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METASTABILITY AND SGOLDSTINO MASSES

Vacuum

Vacua correspond to constant values of the fields with zero kinetic energy
T and minimal potential energy V . One has V ′ = 0, whereas V = Λ4

defines the vacuum energy and V ′′ = m2 the fluctuation mass matrix.

In supersymmetric theories, the form of V is constrained. Vacua then
display special features. The main issue is to get Λ4 > 0 and m2 > 0.

Supersymmetry breaking and metastability
Denef, Douglas 2005

Gomez-Reino, Scrucca 2006

When supersymmetry is broken, there is a Goldstino fermion which has
zero mass. Its partners the sGoldstino bosons have masses controlled
by breaking effects and difficult to adjust.

Requiring positive sGoldstino masses leads to metastability conditions.
Gravity gives only quantitative modifications compared to the rigid case.
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N = 1 SUSY WITH CHIRAL MULTIPLETS

General structure of the theory Zumino 1979
Freedman, Alvarez-Gaumé 1981

In a theory involving nc chiral multiplets, the nc complex scalars φi are
described by:

T = −gī∂µφ
i∂µφ̄̄

V = gīF
iF ̄

The metric gī defines a Kähler geometry admitting a real Kähler potential
K and a complex structure J i

j = iδi
j :

gī = Kī : Kähler

The shift F i is a complex vector set by a holomorphic superpotential W :

F i = gīW̄̄
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Supersymmetry breaking

Supersymmetry is broken whenever F i 6= 0, and there are two real scalar
sGoldstini:

ϕ1,2 = Re
Im

(F̄ iφ
i)

Metastability Gomez-Reino, Scrucca 2006

Using the stationarity condition one finds:

m2
ϕ1,2 = RF iF̄ i ± ∆m2

ϕ

where

R = −
Rīkl̄ F

iF̄ ̄F kF̄ l̄

(FnF̄n)2

Taking the average of m2
ϕ1,2 , one finds a degenerate upper and lower

bound for the smallest and largest scalar mass eigenvalue:

m2 = RF iF̄ i

This gives a sharp constraint for metastability: one needs R > 0.
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Minimal class of examples

For nc = 1, we have

V =
|Wφ|2
Kφφ̄

The stationarity condition implies that Wφφ = K–1
φφ̄Kφφφ̄Wφ and the

scalar mass matrix is found to be:

m2
φφ̄ = RV m2

φφ = ∆V

where

R = −
(

Kφφφ̄φ̄

K2
φφ̄

− |Kφφφ̄|2
K3

φφ̄

)

∆ =

(

Wφφφ

WφKφφ̄

− Kφφφ̄φ̄

K2
φφ̄

)

The two mass eigenvalues are thus:

m2
1,2 =

(

R ± |∆|
)

V

Supersymmetry is broken since V 6= 0, and the average of m2
1,2 is

m2 = RV
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N = 1 SUSY WITH CHIRAL AND VECTOR MULTIPLETS

General structure of the theory
Bagger, Witten 1982

Hull, Karlhede, Lindstrom, Rocek 1986

In a theory with nc chiral and nv vector multiplets with Abelian gauge
symmetries, the nc complex scalars φi and nv real vectors Aa

µ have:

T = −gīDµφ
iDµφ̄̄ − 1

4
habF

a
µνF

bµν +
1

4
θabF

a
µνF̃

bµν

V = gīF
iF ̄ +

1

2
habD

aDb

The metric gī defines a Kähler geometry admitting a real Kähler potential
K and a complex structure J i

j = iδi
j , while hab and θab are linked to a

holomorphic matrix Hab:

gī = Kī hab = Re(Hab) θab = Im(Hab)

Moreover Dµφ
i = ∂µφ

i + ki
aA

a
µ where ki

a are Abelian holomorphic
Killing vectors admitting real Killing potentials Pa so that iki

a = −gīPā.
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The vector mass matrix is also determined by ki
a and is given by:

M2
a
b = 2hbcgīk

i
ak̄

̄
c

The shift F i is a complex vector set by a holomorphic superpotential W ,
while Da is related to the Killing potentials Pa where Fayet-Iliopoulos are
excluded by consistency with gravity:

F i = gīW̄̄ Da = habPb

Stationarity further implies a relation through the charges Qai
j = ika

j
j :

