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® SUSY breaking in SUGRA.

® N =1 models with chiral multiplets.

® N =1 models with chiral and vector multiplets.
® N =2 models with hyper multiplets.

® N =2 models with abelian vector multiplets.

® N =2 models with hyper and vector mutliplets.

® Applications in string models.



SUSY BREAKING IN SUGRA

Constraints on realistic models

In a SUGRA model, the scalar potential V' should allow for spontaneous
SUSY breaking with certain non-trivial features.

® Phenomenology: To get a viable particle vacuum, need a point
whereV 20, V/ =0and V” > 0.

® Cosmology: To get a viable period of slow-roll inflation, need a
regionwhere V>0, V'~ 0and V" 2 0.

The condition on V'’ can be satisfied by adjusting the values of the fields.
But the conditions on V and V"’ need an adjustment of parameters.

The natural question is then whether these two conditions can be used to
restrict the class of models of potential interest. The answer is yes.
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Algebraic formulation of the problem

Consider the critical situation where the scalar fields ¢ take values such
that V'’ = 0, leading to broken SUSY and a gravitino mass mg /5.

The value of V is linked to SUSY breaking. This gives a first relevant
parameter given by:

v

2
3/2

The value of V'’ along a generic direction is not related to SUSY breaking
and can be easily adjusted, whereas along the sGoldstino direction n it is
related to SUSY breaking. This gives a second relevant parameter:

\ = V()

2
M3 /9

The structure of SUGRA implies v > —1 and most importantly that X is
constrained in terms of ~.

7:3m
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Necessary conditions
The requirements coming from phenomenology and cosmology imply that
both at the final vacuum and in the rolling region one should have

YR 0

More quantitatively:
Yvac < 1 s  Yrol > 1

Similarly, since X defines bounds on the eigenvalues m? of V*/, namely

min(m?) < Amg,, and max(m?) > Amj ,, one should also have,

again both for vacuum metastablity and inflationary slow rolling:
A0

More guantitatively:

Avac & Sizable, A.q1 : free
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N =1 MODELS WITH CHIRAL MULTIPLETS

Geometric formulation

A model with n. chiral multiplets ®* = (¢} ,, ", F} ,) is specified by
a real Kahler potential K and a holomorphic superpotential W. It has a
U (1) symmetry under which eX" = eX*tXeK and W’ = e~ XW.

The 2n. scalars span a Hodge-Kahler manifold with metric g;; = K;j;
and Kahler form J;; = g5, with a U (1) bundle on it with curvature J;;.
The holonomy is U (n.) x U(1). The vielbein has the form e] and ef.

The theory can be described in a U (1) covariant way, with a covariant
derivative V; including both the Christoffel and U (1) connections I‘,’;’j
and w; = K;. On a quantity transforming with weights (p, p), one has:

Vi=D;T') +pw;, V;=D3T)+pw;
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The gravitino mass is described by a covariantly holomorphic section of
weights (3, —3):

L=¢eX2W  (mg2 = |L|)

The auxiliary fields are obtained by taking a covariant derivative, and also

have weights (3, —3):

Fi = eK/z(Wi -I— KZW)
These quantities satisfy the following relations:
VzL = Fz ) VjL =0 ) VjFZ = gijL
Moreover, commutators of covariant derivatives involve generically both
the Riemann and the U (1) curvatures. For instance:
[Vi, Vj]L = —gsz
[Vi, V31 Fp = RigpaF'? — gi7Fp
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Scalar potential
The scalar potential is given by:
V = F'F; — 3|L|?
Ilts first first derivatives read.:
V;V = —2F,L + V;F; F?
The second derivatives are also easily calculated, and one finds:
VZVjV = _2gzj|L|2—|_ VszVij— RiquFqu—l— gszka — Fsz
V;V;V = -V, F;L + V;V; F, F*

Fermions and susy breaking

The n. chiral fermions 4! are naturally defined on the tangent bundle of
the scalar manifold, locally defined by the vielbein e; and &3 .
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The SUSY transformations give d¢! D —+/2elF'¢. At a stationary
point, the Goldstino direction in the tangent space is thus:

nI = e,fFi
The corresponding sGoldstino direction on the scalar manifold is:
’I’]?: — e'ijnI — Fi
This defines 2 orthogonal directions in the real scalar-field space:
n" = (F', F"), 7%= J%n" = (iF', —iF")

