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® Metastability constraints in SUSY models.

® Metastability constraints in SUGRA models.
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® Other possible issues about SUSY breaking.

Based on works with L. Brizi, L. Covi, M. Gomez-Reino,
C. Gross, J.-C. Jacot, J. Louis, G. Palma



METASTABILITY AND SGOLDSTINO MASSES

Vacuum

Vacua are set by constant values of the fields minimizing the potential V.
One has V/ = 0, whereas V' = A% defines the vacuum energy and
V" = m? the fluctuation mass matrix.

In SUSY theories, the form of V' is constrained. As a result, vacua display
special features. The two main issues are to get A? > 0 and m? > 0.

Denef, Douglas 2005
Gomez-Reino, Scrucca 2006

SUSY breaking and metastability

When SUSY is broken, there is a Goldstino fermion which has zero mass.
Its partners the sGoldstino bosons have masses controlled by breaking
effects and difficult to adjust.

Requiring positive sGoldstino masses leads to metastability conditions.
Gravity gives only quantitative modifications compared to the rigid case.
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N =1 SUSY WITH CHIRAL MULTIPLETS

Zumino 1979

Lagrangian and transformation laws Freedman. Alvarez-Gaumé 1981

An N = 1 theory with ng chirals ®* = (¢*, ¥*, F*) is defined by:
L= /d49 K(®, ®) + /d29 W (®) + h.c.

This gives a non-linear o-model on a Kahler target space with metric
gi7 = K;5 and non-trivial potential V.
The SUSY transformations take the standard form
So* = V2eq)’
' = V2eF* +2idy'e
where

F* = —g"“W; + ferm.
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Vacuum
A vacuum breaks SUSY if F'* £ 0:
V = F'F;

The Goldstino fermion and the two sGoldstino real scalars are identified
with the following combinations of fields:

n = \/§FZ¢Z
_ Rey/ 1
P4+ = Im(Fi¢ )
Average masses Grisaru, Rocek, Karlhede 1983

There I1s a sum rule on the difference between the bosonic and fermionic
average masses:

strm? = 2Rz-3—Fi17’3_
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Goldstino and sGoldstino masses

Using the stationarity condition one finds:

where
R F*FIFkR

(F™Fy,)?2

R =

Metastability Gomez-Reino, Scrucca 2006

Taking the average of mii, one finds an upper bound for the lowest

scalar mass eigenvalue, which should be positive for metastability:
m2 =R Fzﬁz

meta

This gives a sharp and strong constraint.
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N =1 SUSY WITH CHIRAL AND VECTOR MULTIPLETS

: . Bagger, Witten 1982
Lagranglan and transformation laws Hull, Karlhede, Lindstrom, Rocek 1986

An N = 1 theory with n¢ chirals ®* = (¢%,*, F'*) and ny vectors
Ve = (A% A%, D) is defined by:
L= /d40[K(<I>, B)+ (Ka(®, B)+ £a)V+ 2X3 X0 (@, B)VV?]
+/d20[iﬂab(@)wawb+vv(<1>)] + hec.
This gives a gauged non-linear o-model on a Kahler target space with

metric g;; = K;;, gauged isometries generated by Killing vectors X¢
with Killing potentials K, and non-trivial potential V.

The gauge couplings and angles are determined by hga, = Re(Hgp)
and 0., = Im(H,), the matter charges by Qq;7 = iV; X% and the
vector masses by M2, = 2X?% Xpy;.
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The gauge symmetries imply several constraints and act as
6P = A“ X} (D)
5V = —2 (A= A%)
The SUSY transformations read
5p* = V2er)’
' = V2eF ' 4+V2iIDpE
0AY, = ieauj\“—i)\aaue_
0N = 1eD” + o"eFy;,
where
F* = —g"“W; + ferm.

D® = —%h"’b(Kb—l— &) + ferm.

