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METASTABILITY AND SGOLDSTINO MASSES

Vacuum

Vacua are set by constant values of the fields minimizing the potential V .
One has V ′ = 0, whereas V = Λ4 defines the vacuum energy and
V ′′ = m2 the fluctuation mass matrix.

In SUSY theories, the form of V is constrained. As a result, vacua display
special features. The two main issues are to get Λ4 > 0 and m2 > 0.

SUSY breaking and metastability
Denef, Douglas 2005

Gomez-Reino, Scrucca 2006

When SUSY is broken, there is a Goldstino fermion which has zero mass.
Its partners the sGoldstino bosons have masses controlled by breaking
effects and difficult to adjust.

Requiring positive sGoldstino masses leads to metastability conditions.
Gravity gives only quantitative modifications compared to the rigid case.
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N = 1 SUSY WITH CHIRAL MULTIPLETS

Lagrangian and transformation laws Zumino 1979
Freedman, Alvarez-Gaumé 1981

An N = 1 theory with nC chirals Φi = (φi, ψi, F i) is defined by:

L =
∫
d4θK(Φ, Φ̄) +

∫
d2θW (Φ) + h.c.

This gives a non-linear σ-model on a Kähler target space with metric
gī = Kī and non-trivial potential V .

The SUSY transformations take the standard form

δφi =
√

2ǫψi

δψi =
√

2ǫF i+
√

2i∂/ψiǭ

where

F i = −gīW̄̄ + ferm.
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Vacuum

A vacuum breaks SUSY if F i 6= 0:

V = F iF̄ i

The Goldstino fermion and the two sGoldstino real scalars are identified
with the following combinations of fields:

η =
√

2F̄ iψ
i

ϕ± = Re
Im(F̄ iφ

i)

Average masses Grisaru, Rocek, Karlhede 1983

There is a sum rule on the difference between the bosonic and fermionic
average masses:

strm2 = 2RīF
iF̄ ̄
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Goldstino and sGoldstino masses

Using the stationarity condition one finds:

mη = 0 m2
ϕ±

= RF iF̄ i ± ∆

where

R = −
Rīkl̄ F

iF̄ ̄F kF̄ l̄

(FnF̄n)2

Metastability Gomez-Reino, Scrucca 2006

Taking the average of m2
ϕ±

, one finds an upper bound for the lowest
scalar mass eigenvalue, which should be positive for metastability:

m2
meta = RF iF̄ i

This gives a sharp and strong constraint.

P-4



N = 1 SUSY WITH CHIRAL AND VECTOR MULTIPLETS

Lagrangian and transformation laws
Bagger, Witten 1982

Hull, Karlhede, Lindstrom, Rocek 1986

An N = 1 theory with nC chirals Φi = (φi, ψi, F i) and nV vectors
V a = (λa, Aa

µ, D
a) is defined by:

L =
∫
d4θ

[

K(Φ, Φ̄)+
(

Ka(Φ, Φ̄)+ ξa
)

V a+ 2Xa
iX̄bi(Φ, Φ̄)V aV b

]

+
∫
d2θ

[

1

4
Hab(Φ)W aW b+W (Φ)

]

+ h.c.

This gives a gauged non-linear σ-model on a Kähler target space with
metric gī = Kī, gauged isometries generated by Killing vectors Xa

i

with Killing potentials Ka and non-trivial potential V .

The gauge couplings and angles are determined by hab = Re(Hab)

and θab = Im(Hab), the matter charges by Qai
j = i∇iXa

j and the
vector masses by M2

ab = 2Xi
(aX̄b)i.
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The gauge symmetries imply several constraints and act as

δgΦ
i = ΛaXi

a(Φ)

δgV
a = −

i

2

(

Λa− Λ̄a
)

The SUSY transformations read

δφi =
√

2ǫψi

δψi =
√

2ǫF i+
√

2iD/φiǭ

δAa
µ = iǫσµλ̄

a−iλaσµǭ

δλa = iǫDa + σµνǫF a
µν

where

F i = −gīW̄̄ + ferm.

