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• SUSY breaking in SUGRA scenarios.

• SUGRA models with chiral multiplets.

• Flatness and stability constraints.

• Factorizable scalar manifolds.

• Symmetric scalar manifolds.

• Moduli in string models.



SUSY BREAKING AND SUGRA

In a renormalizable theory with rigid SUSY, spontaneous SUSY breaking
implies a sum rule on the mass spectrum:

STrM2 =
X

J
(−1)2J(2J + 1)m2

J = 0

This predicts that some superparticle is lighter than its ordinary partner
particle, in contradiction with experimental observation.

The standard paradigm to evade this difficulty is to assume that SUSY
breaking occurs spontaneously in a hidden sector with fields Φi and is
transmitted to the visible sector with fields Qa only indirectly, through
some suppressed interactions.

The effect of SUSY breaking on the visible sector can be parametrized
through super-renormalizable soft breaking terms, which depend both on
the details of the hidden sector theory and on the mediation mechanism.
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The effective Lagrangian that is relevant for phenomenology has then the
general form of a supersymmetric Lagrangian plus a set of soft breaking
terms:

Leff = Lsusy + Lsoft

A natural mediation mechanism is provided by gravitational interactions,
which have a scaleMP . The general setup then becomes that of SUGRA,
with local SUSY.

SUSY breaking occurs spontaneously at some scale M ≪ MP in the
hidden sector and is transmitted to the visible sector through gravitational
interactions.

The microscopic theory might be some kind of superstring model. But
below MP, and in particular at M , this can be effectively described by a
non-renormalizable SUGRA theory.
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The soft terms originate from the higher-dimensional operators that mix
visible fields Qa to hidden fields Φi and are suppressed by powers of
MP, and their scale is

msoft ∼ M2

MP

Chamseddine, Arnowitt, Nath

Barbieri, Ferrara, Savoy
Hall, Lykken, Weinberg

The main delicate features that are needed in order to get a satisfactory
situation are:

• Soft terms with msoft ∼ MEW and peculiarities.

• Cosmological constant with MCC ≪ MEW.

• Hidden scalars with m > MEW and stable.
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CHIRAL SUGRA MODELS

A SUGRA theory withN chiral multiplets Φi is specified by a real function
G. Setting MP = 1, this can be written as

G(Φi,Φ
†
i) = K(Φi,Φ

†
i) + logW (Φi) + log W̄ (Φ†

i)

This decomposition is however ambiguous, due to the Kähler symmetry
changing K → K + F + F̄ and W → e−F W .

Mixed holomorphic/antiholomorphic derivatives of G depend only on K
and define a Kähler geometry for the manifold parametrized by the scalars
φi. The metric, Chirstoffel connection and Riemann tensor are:

gij̄ = Gij̄

Γk
ij = Gk

ij , Γk̄
īj̄ = Gk̄

īj̄

Rij̄pq̄ = Gij̄pq̄ −Gr
ipGj̄q̄r
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Pure holomorphic or antiholomorphic derivatives of G depend instead
also on W , and determine the way SUSY is broken. In particular, the
auxiliary fields F i are given simply by:

F i = eG/2Gi

Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen

Bagger, Witten

The scalars φi have a wave function factor given by Zij̄ = gij̄ and a
potential, which determines their vev and mass and controls spontaneous
SUSY breaking, of the form:

V = eG
(

GkGk − 3
)

The flatness condition of vanishing cosmological constant is that V = 0

on the vacuum and implies that at that point:

gij̄G
iGj̄ = 3
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The first derivatives of the potential controlling its variations are computed
as δi = ∇iV and are given by:

δi = eG
(

Gi +Gk∇iGk

)

The stationarity conditions defining extrema of the potential are δi = 0

and imply:

Gi +Gk∇iGk = 0

The second derivatives of the potential controlling the squared masses
can be computed as m2

ij̄ = ∇i∇j̄V and m2
ij = ∇i∇jV , and one

easily finds:

m2
ij̄ = eG

(

gij̄ + ∇iGk∇j̄G
k −Rij̄pq̄ G

pGq̄
)

m2
ij = eG

(

∇iGj + ∇jGi +Gk∇i∇jGk

)
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The stability condition is that the 2N -dimensional squared-mass matrix
is positive definite:

m2
0 =

(

m2
ij̄ m2

ij

m2
īj̄ m2

īj

)

> 0

The only systematic way to determine the constraints that this implies is
to study the mass eigenvalues.