The constant FI terms are consistent with gravity only if there is also a
U (1) g symmetry.
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Vacuum
A vacuum breaks SUSY if F*, D®# 0:
V = F'F; + D"’D
Stationarity further implies the relation
M2, D" — £,4,°0.4D°D® = 2Q ;5 F*F?
The Goldstino fermion and the two sGoldstino real scalars are
n = V2F;)'+iDg A
o+ = ne(Fid")
Average masses Grisaru, Rocek, Karlhede 1983
The bosonic and fermionic average masses satisfy a sum rule:
str m? = 2(Ri5 — hapih*°h*®heq;) F*F7
+ 2(Qai* — 2fap°h®%0.q) D*
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Goldstino and sGoldstino masses

Using the stationarity condition one finds

0 ;= “ (D*D,)? o, DD,
m, =0 me, = RF'F;+SD*D_,+ T 1FT, + M FiF, + A
where
R _Ria—kl—F"'FﬁF’“F‘Z_ o hacih@hgy; FEFIDe DY
(F™F,)? F*F, D<D,.
hovihep* DD DD? 0 2 X% Xp; D*DP?
~ (DeD.) -~ DeD,
Metastability Gomez-Reino, Scrucca 2007
Averaging over mii, one finds a result with a new semi-positive term:
0 _ _ 1 0 DD,
M2 0 = RF'F; + (SF'F; + 7T DD, + M?) e
J

This gives a milder and more flexible constraint.
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N =2 SUSY WITH HYPER MULTIPLETS

- . Alvarez-Gaumé, Freedman 1981
Lagranglan and transformation laws Hull, Karlhede, Lindstrom, Rocek 1986

An N = 2 theory with nn4; hypers #* is a subcase of N = 1 theory with
2n4 chirals Q% = (¢, x*, F'*).

The second SUSY transformation has the general form
2w 1 = = — Py
5Q* = ;D (N (Q,Q)(¢6 + ee))
Thisis an N = 1 symmetry if Q. = V.,N, and X* = Q*’W,, satisfy

Q(u'v) =0 Vwfzfu,'v =0 V’u_Jﬂufv =0 Quwﬂwfv — _5’3
V,u—)Xu =0 V(UXQ—,) =0 Ququ_))_('lﬁ_ qu_)vwXu =0

This says that the geometry is Hyper-Kahler with three complex structures
defined out of €2,,,, and that X ™ is a triholomorphic Killing vector.
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The SUSY algebra closes on-shell with a global central charge symmetry:
0.Q" = AX™(Q)
The two SUSY transformations take the form
0q* = V2ex™ 0q* = — V2% E Y

A

XY = V2e F*+v2idq%e ox* = V2EF*+v2iQ% 3G €
where
F* = Q" X? + ferm. F* = —X* 4+ ferm.
There is a global SU (2) g symmetry rotating the complex structures:

ju_ _ (0 % 0 iQ¥\ (idy O
— Qﬁv 0 ’ _iﬂﬁvo 9 0 _25’%

The source of SUSY breaking is
X’u
U p— —_—
= (5x)
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Vacuum
A vacuum breaks SUSY if F*, F'»=£ 0, i.e. XU # 0:
V = FufF, = FuF, = %XUXU

The two Goldstino fermions and the four sGoldstino real scalars are given
by the combinations

n:\/_FuXu ﬁ:\/_ﬁ‘uxu
o+ = po(Fuq®) ¢+ = Im(Fuq )

Using real scalars and symplectic-Majorana fermions, these modes can
be reorganized as doublet and singlet plus triplet of SU (2) g:

n* = (guvoE+iJEvo®g) X Vx VP

¢’ =guvXVq" ¢® =JgvX"q"
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Average masses Grisaru, Rocek, Karlhede 1983
Due to the property R,z = 0 one finds:

strm? =0
Goldstino and sGoldstino masses

Using the stationarity condition one finds:

Mpa =0 mio =0 miw = —R, XUXU
where
Ryvmun XY (JI2X)V XM(g=zX)N
R, =
(X EX )2
.1- Gomez-Reino, Louis, Scrucca 2009
MetaStablllty Jacot, Scrucca 2010

Averaging of the mfow and using the property > R, = 0 one finds:
m?2 =0

meta

This gives a no-go theorem.
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N =2 SUSY WITH VECTOR MULTIPLETS

De Wit, Van Proeyen 1984

Lagrangian and transformation laws Hull, Karlhede, Lindstrom, Rocek 1986
Castellani, D'auria, Fre 1991

An N = 2 theory with ny, vectors V¢ is a subcase of N = 1 theory with
ny chirals ®* = (¢, ¢*, F*) and ny, vectors Ve = (A%, A%, D%).

