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TYPE IIB - HETEROTIC DUALITY
It has been proposed that certain D =4 N =1 Type |IB orien-

tifolds and heterotic orbifolds could be dual.

Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev
Kakushadze, Shiu

The duality can be weak - weak = the effective low-energy dy-

namics and symmetries of the two theories must match.

Simplest case: Zy, with N odd = no threshold corrections nor
D5-branes.

Gauge symmetry and diffeomorphisms

Mixed gauge/gravitational anomalies cancel through a GS mech-

anism, and the anomalous U(1)'s get spontaneously broken.

In heterotic models, the GS mechanism is mediated by the uni-

versal NSNS axion, and there is at most one anomalous U(1).
Dine, Seiberg, Witten

In orientifold models, the GS mechanism is mediated by the twisted

RR axions, and there can be several anomalous U(1)’s.

Ibafiez, Rabadan, Uranga

Scrucca, Serone



Target-space symmetry

In heterotic models, there is an exact SL(2, Z); target-space sym-

metry for each internal T?. It corresponds to T-duality.

Mixed target-space/gauge and target-space/gravitational anoma-

lies cancel through a GS mechanism mediated by the NSNS axion.

Derendinger, Ferrara, Kounnas, Zwirner
Cardoso, Ovrut
Ibanez, Lust

Antoniadis, Gava, Narain, Taylor

In orientifold models, these SL(2, Z); symmetries do not corre-
spond to T'-duality or any other string symmetry, and constitute

a test of the proposed duality.

This symmetry exists at the classical level, and it was conjectured

that mixed target-space/gauge and target-space/gravitational ano

malies cancel through a GS mechanism involving all the axions.
Ibafiez, Rabadan, Uranga

A more detailed analysis indicates that this apparently fails to

work, although not by much.

Lalak, Lavignac, Nilles



ANOMALIES IN D=4 N =1 MODELS

The anomaly A has to satisfy the WZ consistency condition. This

implies that it is the WZ descent of some closed form I. Defining
I =dI0 and 610 = dI® one has:

A = 2 / o

Field theory computation

The Kahler potential of the effective SUGRA is:

3
KK =—In(S+8) - In(T; + T;)

1=1

+ K)2 Kmat.(q)aa (T)a’ E? TZ)

with
3
’412 Kmat.(q)a, (T)a, 13, Tz) ~ Z H(T:& + Ti)n’qq)aci)a
a =1
The target-space transformation is a g-model reparametrisation:
a1 — 1b;
" iei Ty + dy

T;

3
b, — exp { = nfIn(icT; + dz)} P,
i=1

and induces the Kahler transformation

3
k2K — k°K +2 ) Re ln(ic;T; + d;)

1=1
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Each of these transformations is a continuous symmetry of the

action, with an associated composite connection:

3 3
79, =i > (I‘aw 8, T; — Tz O, TZ-) ~3 20 b 2,

. 3
700 = - Y (Kb, T~ Kid,T)) ~ 3. 7,
=1

3
i=1
The basic composite connections are:

i _ 10u(Ts = To)
4= — —
b2 (T; +T)

and transform as
Z!, — Z} + 0 Im In(ic:T; + d;)

The covariant derivatives of chiral fermions involve the composite
connections ZZ’ the gauge connections AZ and the spin connec-

tion wy, and there are one-loop anomalies. We will focus on the

CP-odd part.

Standard approach: treat the composite connections as elemen-

tary U(1) connections. In this way, one finds:

I =chy_,(G)G(R) + chagi(F) chi_,(G) A(R)
+3" chpa(F) chiy50(G) A(R)




It not clear whether this result is correct beyond the leading order

in the composite connection.

Safer approach: compute one-loop diagrams with external gluons,
gravitons and 7; moduli. The latter should pair and reconstruct

composite Z; connections. Technically difficult.

The cancellation of these anomalies must happen through the GS
mechanism, and the appropriate GS coupling should be provided

by string theory.



String theory computation

Possible anomalies arise from non-vanishing amplitudes involving
an unphysical particle. We focus on CP-odd amplitudes in odd

spin-structures on world-sheets with y = 0:
.A12...n = /}_dT < TF Vlunphy- Vzphy- Ce V,fhy' >

The insertion of Tx is due to the gravitino zero-mode, and the

vertices must have total superghost charge —1.