The fermions ψi split into 1 Goldstino combination ψ = Giψ
i andN−1

physical combinations ψ̃i. They have wave-function factor Z̃ij̄ = gij̄, and
their mass is encoded in:

m̃ij = eG
(

∇iGj +
1

3
GiGj

)

More precisely, the 2N -dimensional mass matrix is given by

m1/2 =

(

0 m̃ij

m̃īj̄ 0

)

P-7



The graviton and gravitino hµν and ψµ have wave-function factors given
by Z2 = 1 and Z3/2 = 1, and their masses are:

m2
2 = 0 , m3/2 = eG/2

The supertrace of the squared mass matrix for the whole theory is found
to be:

STrM2 = 2 eG
(

N − 1 −Rij̄G
iGj̄

)

Cremmer, Ferrara, Girardello, Van Proeyen
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FLATNESS AND STABILITY CONSTRAINTS

It would be interesting to understand better what flatness and stability
imply on G. More precisely, it would be really very helpful to find some
condition concerning only K and the geometry, independently of W and
the mechanism of SUSY breaking.

Our strategy is to impose the flatness condition V = 0 and look for some
simpler condition that is only necessary and in general not sufficient for
having stability with m2

0 > 0.

The crucial point is that all the upper-left submatrices ofm2
0 must also be

positive definite. In particular, the N -dimensional submatrix m2
ij̄ should

be positive definite:

m2
ij̄ > 0
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This condition means that ∀zi one must have m2
ij̄ z

iz̄j̄ > 0. One can
then look for a specific zi that leads to a particularly simple condition.
The right choice is zi = Gi, for which:

m2
ij̄G

iGj̄ = eG
(

6 −Rij̄pq̄ G
iGj̄GpGq̄

)

The corresponding necessary condition m2
ij̄G

iGj̄ > 0 reduces then to
the extremely simple curvature constraint:

Rij̄pq̄ G
iGj̄GpGq̄ < 6

Note that the special direction zi = Gi considered to get the condition
m2

ij̄G
iGj̄ > 0 for the scalars corresponds to the Goldstino direction for

the fermions, and m̃ij G
iGj = 0.
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Summarizing, a stationary point can lead to a satisfactory situation only if
the following two conditions are satisfied:

Flatness: gij̄G
iGj̄ = 3 (necessary & sufficient)

Stability: Rij̄pq̄ G
iGj̄GpGq̄ < 6 (necessary)

The tensors gij̄ and Rij̄pq̄ depend exclusively on K and characterize
the geometry. The vectors Gi depend also on W and control the SUSY
breaking direction, since Gi = F i/m3/2.

For a given geometry, the flatness condition fixes the overall amount of
SUSY breaking, and the stability condition constrains its direction to lie
with a certain cone.

To solve these two conditions, one must first determine the direction that
minimizes Rij̄pq̄ G

iGj̄GpGq̄ for fixed gij̄G
iGj̄, and then check how far

apart from it the former stays small enough.
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This variational problem is hard to solve in full generality. However, it
is possible to obtain very simple and strong results for the subclass of
models based on spaces that are factorizable or symmetric.

Notice finally that the conditions refer to a particular stationary point. It is
then useful to switch to normal coordinates around that point, defined in
the standard way with a holomorphic vielbein eJ

i and its inverse ei
J .

In these special coordinates with flat indices, the metric at the station-
ary point is trivial, and the flatness and stability conditions defining the
problem can then be rewritten simply as:

Flatness: δIJ̄ G
IGJ̄ = 3

Stability: RIJ̄P Q̄G
IGJ̄GPGQ̄ < 6

Gomez-Reino, Scrucca
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FACTORIZABLE SPACES

Suppose that M is a product ofN 1-dimensional manifolds. The function
K splits then into a sum of terms depending on a single field, while W
can instead still be arbitrary:

K =
X

k
K(k)(Φk,Φ

†
k)

W = W (Φ1, . . . ,Φn)

This assumption represents a Kähler-invariant constraint on G: its mixed
holomorphic/antiholomorphic off-diagonal derivatives vanish.

