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SUSY BREAKING

The standard scenario is that SUSY breaking occurs at a scale
M in a hidden sector and is transmitted to the visible sector

through some interactions, generating soft breaking terms.

There are two main delicate points for phenomenology:

e Sflavour: m3 must be positive and nearly universal.

e Shierarchy: must have u ~ mgy ~ my/, < Ayy.
Gauge mediation
SUSY breaking at M < My mediated by gauge interactions:
g2 M2 5 ( g2 )2(M2)2
,my~ (—=) (—) .
1672 My, 0 \1672/ \ My,
e m3 universal (Mg > M)y) and positive.

® My~

e i ~ My from interactions.

Gravity mediation

SUSY breaking at M < Mp mediated by gravity interactions:

M?  , M2
® My/2,M3/2 ~ ﬁp’ my ~ (ﬁp) :
e m3 generic (Mp ~ Mp).

M2
o [~ A from interactions.
P



Symmetries

To naturally solve both problems, one can try to introduce

new symmetries. Main options:

e Gauge mediation 4+ complications for Shierarchy.
No simple and compelling model so far.
e Gravity mediation + constraints for Sflavour.

Difficult to forbid mixing of the two sectors at Mp.

Geometry

An interesting possibility, natural in string theory, is to separate
the visible and the hidden sectors along an extra dimension.
This framework has very peculiar characteristics going beyond

symmetries:
e Geometric distinction between visible sector, hidden
sector, and mediating interactions.

e New physical scale M¢ acting as cut-off for the mixing

between the two sectors.



GEOMETRICAL SEQUESTERING IN SUGRA

Consider a general SUGRA theory with:
Visible: &y = (¢, x0; Fo), Vo = (A, Ao; Do).
Hidden: ®; = (¢r, Xr; F'x), Ve = (A%, Ar; D).
Interactions: C' = (e, Yp; au, by), S = (¢s,¥s; Fs).

After superconformal gauge-fixing, b, =0, ¢s =1, g =0,

and the structure of the matter action reads:

Lo = [22, 2SS+ [P(@)57], + [P(@)S7],

+[T((I))W2] ot [T((I))Wz];

The functions , 7W? and P have expansions of the type:
h

Q = —3M1%+¢0¢$+¢W¢;+W¢Oq>g¢ﬂ¢;+...
P
P = AN+ Md, +...
1 1 k
TW? = Wi+ W24 — O, W5 +...
@ g Mp "7

For a vanishing cosmological constant, we tune A3 ~ M?2Mp.

The SUSY breaking VEVs are then:
A3 M?
M2" My

|Fr| ~ M7, |Fs| ~



Classical theory

Leading soft masses at classical level:

Mﬁ

mgjg ~ |Fg| ~ _MP
F. . M?
™R e~ e
. R M
Mo~ h o ~

Non-universal; separating visible and hidden sectors in an extra

dimension, h = k = 0 = quantum corrections important.
Quantum corrections

Corrections from gauge loops due to superconformal anomaly:

2 2 2

g g M

5 ~ —— | Fao| ~ il

M2~ T2 ES1 ™ 162 0t
m~ (gma) 1"~ (62) M2

Universal; positive for squarks and negative for sleptons !
Randall, Sundrum:

Giudice, Luty, Murayama, Rattazzi
With an extra dimension, corrections from gravity loops are
cut off at Mg = (wR)~! and computable:
My \FP MR M
16m2M2 M3 16w2ME M2

Universal; positive or negative 7

om3 ~

bt



Gauge and gravitational quantum corrections can compete if
(gravity loop at M) ~ (gauge loop)?, that is:
Mg N(gz )2 L Mo ¢
16m2 M2 1672

Mp Arm
This is reasonable = possible very interesting hybrid models

of SUSY breaking.

Dynamics of extra dimensions

In the 4D effective theory for £ < Mc, the dynamics of an

extra dimension is described by a chiral multiplet:
Radion: T = (T, yr; Fr).

The VEV of T' controls the radius (ReT = mR), whereas a
VEV for F'r gives additional SUSY-breaking effects.

There are various ways to get a satisfactory radion dynamics.

F-terms: e.g. strong coupling condensation of bulk gaugino.
D-terms: e.g. Casimir energy with localized kinetic terms.

