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SUSY BREAKING AND SUGRA

The standard paradigm is that SUSY is spontaneously broken
at M in a hidden sector with fields ®; and transmitted only
indirectly to the visible sector with fields @, through gravity

interactions suppressed by Mp.

Assuming M < Mp, one can use a SUGRA description. The
soft terms parametrizing the effect of SUSY breaking in the
visible sector originate from operators mixing the ®; to the (),

and suppressed by powers of Mp, so that:

Chamseddine, Arnowitt, Nath

Barbieri, Ferrara, Savoy
Hall, Lykken, Weinberg

The main delicate features that are needed in order to get a
satisfactory situation are:

e Soft terms with mgi ~ Mgw and peculiarities.

e Cosmological constant with Moo < Mgw.

e Hidden scalars with m > Mgw and stable.



CHIRAL SUGRA MODELS

A SUGRA theory with n chiral multiplets ®; is specified by a
real function G. Setting Mp = 1, this can be written as

G(®;, ®)) = K (D, ®]) + log W (®;) + log W (&)

This decomposition is however ambiguous, due to the Kahler

symmetry changing K > K+ F+F and W — e FW.

Mixed holomorphic/antiholomorphic derivatives of G depend
only on K and define a Kahler geometry for the manifold
parametrized by the scalars ¢*. The metric, the Chirstoffel

connection and the Riemann tensor are given by:

95 = Gy
k _ k k _ k.
Ly =Gy, T =Gy
=G — G G-
Rijp@ - Gijpti Gzp Gqu

Pure holomorphic or antiholomorphic derivatives of G depend
instead also on W, and determine the way SUSY is broken.
In particular, the auxiliary fields F* are given simply by:

Fi = G2 i

Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen

Bagger, Witten



The scalars ¢* have a wave function factor given by Z;; = g;;
and a potential, which determines their vev and mass and

controls spontaneous SUSY breaking, of the form:
V = ¢ (G*Gy - 3)

The flatness condition of vanishing cosmological constant is

that V' = 0 on the vacuum and implies that at that point:
9;G'GI =3

The first derivatives of the potential controlling its variations

can be computed as §; = V;V and are given by:

0; = eC (Gz‘ + Gkvin)
The stationarity conditions defining extrema of the potential
are §; = 0 and imply:

G; + G*V,G;, =0

The two types of second derivatives of the potential controlling
the squared masses can be computed as m% = V;V;V and
mg; = V;V;V, and one easily finds:

m% = €°(g;5 + ViG* V3Gi, — Ry GPGY)
i

m; = e°(ViG; + V;Gi + %G’“{Vz-, V;}G)
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The stability condition is that the 2n-dimensional squared-

mass matrix is positive definite:

m2. m2.

1
m? = ;J 29 > 0

The only systematic way to determine the constraints that this

implies is to study the mass eigenvalues.

The fermions 9* split into 1 Goldstino combination 1 = Gj1)*
and n — 1 physical combinations 'cﬁz They have wave-function
factor Zﬁ = g;5, and their mass is encoded in:
mij = €(ViGj + %Giaj)
More precisely, the 2n-dimensional mass matrix is given by
0 my;
mgz 0

L)

The graviton and gravitino h*¥ and 9* have wave-function

factors Zga = 1 and Z3/5 = 1, and masses given by:

2 _ — ,G/2
Mg =0, m3/2—e/

The supertrace of the squared mass matrix for the whole theory

is found to be:
STrM? = 2¢%(n —1— R; G'GY)

Cremmer, Ferrara, Girardello, Van Proeyen
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FLATNESS AND STABILITY CONSTRAINTS

It would be interesting to understand better what flatness and
stability imply on G. More precisely, it would be very useful
to derive a condition concerning only K and the geometry,

independently of W and the mechanism of SUSY breaking.

Our strategy is to look for some simpler condition that is only
necessary and in general not sufficient for having m? > 0 for

the scalars.