M2
abD

b = 2Qaī F
iF̄ ̄

Supersymmetry breaking

Supersymmetry is broken whenever F i, Da 6= 0, and there are two real
scalar sGoldstini:

ϕ1,2 = Re
Im(F̄ iφ

i)
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Metastability Gomez-Reino, Scrucca 2007

Using the stationarity condition one finds

m2
ϕ1,2 = RF iF̄ i+ SDaDa+ T

(DaDa)
2

4F iF̄ i

+ M2
DaDa

F iF̄ i

± ∆m2
ϕ

where

R = −
Rīkl̄ F

iF̄ ̄F kF̄ l̄

(FnF̄n)2
S =

hacih
cdhdb̄ F

iF̄ ̄DaDb

FnF̄k DcDc

T =
habihcb

iDaDbDcDd

(DeDe)2
M2 =

M2
abD

aDb

DcDc

Averaging over m2
ϕ1,2 , one finds a result with a new semi-positive term in

the metastability bound:

m2 = RF iF̄ i +
(

SF iF̄ i +
1

4
T DaDa + M2

)DbDb

F jF̄ j

This gives a milder and more flexible constraint for metastability.
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Minimal class of examples

For nc = nv = 1, we can take K = K(Φ + Φ̄), W = 0, h = 1 and
kφ = iξ, P = iξK′. Then:

V =
1

2
ξ2 |K′|2 M2 = 2ξ2K′′

The stationarity condition fixes K′ = 0 and the scalar mass matrix is:

m2
φφ̄ =

1

2
M2 m2

φφ =
1

2
M2

The two mass eigenvalues are thus:

m2
0 = 0 m2

1 = M2

Supersymmetry is unbroken since V = 0, and m2
1 coincides with the

vector mass:

m2 = M2
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N = 2 SUSY WITH HYPER MULTIPLETS

General structure of the theory Alvarez-Gaumé, Freedman 1981
Hull, Karlhede, Lindstrom, Rocek 1986

In a theory with nh hyper multiplets and a global central charge symmetry,
the 4nh real scalars qu are described by:

T = −1

2
guv∂µq

u∂µqv

V =
1

2
guvN

uNv

The metric guv defines a Hyper-Kähler geometry admitting three complex
structures Jxu

v such that Jxu
wJyw

v = −δxyδu
v + ǫxyzJzu

v:

guv : Hyper-Kähler

The shift Nu is related to a triholomorphic Killing vector ku admitting
three real Killing potentials P x such that (Jxk)u = −guvP x

v:

Nu = 2ku
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Supersymmetry breaking

Supersymmetry is broken whenever Nu 6= 0, and there are four real
scalar sGoldstini:

ϕ0 = Nuq
u ϕx = (JxN)uq

u

Metastability Gomez-Reino, Louis, Scrucca 2009
Jacot, Scrucca 2010

Using the stationarity condition one finds:

m2
ϕ0 = 0 m2

ϕx = −RxN
uNu

where

Rx =
RuvrsN

u(JxN)vNr(JxN)s

(N tN t)2

Averaging of the m2
ϕx and using the property

∑

x
Rx = 0 one finds:

m2 = 0

This gives a no-go theorem against metastability.
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Minimal class of examples

For nh = 1, one needs a general 4-dimensional Hyper-Kähler manifold
with a triholomorphic isometry. Locally, such a space can be described
by a metric of the Gibbons-Hawking form, with coordinates qu = q0, ~q:

ds2 = f d~q
2 + f –1(dq0 + ~ω · d~q )2

The real function f can depend only on ~q and must be harmonic:

∆f = 0

The three real functions ~ω are then determined by the equation:

~∇ × ~ω = ~∇f

The isometry acts a shift in the coordinate q0 and is described by

ku = ξδu0 ~P = ξ~q
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The resulting potential depends only on qx and is given by:

V = 2ξ2f –1

The stationarity condition fixes fx = 0 and the scalar mass matrix is:

m2
00 = 0 m2

0x = 0 m2
xy = −RxyV

where

Rxy = f –2fxy

The four mass eigenvalues are thus:

m2
0 = 0 m2

x = −eigenx(Ryz)V

Supersymmetry is broken since V 6= 0, and as a consequence of the
property δxyRxy = 0 the average of m2

x is

m2 = 0
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N = 2 SUSY WITH VECTOR MULTIPLETS