SUSY is spontaneously broken whenever F; % 0. The 2n. stationarity
conditions imply then that

V;F;FI = 2F;L
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Metastability

The strongest constraint on metastability comes from averaging over the
2 real sGoldstino directions iy, 17, and considering:

_ V,V;VF'FI
|L|2F* F,
A simple computation shows that at a stationary point this is given by:
F'F;
|L?|
The quantity R is the holomorphic sectional curvature in the plane n, n:
Ri7psF*FIFPF
(FkFy)?
In terms of the parameter v = V/(3|L|?), this reads:

A=2+3(14+7)R

A=2+R

R=—
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For a given positive ~, one gets thus a positive A only if:
2 1 { -3, 7K1
0, v>1

This defines a necessary condition for metastability. One can show that if
K is kept fixed and W is allowed to be tuned, it becomes also sufficient.

Notice that M = X M, is Hodge-Kahler if each M, is Hodge-Kahler.
The total R gets then diluted compared to each individual R,, and:

Ryest = (Zngl)_l

Gomez-Reino, Scrucca 2006

Applications

e K=>5. 99" = oK
e K=-).n;log(®* + ®*) = oKif >, n; > 3(1 +7)
[ K:—Zznzlog(@’-l—fif")—l—zgé[ﬂfiﬂ = OK
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N =1 MODELS WITH CHIRAL AND VECTOR MULTIPLETS

Geometric formulation

A model with . chiral and n,, vector multiplets ®* = (¢% ,, %", F} ,)
and V¢ = (A% A%, D*) is specified by a real Kahler potential K,
a holomorphic superpotential W, a holomorphic gauge kinetic function
H,,;, and holomorphic Killing vectors k*. It has again a U (1) symmetry.

The 2n,. scalars span a Hodge-Kahler manifold with metric g;; = K;j;
and Kahler form J;; = g5, with a U (1) bundle on it with curvature J;;.
The holonomy is U (n.) x U(1). The vielbein is given by e] and eg. In
addition, there must exist isometries generated by the kf;,,

The theory can again be formulated in a U (1) covariant way, with the
help of a covariant derivative V; that includes both the Christoffel and the
U (1) connections T'; and w; = K;.
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The gravitino mass has weights (— ——) and is covariantly holomorphic:

L = eK/2W (m3/2 = |L|)

The auxiliary fields have weights (3, —3) and (0, 0), and are defined by:
F; = e%/2(W; + K;W)

D. _Zsz + K;W _ _ZEJ-W——l—KW
W
They are related by
F; F;
—_ () _ J
D, zkaL = zk a7

The Killing vectors and the gauge kinetic function have weights (0, 0) and
are covariantly holomorphic. They define the matter charge matrix, the
gauge-boson mass matrix and the inverse coupling matrix:

Tazg — (V kag Vj’z‘a'i) ’ Mazb — 2Eiak1i,7 hab = Re Hab
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These quantities satisfy the following relations:

ViL=F;, V;L=0, V;F; = gL
ViD, = —ikai, ViV;Dq =Taiz, ViV;Dg =0
Viki =0, V-kag——l-Vg—I_cm; =0, V;Vikap = Rizpgk
ViVihap =

From gauge invariance one also deduces the additional relations

ki V;F; = —V;k zF* — ka; L — iF; D,
2 v/ kg] = % f .k, k' Vhpe = 2 fa(b Rae)
The commutators of covariant derivatives are given by:
Vi, V3L = —gi7L
Vis Vi1 Fp = RizpaF? — gizFp
Vi, V3|Dg =0
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Scalar potential
The scalar potential is given by the following expression:
V = F'F; — 3|L|*> + %D“Da
Its first derivatives read:
V;V = —2F;L + V;F; F? — ik, D — %VihabDan
Its second derivatives are found to be:
ViV;V = —2g|L|*+ V; Fy V;F* — Rz, FPFI+ gizF*F,, — F;F;
+ kiak? + TaizD® + i(k§ Vihay — k3 Vihap) D°
+ Vihoch®“Vih g, DD
ViV;V = —=ViF;L + ViV Fi F* + ki kS + 26k, Vj)ha, D°
—% (ViVihao — 2VihachVihgy) DD
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Fermions and susy breaking

The n. chiralini /! and the n, gaugini A® are naturally defined on the
tangent bundle of the scalar manifold, locally defined by e; and & .

