORBIFOLD
COMPACTIFICATIONS.
TWO INTERESTING CASES: 0-BRANE OF TYPE ITA AND
3-BRANE OF TYPE IIB.

e DYNAMICS AND BOUNDARY STATE; FORCE.
LARGE DISTANCE INTERACTIONS AND RELATION WITH
SOLUTIONS OF 4D EFFECTIVE SUGRA.

e EMISSION OF MASSLESS NSNS STATES FROM TWO
INTERACTING SPACE-TIME 0-BRANES.
CORRELATORS WITH TWISTED BOUNDARY CONDITIONS.
LARGE DISTANCE BEHAVIOR AND FIELD THEORY
INTERPRETATION.



INTERACTIONS ON ORBIFOLDS

Consider two 0-branes moving with velocities V; = tanhwv;, V5 = tanh v,

(along 1) and transverse positions Y1, Y, (along 2-3).
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The amplitude in the closed string channel is

A= [TdlY < BV, Yi|e B, 14, Y, >,
There are two sectors, RR and NSNS, and after the GSO projection four spin
structures contribute, R4 and NS+.

In the static case, one has Neumann b.c. in time and Dirichlet b.c. in space.

The velocity twist the 0-1 directions.
The moving boundary state is obtained by boosting the static one with v =
v1 — vy (Bill6, Di Vecchia, Cangemi)

B,V,Y >=¢ " |B,Y >
In the large distance limit b — oo only world-sheets with [ — oo will
contribute.

Momentum or winding in the compact directions can be neglected since they

correspond to massive components.



The moving boundary states

Bk
2m)3
d*q
2m)3
can only carry the boosted space-time momenta

1B, V4,Y; > = /( "N BV > ®lkp >

\&w%>=/( ™2 B,V > ®|qp >

kg = (Vlfylkl,’ylkl,ET) = (Sinhvlkl,coshvlkl,/;T)

I

Taking into account momentum conservation (ks = ¢3), the amplitude fac-
torizes
. 2
A = e s 7573
smhv 0 27)? 5
1 00 dl b2
= SV YA

Sinhv/o 27Tl ; Ber

with (from now on X* = X/ )

—lH
Zpr =< B,Vi|e77|B,Vy >3 &

Group the fields into pairs

XF=X"+ X' - a,,8,=d +a

dp — (‘/272q17 72q17 iT) - (Siﬂh ’U2q1, cosh qul, iT)

XOXF=X'+iX™ = g 8% =a £ial™ | i=2,4,6,8

=gl 2yl — P =un,
XX =9 AT = g =R
with
[ama 5—n] - _25mn ) [ ;17 ﬂﬁkn] = 25mn

{errlm Xén} — _25mn ) {Xma } — 25mn

1=2,4,6,8



Orbifold construction

Identify points connected by discrete rotations g = e>™2a?aJaat1 on some of

the compact pairs X y*, a=4,6,8.
In order to preserve at least on SUSY: &, z, = 0.
o For Ty /Zy (N =2 SUSY) take 24,26 = 5,5 , 28 = —21 — 2%

o For Tb ® Ty/Zy (N =4 SUSY) take zy = —z =1 , 25=0
e For T (N =8 SUSY) take zy = zg = 25 = 0
There can be additional twisted sectors. One can diagonalize the fields such
that (g, = €*™*a)
X0+ 1) = guX(0) , X0 +1) = 65X (o)

and similarly for fermions. This leads to fractional moding.
The twisted states become massless only at fixed points of the orbifold.

In all sectors, one has to project onto invariant states to get the physical

spectrum.

The physical boundary state is
1 N-1
| Bphys >= N(\B,l > +|B,g>+...+|B,g" " >)
in terms of the twisted boundary states

1B, ¢" >=¢"|B >



O-brane: untwisted sector

Consider first the static case. The b.c. are Neumann for time and Dirichlet

for all other directions (i=2,4,6,8 and a=24,6).