Da = −
1

2
hab(Kb+ ξb) + ferm.

The constant FI terms are consistent with gravity only if there is also a
U(1)R symmetry.
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Vacuum

A vacuum breaks SUSY if F i, Da 6= 0:

V = F iF̄ i +
1

2
DaDa

Stationarity further implies the relation

M2
abD

b − fab
cθcdD

bDd = 2Qaī F
iF̄ ̄

The Goldstino fermion and the two sGoldstino real scalars are

η =
√

2F̄ iψ
i+iDaλ

a

ϕ± = Re
Im(F̄ iφ

i)

Average masses Grisaru, Rocek, Karlhede 1983

The bosonic and fermionic average masses satisfy a sum rule:

strm2 = 2

(

Rī − habih
achbdhcd̄

)

F iF̄ ̄

+ 2

(

Qai
i− 2fab

chbdθcd
)

Da

P-7



Goldstino and sGoldstino masses

Using the stationarity condition one finds

mη = 0 m2
ϕ±

= RF iF̄ i+SDaDa+ T
(DaDa)

2

4F iF̄ i

+M2D
aDa

F iF̄ i

± ∆

where

R = −
Rīkl̄ F

iF̄ ̄F kF̄ l̄

(FnF̄n)2
S =

hacih
cdhdb̄ F

iF̄ ̄DaDb

FnF̄kDcDc

T =
habihcb

iDaDbDcDd

(DeDe)2
M2 =

2Xi
aX̄biD

aDb

DcDc

Metastability Gomez-Reino, Scrucca 2007

Averaging over m2
ϕ±

, one finds a result with a new semi-positive term:

m2
meta = RF iF̄ i +

(

SF iF̄ i +
1

4
T DaDa +M2

)DbDb

F jF̄j

This gives a milder and more flexible constraint.
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N = 2 SUSY WITH HYPER MULTIPLETS

Lagrangian and transformation laws Alvarez-Gaumé, Freedman 1981
Hull, Karlhede, Lindstrom, Rocek 1986

AnN = 2 theory with nH hypers Hk is a subcase ofN = 1 theory with
2nH chirals Qu = (qu, χu, Fu).

The second SUSY transformation has the general form

δ̂Qu =
1

2
D̄2
(

N̄u(Q, Q̄)(ǫ̂θ + ˆ̄ǫθ̄)
)

This is an N = 1̂ symmetry if Ωuv ≡ ∇uNv and Xu ≡ Ω̄uvWv satisfy

Ω(uv) = 0 ∇wΩuv = 0 ∇w̄Ωuv = 0 Ω̄u
wΩw

v = −δuv

∇w̄X
u = 0 ∇(uXv̄) = 0 Ω̄u

w̄∇v̄X̄
w̄− Ω̄w

v̄∇wX
u = 0

This says that the geometry is Hyper-Kähler with three complex structures
defined out of Ωuv and that Xu is a triholomorphic Killing vector.
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The SUSY algebra closes on-shell with a global central charge symmetry:

δcQ
u = λXu(Q)

The two SUSY transformations take the form

δqu =
√

2ǫχu δ̂qu = −
√

2Ω̄u
v̄ ˆ̄ǫ χ̄

v

δχu =
√

2ǫFu+
√

2i∂/quǭ δ̂χu =
√

2ǫ̂F̂ u+
√

2iΩ̄u
v̄∂/q̄

v̄ ˆ̄ǫ

where

Fu = Ω̄u
v̄X̄

v̄ + ferm. F̂ u = −Xu + ferm.