A non-trivial amplitude is obtained by choosing:
V-lunphy. 1 picture, & ~py = Vlunphy. Q- Vlunphy.
V;phy' .0 picture, p;-&=0 => Q- Viphy' =0

Move @ on the other operators: Q - VP =0 but Q - Tr = T.

The net effect of Tg is to take O of the remaining correlation:
Aig..n = /a }_dT < Vunphy- yphy- | yphy. >
This is the WZ descent of
_ phy. y7phy. phy.
Lpn= | dr QG L ey

The total anomaly polynomial is the generating functional:

I=| drZ(r;F,R,G)
oOF

This is the string analogue of Fujikawa's method.
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Z(t; F, R,G) encodes the anomaly, and [3-d7 its cancellation.

Schwinger parameter: o/7. IR for o/7 — o0, UV for o/ — 0.

For o/ = finite, 7 — oo is in the IR and does not contribute.

For the Torus (T):

ImT
| | = I=I'+114 14V
I 11 Notice that:
T—T7+1: I —1II
L
III|1v T— —1/7: III - IV
1
12
1 ‘1
) 5 RGT

= I =0 by modular invariance

Suzuki, Sugamoto

Kutasov
For the Annulus (A), Mébius strip (M) and Klein bottle (K):
F =1[0,00] = =1
= Io+ Ipr+ Ig = 0 by tadpole cancellation

Inami, Kanno, Kubota

Polchinski, Cai



General result:

No divergences = No anomalies

For o/ — 0, 7 — oo can be in the UV region. Interpretation:

One-loop anomaly: 7 — oo

Tree-level inflow: 7 = finite

In this limit, one can restrict to leading order in the momenta,

and use quadratic effective vertices depending on:

1
F = 5 F;w(xO) "Pg ¢6j
1 o
RIW = 5 R,u/pa($0) ¢(l)) %

1 .
Gi = 5 Gl (z0) U %

Z(t; F, R,G) can be computed exactly, since the effective action

becomes quadratic:
3
S (F,R,G) = So+ VI (F) + V5 (R) + > _ VEH(Gy)
i=1

The [dzf [dif select the form of appropriate degree and inte-
grate it over space-time. The result is a topological index ex-

pressed in terms of characteristic classes.

In this way, one recovers a well-known framework.

Alvarez-Gaumé, Witten



Characteristic classes for orbifold models

Twisted characteristic classes naturally appear, since the generator
g of Zy ={g*,k=0,1,--- ,N — 1} acts as a twist v in the

internal space and as a twist w in the gauge bundle.
For the gauge bundle:
k .
ch,(F') = tr, exp i( + 2mkw)

For the tangent bundle:

D/2 R, D/2 R
AR) =[] ===, L(R) =[] =~
() C:Ll;[lsinh% () };[lta,nh%
D/2 Ra D/2 -
G(R) = (2 hib 1)
}:‘[1 sinh R; b; N o

For the internal target-space bundle:

3
ch1, (G) =[] exp i g 2%
i=1
3 o | R 3 |
@) =TI sin(mkv;) (&) =TI tan(mkv;)

1 sin(gi + mkv;) ¢ 1 tan(% + wkv;)

3
K(G) = H sin(rkvi) (QZCOS(%TZ + 2mkv;) — 1)
—1

sin( —7‘ + wkv;) =1

The number of gk—fixed points is N = Cg, where:

3
Cy = || 2sin(mkwv;)

1=1
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Field theory versus string theory

By averaging over all the twists, twisted characteristic classes get
projected onto standard characteristic classes, but products of

twisted characteristic classes remain entangled.

There are two types of states: the untwisted states (g° sector)
living in D = 4 + 6 and the twisted states (g sector, [ € S}) living
in D=4

In field theory, the computation is in the Einstein frame, and the

target-space dependence is:

I ~ ch(G), for all states

In string theory, the computation is in the string frame, and the

target-space dependence is:

I AL(@), Ly(G) ,Gi(G) , for untwisted states
ch(G) , for twisted states

The total anomaly should be the same in the two approaches.
However, the string and field theory results differ beyond the lead-

ing order in G = subtleties due to the compositeness of Z.