For the bosons, the b.c. are
(an+B_p)|B>p=0 , (By+a&_,)|B>p=0
(B, = BLIIB >p=0 , (B = 5%)|B >p=0

They are solved by the following boundary state

1 ~ % i ik i* Qi
|B >p=exp 5 > (_nG_p + B_pfB-pn + 5,87, + 57,65,)|0 >

n=1

For the fermions, one has integer or half-integer moding in the RR and NSNS
sectors respectively. The b.c are

O +inxZ)|Bn >r=0  (x; +inx2,)|B.n >p=0

On = X2 Byn >r=0 (X —x",)|B,n >r=0
where n = £1 to deal with the GSO projection.

The corresponding boundary state can be factorized into zero mode and
oscillator parts:

\Bﬂ? >F= ‘BO >F ®‘Bosc >

The oscillator part is the same for both sectors, with appropriate moding

in ) ) o .
‘Bosca N >F= €exp 5 go(xénxiln + Xénxén o XZ—nXZ—n T XZ—nXZ—n)‘O >
n

The zero mode part exist only in the RR sector.



The zero modes are proportional to I'-matrices
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One can construct
a,a” = %(FO + ')
b, b = %(—m’ + [t
and similar for tilded, satisfying
{a,a*} = {V', 0"} =1
The b.c. for the zero modes can be rewritten as
(@ +ina")|Bo,n >r=0 , (a"+1ina)|B,,n >r=0
(b — ind")|B,,n >p=0 , (b —inb™)|B,,n >p=0
Defining the spinor vacuum |0 > ®|0 > such that
al0 >=0 , al0>=0
bl0>=0 , b0 >=0
the zero mode part of the boundary state can be written as
|B,,n >rr=exp —in(a*a* — b"b)|0 > @|0 >

The complete boundary state is already invariant under orbifold rotations,

for which

ﬁfi — gaﬁfi ) ﬁﬁ* - g;ﬁz*
a ko ak

Xn = GaXn s Xnm — GuXn
e —s gaba : N gzba*



For a boost of rapidity v:

—v v
ap — ey, Pn— e by
A —v. A B v. B
Xn 7€ Xn » Xnp 7€ Xy

a—e’a , a —ea

The spinor vacuum is not invariant, but transforms as
0> ®[0>— e |0 > ®|0 >

Finally, the complete boosted boundary state is

1 _2 B 5 - —_— Y
|B,V >p=exp 2 ngo(e ‘a_pap +eB B+ 6,00 + 67.8,)|0 >
) A - v. B ~
|BOSC, V.n >p=exp E ngo(e 2 Xflnxfln + e ngnxf_gn

—XLXE, = X510 >
1B,,V,n >pp= e "exp —in(e”a*a* — b™b')|0 > ®|0 >
In both sectors one gets
(-=)|B,V,n >=—|B,V,—n >
and the GSO-projected boundary state is
B,V >= (1B, + > ~[B,V,~ >)
In the partition function, the ghosts cancel one untwisted pair, say 2-3, and
the result is the product of the contributions of the 0-1 pair and the 3 compact

pairs.

For the bosons, one finds (¢ = e~ 27l )

< B,Vile B, vy >0V = 1]




The total bosonic partition function is (zero-point energy q_%)
1

. _2 ¢ V1(0]24])
Zp = —sinhog 3 f(q?) 8L
5= _sinhvg 3 f(g’) oy (i2]2il)

For the fermions, the 0-1 pair gives

< B, Vi,nle ™| B, Vo, >3"V= Z3 () T (1 + /e 2> (1 + /€2 ¢*")

n>0

with nn’ = £+1 and
ZH(4)=2coshv , Z(—)=2sinhv
Z)% () =1

Each compact pair gives instead

< B Vinle B, Va,of S5 = Z30m) T (L +m'g?)
with
zZi(+)=2 . Z8(-)=0
ZN9(£) =1
After the GSO projection, only the three even spin structures R+ and NS+
contribute, and (zero-point energy q_% for NSNS and q% for RR)

U4 :
A {192(@;\22[)192(0\2@[)3
—95(i 2|20l )04(0]2i0)? + 794@9\2@1)194(0\2@1)3}
T T
~ V4

corresponding to the usual SUSY cancellation of the force (Bachas).