There is a global SU(2)R symmetry rotating the complex structures:

~J U
V =

(

(

0 Ω̄u
v̄

Ωū
v 0

)

,

(

0 iΩ̄u
v̄

-iΩū
v 0

)

,

(

iδuv 0
0 -iδūv̄

)

)

The source of SUSY breaking is

XU =

(

Xu

X̄ū

)

P-10



Vacuum

A vacuum breaks SUSY if Fu, F̂ u 6= 0, i.e. XU 6= 0:

V = FuF̄u = F̂ u ˆ̄Fu =
1

2
XUXU

The two Goldstino fermions and the four sGoldstino real scalars are given
by the combinations

η =
√

2F̄uχ
u η̂ =

√

2
ˆ̄Fuχ

u

ϕ± = Re
Im(F̄uq

u) ϕ̂± = Re
Im( ˆ̄Fuq

u)

Using real scalars and symplectic-Majorana fermions, these modes can
be reorganized as doublet and singlet plus triplet of SU(2)R:

ηα =
(

gUV δ
α
β+iJ

x
UV σ

xα
β

)

XVχUβ

ϕ0 = gUVX
VqU ϕx = Jx

UVX
VqU
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Average masses Grisaru, Rocek, Karlhede 1983

Due to the property Ruv̄ = 0 one finds:

strm2 = 0

Goldstino and sGoldstino masses

Using the stationarity condition one finds:

mηα = 0 m2
ϕ0 = 0 m2

ϕx = −RxX
UXU

where

Rx =
RUV MNX

U(JxX)VXM(JxX)N

(XKXK)2

Metastability Gomez-Reino, Louis, Scrucca 2009
Jacot, Scrucca 2010

Averaging of the m2
ϕx and using the property

∑
x
Rx = 0 one finds:

m2
meta = 0

This gives a no-go theorem.
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N = 2 SUSY WITH VECTOR MULTIPLETS

Lagrangian and transformation laws
De Wit, Van Proeyen 1984

Hull, Karlhede, Lindstrom, Rocek 1986
Castellani, D’auria, Frè 1991

AnN = 2 theory with nV vectors Va is a subcase ofN = 1 theory with
nV chirals Φi = (φi, ψi, F i) and nV vectors V a = (Aa

µ, λ
a, Da).

The second SUSY transformation has the following general form:

δ̂Φi =
√

2ifa
i(Φ)ǫ̂W a

δ̂V a =
√

2i
(

La(Φ) + ifbc
aLb(Φ)V c

)

ˆ̄ǫθ̄ + h.c.

This is a N = 1̂ symmetry if fai is the inverse of fia ≡ ∂iL
a and:

K =
i

2

(

M̄aL
a− L̄aMa

)

Xa
i = fac

bfb
iLc

W =
√

2eaL
a, fab

cec = 0 Hab = −iMab

This says that the geometry is Special-Kähler with prepotential M and
that W is linear in the sections La.
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The SUSY algebra closes off-shell and without any central charge.

The two SUSY transformations take the form

δφi =
√

2ǫψi δ̂φi =
√

2ǫ̂f i
aλ

a

δψi =
√

2ǫF i+
√

2iD/φi ǭ δ̂ψi =
√

2ǫ̂F̂ i+σµν ǫ̂f i
aF

a
µν

δAa
µ = iǫσµλ̄

a−iλaσµǭ δ̂Aa
µ = −iǫ̂σµ f̄ı̄

aψı̄+ifi
aψiσµ ˆ̄ǫ

δλa = iǫDa+σµνǫF a
µν δ̂λa = iǫ̂D̂a+

√

2ifi
aD/φi ˆ̄ǫ

where

F i = −
√

2f̄ iaēa + ferm. F̂ i =
i

√

8

f̄ ia(Ka−ξa) + ferm.

Da = −
1

2
hab(Kb+ ξb) + ferm. D̂a = 2ihabeb + ferm.