The second SUSY transformation has the following general form:
OBt = V2i fi(®)eW?
OV = V2i(L*(®) + i frc*LP(P)V°)ED + h.c.
Thisis a N = 1 symmetry if £ is the inverse of f¢ = 8;L® and:
K =L (M,Lo~ L°M,) Xi= fac’ fiL°
W = V2e, L%, forec =0 Hgp = —iMgp

This says that the geometry is Special-Kahler with prepotential M and
that W is linear in the sections L°.
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The SUSY algebra closes off-shell and without any central charge.
The two SUSY transformations take the form
5¢p* = V2eqp? Sp* = V2EFIN?
St = V2e FP+V2iD@p'E Sy = V2EF f ot efiFS,
0A% = iea A —iX%0,é 0AY = —iéo, feY'+ifiyio,é
A = ieD+ 0" eF%,  OA* = iéD*+V2ifePopié
where

F* = —/2f%¢, + ferm. Ft = %fia(Ka—ga) + ferm.
D% = —%h"’b(Kb-l— &) + ferm. D® = 2ih°% ey, + ferm.

The constant FI terms must all be aligned for consistency with gravity.

Thisleavesa U (1)r C SU (2) g global symmetry, defined by
= 1

B, = Pui = (2Re(ea), 2Tm(ey), %ga) N = —, K,
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Vacuum
A vacuum breaks SUSY if F'¢, D@, F'* f)“;é 0,i.e. P*, N@ ;é 0:
V = F'F;+= D“Da = F* F + = D“Da = —P“P —|— N“N
The two Goldstino fermlons and the four sGoIdstlno real scalars are
n = V2Fap  LiD A 7 = /2 ﬁ;¢'+i1§a>\a
P+ = Im(F%¢Z) P+ = Im(F%¢z)
Using complex scalars and doublet fermions, these can be traded for
1" = (Nub3+iPEa™%) axiB
Pt = m(Naffd') ¢+ = m(Pafid")
Average masses Grisaru, Rocek, Karlhede 1983
Using the relation between g;5 and hqp and the form of X! one gets

strm? =0
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Goldstino and sGoldstino masses

Using the stationarity condition and the form of X one finds:

> > . (NaN,)? __,N°N,

Mpe =0 Mge=0 me,= SN Nat+ T 5= +3M s + A
where

o _ _ RipafifdfefiPePONeN? |, 2X5Xy; NON°

PeP, NfN¢ NeN,
T — _ Rizpgfa fafEfd N*N°N°N¢
(INeN.)?

MetaStab”ity Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, de Wit, Girardello 1985

Jacot, Scrucca 2010
Averaging over m920:t one finds a semipositive result:

N°N,
PcP,.
This gives a no-go theorem for Abelian or Fl-free theories.

meta

m2 = (SP"’Pa-I— TN®N, + 3M2)
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N =2 SUSY WITH HYPER AND VECTOR MULTIPLETS

Hull, Karlhede, Lindstrom, Rocek 1986

General structure of the theory Caste”agi’ D;al;”a’ Fre ;gi(l)
acot, ocrucca

An N = 2 theory with nny; hypers H* and ny, vectors V¢ is a subcase
of N = 1 theory with ny, chirals ®* and ny, vectors V.

Average, Goldstino and sGoldstino masses  Hull. Karlhede, Lindstrom, Rocek 1986

Jacot, Scrucca 2010
One finds:

2

strm®“ =0 and m,12=0 m?ol,2,3,4 =7

. Jacot, Scrucca 2010
MetaStablllty Antoniadis, Buican 2010

The form of sGoldstino masses does not seem to imply any sharp result.
But it was argued that the form of the SUSY algebra forbids its non-linear
realization and yields a no-go theorem for SU (2) g-symmetric theories.
Are we missing something?
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N =4 SUSY WITH VECTOR MULTIPLETS

General structure of the theory

An N = 4 theory with nyy vectors W is a subcase of N = 1 theory
with 31y chirals ®* and nyy vectors V2.

