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SUPERGRAVITY MODELS

General structure of the theory

In a supergravity theory with Kähler potential K and superpotential W ,
supersymmetry may be spontaneously broken in a metastable vacuum.
The cosmological constant can be adjusted to zero by a tuning and the
order parameter is then the norm of the auxiliary fields |F |.

The Kähler potential K controls the kinetic terms and the geometry of the
scalar manifold:

gIJ̄ = KIJ̄ ΓPIJ = KP
IJ RIJ̄PQ̄ = KIJ̄PQ̄ − KIPL̄K

L̄
J̄Q̄

The superpotential W controls the potential and the direction in field
space along which supersymmetry is broken:

F̄I = −∇IW µIJ = ∇I∇JW λIJK = ∇I∇J∇KW
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General features of mass matrices

There is a general sum rule constraining the average splitting between
particles and superparticles:

str[m2] = −2RIJ̄F
IF̄ J̄ + 2(n−1)M –2

P |F |2

The are also simple special values for the mass of the gravitino and for
the average mass of the two scalar sGoldstini:

m2
ψ =

1

3
M –2

P |F |2

m2
ϕ = −RIJ̄PQ̄

F IF̄ J̄FPF̄ Q̄

|F |2
+

2

3
M –2

P |F |2

Superpartner splitting and vacuum metastability both require R <∼ M –2
P .

If |R| ≫ M –2
P , sigma-model physics dominates and R must be negative.

If |R| ≪ M –2
P , gravitational physics dominates and R can have any sign.

The simplest and most natural situation is when |R| ∼ M –2
P .
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General paradigm for models

The general paradigm for model building involves a visible sector with
superfields Qα and a hidden sector with superfields ΣΓ, which interact in
a suppressed way through physics with typical energy scale Λ equal to
R –1/2 and MP:

visible sector : Qα hidden sector : ΣΓ

Delicate issues

The dynamics of the visible sector is parametrized through soft terms.
Phenomenological constraints imply that these must have a suitable scale
and structure. This restricts the transmission mechanism.

The dynamics of the hidden sector must lead to a metastable vacuum.
Cosmological constraints imply that the life-time and fluctuation masses
must be sufficiently large. This restricts the breaking mechanism.
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String-derived models

String models admit a low-energy effective description in terms of some
supergravity theory. There are however certain peculiarities concerning
the field content and the form of K and W .

The effective Kähler potential K can usually be derived in a simple way,
because it is associated with kinetic terms, which are unavoidably present.
It consists of a dominant classical part plus a small quantum correction.
It can therefore be considered as an approximately known quantity.

The effective superpotential W is instead more subtle to be determined,
because it is related to potential terms, which may arise or may not arise.
It can moreover be dominated either by classical or by quantum effects.
It may therefore be considered as an essentially unknown quantity.

A conservative strategy is then to consider a fixed K but allow for an a
priori arbitrary W , and see what can be achieved.
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HIDDEN SECTOR AND COSMOLOGY

Structure of scalar fluctuation masses

The masses of the scalar components of the hidden sector superfields
ΣΓ have both a supersymmetric part and a splitting part:

m2
Γ∆̄ = (µµ̄)Γ∆̄ − RΓ∆̄ΣȲ FΣF̄ Ȳ +

1

3
gΓ∆̄M –2

P |F |2

m2
Γ∆ = −λΓ∆ΣF

Σ +√

2

3
µΓ∆M –1

P |F |

These depend on K through the associated geometry and on W through
FΓ, µΓ∆ and λΓ∆Σ, but with two important restrictions imposed by the
formulae for m2

ψ and m2
ϕ, which follow from the conditions of vanishing

and stationarity of the vacuum energy:

gΓ∆̄F ΓF̄ ∆̄ = 3m2
ψM

2
P

(

RΓ∆̄ΣȲ −
2

3
gΓ(∆̄gΣȲ )M

–2
P

)

F ΓF̄ ∆̄FΣF̄ Ȳ = −3m2
ϕm2

ψM
2
P
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The cosmological constant problem

The cosmological constant can be adjusted to the tiny observed value
only through a tuning of parameters:

Λ : tuned to approximately zero

A nice idea to make this tuning simple at the practical level is that of
subsectors with balancing energies for given value of mψ.