Luty, Sundrum;

Ponton, Poppitz

To compute radiative effects involving the radion multiplet,

one needs a full 5D supergravity description. All these effects

are non-local and therefore finite and insensitive to UV physics.



S1/Zo ORBIFOLD MODELS

The extra dimension is a circle with coordinate z° € [0, 27]

and gauged parity Zs : x> — —x®. The radius is eg = R.

The visible and hidden sectors are located at the fixed-points
at 0 and 7, and have N =1 SUSY with U(1) R-symmetry

(bosons: ¢, fermions: ¢ — 1, aux: ¢ — 2):
Visible: (I)o = (qbo, X0, Fo), VE) = (A/(')L, /\0; Do).
Hidden: ®; = (¢r, Xr; F'x), Ve = (A%, Ar; D).

The interactions are in the bulk, and have N = 2 SUSY with
SU(2) R-symmetry (bosons: 1, fermions: 2, aux: 1 or 3):

Gauge: V = (A, A, Z;X’).

Gravity: M = (efy, ¥ar, Aar; Vir, T, vam, A, C),
T = (Y, Bunp,p; N).

Bulk and boundary theories: fixed by N = 2and N =1 SUSY.
Bulk-boundary couplings: fixed by N =1 SUSY with N = 2
bulk multiplets decomposed into N = 1 boundary multiplets.

The Lagrangian (with e factored out) has the form:

L=Ls+ eg 5(:175 — 0)£4,0 + 62 5(335 — 7T)£4,7r



Singularities
Auxiliary fields have a dimensionless propagator and could give

divergences in the sums over KK modes with m, = n/R.

In the natural formulation, auxiliary and odd fields mix through
05 = propagators Oy4/05 and 1/05. Matter couples to aux-

iliary fields = no singularities.

Making a shift, auxiliary and odd fields can be decoupled =
propagators 1 and 1/05. Matter couples to odd fields through

O0s = singularities cancelled by contact terms proportional to

1 0o 1 p2 2
50)=— 3 1=—
(0) 27rn=2_:C>c> 2m

o0
P — Ty

2 _ 2
n=—oo P — My,
Gauge interactions

In this case, the off-shell formulation of the bulk theory is

simple. The bulk-to-boundary couplings are well understood.
Mirabelli, Peskin

Gravity interactions

In this case, the off-shell formulation is rather involved and

has been formulated only recently.
ZLucker
The bulk-to-boundary couplings have been only partly studied.

Gherghetta, Riotto



GAUGE INTERACTIONS

The Lagrangian for the N = 2 bulk vector mult. Vis (g5 — 1):

1 1< 1 1 =2
Ls=—=-F? AP + = |02+ =X
5 4MN+2¢+2|M|+2
The Z2 parities of V are:
Ay M |D] X
+ | Ay | M X3
— | A5 [ N2 2| X2

At the fixed-points, the non-vanishing components of V from
an N =1 vector multiplet V' = (A,, Al; D) with

D=X3-8%

The Lagrangian for a charged N = 1 boundary chiral multiplet
¢ = (¢, x; F) is then:

L3 = |Dugl* +ixPx + |FI* + |¢|°D + ...

After integrating out X1 and F', the total Lagrangian reads:

1 7 - 1 1
L = —-F? “AO\ + =|0,2|? + =D?
1 MN"‘2 @ +2| L] "‘2

+ €% 6(z°) [| D>+ ixDx| + (855 +p5(2°)) D + ...

9



The density which couples to D is given by:
ps(z°) = €} 8(2°) |9l

Redefining D through a shift to complete squares, one gets:

1 i 1 19
L = ——F? A\ + =|0,212+ =D
1 MN"‘2 @ +2| 2| +2

+¢§ 6(a°)||Dugl® + ixPx|
1 £\ 2
—5(35E+p5(a: )+
Loop corrections

Consider for example the 1-loop correction to the mass of ¢.

This must vanish by SUSY non-renormalization theorem.