The crucial point is that all the upper-left submatrices of m?
must also be positive definite. In particular, the n-dimensional

submatrix m% should be positive definite:
2

This condition means that V2 one must have mZ 2¢z3 > 0.

iJ
One can then look for a specific 2* that leads to a particularly

simple condition. The right choice is 2* = G*, for which:

m% G'G7 = €9(6 — Ry, G'GIGPGY)

ijpq
The corresponding necessary condition m% G'G’ > 0 reduces

then to the extremely simple curvature constraint:

R -G'GIGPGT < 6

tJpq
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Note that the special direction 2 = G* considered to derive
m% GiGI > 0 for the scalars corresponds to the direction of

the Goldstino for the fermions, and m;; G*G? = 0.

Summarizing, a stationary point can lead to a satisfactory

situation only if the following two conditions are satisfied:

Flatness: g;; G'G? =3 (necessary & sufficient)
Stability: Ry, G'GIGPGT < 6 (necessary)

1JPq

The tensors g;; and R,5,- depend only on K and characterize

the geometry. The vectors G* depend also on W and control
the SUSY breaking direction, since G* = Fi/m3/2.

For a given geometry, the flatness condition determines the
overall amount of SUSY breaking, and the stability condition

constrains its direction to lie with a certain cone.

To solve the conditions, one must first determine the direction

that minimizes R, GIGIGPGY for fixed 9i; GG, and then

check how far apart from it the former stays small enough.

This variational problem is hard to solve in full generality.
However, it is possible to obtain very simple and strong results
for the subclass of models based on spaces that are factorizable

or homogeneous.



FACTORIZABLE SPACES

Suppose that M is a product of n 1-dimensional manifolds.
The function K splits then into a sum of terms depending on

a single field, while W can instead still be arbitrary:

K =) K® (@, o)
k

W=W(¢1,...,q)n)

This assumption represents a Kahler-invariant constraint on
G, implying that all its mixed holomorphic/antiholomorphic

off-diagonal derivatives vanish.

In this situation, g;; and R;5,; become both diagonal and have
only n non-vanishing components. This simplifies the problem

sufficiently much to solve it exactly.

The non-vanishing components of the metric are g; = G;,

and those of the curvature tensor are related to these by:
R:-- = R; >
(AN gzz
where the crucial parameters are the n curvature scalars R;

associated to each complex scalar field:

G  GiilGis
R; =




The two flatness and stability conditions derived before then

simplify to the following expressions:

Flatness: D 02 =
k

Stability: ZRk e < =
k

where

i =

3

GG;

2
3
gﬁ(; G (no sum)

It is now straightforward to show that when R; > 0 these two

constraints can admit solutions only if the following curvature

ZRk >—

The SUSY breaking direction must lie in a certain Goldstino

bound is satisfied:

cone specified by the curvature scalars. Its axis is the preferred

direction minimizing the quartic curvature form:

R

>R}
k

Its solid angle grows with the excess of the effective inverse

curvature 3" Rzl with respect to the threshold 3/2.

More precisely, the allowed configurations correspond to a

bounded domain in the space of variables:

6i € |67, 6]
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One easily finds:

"

R'1+\/ '1(ZR )(ZRk —§)
ki k 2 4.3
0; =/ \ > R} 2
k
3
1
1, Ry'> >

0, D _Ril>

\ k#i

The most important qualitative result is that the direction of
SUSY breaking must align more along the directions of low

curvature than those of high curvature.

A given ©; can become as large as 1 only if its curvature
satisfies Rz-'1 > 3/2, and as low as 0 only if the curvatures of

the remaining fields satisfy 3 Rl > 3/2.

The relevance of a particular chiral multiplet ®; for SUSY
breaking depends thus on the size of the corresponding inverse

curvature R;! with respect to the threshold value 3/2.
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HOMOGENEOUS SPACES

Suppose that M is a coset space G/H, where G is a group of
global isometries and H a local stability group. The function

K has then some special form, but W can be arbitrary:
K = K@/ (@, a0l ..., &, &)
W - W(@l,...,@n)

The metric and curvature tensors are G-invariant and there
are relations among their components. The problem simplifies

then again sufficiently much to be able to solve it exactly.