General structure of the theory
De Wit, Van Proeyen 1984

Hull, Karlhede, Lindstrom, Rocek 1986
Castellani, D’auria, Frè 1991

In a theory with nv vector multiplets and Abelian gauge symmetries, the
nv complex scalars zi and nv real vectors Aa

µ are described by:

T = −gī∂µz
i∂µz̄̄ − 1

4
habF

a
µνF

bµν +
1

4
θabF

a
µνF̃

bµν

V = gīW
ixW̄ ̄x

The metric gī defines a Special-Kähler metric admitting a holomorphic
prepotential F for some sections La and a complex structure J i

j = iδi
j ,

and hab and θab are also directly related to it through fa
i = La

i:

gī =
[

Im
(

FaL̄
a
)]

ī
: Special-Kähler hab = gīf

i
a f̄

̄
b

The vector mass matrix vanishes:

M2
a
b = 0
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The shift W xi is set by constant Fayet-Iliopoulos terms ξxa, which must
be aligned as ξxa = ξav

x for consistency with gravity:

W ix = W ivx = (f iaξa)v
x

Supersymmetry breaking

Supersymmetry is broken whenever W i 6= 0, and there are two scalar
sGoldstini:

ϕ1,2 = Re
Im

(Wiz
i)

Metastability Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, de Wit, Girardello 1985
Jacot, Scrucca 2010

Using the stationarity condition one finds:

m2
ϕ1,2 = ±∆m2

ϕ

Averaging over m2
ϕ1,2 one finds a vanishing result:

m2 = 0

This gives again a no-go theorem against metastability.
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Minimal class of examples

For nv = 1, one needs a general 2-dimensional Special-Kähler manifold.
Locally, such a space can be described with special coordinates z, z̄ such
that L = z and a metric of the form:

ds2 = 2l |dz|2

The real function l can depend on z, z̄, but since it can be expressed
as l = Im(F ′′) in terms of the holomorphic prepotential F , it must be
harmonic:

lzz̄ = 0

In addition, one has to choose some constant Fayet-Iliopoulos terms:

ξx = ξvx
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The resulting potential depends on z, z̄ and one has:

V = ξ2l–1 M2 = 0

The stationarity condition fixes lz = 0 and the scalar mass matrix is
found to be:

m2
zz̄ = 0 m2

zz = −∆V

where

∆ = l–2lzz

The two mass eigenvalues are thus:

m2
1,2 = ±|∆|V

Supersymmetry is broken since V 6= 0, and the average of m2
1,2 is

m2 = 0
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N = 2 SUSY WITH HYPER AND VECTOR MULTIPLETS

General structure of the theory Hull, Karlhede, Lindstrom, Rocek 1986
D’auria, Ferrara, Frè 1991

In a theory with nh hyper and nv vector multiplets with Abelian gauge
symmetries, the 4nh scalars qu, nv scalars zi and nv vectors Aa

µ have:

T = −1

2
guvDµq

uDµqv − gī∂µz
i∂µz̄̄ − 1

4
habF

a
µνF

bµν + θ-term

V =
1

2
guvN

uNv + gīW
ixW̄ ̄x

The metrics guv, gī, hab and θab have the same properties as before:

guv : Hyper-Kähler gī : Special-Kähler hab = gīf
i
af̄

̄
b

Moreover Dµq
u = ∂µq

u + ku
aA

a
µ where ku

a are Abelian triholomorphic
Killing vectors with Killing potentials P x

a so that (Jxka)
u = −guvP x

av.

The vector mass matrix is given by:

M2
a
b = hbcguvk

u
ak

v
c
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The shift Nu is set by the ku
a and an extra Abelian triholomorphic Killing

vector ku with Killing potential P x such that (Jxk)u = −guvP x
v, while

the W ix are now related to the non-constant and non-aligned P x
a:

Nu = 2
(

ku+ku
aL

a
)

W ix = f iaP x
a

Supersymmetry breaking

Supersymmetry is broken if Nu,W ix 6= 0, but the scalar sGoldstini are
in this case more subtle to identify.