O-brane: twisted sector

The boundary state is similar to the one of the untwisted sector, with frac-

tional moding.

In the Z3 case, each pair of compact bosons gives

< B, Vi|le"M|B, vy > = ]
e (1= D)1= D)

For a pair of compact fermions (no zero modes)

< B, Vi, nle ™ |B, Vo, if >3 = T1 (1 + g/ 2" 5) (1 + nf 20— ))
n=1

< B, Vi,nle ™ |B, Vo, of >3 = 1 (14 i 2 8) (1 + 20 9)
n=1

The total partition functions after the GSO projection are (the zero-point

energies add to zero)
1
O (222l (— 2|24l

Zr = flP) {192(7;%27;1)192(—%@1\2@03

Zp = 2isinhv f(¢*)*

U, 2. U . 2. A
— 05 2 2ul) O Silj2il)" — 194(@;\2zl)194(—§zl|2zl)3}
~ V2

In the Z5 case, the analysis is similar and the results are
1
V1 (22|240)01(0[2il)0, (—il|241)>

T = qb f(g?) {192(73%\2il)192(0\2il)192(—7jl\2il)2

75 = 2isinh vq_%f(q2)4

950 |201)95(0|2i0)05( —il |2i1)?
T

—ﬁ4(¢9\2@1)194(0\211)194(—11\2@02}
T



3-brane

In the static case, take Neumann b.c. for time, Dirichlet b.c. for space
and mixed b.c. for each pair of compact directions, say Neumann for the a

directions and Dirichlet for the a-+1 directions.

The new b.c. for the compact directions are
(Br+ BB >p=0 , (67 +B2,)|B >p=0
O+ X)) Bose, 1 >p= 0, (X" +0X00) | Bose, 1 >p=0
(0% +inb™)|B,,n >p=0 , (0™ +inb®)|B,,n >p=0
Defining a new spinor vacuum |0 > ®|0 > such that
b0 >=0 , b0 >=0
the compact part of the boundary state is

|B >p= eXp—— > (62,0%, + 62,6%,)|0 >

n>0
i \
|B0867?7>F_ eXpE Z(X nX +X nXa )|O>
n>0
|B,, 1 >prr= exp —inb™b™|0 > ®[0 >

In this case, the boundary state is not invariant under orbifold rotations.

Recall that (g, = e*"%)

ﬁz — Qaﬁﬁ ) ﬁﬁ* — 9253*

a a * . A%

Xn — gaXn ) Xn — gaXn
bCL N gaba ’ b N gaba*

Moreover, the spinor vacuum now transform
0> ®|0 >— g4|0 > ®[0 >
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The compact part of the twisted boundary state is
|B,V, ga >p=exp —= Ly (g26°,6%, + g2 3% 3 )|0 >
n>0

77 ~ *k ax*x ~a*
[ Bose: V. gar 1 >p=exp ) X (92X" X% + 22X ™ XM )]0 >

n>0

|B07 V) Ga, M > RR— Gao €XP — Z?79(12ba*ba*|0 > ®‘O >

A pair of compact bosons gives ((g*g,)? = e*"wa)

1
1 1_|_n77/62m'waq2n

©9)

< B, VA, gale | B, Vi, g, > M=

For fermions
_ 1 s TIW, n2
< B, Vi, gu,nle ™™ |B, Vo, gl >3 = Z3 ) TL |1+ /€0

n>0

where
ZR(4) = 2cosmw, , ZF(—) = 2isinmw,
ZN9(£) =1

After the GSO projection, the total partition functions for a given relative

twist are

1 SIN TW,,

91(i2230) W9, (wa 2il)
Zr = ¢ 3 (g) " {Dai[2il) I 9w, 200

Zp = 16isinh vq3f( 2)4

—95(32(240) TT 93(wa20l) + 94 (i 2 |2i0) Hﬁ4(wa|27jl)}
T a T a

Vi w, =0
V2w, #0

Y

To obtain the invariant amplitude, one has to average over all possible orbifold
twists. There is no twisted sector.
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Large distance limit
Explicit expressions for [ — oo
O-brane

a) Untwisted sector

A ~ 4dcoshv — cosh2v — 3 ~ V*

b) Twisted sector
A~ coshv — 1 ~ V?