The constant FI terms must all be aligned for consistency with gravity.
This leaves a U(1)R ⊂ SU(2)R global symmetry, defined by

~Pa = Pa~v =
(

2Re(ea), 2Im(ea),
1

2
ξa

)

Na = −
1

2
Ka

P-14



Vacuum

A vacuum breaks SUSY if F i, Da, F̂ i, D̂a 6= 0, i.e. P a, Na 6= 0:

V = F iF̄ i+
1

2
DaDa = F̂ i ˆ̄F i+

1

2
D̂aD̂a =

1

2
P aPa+

1

2
NaNa

The two Goldstino fermions and the four sGoldstino real scalars are

η =
√

2F̄ iψ
i+iDaλ

a η̂ =
√

2
ˆ̄F iψ

i+iD̂aλ
a

ϕ± = Re
Im(F̄ iφ

i) ϕ̂± = Re
Im( ˆ̄F iφ

i)

Using complex scalars and doublet fermions, these can be traded for

ηα =
(

Naδ
α
β+iPa

xσxα
β

)

fi
aλiβ

ϕ0
±

= Re
Im(Nafi

aφi) ϕ± = Re
Im(Pafi

aφi)

Average masses Grisaru, Rocek, Karlhede 1983

Using the relation between gī and hab and the form of Xi
a one gets

strm2 = 0
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Goldstino and sGoldstino masses

Using the stationarity condition and the form of Xi
a one finds:

mηα = 0 m2
ϕ0

±
= 0 m2

ϕ±
= SNaNa+ T

(NaNa)
2

P bPb

+ 3M2N
aNa

P bPb

± ∆

where

S = −
Rīpq̄f

i
af̄

̄
bf

p
cf̄

q̄
d P

aP bNcNd

P ePeNfNf

M2 =
2Xi

aX̄biN
aNb

NcNc

T = −
Rīpq̄f

i
af̄

̄
bf

p
cf̄

q̄
dN

aNbNcNd

(NeNe)2

Metastability Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, de Wit, Girardello 1985
Jacot, Scrucca 2010

Averaging over m2
ϕ±

one finds a semipositive result:

m2
meta =

(

SP aPa+ TNaNa + 3M2
)NbNb

P cPc

This gives a no-go theorem for Abelian or FI-free theories.
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N = 2 SUSY WITH HYPER AND VECTOR MULTIPLETS

General structure of the theory
Hull, Karlhede, Lindstrom, Rocek 1986

Castellani, D’auria, Frè 1991
Jacot, Scrucca 2010

An N = 2 theory with nH hypers Hk and nV vectors Va is a subcase
of N = 1 theory with nV chirals Φi and nV vectors V a.

Average, Goldstino and sGoldstino masses Hull, Karlhede, Lindstrom, Rocek 1986
Jacot, Scrucca 2010

One finds:

strm2 = 0 and mη1,2 = 0 m2
ϕ1,2,3,4 = ?

Metastability Jacot, Scrucca 2010
Antoniadis, Buican 2010

The form of sGoldstino masses does not seem to imply any sharp result.
But it was argued that the form of the SUSY algebra forbids its non-linear
realization and yields a no-go theorem for SU(2)R-symmetric theories.
Are we missing something?
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N = 4 SUSY WITH VECTOR MULTIPLETS

General structure of the theory

An N = 4 theory with nW vectors Wa is a subcase of N = 1 theory
with 3nW chirals Φi and nW vectors V a.

This kind of theory is however uniquely fixed by the gauge group and the
geometry is necessarily trivial:

MN=4 = IRnW

Vacua

The potential has a fixed very special form, and it turns out that it does
not admit any SUSY breaking stationary point. Even before talking about
metastability, one can then conclude that it is impossible to break SUSY.
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METASTABILITY IN N = 1 SUGRA

Metastability with only chiral multiplets Gomes-Reino, Scrucca 2006

The case of N = 1 theories with only chiral multiplets is easy to study.
The geometry becomes Hodge-Kähler and one finds:

m2
meta =

(

R+
2

3
M –2

P

)

F iF̄ i −
2

3
M –2

P V

For V ≃ 0 and MP → 1, the metastability condition is thus:

∃ viable vacua only if R >
∼ −

2

3

This is a necessary and sufficient condition on K and thus the curvature
if W and thus the point and the direction of SUSY breaking are arbitrary.