11



HETEROTIC ORBIFOLDS
The vertex operators for gluons and gravitons are:
v, = ¢ / &z Ju (DXP + ip-yyt) P
Vo =Ew / d?z OXH (5X Y+ z'p.¢¢1/) P X
For the T; moduli:
Vr, =T, /dzz 0X* (5X" + z'p.¢¢i) oiPX
Vg, =T / d?z 0X" (5)_( 4 iﬁ-gbzzi) eiPX
T amplitude (R)
In the low-energy limit, one can use:
V:yeff. _ fo /dzzQa
VeE = R, / &2z X+ X"

with
1 1

F% = EFZV Vo, B = §Rﬂvp0 Vo)

Similarly:
V= [ #2015 Vi T [ 50X

with
dT; = ip, ik , dT; =ip,T;h
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A generic correlation is non-vanishing only for equal number of T;
and Tj vertices. As expected, these pair to reconstruct composite

connections Z;.

This can be understood also in the path-integral representation of

the generating functional. The relevant part of the action is
Si= [d (9:0X* X' + gat' OF + dT; 4 0K + dT ' 0X")

Redefining ¢* — ¢* — " dT; X* and rescaling by /gz to nor-

malise, one finds:
Vst = G [ X ox’

with

i =

zp,quu
2 (T; + T;)? 3 Y0 U8

This is very similar to an internal graviton.

The path-integral for Z(1; F', R, G;) is easily computed:

13



Typical chiral determinant to compute:

with
{ 0 , Holomorphic reg.
a =

1, Modular invariant reg.

The structure of the partition function is
X4(F) R) G)
64m3Im T

Z3(t; F, R,G) = exp {— a }A(T; F,R,G)
Notice that

lim Z#(m; F,R,G) = lim A(t; F,R,G)

One finds:
1 = 2 Yap(r) n(T)
A== e (m) [T 2
8N 120 al;ll 9[ ](zRa|7-) z=H1 e[l%:,’::;] (Z_gah)
s f L Getn) o & O Gt
a,b p=1 "7(7') a by q=1 77(7')

and
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Holomorphic reg. (a = 0):
0-Z(t;F,R,G) =0

Anomaly cancellation remains manifest if we include the boundary

at infinity:
I=¢ drZ(t)=0
OF
Then:
Linflow = dr Z(1t) = — lim A(7)
afﬁnite T

Modular invariant reg. (a =1):
Z(tr+1;,F,R,G)=Z(t; F,R,G)
Z(-1/7;F,R,G) = °Z(t; F, R, G)

In this case, the boundary at infinity should not be included:

I = drZ(t) =0
OF finite
The low-energy cancellation can be checked by computing sepa-

rately the quantum anomaly and the classical inflow.

15



By definition:

T—100

Schellenkens, Warner

The couplings relevant for the inflow are:
1
Los = 7 dB - Y| —2r BAY;

The modified kinetic term is a SUGRA effect and implies dH = Yj.
The GS term is a string effect. They induce lipfiow = —Y2 A Ya.

One computes:

1 d?r 1
Yy— — / 7 dr 7
27 1283 F (Im7)2 (m) = X, Jor r ()

N T

X4 3.7:00

Lerche, Nilsson, Schellenkens, Warner

Assuming then that:

Y= X4
one finds as required
Iiiow =— | dT7Z(1) = — lim A(T)
0F o T—100
Additional information:
A= Xo N X4

dH = X4
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One finds:

A— i Nf: Ch [Ak @) G(R) + Gr(G) A(R)

+(chus(F) + chaus(F)) A(G) A(R)|

—i Y chga(F) chiy50(G) A(R)

actw.

All the modular weights come out automatically and in agreement

with explicit computations.
Low-energy interpretation

All the anomalies are cancelled by a universal GS mechanism me-
diated by the NSNS two-form.

One finds:
Iqua.ntum = _Iinﬂow — X2 N X4
with
15 3
Xy = G;
> 9(2m)3 ;

3
Xs=trR*—tr F*+2) G}
=1

17



In the chiral basis:
Ks=—-In(S+5+2r X) = 68 =—2r X"
Ls=5X4 = 6Lg= —27TX( ) A Xy

Geometric interpretation

The form of X9 and X4 can be understood by compactification.