For all the possible coset Kahler manifolds, the components

of the metric and the Rieman tensor are somehow related:

R;5,; related to grs

Calabi, Vesentini

The crucial ingredients are in this case the overall scale Ray

of the curvature and the group structure of the space.
Maximally symmetric spaces

Suppose that the model has n fields ®; and

Ran
Ripg = Ta (gz'jgpd + giquj)
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Then, the two conditions become simply

Flatness: ©% =1

Stability: Ry ©* < g

’ Gka [} %] GkGl

The situation is then as for 1 field with R = R.n:

3

Ry > =
all 9

Next-to-maximally symmetric spaces

where

Suppose that the model has n = p (p + q) fields ®;, with

The two conditions reduce then simply to

Flatness: »_©2 =
k

Stability: Y Ran O} < %
k
where ~ )
©; = E1g1/2(GI GJa) _ Eig}/g(ejkejl‘haBGkaGlﬁ)
3 z 3
The situation is then as for p fields with R; = Ry
3
Ry > —

2p
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MODULI IN STRING MODELS

In string models, a natural candidate for the hidden sector is
the universal sector containing the neutral moduli controlling

to the coupling strength and the compactification geometry.

Kaplunovky, Louis

The simplest geometry that can occur for n moduli fields ®;

is described by
K == nyIn(®+ @)
k

Witten

This describes a factorized and also homogeneous space:

_ &SU(1,1)
M_? U(1)

The curvature scalars are:

' 2

n;

The curvature condition 3" R} > 3/2 implies then:

an>3
k

The Goldstino cone is also fixed by the n;, and its axis is:

Q= [ ¥
z 2k Tk
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There exist several relevant generalizations of this geometry
involving extra moduli and matter fields. They are no longer

factorizable but still homogeneous.

For instance, there are situations with p(p + q) fields in total,
p? moduli fields ¢;; and pq matter fields X4, described by:

K = —ngyIndet ((I)z’j + <I>;-’j = Xgana)

Ellis, Kounnas, Nanopoulos

Ferrara, Kounnas, Porrati

This corresponds to an p(p + ¢)-dimensional homogeneous

space of the type:

SU(p,p+q)
U(1) x SU(p) x SU(p + q)

One can show that this is of the next-to-maximally symmetric

M =

type, with overall curvature scale given by:

2
Ray = —

Nall
The curvature condition R;5 > 3/(2p) implies then:

3
Nall > —

This shows that the addition of extra off-diagonal moduli or
matter fields does not change the situation found for standard

factorized moduli.
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Dilaton and volume moduli

The most relevant moduli are the dilaton S, controlling the
coupling, and the global Kahler modulus T', controlling the

volume of the compact dimensions. One finds:

ng=1, nr=3

Taking each field separately, the curvature bound is always
violated. To fulfill the bound one would need corrections.

These should be large for S, but could be small for T.

Keeping both fields, the curvature bound is instead fulfilled.
But T' must dominate over S, and the Goldstino angle 6 is
constrained to the quadrant [0, /4]. This implies that:

IFs| _ _|Frl

ReS ~ V3ReT
This demonstrates in a very robust way that the scenario where
S dominates over T is impossible to realize, at least in the

controllable limit where both are large.
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CONCLUSIONS AND OUTLOOK

e In SUGRA models with only chiral multiplets, there
exist a necessary condition for stability that strongly

constrains the curvature of the geometry and the
SUSY breaking direction.

e [he form of these constraints can be worked out in full
detail for factorizable and homogeneous geometries,
as those occurring for instance in the moduli sector

of string models.

e |t would be of great interest to generalize this study
to models involving also vector multiplets gauging

isometries of the scalar manifold.
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