The bound R >
∼−2/3 explains the difficulty to achieve a good vacuum.

It allows to discriminate between viable and non-viable models whenever
K is known even if W is unknown, as is often the case in string models.
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The universal dilaton

The dilaton S which universally appears in string models is described by
the approximate Kähler potential

K ≃ − log(S + S̄)

The scalar manifold is:

M ≃
SU(1, 1)

U(1)

The curvature badly violates the bound:

R ≃ −2

Subleading corrections can modify this result and give a non-coset space.
To overcome the bound, these need however to be large.

One then concludes that the domination of SUSY breaking by the dilaton
is impossible at weak coupling but possible at strong coupling.
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The universal volume modulus

The volume modulus T which also universally appears in string models
is described by the approximate Kähler potential

K ≃ −3 log(T + T̄ )

The scalar manifold is:

M ≃
SU(1, 1)

U(1)

The curvature marginally violates the bound:

R ≃ −
2

3

Subleading corrections can modify this result and give a non-coset space.
To overcome the bound, these do not need to be large.

One then concludes that the domination of SUSY breaking by the volume
modulus is possible both at large volume and at small volume.
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The dilaton and the volume modulus together

Together, the dilaton S and volume modulus T are described by:

K ≃ − log(S + S̄) − 3 log(T + T̄ )

The scalar manifold is:

M ≃
SU(1, 1)

U(1)
×
SU(1, 1)

U(1)

The curvature depends on a Goldstino angle θ and can satisfy the bound:

R ≃ −2 cos4θ

−
2

3
sin4θ

-1�2
-2�3

-2

R

Θ0 Π�4 Π�3 Π�2

One concludes that the domination of SUSY breaking by the dilaton plus
the volume modulus is always possible.
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Effect of additional moduli

Extra non-minimal moduli modify the situation and bring more flexibility.
In general there is a single S but several TA, and the Kähler potential is
controlled by a single real and degree-one homogeneous function Y :

K ≃ − log(S + S̄) − 3 log Y (TA+ T̄A)

The scalar manifold is:

M ≃
SU(1, 1)

U(1)
× Mns

The curvature depends on some Goldstino angle θ and unit vector vA:

R ≃ −2 cos4θ + rns(v
A) sin4θ

The quantity rns(v
A) is not quite arbitrary. There always exist a direction

for which it is −2/3, and the bound can thus be fulfilled. But there may
also exist other directions giving larger and thus better values.
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Case of singular orbifold models Gomes-Reino, Scrucca 2006

In models based on singular orbifolds, Mns is still a coset, and it turns
out that:

∀va : rns(v
A) <∼ −

2

3

The situation is then essentially unchanged.

Case of smooth manifold models Covi, Gomes-Reino, Gross, Louis, Palma, Scrucca 2008

In models based on smooth manifolds, Mns is no-longer a coset space,
and it turns out that generically:

∃vA : rns(v
A) >∼ −

2

3

The situation is then somewhat better.
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Metastability with also vector multiplets Gomes-Reino, Scrucca 2007

The case ofN = 1 theories with also vector multiplets is somewhat more
complicated but still rather straightforward to study.

The main qualitative result is again that the gauging by vector multiplets
makes the metastability condition milder, and even unfavorably curved
manifolds may lead to viable vacua.