S U PG g g g g
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The result is:

o ne (2m)* p2 — m2
with
Nop = —p? Nyn = 4p°
Ney = —4p?
Ngn = m Nen = p*> —m;,

Low-energy theory

The low energy theory for £ < Mg is obtained by integrat-
ing out 2. Neglecting 0, ~ E with respect to 05 ~ Mg, its

equation of motion is:

8585 + ps(2°)) = 0

The solution is

B5% = —(ps(2®) — L p)

2R
with
/ dx® 65 ps(z = |@|*
Substituting back in the Lagrangian and integrating over z°,
one finds:
7 —
£eff — —ZFﬁy 5)\1¢)\1

_ 1 p?
+|Dudp|? + ixPx — 29,R T
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GRAVITY INTERACTIONS

The Lagrangians for the N = 2 bulk minimal multiplet M
and tensor multiplet 7 are (M5 — 1):

— 1 - —
£‘5M = =32t ?_ —FAB’UAB + ’IPMF’)’MN@DNt

V3

1 3 -
eMNPRR( A\ Fyp — §¢M’7N¢P)F QR

63
—4C — 2idyMyy

- ]. 4 i_ —
LI =Y 1(— “|IDMY |2+ WP — —p@p — (N +6tY)?

1 MNPQRY(HMN Y~ DMYXDNY)BPQR

24
_ ZQpM?fyMNP’QDN(? X'DP?) + 4,57_")\ ?Y)
1 ) — 1 ~
+ Y(— ZR((D) — %’lﬁM’yMNPDN’l,DP — EF]%/IN

2 1 - — -
+20t + ’01243 — —'tPA'tPB’UAB — UyT ’)’MN’tﬁNt
~2 \/—¢P’YMNPQ¢QFMN +4C + 22A7M¢M)

+ p-dep. A-indep.
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Notation:

WM — 1_12 MNPQRY B op 1 i&PF,YPMQwQ?
Fun = 0mAn — OnAy +i(V3/2) Yty
Hyn = DuVy — DV

The derivatives Dy are SU(2)g and super-Lorentz covariant.

In particular:

6Ml7 + VM xY
DuVn = DV + Ve x Vi
Duyn = Dyon — %VMF YN

Dy Y

The Z2 parities of M and 7T are:

et | Yum | Aum

T+l

VAB VM A C

: 1,2
+ |ea e |l u2 | As | 112 | v | V3, VE (AL C
5 2 .1 3 1,2 /3| \2
— W eg L) ¢5 A,U t Vab Vp, ) V5 A
Y |Bunp|p |N
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At the fixed-points, the non-vanishing space-time components

of M lead to an NV =1 intermediate gravitational multiplet

I = (eZ, 4 Qs bay T, A, S)o with

9 ~
%GEFI_@
be = vy, t=t"+it', A=A\

1 c<1 1

a, = —§<V3+4fuﬂ5) —

The internal components of M yield instead an N =1 chiral
radion multiplet T' = (el + (2w A/3) As, mb%; Frr)o with

Fr= 7T(V51 — 4e§ t2) + iW(Vg + 46? tl)
Finally, the components of 7 give rise to an N =1 chiral

compensator multiplet S = (Y24 :Y!, pl; Fg)2 with
Fs=(—2N+D;Y®) +i(— 2W; + 12(Y*#' — Y'£))
The appropriate Lagrangians for N = 1 boundary chiral and

vector multiplets ® = (¢, x; )33 and V = (Ay, A; D)o are in

this formalism:
Ly = |Dud|* +ixPx + |F — 4¢t*
1 _
+2 19l (R + 2" Do} ) +

. 1
V _ 2 y 2
Ly = —ZGM,,+Z)\$)\+§D +
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The chiral U(1)g-covariant derivative on bosons (F' = 0) and

fermions (F' = 1) is given by
D,=D,+iq (OL,u +3 bu) (i75)F
with
=23 g = -1/3
qa,= 0 g = —1

The only combination of auxiliary fields coupling non-trivially

to the boundary fields is therfore:

2 ~
3 5
All the other auxiliary fields can be integrated out through their
equations of motion, leaving a partially off-shell formulation

that is still powerful enough for our purposes.

The fields C' and X\ act as Lagrangian multipliers and en-
force the contraints Y =1 and p=0. After gauge-fixing
Y = (0,1,0)7, and integrating out the other auxiliary fields,

one finds finally the following total Lagrangian:

1 ~
L = %95( )[R—I—sz,beyMNPDsz + 3V2] —F?