In this situation, gij̄ and Rij̄pq̄ are diagonal and have only N non-zero
components, given by giī = Giī and:

Riīiī = Ri g
2
iī

This simplifies enough to problem to solve it exactly.
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The crucial parameters are in this case the N curvature scalars:

Ri =
Giiīī

G2
iī

− GiiīGīīi

G3
iī

In flat coordinates, the Riemann tensor has the form:

RIJ̄P Q̄ =

{

Ri , if I = J = P = Q

0 , otherwise

The two flatness and stability conditions derived before then simplify to
the following expressions:

Flatness:
X

k
Θ2

k = 1

Stability:
X

k
Rk Θ4

k <
2

3

in terms of the N real and positive variables

Θi =
1

√
3

|GI |
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It is now easy to show that for Ri > 0 these constraints admit solutions
only if the following curvature bound is satisfied:

X

k
R -1

k >
3

2

The SUSY breaking direction must lie in a certain Goldstino cone fixed by
the Ri’s. Its axis is the direction minimizing the quartic curvature form:

Θ0
i =

√

√

√

√

R -1
i

X

k
R -1

k

Its solid angle grows with the excess of the effective inverse curvature
∑

kR
-1
k with respect to the threshold 3/2.

More precisely, the allowed configurations correspond to a certain limited
domain in the space of variables:

Θi ∈
[

Θ−
i ,Θ

+
i

]

P-15



One easily finds:
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A given Θi can become as large as 1 only if the related curvature satisfies
R -1

i > 3/2, and as low as 0 only if the curvatures of the remaining fields
satisfy

∑

k 6=iR
-1
k > 3/2.

The relevance of each chiral multiplet Φi for SUSY breaking depends
thus on the size of the corresponding inverse curvature R -1

i with respect
to the threshold value 3/2.

Gomez-Reino, Scrucca
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SYMMETRIC SPACES

Suppose that M is a coset space G/H, where G is a group of global
isometries and H a local stability group. The function K has then some
special form, but W can be arbitrary:

K = K(G/H)(Φ1,Φ
†
1, . . . ,Φn,Φ

†
n)

W = W (Φ1, . . . ,Φn)

The metric and curvature tensors are G-invariant and there are relations
among their components. The problem simplifies then again sufficiently
much to be able to solve it exactly.

For all the possible coset Kähler manifolds, the components of the metric
and the Rieman tensor are somehow related:

Rij̄pq̄ related to grs̄

Calabi, Vesentini
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The crucial ingredients are in this case the overall curvature scale Rall

and the group structure of the space.

In flat coordinates, the Riemann tensor has in these cases a particularly
simple structure of the form:

RIJ̄P Q̄ = Rall

(

G-invariant combination of H-invariant δ’s
)

Generalized spheres

Suppose that there are N = 1 + q fields Φi and

K = − 2

Rall

ln
(

1 −
X

i
ΦiΦ

†
i

)

The corresponding scalar manifold is the Kählerian analogue of the usual
Riemannian sphere:

M =
SU(1, 1 + q)

U(1) × SU(1 + q)
⊂ SU(1, 1)

U(1)
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The Riemann tensor in normal coordinates takes in this case the very
simple form

RIJ̄P Q̄ =
Rall

2

(

δIJ̄ δP Q̄ + δIQ̄ δP J̄

)

The two flatness and stability conditions can then be rewritten in thye
simple form:

Flatness: Θ2 = 1

Stability: Rall Θ
4 <

2

3

in terms of just 1 real and positive variable

Θ =
1

√
3

√

X

k
|GK|2

The situation is then as for 1 field with R = Rall:

R -1
all >

3

2
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Unitary Grassmannians

Suppose that there are N = p (p+ q) fields Φia and

K = − 2

Rall

ln det
(

δij̄ −
X

a
ΦiaΦ†

ja

)