The SUSY transformations give d! D —\/ie{F’ig and oA* D 1 DE.
The Goldstino direction in the tangent and gauge spaces is thus:

nI:e’{Fi, na:Da
The corresponding sGoldstino direction on the scalar manifold is:
0 = 63771 _
This defines as before 2 orthogonal directions for scalar fields:
,r'u — (anﬁi) : ﬁu — Juv,r"v — (ZF’L, _szi)

Notice also that the Goldstone directions k* correspond to flat directions
of the scalar mass matrix.
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SUSY is spontaneously broken when F;, D, # 0. The 2n. stationarity
conditions imply then that

V;F;FI = 2F;L + iky; D* + %VihabD“Db

At such a point, the values of F; and D, get further correlated. Indeed,
whereas the vanishing of the real part of kgViV IS automatic by gauge
Invariance, the vanishing of its imaginary part implies that:

D* = 2[M? + 2(F*F, — |L|?)h] ' Tpi; FF7

Metastability
As before, the strongest constraint on metastability comes from averaging
over the 2 real sGoldstino directions n, 17, and considering:

_ V,V;VF‘FI

~ |L|*F*F,

P-15



After a straightfoward computation, one finds that

F'F; DeD
A=2+R - 1+ A a
+ T + (1 + Ay) Ik
D°D 1 . (D%D,)?
—4|L 2 MZ - a A =
where
R _RupaF"FIFPFT | Vihach®VihoaF'FID DY
(F*Fy)? ’ F*F,D°D,.
Az - MayDeD® | VihayV'heaD*D®DD?
D°D. ° i (1)6130)2

When M2, is large, D, is small. One can then neglect D, except when
multiplied by M?2,. This corresponds to integrate out the heavy vector
multiplets. In terms of v = V/(3|L|?), one finds then as before:

A~2+4+3(1+~)R
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Here R is again the holomorphic sectional curvature in the n, 7 plane
R;7,q F*FIFPFa

(F*Fy,)2
However, it involves now the low-energy effective curvature:

R=—

~

Rizpg = Rigpg — 2 TaizM ™ 2**Thpq — 2 TaigM ~ 2% Ty

For a given positive « the condition for positive A gets then milder:

~ 2

R> - — =
~ 3

Gomez-Reino, Scrucca 2007

Applications

o K =), deliaVad’ = OK
e K=—->_.mn; log(®* + ®* — §;,V,) = OK
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N =2 MODELS WITH HYPER MULTIPLETS

Geometric formulation

A model with n,, hyper multiplets H* = (¢% , 5 4, ¥ 25 NT 5 5 4) IS S€t
by a scalar metric h,., a triplet of Hyperkahler forms JZ , and a real
Killing vector k*. The theory also has an SU (2) symmetry.

The 4n,, scalars span a Quaternionic-Kahler manifold, with an SU (2)
bundle with curvatures JZ . The holonomy is SP(2n,,) X SU(2). The
vielbein U4 satisfies U2AUB = 1eABh,,, + o®4BJZ . Moreover,
there should be an isometry associated to k“.

The theory can be described in an SU (2) covariant way, with a covariant
derivative V,, involving both the Christoffel and the SU (2) connections

I'"? and w?. On doublets and triplets one has:

V. A = D,(1)64 — ioc®A w®, V.2V = D,(T)6™ + ie*¥*w?
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The Hyperkahler forms satisfy:
Vud,,, =0
Jo TV = —Ryy07Y 4 €PYETZ
The Riemann tensor is constrained to take the following form:
Rurs = —hufphos) — J2,J2 — J2,0%) + Suwrs
The tensor X5 iS constructed out of a symmetric SP(2n,,) tensor

Y ap~s S Byurs = €apecpUSAUPBUNCUPY ,5.5. It represents a
a Weyl part of the curvature, because

g'u,r ZDfu,'vrs =0

The Ricci part of the curvature is instead universal and given by:

Ry, = —2(n,+ 2)hy,, R=—8n,(n,+ 2)
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The gravitino masses are described by a triplet of real quantities, which
represent Killing potentials for the Killing vector k*:

P* = —J‘” VUEY  (mi3 = PTo™P, mg;y = VP*P)
2n,, “

The auxiliary fields are obtained by taking a covariant derivative:

N, =2k,

The above gquantities satisfy the following relations:
V.P* =J2 N, V?P® = 4n, P”
VwlNyy =0, VuVuN, = —Rypys N°
For commutators of covariant derivatives, one finds:
|V, V| PT = —2€™*JY P~
(Vs Vo] Ny = RyursN*
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Scalar potential

The scalar potential takes the following simple form:
V = N"N, — 3 P*P”

Its first derivatives are given by

V.V = —6P*J® N" + 2V,N,N"

Its second derivatives read instead:
VuVyV =2V, N"V,N, — 2(Ryrvs + 3J$TJ$S)N’°NS
—6P"”JE’3WV,,,)N”°

Fermions and susy breaking

The 2n,, chiral fermions ¥* are naturally defined on the tangent space
of the scalar manifold, which is locally defined by the vielbein U,L‘j‘A.
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The 2 SUSY transformations give d9p* D U4 N¥*¢ 4. The 2 Goldstino
directions are thus described in the tangent space by:

naA — USANU

The corresponding sGoldstino directions on the scalar manifold are:

1 ')
Nap = Utan = yeasN* + 2 o5 g I N*

This defines 4 orthogonal directions in scalar-field space:
,r"u, — N’LL , ﬁw — Ja:qu'v

The first corresponds however to the Goldstone flat direction k*.

SUSY is spontaneously broken whenever N,, # 0. The 4n., stationarity
conditions imply then that

V.N,N" = 3P*J* N"
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Metastability

The crucial condition on metastability comes in this case from averaging
over the 3 non-trivial sGoldstino directions 7., and considering:

s — LVuV, VI N"J*,N*
~ 6  PYPYN"N,

After a straightfoward but non-trivial computation, one finds a formula that
resembles that for N = 1 theories with chiral multiplets:

8 N"N,
The quantity R is now the averaged triholomorphic sectional curvature in
the planes n, 17,, namely

p — 1 Burss NUJ*, NPN Y J > N
3 (N¥N,)?
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But using the constrained form of R, s, One finds that the Weyl part
X urvs d0es not contribute and the Ricci gives a universal answer:

R = -2
In terms of v = V/(3P*P?%), it follows then that:
1

For any ~ that is positive, A is therefore always negative, and there is
unavoidably an instability.

Gomez-Reino, Louis, Scrucca 2009
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N =2 MODELS WITH ABELIAN VECTOR MULTIPLETS

Geometric formulation

A model with n,, vector multiplets V* = (@3 5, A} ,, A%, W7 , 3) is set
by a special real Kahler potential K, some holomorphic Killing vectors k%
and a triplet of constants Py. The theory also has an SU (2) symmetry.
For Abelian gaugings, k% = 0 and P¥ — P, defining U (1) € SU(2).

The 2n,, scalars span a Special-Kahler manifold with metric g;; = K5
and Kahler form J;5 = g;3, with a U (1) bundle on it of curvature J;;. The
holonomy is U (n,,) x U(1). The vielbein has the form e] and ef.

We can use a U (1) covariant formulation, with a covariant derivative V;
involving the Christoffel and the U (1) connections I‘fj and w; = K;.

The Riemann tensor is constrained to take the following form:

Rispq = 9i39pq + 9ig9p5 — Cijrg" Cszq
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The symmetric tensor Cj ;i satisfies the following constraints:
ViCirtt =0, V;Cj1 =0
The gravitino masses are degenerate and given by a single covariantly
holomorphic section. In special coordinates X#, one has:
L=eX2pPy X" ((mss2)1,2 = |L|)

The non-trivial auxiliary fields are defined by taking a covariant derivative:
W, = e5/2P5 (0; X* + K; X*)
These quantities satisfy the following relations:
Vf,;L = Wi, VjL = O, Vin == Cz-jkV_Vk, VjWi = gijL

Moreover, the commutators of covariant derivatives give:
[Vi, V5L = —gi5L
[Vi, V3]Wp = RizpgW? — gizWp
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Scalar potential
The scalar potential takes the following simple form:
V =W'W; — 3|L|?
Ilts first derivatives are given by
V;V = —2W;L + C;js, WIW*