In D = 10:
YE;=11:rR4 !
8 32

Y, = tr R? — tr F?

1

— (tr R*)? + = (tr F?)? — L tr [ tr R
4 8

In the presence of torsion, R is the curvature of w, the sum of the

spin connection and the torsion connection constructed from H.
Hull
Compactifying to D =4 on M:

3
wao) = Wy + Y Zi
1=1

3
tr R%].O) — tr R%4) + 2 Z Gz2
1=1

XZ/YS

X, =Y

and

(10)—(4)
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TYPE IIB ORIENTIFOLDS
The vertices for gluons and gravitons are:
Vy =& $dada (X¥ +ip-ypyp) X
Vo= bu [d2(0X" +ip-py) (BX + ip- i) X
For the 7T; moduli:
Vir, = (Ti+Ti) / d’z (8)_( ' 4 zp%f") (5X ' 4 zp&ﬁ") e'PX
+ h.c.

Vi1,
In principle, we need both V:l’,-:l:Ti’ but on general grounds:
<VT1::|:T2'VT1::|:Ti> = d(T; £ T)ANA(T; £ T;) =0
(ViarVeer) = i d(Ti £ T) Ad(TF T3) #0
Trick: compute the first and deduce the second by
dT;+T)ANAT;+Ti) — d(T;—T) Nd(T; + Ty)
T amplitude (RR,RNS,RNS)
In the low-energy limit, one can use:
Vgeff. = R, / B2 [ XFOXY + ¢u¢u]

with
1 o~
Ry = 5 Ryvpo %’ Vo
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Similarly:

Villn = d(T+T) [d [$0X7 +---] + he
with

d(Ti + Ti) = ipu(T; + Ti) 94

Performing a shift on the internal fermions, one finds:
et d(Tz'-I-T)/\d(T—I—T
(LT (T + Ty)?
Using the trick and fixing the fermionic terms by world-sheet
SUSY, one finds:

/d2 Xiox +--]

VEE =Gy [d [XPOX' + gy

with T
T Py pu
2 (T, + T;)? % v

This is very similar to an internal graviton.

i —

The partition function is then easily evaluated:

20



The typical combination of determinants is:

detarspiy() _ O[] OI7)

d€t1+5,2_|_,7( )_ 0@1’(:1]( |'T) )

In this case, there is no regularisation dependence and the result

Ya

is both holomorphic and modular invariant.

The partition functions is

12 m(r) a0l Gl
Z o
T 8N o5 klgb:nbe[ﬂ(oh') a=1 0@](%&7‘)

3 0 [a+lvz-] (ﬁll,r)

H b+kv; 212
: Lt -G
=1 0|77 (5 )

Holomorphicity:
a,—-Z(T;R,G) =0
This implies:

dr 2(7) = 0
6.7:7- (T)

Modular invariance:
Z(t+1;R,G)=Z(1; R,G)
Z(-1/7;R,G) = 1°Z(1; R, G)

This implies:

drZ(t) =0
OF finite
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Putting these together:

Iquantum = /6.F d'TZ(T) =0

LIinflow = — dr Z(t) =0
0F
Indeed, one finds:
1 N2l -
L L
T=~T6N Z Cor Lr(G) L(R)
1 N-l A

+1 Z chi, (G) A\(R)

aEtw.

=0

All the known modular weights for untwisted fields are correctly

reproduced.

For the twisted moduli, one finds n; = 0, but the opposite sign
compared to the SUGRA computation. This is equivalent to hav-
ing n; = —1 with the expected sign.

Remark: the relative sign between untwisted and twisted sectors

is fixed by modular invariance.
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A, M and K amplitudes (RR)

In the low-energy limit, one can use:

Vel = F* §dz )

Vel = R [d2 [X*(0+8)X” + (4 — ) — )]
with

1 y 1 o
F% = EFZV Vo, R = §Rﬂvp0 Yovg

Similarly:

Velle = d(Ti+T) [d [$0X7 + 90X +---] + hc
with

d(T; + T;) = ipu(T; + Ti) ol

Performing a shift on the internal fermions, one finds:
yeft d(Tz'-I—T)/\d(T-I—T
(LT (T; + T;)?