The corresponding scalar manifold is the following unitary Grassmannian
manifold:

M =
SU(p, p+ q)

U(1) × SU(p) × SU(p+ q)
⊂
(

SU(1, 1)

U(1)

)p

The Riemann tensor in normal coordinates takes in this case the following
form

RIA J̄B̄ P C Q̄D̄ =
Rall

2

(

δIJ̄ δP Q̄ δAD̄ δCB̄ + δIQ̄ δP J̄ δAB̄ δCD̄

)
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The two conditions reduce then simply to

Flatness:
X

k
Θ2

k = 1

Stability:
X

k
Rall Θ

4
k <

2

3

in terms of the p real and positive variables

Θi =
1

√
3

∣

∣Eigenvaluei

(

GIA
)∣

∣

The situation is then as for p fields with Ri = Rall:

R -1
all >

3

2p
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Orthogonal Grassmannians

Suppose that there are N = 2 + q fields Φi and

K = − 2

Rall

ln
(

1 − 2
X

i
ΦiΦ

†
i +

X

i,j
(ΦiΦ

†
j)

2
)

The associated scalar manifold is the following orthogonal Grassmannian
manifold

M =
SO(2, 2 + q)

SO(2) × SO(2 + q)
⊂
(

SU(1, 1)

U(1)

)2

The Riemann tensor in normal coordinates takes in this case the simple
form

RIJ̄P Q̄ =
Rall

2

(

δIJ̄ δP Q̄ + δIQ̄ δP J̄ − δIP δJ̄Q̄

)
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The two conditions reduce then simply to

Flatness: Θ2
+ + Θ2

− = 1

Stability: Rall

(

Θ4
+ + Θ4

−

)

<
2

3

in terms of the 2 real and positive variables

Θ± =
1

√
6

√

X

k
|GK |2 ±

√

(

X

k
|GK|2

)2

−
∣

∣

∣

X

k
(GK)2

∣

∣

∣

2

The situation is then as for 2 fields with Ri = Rall:

R -1
all >

3

4

Gomez-Reino, Scrucca
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MODULI IN STRING MODELS

In string models, a natural candidate for the hidden sector is that of the
neutral moduli controlling the coupling strength and the compactification
geometry, and the Wilson lines of the hidden gauge groups.

Kaplunovky, Louis

In the simplest models, the scalar manifold of the moduli sector turns out
to be symmetric and sometimes also factorizable. This is because this
sector emerges as a projection of a SUSY theory in 10 dimension.

The scalar manifold is a Kähler submanifold of the space that would occur
by compactifying on a T 6. With a hidden gauge group of rank s, this has
the form

Mmax =
SU(1, 1)

U(1)
× SO(6, 6 + s)

SO(6) × SO(6 + s)
Narain
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The first factor is associated to the dilaton S, and is always present. The
second factor is spanned by the Kähler moduli Tp, the complex structure
moduli Uq, and the Wilson lines Za, and gets in general reduced.

Minimal moduli space

The simplest situation for each modulus Φi is that

Ki = −ni ln
(

Φi + Φ†
i

)

Witten

This corresponds to the simplest symmetric space:

Mi =
SU(1, 1)

U(1)

The curvature scalar is:

Ri =
2

ni
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Unitary enhancement by Wilson lines

Certain moduli Φi can mix to some number qi of related Wilson lines
Xai

, and these 1 + qi fields have then

Ki = −ni ln
(

Φi + Φ†
i −

X

ai

X†
ai
Xai

)

Ellis, Kounnas, Nanopoulos
Ferrara, Kounnas, Porrati

The corresponding scalar manifold is given by:

Mi =
SU(1, 1 + qi)

U(1) × SU(1 + qi)

This is a generalized sphere, which behaves as 1 copy of the minimal
geometry for the flatness and stability constraints, with curvature scale:

Ri =
2

ni
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Unitary enhancement by extra moduli

A set of pr moduli with the same nr can get enhanced to a matrix of p2
r

moduli Φirjr
. These p2

r fields have then

Kr = −nr ln det
(

Φirjr
+ Φ†

irjr

)

Ferrara, Kounnas, Porrati

The corresponding scalar manifold is:

Mr =
SU(pr, pr)

U(1) × SU(pr) × SU(pr)

This is a unitary Grassmannian space, which behaves as pr copies of
the minimal geometry for the flatness and stability constraints, with overall
curvature:

Rr =
2

nr
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Unitary enhancement by Wilson lines and extra moduli

A set of pr moduli with the same nr can get enhanced to p2
r moduli Φirjr

and also couple to some number prqr of related Wilson lines Xirar
.