3-brane

A(wg) ~ 411 cos mw, cosh v — cosh 2v — > cos 2mw,

coshv — cosh2v ~ V2% | T/ Z3
4coshv —cosh2v — 3~ VY | Th@Ty/Zy, Ty

Y

Field theory interpretation

The possible contributions in the eikonal approximation are
Dilaton:  —a?
Vector:  e?coshwv
Graviton:  —M?cosh 2v

Thus
4coshv —cosh2v —3 <« N=8 Grav. multiplet
coshv —cosh2v < N=2 Grav. multiplet

coshv —1 << Vec. multiplet

12



V2 terms

In the dual open string channel, V' corresponds to an electric field E, and V2
terms correspond to a renormalization of the Maxwell term E?. This can not

happen for the maximally supersymmetric theory:.

The V2 behavior is thus forbidden for N = 8 and allowed for N < 8; our

results are compatible with this.
Spin effects

The 0-brane belongs to a BPS multiplet realizing half of the SUSY. Its 2//2
components (N = # of SUSY generators) have different spins.

The annulus vacuum amplitude with Polchinski’s prescription for the b.c gives
only the universal spin-independent potential. The additional spin-dependent

interactions are obtained by applying the broken SUSY.

In the closed string channel, one can construct higher spin boundary states in
the G-S formalism by acting with the supercharges on the scalar one (Morales,

Scrucca, Serone). On Tyo_p, the complete potential is generically

4 V4—/{Z
Vi = X g

In the dual open string channel, this structure is obvious. The path integral

gives a vanishing result unless the 8 fermionic zero modes are soaked up.

The insertion of 2k supercharges provides 2k fermionic zero modes. The

remaining 8 — 2k come from the expansion of the interaction
4 0 1 g 01
expade {X 0, X" — 157 S]
yvielding a factor V(4=%),
This result is consitent with string duality (Harvey).

13



EMISSION OF MASSLESS NSNS BOSONS

Consider two moving O-branes in interaction emitting a massless NSNS boson.

e

Q21D =

- — e — —. —f——> b=Y, - Y
/T l'=l7'/ b
Vo, s URRE

The amplitude is computed inserting the vertex operator (z = o + i7)

¥442):(ﬁanW—%p~¢WX3XJ+%p4%WkWX

between the two boundary states
A= [¥dl [ drs < B,Vi, Vile TV (z,2)| B, Vi, Vs >,
= fy dr [y dl'S <V(z2) >,

Split the bosons into zero mode and oscillators to be treated separately (again

Xt =Xk ).

osc

The zero mode part gives the kinematics (p# = ks — ¢l).

The energies and longitudinal momenta are completely fixed (cosf = %1,

p=7p")
p
K, =Viky k‘ézvl_%(l—‘/gcosﬁ)
@ =Vagh , qh=—L—(1—Vicos)

Vi—V,

14



The zero mode contribution is (v = vy — vs)

1 Pkr v 2 R
/ T kb~ —kr

< ePX > = (21)? e'"e e

sinh v

Further zero mode insertions give
i 1.
0X, = _QkB
Sy L
0X) = §/<B
o 1
0X,0X) = —ZHB/{:]B

Finally, the amplitude is (from now on ¢* = ¢z and k* = kbp)

&’k 2
[ dr [* dl’/ T R <N > ZpZiM,

Smh v 7'('

with
M =G {<0X'0X) > - <0X'p- X ><0X/p- X >
1 _ o . .
+(<pup > <YW > - <p U =< p P >,
+<p- Py > <p-yi >,
-I—%(<(9Xip-X><p-1Z?W>S—<5ij-X><p-¢¢i>s)
1 . 1 o
—§k’ (z <0X'p- X > +§ <p-yy’ >3)
1./ . 1 ,
+§kj(z<8le-X>—§<p-¢¢l >3)
1 .
L]
4

Obviously, the partition function factorizes, leaving connected correlators. In

the odd spin structure, appropriate zero modes insertion is understood.