Its second derivatives read instead:

V;V:V = —2gi;:|L|? —2W;W; + 2Ci5,.g"°Cs7a WPW 1

ViV;V = ViCiuWrW!
Fermions and susy breaking
The 2n,, chiral fermions A{’z are naturally defined on the tangent space

of the scalar manifold, locally defined by the vielbein e; and ég.
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The 2 SUSY transformations give 510{,2 D el W€ 2. The 2 Goldstino
directions are thus degenerate and they are both described in the tangent
space by:

n! = e,{Wi
The corresponding sGoldstino direction on the scalar manifold is:
ni — e'ij,rlI — Wz
This defines 2 independent directions in the real scalar-field space:
nt = (WHLW?), i =J%n" = (W', —iW")

SUSY is spontaneously broken whenever W; # 0. The 2n,, stationarity
conditions imply then that

CijijWk = 2W, L
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Metastability

The crucial constraint on metastability comes in this case by averaging
over the 2 real sGoldstino directions 1, n, and considering:

B V:V;VW*WJ

|LIPWEW,
At a stationary point, this is given by:

W*W;
| L?|
The quantity R is the holomorphic sectional curvature in the plane n, n:
RispgW ' WIWPW 4
(WEW,,)?
But using the special form of the curvature and the stationarity condition,
one finds that:

A=2+R

R = —

LI

+ WEW,
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In terms of the parameter v = V/(3|L|?), one obtains then:

A = —6v

For ~ positive, A is thus negative and there is an instability.

Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, De Wit, Girardello 1985

This result seems to persist in the same form in a large class of N = 4 and

N = 8 models with vector multiplets.
Kallosh, Linde, Prokushkin, Shmakova 2001
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N =2 MODELS WITH HYPER AND VECTOR MULTIPLETS

New features

In more general models, there are new possibilities:

® Non-Abelian gaugings

® Fayet-lliopoulos terms

® Duality twists

® Mixing of hyper and vector multiplets

This allows for models admitting metastable de Sitter vacua.
Fre, Trigiante, Van Proeyen 2002

It would be interesting to generalize our analysis to understand which of

these ingredients are really necessary for metastability.
Dall’Agata, Gomez-Reino, Louis, Scrucca WIP
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APPLICATIONS IN CALABI-YAU STRING MODELS

Dilaton

In N=1 models, this is a chiral multiplet, with Kahler manifold

_sU@,1)
M=~

, K~ —log(S+S)

One finds:
R~ —2

TogetA 2 0,weneed R 2 —%(1 + ~). This could be achieved thanks
to corrections, but these should be large.

In N=2 models, this is in a hyper multiplet, with Quaternionic manifold

. SU(1,2)
M= T x SU@)

In this case A > 0, no matter what kind of corrections may appear.

K~ —log(S+ S —CC)
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Geometric moduli
In N=1 models, these are chiral multiplets, with Kahler manifold

Mz E | K~ —log (diji(T+ T (T9 + T9)(T*+ T))
The no-scale property K*K; = 3 implies that R ~ —2 along F* o< K".

When A(d;;x) = 0, M becomes a coset and has constant curvature.

This happens e.g. for K3-fibrations or orbifolds. One finds then

2
max(R) ~ — 3

When A(d;;x) # 0, the curvature is no longer constant. One finds then:
2 A(dmk) >0

max(R) ~{ 3’
(R) {_g + positive, A(dijk) <0

Toget A 2 0, we need R 2 —2(1 + ~)~*. This can be achieved with
corrections, whose size grow with =, or without, depending on A(d;;k)-
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In N=2 models, these are in vector multiplets, with Special geometry
G . S _
M#x —, K~ —log (diju(T"+ T*)(T?° + T7)(T*+ T*))

In this case A > 0, if the potential comes from an Abelian gauging, no
matter what kind of corrections may appeatr.

Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008
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CONCLUSIONS

® In N =1 SUGRA theories, there exist a strong necessary condition
on the Kahler potential for the existence of metastable stationary
points with broken SUSY, no matter what the superpotential is.

® In N =2 SUGRA theories, there are similar constraints which are
even stronger and completely exclude some particular classes of
models, like those with only hyper or Abelian vector multiplets.
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