These pr(pr + qr) fields have then

Kr = −nr ln det
(

Φirjr
+ Φ†

irjr
−

X

ar

X†
irar

Xjrar

)

Ferrara, Kounnas, Porrati

The corresponding scalar manifold is:

Mr =
SU(pr, pr + qr)

U(1) × SU(pr) × SU(pr + qr)

This is again a unitary Grassmannian space, which still behaves as pr

copies of the minimal geometry for the flatness and stability constraints,
with overall curvature scale given by:

Rr =
2

nr
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Orthogonal enhancement by matter

A pair of 2 moduli Φ1r
and Φ2r

with common nr can also mix in more
peculiar and synchronized way to a number qr of related Wilson lines
Xar

. The 2 + qr fields that are involved are then described by:

Kr = −nr ln
(

(

Φ1r
+ Φ†

1r

)(

Φ2r
+ Φ†

2r

)

−
X

ar

(

Xar
+X†

ar

)2
)

Derendinger, Kounnas, Petropoulos, Zwirner

The corresponding scalar manifold has in this case a different structure
and is given by:

Mr =
SO(2, 2 + qr)

SO(2) × SO(2 + qr)

This is an orthogonal Grassmannian space, which behaves as 2 copies
of the minimal geometry for the flatness and stability constraints, with an
overall curvature given by:

Rr =
2

nr
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Flatness and stability constraints

The structure of the flatness and stability constraints for string moduli
spaces is controlled by the minimal factorizable and symmetric geometry,
involving at least 2 and at most 7 factors:

Mmin =
SU(1, 1)

U(1)
× SU(1, 1)

U(1)
× · · ·

All the enhancements that we have analyzed just reshuffle the relevant
combinations of fields, and do not allow to alleviated the constraints for
viable SUSY breaking.

The crucial parameters in the constraints are the numerical coefficients
ni characterizing the basic submanifolds and controlling the curvatures
associated to the corresponding moduli Φi, with:

Ri =
2

ni
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The necessary condition
∑

kR
-1
k > 3/2 on the curvatures does then

imply the following restriction on these coefficients ni:
X

k
nk > 3

The Goldstino cone is also entirely specified in terms of the ni’s, and puts
severe restrictions on the sizes of the auxiliary fields Fi:

|Fi| :

{

upper bound smaller than
√

3m3/2 if ni < 3

lower bound larger than 0 if
X

k 6=i
nk < 3

Dilaton and volume moduli

The most relevant moduli are the dilaton S, controlling the coupling, and
the global volume modulus T , controlling the size of the internal manifold.
These universally occur in all models, with:

nS = 1 , nT = 3
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Taking each field separately, the curvature bound is always violated. To
fulfill the bound one would need corrections. These should be large for
S, but could be small for T .

Keeping both fields, the curvature bound is instead fulfilled. But T must
dominate over S, and the Goldstino angle θ is constrained to the quadrant
[0, π/4]. This implies that:

FS

ReS
<

√
3 |FT |
ReT

This demonstrates in an extremely robust way that the scenario where S
dominates over T is impossible to realize, at least in the controllable limit
where both are large.
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CONCLUSIONS AND OUTLOOK

• In SUGRA models with only chiral multiplets, there exist necessary
conditions for stability that strongly constrain the curvature of the
geometry and the SUSY breaking direction.

• The form of these constraints can be worked out in full detail for
factorizable and symmetric geometries, like those occurring in the
moduli sector of string models.

• It would be of great interest to generalize this study to models
involving also vector multiplets gauging isometries of the scalar
manifold.
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