15



Correlators

The boundary state provides a systematic way of computing correlators with

non trivial b.c.

_ < B Vile” HX1XY|By, Vy >p
< By, Vile | By, V5 >p

< By, Vi, nle”" V| By, Vo, i >
< By, Vi, n|e | By, Vo, ' >%

< XFXY >

< WW > =

For the bosons, one obtains (¢ = 6_2”)

< X'(2)X"(2) >=< X'(2)X!(2) >=

] oo
— > {cosh 2[(v1 — va2)n — o] In(1 — ¢*"e*"7)
47T n=0

— cosh 2[(ve — v1)n — vy] In(1 — q2”6_4ﬂ/)}
< X'(2)X(2) >=< X'(2)X"(2) >=

] o
=—— Y {sinh 2[(v1 — vo)n — o] In(1 — g™~ *7)
47 n=0
+ sinh 2[(vy — v1)n — vy]In(1 — QQRB_MZI)}
For the fermions in the NS# sectors, the results are

< P2V (2) >nse=< V' (2)Y(2) >Noa=

— —z‘nijo(:F)" {cosh 2[(v1 — vo)n — vy

2T

q"e”
1 — q2n6—47r7

qne—Qﬂl'
1 — q2n€—47rl’

+ cosh 2[(ve — v1)n — v]

< P2 (2) >nse=< V' (2)Y"(2) >nga=

N n ,—2nT
=i 3 () {smh (o — e — o

n,—2mrl’
+ sinh 2[(vy — v1)n — vq] vc }

1 — q2n6—47rl’

16



For the fermions in the R+ sectors, the results are similar, with a zero mode

contribution

<P (2)P"(2) >pe=< V' (2)9"(2) >pe=

00 2n ,—4nT
= Ff) —i £ ) feosh 2o o vl T T
q2n6—47rl/

+ cosh 2[(vy — v1)n — vq]

1 — q2n6—47rl’

FR(4) ~ tcosh(vy + vo) i sinh(vy + vg)

2 cosh(v; — vs)

Fli(—) =
 Fo5) ~ 2sinh(v; — vy)

<P (2) >re=< V' (2)Y"(2) >pe=

o 2n€—47r7
- G+ 0 {2 - e -l T
= 1 — q ne—4nT
. 2n6—47rl/
+ sinh 2[(vy — v1)n — 711]1 g I

i sinh(vy + v)
~ 2cosh(vy — v9)

i cosh(vy + vy)

Gl(+) = NEASE

~ 2sinh(v; — v)

World-sheet SUSY means (for osc.)
_ 1 B
<OXM(2)X(2) >= o < 929" (2) >p-

There are also non vanishing equal-point correlators, which can be computed

in the same way. They can also be deduced from the previous ones using the

b.c.

17



The correlators can be expressed in terms of twisted ¥-functions.
Form the combinations 1% = eF2 ()" & 1), satisfying the b.c.

VE2) = —ipT(2) , 7=0 & 2=2%

VE(2) = —ie™YT(2) | T=1 & 2z =2+ 2il
The propagators

Ply(z = 2) =< pF (2)97(2) >,
should have appropriate periodicity conditions on the covering torus with
modulus 2il from which the cylinder can be obtained by the involution z =
Z + 2il.
In fact, under
w — w+m+ 2iln

the propagators transform as
P(}E(w +m + 2iln) = e”"eﬁmp(}g(w)
P(}i;(w +m + 2iln) = eiQ””P(};(w)
P(]g (w +m + 2iln) = emmem”eﬂmp(jg (w)

P(]i)s_(w +m + 2iln) = emmeﬂmP(]i)S_(w)

These properties, together with the universal local behavior

. 1
P(i)(UJ) — Imw

imply for the even spin structures:

1 (w4 02|2i0)94(0]26l)
A 9y(£4212il)0, (w]2il)

P (Si)(UJ)

18



Results

Axion
1 ]0]€
2€wk

Only the odd spin structure can contribute because of the antisymmetry of

Gi; =

Gi;. In the twisted sector of the Z3 case, there are only two fermionic zero

modes in the 2-3 pair, and the amplitude could be non vanishing,.