Metastability and fluctuation mass problems

The scalar square masses must be positive and sufficiently large, for the
vacuum life-time to be long enough and nucleosynthesis to work:

m2
Γ∆̄ : positive and sufficiently large

A strong necessary condition is that m2
ϕ > 0, implying R(F ) < 2

3
M –2

P .
An obviously safe option is to have R < 2

3
M –2

P in any direction.
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VISIBLE SECTOR AND PHENOMENOLOGY

General form of soft scalar masses

The masses that are induced for the scalar components of the visible
superfields Qα are entirely due to splitting effects:

m2
αβ̄ = −

(

Rαβ̄Γ∆̄ −
1

3
gαβ̄ gΓ∆̄M –2

P

)

F ΓF̄ ∆̄

This can also be written in a different way in terms of the Kähler function
Ω = −3M2

P e−K/(3M
2

P
) in the form:

m2
αβ̄ = 3M2

PΩ–1
(

Ωαβ̄Γ∆̄ − Ω–1δ̄γΩδ̄αΓΩγβ̄∆̄

)

F ΓF̄ ∆̄

= 3M2
PΩ–1

(

Ωαβ̄
∣

∣

D
− Ω–1δ̄γ

∣

∣Ωδ̄α
∣

∣

F
Ωγβ̄

∣

∣

F̄

)

The crucial ingredient are thus the operators in Ω that mix Qα and ΣΓ,
and the orientation of the Goldstino direction.
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The supersymmetric flavor problem

The flavor structure of the soft scalar mass matrix m2
αβ̄ is a priori generic,

because this is generated at the fundamental scale of the theory where
the flavor structure of the ordinary fermion masses must also emerge.

This would however cause a severe phenomenological problem, because
it would predict way too large rates for certain flavor-changing processes.
One should then find some mechanism that naturally forces m2

αβ̄ to be
approximately flavor-universal:

m2
αβ̄ ≃ gαβ̄m2

The two most interesting ideas to explain this flavor-universality of soft
masses in the context of supergravity models are sector sequestering
along extra dimensions and selection rules from global symmetries.
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CRITICAL INGREDIENTS AND HANDLES ON THEM

Curvature

A first crucial ingredient is the curvature of the scalar manifold, and more
precisely its components with non-mixed or mixed indices:

curvature tensor : RΓ∆̄ΣȲ , Rαβ̄Γ∆̄

Depending on the given form of K, these may have a special structure.

Goldstino direction

A second crucial ingredient is the direction of supersymmetry breaking in
field space, given by:

breaking vector : F Γ

Depending on the form that is allowed for W , this may be constrained.
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Symmetries

There might be approximate global symmetries, with transformation rules
specified by some Killing vectors kIa with Killing potentials Da.

This requires a special form of K and the associated curvature, because
these symmetries must correspond to isometries.

It also constrains the allowed form of W , and in particular the orientation
of the Goldstino direction:

k̄aΓF
Γ = −iDamψ ∇Γka∆̄F ΓF̄ ∆̄ = −2iDam

2
ψ

When gravitational effects are negligible, these equations simplify to:

k̄aΓF
Γ ≃ 0 ∇Γka∆̄F∆F̄ ∆̄ ≃ 0

In rigid superspace, these follow from the conservation law D2Ja ≃ 0 for
the Nöther current Ja ≃ Im(KΓka

Γ), and read Ja|F ≃ 0 and Ja|D ≃ 0.
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Vanishing masses starting point

One possible idea is to try to see whether one can find a starting setup
which ensures in a robust way that the soft and sGoldstino masses do
approximately vanish:

m2
αβ̄ ≃ 0 m2

ϕ ≃ 0

On may then look for some additional effects providing corrections that
are naturally flavor-universal and positive:

∆m2
αβ̄ 6= 0 ∆m2

ϕ 6= 0

For example, these may come from quantum corrections that happen to
be dominated by low-energy physics. Alternatively, they may also come
from new classical contributions induced by some extra modes of the
hidden sector that happen to couple universally.
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Fully sequestered models Ellis, Kounnas, Nanopoulos 1984
Randal, Sundrum 1999

One way to realize this starting point is to assume that for some reason
Ω has a minimal sequestered form:

Ω = −3M2
P + QαQ̄α+ ΣΓΣ̄Γ

This defines a maximally symmetric scalar manifold and the Riemann
tensor satisfies the following special property (I = α,Γ):

RIJ̄P Q̄ =
1

3

(

gIJ̄gPQ̄ + gIQ̄gPJ̄

)

M –2
P

On the vacuum one then finds:

Rαβ̄Γ∆̄ =
1

3
gαβ̄ gΓ∆̄M –2

P RΓ∆̄ΣȲ =
2

3
gΓ(∆̄ gΣȲ )M

–2
P

It then trivially follows that:

m2
αβ̄ = 0 m2

ϕ = 0
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Mildly sequestered models Schmaltz, Sundrum 2006
Kachru, McAllister, Sundrum 2007

An interesting extension of this is to allow some mixing interactions in Ω

that involve the currents of some approximate symmetries:

Ω ≃ −3M2
P+QαQ̄ᾱ+ ΣΓΣ̄Γ̄+

1

2
M –2

(

JaQ(Q
α, Q̄α)+JaΣ(Σ

Γ, Σ̄Γ)
)2

This no-longer defines a maximally symmetric coset manifold. But if JaΣ
is approximately conserved, so that JaΣ|F ≃ 0 and JaΣ|D ≃ 0, and the
scalar component of ΣΓ is small on the vacuum, so that ΣΓ| ≃ 0, one
nevertheless finds:

m2
αβ̄ ≃ 0 m2

ϕ ≃ 0

Concrete models

To build models realizing these two ideas, one may use compact extra
dimensions and approximate global symmetries. From now: MP → 1.
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MINIMAL BRANE WORLD

Sequestering along an extra dimension Randall, Sundrum 1999

Suppose that some matter superfields Qα and the matter superfields Xi

are localized on two branes along an extra dimension S1/Z2, and that
they interact only through the gravity multiplet in the bulk, which provides
an extra radion superfield T 0 in the low-energy theory:

Qα XiT 0
visible sector: Qα

hidden sector: Xi, T 0

The effective theory is then strongly constrained by locality.
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Effective Kähler potential and geometry

The effective Kähler potential is derived by reducing the kinetic terms of
the 5D theory to 4D. One finds:

K = −3 log
[

T 0+ T̄ 0−
1

3
QαQ̄α−

1

3
XiX̄i

]

This defines a maximally symmetric scalar manifold with fixed curvature
scale and diffeomorphic to

M =
SU(1, 1T + nQ+nX)

U(1) × SU(1T + nQ+nX)

The Riemann tensor then satisfies the following property (I = α, 0, i):

RIJ̄P Q̄ =
1

3

(

gIJ̄gPQ̄ + gIQ̄gPJ̄

)

It follows that on the vacuum (Γ = 0, i):

Rαβ̄Γ∆̄ =
1

3
gαβ̄ gΓ∆̄ RΓ∆̄ΣȲ =

2

3
gΓ(∆̄ gΣȲ )
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Effective Kähler function

The corresponding effective Kähler function is then separable and takes
the following very simple sequestered form:

Ω = −3
(

T 0+ T̄ 0
)

+ QαQ̄α+ XiX̄i

Soft scalar masses

There can be two contributions to m2
αβ̄: a brane-mediated effect from the

F i and a bulk-mediated effect from the F 0. But they both vanish:

m2
αβ̄ = 0

Vacuum metastability

The hidden scalar masses m2
Γ∆̄ cannot be made all large. Indeed, the

average sGoldstino mass is found to vanish:

m2
ϕ = 0
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Quantum corrections to soft scalar masses
Gherghetta, Riotto 2002