+€26(a) [|au¢|2 +ixDx — ZG,%,, 4 z'xm]

O;A, + (&) VE+ -

v

15
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The Kahler kinetic function is defined as

04(a%) = — + e} (@)l

The current which couples to V), is the sum of
L i
J,?s(xf)) = eg 5(5175) Z(¢ Oup—c.c.) — §X’)’p’)’5X 4+ .. ]

TH) = 8@~ S durt + -]

JL(z°) = —v3el Ouds+ -

Note that:

BAM+ ( 5)=—egﬁ’u5

\/_ u5
Redefining V), through a shift to complete the squares, one
finds finally:

1
£ = <0(a%)[R+2ithay ¥ Dyt + 3,

T €8 5(a%) [|aﬂ¢|2 +ixDy — iGZ,, + mm]
3 2
g O+ )

Loop corrections

Consider as before the 1-loop correction to the mass of ¢,

which must vanish by SUSY non-renormalization theorem.
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s
e e e e e e e e e e e e e e e e - - e Ty

@ n=—oo
with
Non =0 Npp, = 5p?
Nepn =0 Nygyn = —8p?
Ny = p>P—m2 Nip = —p?>+4m2
Nygn = —p* +mj, Npy = 4p* —4m;
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Low-energy theory

The low energy theory for E < M is obtained by integrating
out A,. Neglecting 8, ~ E with respect to 05 ~ Mg, its

equation of motion is:

d: [@ (954, + %Jﬂs(:ﬁ))] — 0

The solution is

8 A, = —i(J (2P — MJM)

V3N Q
with
2T .

and

2T . . i ) .
J5= 0 d$562J55(x5) = Z(Q¢8ﬂ¢—c.c.)—§Q¢¢*X’yu’ysx—|-. .o

21 . 32_ .
T} = [[ase (@) = =S om A+ -

2T .
Ji: 0 d:c5ng55(x5) = 4(Qro,T—c.c.)+---

Substituting back in the Lagrangian and integrating over x°,

one finds:

1 - 1
eff __ . 71 Uy 1 2
L = EQ [72+ 2i " ”D,,'zpp] — —4QJM

1 <
+ Qg [|<9,ch5|2 + X@x] + [_ZG’Z‘” + zA.w] + e
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LOOP EFFECTS IN SEQUESTERED MODELS

A generic sequestered model is defined by:

3
Qs(z°) = —§M53 + Qo el 6(z°— 0) + Qr e 8(z°— )

We take:
Qo = —3Lo M2 + &P} .

The kinetic function of the effective theory is then

QT+ T = —%(T +THM3 + Qo+ Qo

and

Mg = (ReT + Lo + L) Mg

The 1-loop correction to this has a divergent T-indep. (local)

plus a finite T-dep. (non-local) parts. The relevant part is:

i Cm,n Q(T)n o

AQQ., T+ T = ’ T
m,%io M3 (T 4 )2

The corresponding component effective action is Al' = [AQ] .

In particular, when F'; # 0 and/or F'p # 0:
Vac. energy: cmn LML F7|?, Conn LT L Fr|?

Soft masses: Cpnn Ll 'L Fr|?, cnn Ll LYY F |

To derive the ¢y s, one chooses one operator for each super-

space term in AS), and computes its induced coefficient.
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Strategy
Crucial trick: use non-SUSY background with F'r = 2me # 0.

This corresponds to a SU(2) g Wilson line, and can be achieved
in two ways: SS twist or constant boundary superpotentials.
Only the gravitino KK modes are affected: m,, = (n +¢)/R.

von Gersdorff, Quiros, Riotto:

Bagger, Feruglio, Zwirner

This leads to huge simplifications:

e One can use operators with scalars and no derivatives

= Few diagrams, mostly with quartic couplings.

e The amplitudes must vanish in the SUSY limite — 0

= All the information is in the gravitino diagrams.

In the end, there is a single type of diagram for each ¢y p:

v, A
Oq "
OQ [
>
Q B ) Q
e o o

The set of operator that we want to compute is given by the
effective potential AV = —0707+AQ|Fr|?, function of R and

_ Q0,7r _ LO,7r |¢0,7r|2
6m RM3 2R 6mRM?

Qo 1 + = =70, + |po,r|?