This kind of theory is however uniquely fixed by the gauge group and the
geometry is necessarily trivial:

MN:4 = IR™W

Vacua

The potential has a fixed very special form, and it turns out that it does
not admit any SUSY breaking stationary point. Even before talking about
metastability, one can then conclude that it is impossible to break SUSY.
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METASTABILITY IN N =1 SUGRA

Metastability with only chiral multiplets Gomes-Reino, Scrucca 2006

The case of N = 1 theories with only chiral multiplets is easy to study.
The geometry becomes Hodge-Kahler and one finds:

m?neta — (R + %Mgz)Fzﬁz — §M§2V
For V ~ 0 and Mp — 1, the metastability condition is thus:
3 viable vacua only if R & —g

This is a necessary and sufficient condition on K and thus the curvature
If W and thus the point and the direction of SUSY breaking are arbitrary.

The bound R 2 —2/3 explains the difficulty to achieve a good vacuum.
It allows to discriminate between viable and non-viable models whenever
K is known even if W is unknown, as is often the case in string models.
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The universal dilaton

The dilaton S which universally appears in string models is described by
the approximate Kahler potential

K ~ —1log(S + S)
The scalar manifold is:
N SU(1,1)
U@
The curvature badly violates the bound:

R~ —2

Subleading corrections can modify this result and give a non-coset space.
To overcome the bound, these need however to be large.

One then concludes that the domination of SUSY breaking by the dilaton
IS Impossible at weak coupling but possible at strong coupling.
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The universal volume modulus

The volume modulus T which also universally appears in string models
IS described by the approximate Kahler potential

K ~ —3log(T +T)

The scalar manifold is:

N SU(1,1)
U@
The curvature marginally violates the bound:

2
R~ —=
3

Subleading corrections can modify this result and give a non-coset space.
To overcome the bound, these do not need to be large.

One then concludes that the domination of SUSY breaking by the volume
modulus is possible both at large volume and at small volume.
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The dilaton and the volume modulus together

Together, the dilaton § and volume modulus T' are described by:
K~ —log(S+S) —3log(T +T)

The scalar manifold is:

_SU(1,1) _ SU(1,1)

vy U1

The curvature depends on a Goldstino angle 8 and can satisfy the bound:

R
-1/2
-2/3

One concludes that the domination of SUSY breaking by the dilaton plus
the volume modulus is always possible.
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Effect of additional moduli

Extra non-minimal moduli modify the situation and bring more flexibility.
In general there is a single S but several T4, and the Kahler potential is
controlled by a single real and degree-one homogeneous function Y.

K~ —log(8+5) —3logY(T4+T4)

The scalar manifold is:

SU(1,1)
U@
The curvature depends on some Goldstino angle 8 and unit vector v4:

X Mys

R ~ —2co0s*0 4 r,s(v?) sin?@

The quantity 7,5 (v4) is not quite arbitrary. There always exist a direction
for which it is —2/3, and the bound can thus be fulfilled. But there may
also exist other directions giving larger and thus better values.
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Case of singular orbifold models Gomes-Reino, Scrucca 2006

In models based on singular orbifolds, M, Is still a coset, and it turns
out that:

Voo i rps(v3) S —g
The situation is then essentially unchanged.

Case of smooth manifold models Covi, Gomes-Reino, Gross, Louis, Palma, Scrucca 2008

In models based on smooth manifolds, M s IS no-longer a coset space,
and it turns out that generically:

Jud : ras(v3) 2 —g

The situation is then somewhat better.
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Metastability with also vector multiplets Gomes-Reino, Scrucca 2007

The case of IN = 1 theories with also vector multiplets is somewhat more
complicated but still rather straightforward to study.

The main qualitative result is again that the gauging by vector multiplets
makes the metastability condition milder, and even unfavorably curved
manifolds may lead to viable vacua.