Metastability Antoniadis, Buican 2010
Frè, Trigiante, van Proeyen 2002

In theories with an SU(2)R global symmetry it is impossible to realize
supersymmetry non-linearly. The common lore is that Fayet-Iliopoulos
terms are needed. This raises two questions:

• Is this no-go theorem again due to a sGoldstino instability ?

• What about theories without any SU(2)R global symmetry?
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Minimal class of examples Légeret, Scrucca, Smyth 2013

For nh = nv = 1, we need a 4-dimensional Hyper-Kähler manifold with
a triholomorphic isometry and a 2-dimensional Special-Kähler manifold.
These can be described with coordinates q0, ~q and z, z̄ and metric:

ds2 = f d~q
2 + f –1(dq0 + ~ω · d~q )2 + 2l |dz|2

As before, f and l can depend only on ~q and z, z̄ and must be harmonic:

∆f = 0 lzz̄ = 0

The Killing vector and prepotentials associated to the isometry and the
symplectic section are given by:

Xu = ξδu0 ~P = ξ~q L = z

The resulting potential and vector mass depend on qx, z, z̄ and read:

V = 2 ξ2f –1|z|2 + ξ2 l–1|~q |2 M2 = 2 ξ2f –1l–1
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The stationarity request sets fx = f2l–1|z|–2qx and lz = 2 l2f –1|~q |–2z̄
and the scalar mass matrix is found to be:

m2
00 = 0 m2

0x = 0 m2
xy =

[

δxy+4 tan2θvxvy− 1

2
cot2θAxy

]

M2

m2
zz̄ =

[

1 + 2 cot2θ
]

M2 m2
zz =

[

2 cot2θ − tan2θB
]

e−2iγM2

m2
0z = 0 m2

xz = −
[

√

2
(

tan θ + cot θ
)

vx

]

e−iγM2

where

~v =
~q

|~q |
eiγ =

z

|z|
tan2θ =

1

2

f

l

|~q |2
|z|2

and

Axy = f –1|~q |2fxy B = l–1z2lzz

The six mass eigenvalues are thus:

m2
0
= 0 m2

1−5
= ( · · · )M2

P-20



Supersymmetry is broken since V 6= 0, in a direction determined by
θ. As a consequence of the property δxyAxy = 0 one finds that the
non-trivial part of the mass matrix averaged within each sector reads:

m2
hh =

[

1 +
4

3
tan2θ

]

M2

m2
vv =

[

1 + 2 cot2θ
]

M2

m2
hv =

[

√

2

3

(

tan θ + cot θ
)

]

M2

The two eigenvalues of this averaged matrix are:

m2
±

=

[

1 +
2

3
tan2θ + cot2θ

±
√

2

3
tan2θ +

4

9
tan4θ +

2

3
cot2θ + cot4θ

]

M2

The m2
1−5 must then spread beyond the interval between m2

−
and m2

+.
These thus represent bounds on the possible masses for a given θ.
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m2
+

m2
−

0
π

4
θ

M2

4.27M2

m2

The absolute upper and lower bounds on the lightest and heaviest masses
are therefore found to be:

m2
up = M2 m2

low ≃ 4.27M2
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METASTABILITY IN N = 1 SUGRA

Theories with only chiral multiplets Gomes-Reino, Scrucca 2006

This case is easy to study in general. The geometry becomes Hodge-
Kähler and one finds:

V = F iF i − 3m2
3/2

m2 = RF iF̄ i + 2m2
3/2

This implies that

m2 =
[

(3+ǫ)R + 2
)

]

m2
3/2

where

ǫ =
V

m2
3/2

Metastable de Sitter vacua with ǫ > 0 are therefore possible only when
R > −2/3.
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Theories with chiral and vector multiplets Gomes-Reino, Scrucca 2007

This case is somewhat more complicated but still easy to study in general.
One finds

V = F iF i +
1

2
DaDa − 3m2

3/2

m2 = RF iF̄ i +
[

(S +1)F iF̄ i +
1

4
T DaDa + (M2− 4m2

3/2)
]DbDb

F jF̄j

+ 2m2
3/2

This implies that

m2 =
[

3+ ǫ

1+ δ

(

R + 2δ (S + 1) + δ2T
)