Non-trivial examples Villadoro, Zwirner 2005

A non-trivial example that illustrates how a gauging by vector multiplets
can alleviate the metastability constraint is the following:

K = − log(S + S̄) H = S G = shift symmetry

This can admit a metastable de Sitter vacuum.
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METASTABILITY IN N = 2 SUGRA

Metastability with only hyper multiplets Gomes-Reino, Louis, Scrucca 2008

The case of N = 2 theories with only hyper multiplets is easy to study.
The geometry becomes Quaternionic-Kähler and one finds:

m2
meta = −

1

9
M –2

P XUXU −
16

9
M –2

P V

For V ≃ 0 andMP → 1, this means that there is at least one mode with
m2 <

∼ −1/9X2 and metastability is thus impossible to achieve:

/∃ viable vacua at all

This is a cathegorical no-go theorem applying to any theory with only
hyper multiplets, where the potential can only originate from a graviphoton
gauging.
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The universal hyper

The universal hyper H which always appears in extended string models
is described by the approximate Quaternionic-Kähler metric

ds2=
1

(ReS)2

[

(

dReS
)2
+
(

dImS−
i

2
C∗↔dC

)2
]

+
1

ReS

∣

∣dC
∣

∣

2

The scalar manifold is:

M ≃
SU(1, 2)

U(1) × SU(2)

Subleading corrections can modify this result and give a non-coset space.
But no matter how large these are, there is no way to get a viable vacuum.

One concludes that the domination of SUSY breaking by the universal
hyper is impossible in any regime.

Effect of addition hypers

Extra non-minimal hypers do not help at all.
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Metastability with also vector multiplets

The case of N = 2 theories with also vector multiplets is much more
complicated and no sharp condition has been found so far.

It is however expectable that the main qualitative result should again be
that the gauging by vector multiplets makes the metastability condition
milder, and that some models may lead to viable vacua.

Non-trivial examples Frè, Trigiante, Van Proeyen 2003

A non-trivial and pretty unique example that proves that a gauging by
vector multiplets can help is the following:

M =
SU(1, 1)

U(1)
×

SO(2, 4)

SO(2) × SO(4)
×

SO(2, 4)

SO(2) × SO(4)

G = SO(2, 1) × SO(3)

This can admit a metastable de Sitter vacuum.
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METASTABILITY IN N = 4 AND N = 8 SUGRA

Metastability with generic gaugings Borghese, Roest 2010
Borghese, Linares, Roest 2011

The cases of N = 4 and N = 8 theories is different and more special.
The geometry is fixed to coset spaces with R ∼ M –2

P :

MN=4 =
SU(1, 1)

U(1)
×

SO(6, 6+nW)

SO(6) × SO(6+nW)
MN=8 =

E7(7)

SU(8)

From a systematic study of the square masses of the sGoldstini, one
finds that avoiding instabilities from them severely constrains the possible
gaugings but still allows a small portion of the parameter space.

Non-trivial examples Borghese, Linares, Roest 2011

No example of model admitting a metastable de Sitter vacuum is known.
But some examples of models admitting unstable de Sitter vacua exist, in
which the sGoldstini are massless. Are we missing something?

P-29



OTHER POSSIBLE ISSUES IN SUSY BREAKING

Instabilities from sGoldstones Brizi, Scrucca 2011

In theories with vector fields the gauge symmetries are in general broken,
and there are would-be Goldstone bosons of same mass as the vectors.
Their bosonic partners the sGoldstone scalars have masses controlled
by breaking effects and difficult to adjust.

Asking positive sGoldstone masses gives extra metastability conditions,
and the sGoldstones can be tachyonic even when the sGoldstini are not.
In general, the most dangerous mode is a combination of the two.

Absence of SUSY-breaking stationary points

In some classes of theories, there might be some obstructions against
the existence of SUSY breaking vacua, independently of their stability.
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CONCLUSIONS AND OUTLOOK

• In N = 1 theories, there exists a sharp necessary condition for the
existence of metastable SUSY-breaking vacua, giving constraints.
The general case is understood.

• In N = 2 theories, there are similar but stronger constraints for
metastable SUSY breaking, giving in some cases no-go theorems.
The general case is however not yet fully understood.

• In N = 4 and N = 8 theories, the situation is qualitatively different
because the geometry is trivial in the rigid case and due to gravity.
No fully conclusive result exists yet.