After integrating by parts the two-derivative bosonic term, world-sheet SUSY

leads to
ME- = L cosd
8
Since 0;|; = 0;|y — Oyl the final amplitude is a total derivative (ZgZ7~ =

2 sinh v for the twisted sector of Z3)

—0; <p-X(z)p- X(2) > %("CQ - q2>]

Age = ~cost [Zdr [~ dl’/dsz P50, — oy) [T T < v X
ar = cos o at (27?) ) e e
= 0
Dilaton o
p'p’
Gy =6, —
J J pQ

Only the even spin structures contribute, because of the symmetry of Gj;.

Again, the two-derivative bosonic term is integrated by parts.

In the large distance limit, one keep only leading terms for [ — oo in the

propagators, and
< el >= (1 — 6_47”)_% (1 _ 6—4wl’)_%

with the boosted energies

(1,2)

P = py12(1 — Vigcosf) = p(coshvy o — sinh vy 5 cos 6)

19



One finds for the contractions

1 .
M = 12 _(k2 — ¢*) — 2p* cos O tanh v| x
1 6—47‘(‘7’ 6—47Tl’
SR ) @2 (1)2—/
4( q ) p 1 — 6—47?7' +p 1 — 6—47?[
KL e T ) (R e
p \ 4 l—e %) pl4 1 —e 4
1
MEPE = (k2 — ¢%) T 8¢ *™p? cos B sinh v| X
dil 4]72
1 6—47‘(‘7’ 6—47Tl’
S22y @2 (1)2—/
{4( q ) p 1_6—47T7'+p 1_6—47Tl
]{0 q2 6—47T7' ]{2 6—47Tl/
_r 4 22_~= (2~
p<4+p 1 — e 47 Jrp 4+p 1 — e—4l’
p- X

Taking into account < e > and integrating by parts in the final amplitude,

one gets the rules

6—47TT

1
l—e 4 4

q2 6—47Tl’ N 1 k2
p22 7 — et — _4p(1)2

Using these equivalence relations, one finds
NS+ __
Mdzl Mdzl -
This means that the amplitude is a total derivative and

Aiir =0

20



Graviton
Gij = hij=hy; , p'hij=hi=0

Proceeding as for the dilaton, one obtains for [ — oo

R+ __
Mg'r’cw o
1 o .
- hijk'k) — ptanhvhy k'
. 1 6—47‘(‘7’
_‘/272 {p@) (hilkZ — gtanh ’Uhll) + Z(kz - q2)‘/2")/2h11] w
+Viy [p<1> <h~ ki — L tanhoh ) L2 v ] il
171 il 5 1)+ M T
NS+
Mgrav
1 - | Z- .
~7 [hijklkﬁ T 4e 2™ (p sinh 2vh; k' — p? sinh? vhll)]
. - ' 1 6—47?7'
_‘/2ny {p@) (hilkZ :F 26 27Tlp Slnh ?}hll) + Z(k2 . q2)‘/’2f}/2h11] w

—4rl

, _ 1 e
+Vim {pm (hﬂ/‘f T 2¢ *"psinh Uhn) + Z(kQ - 612)‘/171h11] PR

One can use the same equivalence relations as before to write My, in a

7, "-independent form. Anyway:

Agmv 7é 0
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The general structure of the amplitude is