+
(

2 + 2δ(κ − 4)
)

]

m2
3/2

where

ǫ =
V

m2
3/2

κ =
M2

m2
3/2

δ =
1

2

DaDa

F iF i

Metastable de Sitter vacua with ǫ > 0 are now possible in more general
situations.
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Application to N = 1 strings Brustein, de Alwis 2003
Gomez-Reino, Scrucca 2006

The universal chiral multiplet of N = 1 string models has:

M =
SU(1, 1)

U(1)
deformed by quantum corrections

Metastable de Sitter vacua are possible only at strong coupling or with
extra vector multiplet effects, because R = − 2 + corrections.
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METASTABILITY IN N = 2 SUGRA

Theories with only hyper multiplets Gomes-Reino, Louis, Scrucca 2009

This case can be studied in general. The geometry becomes Quaternionic-
Kähler and one finds:

V =
1

2
NuNu − 3m2

3/2

m2 = −1

2
NuNu +

8

3
m2

3/2

This implies that:
m2 =

[

− 1

3
− ǫ

]

m2
3/2

where

ǫ =
V

m2
3/2

Metastable de Sitter vacua with ǫ > 0 are then totally excluded in this
framework.
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Theories with only vector multiplets Cremmer, Kounnas, Van Proeyen, · · · 1985

This case can also be studied in general. The geometry becomes Local-
Special-Kähler and one finds:

V = W ixW̄ x
i − 3m2

3/2

m2 = −2W ixW̄ x
i + 6m2

3/2

This implies that:

m2 =
[

−2ǫ
]

m2
3/2

where

ǫ =
V

m2
3/2

Metastable de Sitter vacua with ǫ > 0 are then again totally excluded in
this framework.
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Theories with hyper and vector multiplets Catino, Scrucca, Smyth 2013

This case is more intricate in general but one can study the minimal case
with one of each of the multiplets. One finds:

V =
1

2
NuNu + W ixW̄ x

i − 3m2
3/2

m2
±

= function of NuNu, W ixW̄ x
i and m2

3/2

One finds:
m2

±
=

[

X ±
√
Y
]

m2
3/2

where:

X =
2

3
(3+ǫ)2cos4θ − 1

3
(3+ǫ)(6+ǫ)cos2θ +

1

3
(4+3ǫ+2ǫ2)

Y =
1

9
(3+ǫ)4cos8θ+

8

9
(3+ ǫ)3ǫ cos6θ− 2

9
(3+ǫ)2(4+9ǫ−3ǫ2)cos4θ

− 2

9
(3+ǫ)ǫ(16+27ǫ+5ǫ2)cos2θ+

1

9
(4+9ǫ+2ǫ2)2

and

ǫ =
V

m2
3/2

tan2θ =
1

2

NuNu

W ixW̄ x
i
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The absolute upper and lower bounds to the lightest and heaviest masses
are obtained by extremizing m2

−
and m2

+ over θ. One finds:

m2
up =







−1

2
ǫm2

3/2 , ǫ ≪ 1
1

4
ǫ2m2

3/2 , ǫ ≫ 1
m2

low =







3

2
ǫm2

3/2 , ǫ ≪ 1

1.05ǫ2m2
3/2 , ǫ ≫ 1

m2
low

m2
up

0

m2

0 2.17 ǫ

Metastable de Sitter vacua with ǫ > 0 are possible but only for ǫ >∼ 2.17.
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Application to N = 2 strings Gomez-Reino, Louis, Scrucca 2009
Davidse, Saueressig, Theis, Vandoren 2005

The universal hyper multiplet of N = 2 string models has:

M =
SU(1, 2)

U(1) × SU(2)
deformed by quantum corrections

Metastable de Sitter vacua are in this case not possible even at strong
coupling, unless one includes extra vector multiplet effects.
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CONCLUSIONS AND OUTLOOK

• In N = 1 theories, there exists a sharp necessary condition for the
existence of metastable SUSY-breaking vacua, giving constraints.
The general case is well understood. There exist many simple
classes of examples where viable vacua arise.

• In N = 2 theories, there are similar but stronger constraints for
metastable SUSY breaking, giving in some cases no-go theorems.
The general case is not yet fully understood. But we constructed
a novel and simple class of examples where viable vacua arise.