/d2 X @+8)Xi+---]

Using the trick and fixing the fermionic terms by world-sheet
SUSY, one finds:

~
~

V=G [#2[X (040X + (@ - 9 ~ )]
with .
Z Pu pu

This is again very similar to an mternal graviton.

i —
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In this case, only massless states contribute, and:

Z(t;F,R,G)=Z(F,R,G)

Anomaly cancellation is manifest:

Iquantum = llm Z ( ) Z

T—100

Livfow = — hn%) Z(t)=-2

The partition functions correspond to:

y g 9 r oy
x x oqe

Za= gl X--X ocev Y

TT
y g g ! )

X X - “ ,' X

Iy = TE x-x - '.‘ ’, .‘ X-
T J T
g g A .
X X v N

Z K — XX - A llv\‘
T T ‘\\:I \
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One finds:

Z C ch¥oo(F) Ax(G) A(R)

Z Ci ch2k(2F) AL(G) A(R)

1N-

Zg = 6N Z Caor Li(G) L(R)

Anomaly cancellation requires that these factorise as:

Z N Qi ANQR

kGSk

Z N, (Q2k A Q% + Q% A sz)

k‘ESk

Z Ny Q5 A Q%

keS

These are interpreted as the inflows induced by the RR anomalous

couplings:
2T al: i B
Sp = FZ Z/Ckk/\Qk
keSy =1
2m al: 0
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Factorisation is possible thanks to the properties

VA(R) L(R/4) = A(R/2)
VAn(G) VIk(G/4) = A(G/2)

one finds
1 = =
£ =\ |5 (P VA(G) VA(R)
Q% = —4 %—: JE(C/) VIR

These are the generalisation of the usual RR charges of D-branes

and O-planes, which are also related to anomalies.

Green, Harvey, Moore
Dasgupta, Jatkar, Mukhi

Morales, Scrucca, Serone

This kind of factorisation is natural also for models with a rational
internal CFT.

Bianchi, Morales
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Low-energy interpretation

All the anomalies are cancelled by a generalised GS mechanism
involving the twisted RR two-forms. The GS couplings are given

by the anomalous couplings for D-branes and O-planes.

One finds:

Iquantum — _Iinﬂow = Z Nk Xéc N Xf
kGSk

with

ok_ Ng e 2% °
=  trF 4+ 2 t kv; Gz]
> = N @) lz r ;:1 an(mkv;)

X2k = Nk_l/4 F tr2k 2 4 4 EB: cot(2mkv;) tr?* F G;
VN (2m)2 L2 4 = z ’

3
_L tr R? — ! ) " tan®(rkv;) G7
16 g &

1 S, cos(2mkv;) cos(2mkv;) — 1
—-— . . GG j]
4,52, sin(2mkv;) sin(2mkv;)

In the chiral basis:

Ky = F(Mf + M5 +2n X§(O>) = 6MF = —27 X5

Ny
Ly=Y Y MEXF = 6Ly=-21 Y Ny XA XE
keS), ix=1 keS;,
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Puzzle: in this way, the M's would have n; = 0 and not n; = —1

=> wrong sign for their contribution to the anomaly.
Possible solutions:
e Subtleties in the linear-chiral duality.

e The M's have n; =0, but for some reason they contribute

to the anomaly with the unexpected sign.

e The M's have n; = —1, due to some T;j-dependence in K.
Perhaps this is provided by the GS shift, since in SUGRA it

looks tree-level due to a gs hidden in the definition of T;.
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CONCLUSIONS

The mechanism of anomaly cancellation in string theory is quite
universal, and works in the same way for gauge, gravitational and

target-space anomalies.
T amplitude

Z7 must be modular invariant, and one gets a non-vanishing
anomaly only if it is not holomorphic. The GS term for NSNS

axion is determined by the non-holomorphicity.
A, M and K amplitude

Za, Zy and Zg satisfy tadpole cancellation and factorise. The
GS terms for the twisted RR axions are determined by the anoma-

lous couplings of D-branes and O-planes.

This applies to all the anomalies in the simplest D=4 N =1
heterotic orbifolds and Type IIB orientifolds.

OPEN PROBLEM

What are the implications of the unexpected sign for the contri-

bution of the twisted moduli in orientifold models ?
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