20



The precise expression of the operators to be matched is:
2 o0
—€
ywoyy Y cmn(2+m+n)(3+m+n)ofal

m,n=0

AV(Q’O,W, R, E) =

Computation

The gravitino contribution to the full effective potential is:

AWyloor, R, € =—llndet Os + (o 09 + o 0, ) Oy
v 2

The ap -independent part is

In det[lil5] = 8Re / (;lj:; ;1n [F(pR, e)]
with
F(pR,¢) = ﬁ (p + z'mn) = (Div.) sinh w(pR + i€)

The ag -dependent part is

Y
Indet [1 + (ao 0o + Qi 57T)D—5]
4 1—pagGo(pR,€) —pa.Gr(pR, €
=8Re/dp4ln pawGo(pR,€) —pa:Gr(pR,e)
(2) —payGr(pR,€) 1—pa,Go(pR,€)
with
Go(pR,€) _ 1 e —lcothw( R + ie)
NP, TR 2 p+im, 2 P
Gr(pR,€) _ 1 e —lcschw( R + ie)
mPt TR, 2 p+im, 2 P
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Putting these two pieces together and simplifying one finds:

AWq)b (&0,7r, R 6)
—apll—ayl

= Div. —

Re/ dlBn|1

7r6R4
The O(€®) part cancels the contributions of other bulk fields.
The O(€?) part yields the relevant potential AV that we need.

The O(e2*) terms map to D-terms with superderivatives.

Expanding AWy| 2 in powers of oy and comparing with the
P g Vle P , P g
general expression for AV, one extracts the coefficients ¢y p.

The first few ones are:

42’ 7 7 RN

An independent and direct computation exploiting supergraph

C0,0 =

techniques leads to the same results.
Buchbinder et al.
Since we know the exact expression AWy|2 for AV, we can

do better and find the exact expression for A2 by solving the
differential equation AV = —e2 9% AQ. The result is:

AQ(Qo,, T+TT)

- 1+&x 1+Q—x -

= —EM ; / drxln|1- M3 Mg e~6(T+TT) M5z
27 Jo 1 &xl Q_x

! M? M? 1

This shows in particular that all the ¢y, ns are positive.
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Results

The results for the vacuum energy and soft masses are:

F 2
gt = S0 [ M+ 51 |FT|2Mc]
3) M |F7r|2
) 2 _ _C( Cl|= - F 2M2
my ]_67T2M42 6g M42 +gT| Tl C
These depend on the parameters r( » through
1
M? = M?
4 1+ro+r, P

and the normalized functions

f7r=

& 26-2 (1-ml)/ A+l
3((3)/0dll [(L+ml) A+rl)-(1-ml) (1-7l)e 2]

__ 4 3,72 (1- 2)(1 T2l2)
fT‘3¢(3)/od” [(1+n)l)(1+'r7r) (1-ml) (-1 0)e 22
1

gw=3C / die™ [(L+ml) A+rl)-(1-ml) (1-771) e 22
B 4 —g 1=-722)[(A+ml) 47 +(1-ml) (-7l e ]
o= I ond ol n e

For ro.- = 0, 6€* and dm3 are negative => not interesting.

For ro.r # 0, 6E* and dm3 can have any sigh = interesting.
Three main cases for the dependence on R at fixed Lo

o Ly=0, L, =0: §&* unstable, dm3 ~ —(6&€*)".

o Lo=0, L; #0: 6&* stable, dm3 ~ —(6&E*)".

o Ly#0, Ly #0: 6€* metastable, dm3 £ —(6E1Y'.
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PROTOTYPE MODEL

The goal is to achieve values of T', F'r, F';., F'g such that:

o £+~ 0 = tuning of P.
o 08 mZ > 0 = needs r; # 0.
o 68 mZ ~ §8"m3 = indep. stab. mech.

One can try to combine localized kinetic terms with gaugino

condensation, with:

Q= —g(T + THME + &} — 3L M + &,®!

P = A+ M2®, + N3¢ AT

To have £* ~ 0 we need A3 ~ M?2?Mp. We then get:
M? M?

SN—

AMp’ Mp’

Mc~al, Fp~ Fo~ M?

To have 7 > 1 we need L, > (aA)~1. In this limit:
2In(2) 1 3

s e T

dgrang becomes positive for 7 ~ a~!; OK with a < 1.

fry Gn

68 m2 is of the same order of magnitude as §&*%m2 if:
2 MG ~(92)2=>MCN g’
1672 M} 1672

« MP 471'\/5

24



CONCLUSIONS

e Bulk-to-boundary couplings now well understood and
loop corrections under controll.

e Radius-dependent quantum corrections to sfermion
squared masses generally negative, but can become

positive with sizable localized kinetic terms.

e Sequestered models can work, but radion dynamics

plays a crucial role.
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