Non-trivial examples Villadoro, Zwirner 2005

A non-trivial example that illustrates how a gauging by vector multiplets
can alleviate the metastability constraint is the following:

K=—log(S+S) H=S8 G = shift symmetry

This can admit a metastable de Sitter vacuum.
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METASTABILITY IN N =2 SUGRA

Metastability with only hyper multiplets Gomes-Reino, Louis, Scrucca 2008

The case of N = 2 theories with only hyper multiplets is easy to study.
The geometry becomes Quaternionic-Kahler and one finds:

1, 2vU 16 , o
m? = —gMp*X "Xy — - Mp*V

meta

ForV ~ 0 and Mp — 1, this means that there is at least one mode with
m? < —1/9 X2 and metastability is thus impossible to achieve:

2 viable vacua at all

This is a cathegorical no-go theorem applying to any theory with only
hyper multiplets, where the potential can only originate from a graviphoton

gauging.
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The universal hyper

The universal hyper H which always appears in extended string models
IS described by the approximate Quaternionic-Kahler metric

2 L T N\ 2 1
ds? (dReS)*+(dImS— 2C*dC)*| +

Llell
ReS

~ (ReS)2
The scalar manifold is:

SU(1,2)
U(l) x SU(2)
Subleading corrections can modify this result and give a non-coset space.
But no matter how large these are, there is no way to get a viable vacuum.

M ~

One concludes that the domination of SUSY breaking by the universal
hyper is impossible in any regime.

Effect of addition hypers

Extra non-minimal hypers do not help at all.
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Metastability with also vector multiplets

The case of N = 2 theories with also vector multiplets is much more
complicated and no sharp condition has been found so far.

It is however expectable that the main qualitative result should again be
that the gauging by vector multiplets makes the metastability condition
milder, and that some models may lead to viable vacua.

Non-trivial examples Fré, Trigiante, Van Proeyen 2003

A non-trivial and pretty unique example that proves that a gauging by
vector multiplets can help is the following:
SU(1,1) SO(2,4) SO(2,4)
= X X
U(1) SO(2) x SO(4) SO(2) x SO(4)
G = S0(2,1) x SO(3)

This can admit a metastable de Sitter vacuum.
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METASTABILITY IN N =4 AND N =8 SUGRA

Borghese, Roest 2010
Borghese, Linares, Roest 2011

Metastability with generic gaugings
The cases of N = 4 and N = 8 theories is different and more special.
The geometry is fixed to coset spaces with R ~ M52
SU(1,1 SO(6,6+n FE
MN:4 — ( ’ ) X ( ,» 61 W) MN:8 _ 7(7)
U(1) SO(6) X SO(6+nyy) SU (8)
From a systematic study of the square masses of the sGoldstini, one
finds that avoiding instabilities from them severely constrains the possible

gaugings but still allows a small portion of the parameter space.

Non-trivial examples Borghese, Linares, Roest 2011

No example of model admitting a metastable de Sitter vacuum is known.
But some examples of models admitting unstable de Sitter vacua exist, in
which the sGoldstini are massless. Are we missing something?
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OTHER POSSIBLE ISSUES IN SUSY BREAKING

Instabilities from sGoldstones Brizi, Scrucca 2011

In theories with vector fields the gauge symmetries are in general broken,
and there are would-be Goldstone bosons of same mass as the vectors.
Their bosonic partners the sGoldstone scalars have masses controlled
by breaking effects and difficult to adjust.

Asking positive sGoldstone masses gives extra metastability conditions,
and the sGoldstones can be tachyonic even when the sGoldstini are not.
In general, the most dangerous mode is a combination of the two.

Absence of SUSY-breaking stationary points

In some classes of theories, there might be some obstructions against
the existence of SUSY breaking vacua, independently of their stabllity.
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CONCLUSIONS AND OUTLOOK

® In N =1 theories, there exists a sharp necessary condition for the
existence of metastable SUSY-breaking vacua, giving constraints.
The general case is understood.

® In N = 2 theories, there are similar but stronger constraints for
metastable SUSY breaking, giving in some cases no-go theorems.
The general case is however not yet fully understood.

® In N =4 and N = 8 theories, the situation is qualitatively different
because the geometry is trivial in the rigid case and due to gravity.
No fully conclusive result exists yet.