1 p PR g 2 i
_p22 ,_p?
<1 - 6—47TT> 2m (1 _ 6_47Tl) 27 ZZBZ%M;TCW
1 koT zkb
— LY ZgZiM?
sinh v / (27)? ! 22 BER grav
with
Mo = B0, k,q) + ¢*C(p, k, q) + K°C5(p, k. q)
The kinematical integrals over the two proper times 7, 1" give
R DA Nt
:/0 dre 2 (1 —e€ > = ZQ p@)g
Mgz — % + 1
(1)2 k2 (1)2
— [Pdle —7l’< 6—4wz'>—p7 _ LV EIN=5-+1
1)2
0 I - e ]

One finds the usual dual structure with a double serie of poles. However, in
the eikonal approximation p < M =1 and
2 2

@ 2 L2

11—>—

Finally, the amplitude becomes

4
sinh v

Pkr or 1
Agran = / Tezk~b{B 2+Clk2+02q}

(2 )2 7k
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The graphical interpretation is the following

(7,1'#0)

Nl
N

= B’

Vs Vi
pM
3 | 1
| 5 = - !

AVAVaAVAVAVAVAVAVAY sVAVAVAVAVAVAVAVAY = G r=h0=0

1 14

hij
pu

| It
| ¢ = C;’% (r=0,I'=1)
\AVAVAVAVAVAVAVAY VAVAVAVAVAVAVAVAY q

V5 Vi
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Annihilation term
Field theory results

For the axion and the dilaton, there is no coupling in SUGRA allowing the

€Imission Process.

For the annihilation term of the graviton, there are three possible diagrams in
SUGRA, involving the exchange of R vectors and NS dilatons and gravitons.

Their respective contributions in the eikonal approximation are
B‘]}i = ¢? [cosh vhijkikj — psinh vhj k'
B)® = —a’h;k'K

B = —M? |cosh 2vh;;k'k? — 2psinh 2vh k' + 2p” sinh® vhyy

v
String results
The string results in the various compactification schemes are the following
0-brane: untwisted sector & 3-brane on T, ® T,/Z,, T
ZIt — ZNS+ L ZN5= 5 16 coshv — 4 cosh 20 — 12

ZNS+ + ZNS— _ 2627?[
and

BfE =4 [cosh vhijkikj — psinh vhj k'

grav

grav

B)lo, = — |cosh 20h;k' k) — 2psinh 20k k' + 2p® sinh® vhyy
—3hi;k'k

- Bgﬂw ~ V4hijkik‘j + Vgphﬂki + V2p2h11
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O-brane: twisted sector
Z0+ _ gNSt _ ZNS= _ fcosho — 4

ZNS—O—_zNS— 0

and

BE = coshvhijk:ikj —psinhvhﬂki

grav

BYS = —hk'k

grav
= Bgmv ~ Vzhijkik?j + Vphﬂk‘z + V2p2h11
3-brane on T;/Z5

zitt _ gNS+ 4 ZNS= _ fcoshv — 4 cosh 2u

ZNS—l— + ZNS— N 2627Tl

and

BE = [cosh vhijkikj — psinh vhj k'

grav
Bé\;gv = — [cosh QUhijkik?j — 2psinh 2vhi k! + 2p2 sinh? vhi
= Byrav ~ V?hijk'k? + Vphak' + Vp°hy
Colinear emission
At 6 = 0 one finds
Byray ~ V"hik'k
Cligrav = Cograv = 0

with n = 2,4 depending on the amount of SUSY.
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Radiated energy

The average energy radiated when the two branes pass each other at impact

parameter b is

<p>~/ \A\

For § =0 and V' < 1 one has
- b b
A~ Vgl f(E e
V
where is a slowly varying function and n = 2,4. Notice that the emission is

exponentially suppressed for p ~ ppa = V/b.

By dimensional analysis one finds

V1+2n
< p >~ gil? =

Extrapolating down to the b ~ [11 = g1/3l one would find

%V1+2n

This small distance extrapolation could be invalidated by additional dynam-

<P >

ical effects, like open strings pair creation for b ~ +/V1, (Bachas) or massive

states exchange if Pz ~ 15

There could be also a kinematical breakdown of the eikonal approximation
if Prae ~ por = V/(gsls). However, even for b ~ [jq, all these effects are

negligible for small relative velocity V < g%/,
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