Rattazzi, Scrucca, Strumia 2003
Buchbinder et al. 2003

Quantum effects induced by bulk supergravity fields can give corrections
to the mixing terms in Ω. They are universal and at one loop one finds:

∆Ω = −
9

π2

∫ +∞

0

dxx log

[

1 −
1+ |Qα|2x

1−|Qα|2x

1+ |Xi|2x

1−|Xi|2x
e−6(T 0+T̄ 0)x

]

=
ξ(3)

6π2

[

3/2

(T 0+ T̄ 0)2
+

|Qα|2+ |Xi|2

(T 0+ T̄ 0)3
+

(|Qα|2+|Xi|2)2

2 (T 0+ T̄ 0)4
+ · · ·

]

Then also m2
αβ̄ receives some correction. But unfortunately it is negative.

At the reference point where T 0 ≃ 1
2

and Xi ≃ 0 one finds:

∆m2
αβ̄ ≃ −

ξ(3)

6π2

[

|F i|2+ 12 |F 0|2
]

δαβ̄

There exist two ways to make this effect positive. The first is to introduce
brane-localized kinetic terms for the bulk supergravity fields. The second
is to invoke a D-type effect from vector multiplets on the hidden brane.
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Quantum effects on vacuum metastability

Quantum effects induced by hidden brane fields can give some additional
corrections to the hidden sector K. They are however model-dependent:

∆K = f(T 0, T̄ 0, Xi, X̄i)

The average sGoldstino mass then also acquires a correction:

∆m2
ϕ = −∆RΓ∆̄ΣȲ

F ΓF̄ ∆̄FΣF̄ Ȳ

|F |2

This can be have either sign, and in suitable circumstances it can thus
stabilize the sGoldstini.

Tuning of the cosmological constant

The tuning of the cosmological constant can be realized by a balancing
of energy between the T 0 bulk sector and the Xi brane sector.
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MORE GENERAL BRANE WORLDS

Extra vector multiplets in the bulk Anisimov, Dine, Graesser, Thomas 2002

In more general setups based on the space S1/Z2, one may have two
brane sectors with superfields Qα and Xi, and a bulk sector with some
vector multiplets besides the gravity multiplet, which provide extra moduli
superfields T a besides the radion T 0 in the low-energy theory.

Qα XiT 0, T a
Visible sector: Qα

Hidden sector: Xi, T 0, T a

There are now new effects mediated by the vector multiplet KK modes.
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Effective Kähler function

The effective Kähler function is now expected to get extra contributions,
which can be determined by properly integrating out the heavy vector
multiplets. The precise form of the result depends on the brane couplings,
but we expect something like

Ω = −3 J0 +
1

2
(J0)–1JaJa + · · ·

where

J0 = T 0+ T̄ 0−
1

3
QαQ̄α−

1

3
XiX̄i

Ja = Ja(T a, T̄ a, Qα, Q̄α, Xi, X̄i)

There is thus no longer a full sequestering. But one may try to implement
a mild sequestering by looking for some approximate global symmetries
ensuring the approximate conservation of the currents Ja.
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STRING BRANE WORLDS

Heterotic M-theory on a Calabi-Yau Horava,Witten 1996
Lukas, Ovrut, Stelle, Waldram 1999

Let us consider a generic heterotic string model based on a Calabi-Yau
manifold M and a stable holomorphic vector bundle Ev×Eh over it. This
also arises from M-theory on M × S1/Z2 with two sequestered branes,
in the weekly coupled limit where the size of S1/Z2 is small.

The 4D effective theory can be lifted to a 5D theory with two brane sectors
containing matter superfields Qα and Xi, and a bulk sector containing in
particular some Kähler moduli superfields TA and the dilaton S.

The non-minimal Kähler moduli T a come along with heavy vectors V a,
which arise from the M-theory 3-form and couple to Qα, Xi and TA in
a way dictated by the non-trivial Bianchi identity for this. When integrated
out, these induce contact terms in the effective Kähler function Ω.
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Geometric picture

From the M-theory viewpoint, the picture is that of a generic brane world,
where at most a mild sequestering could perhaps occur:

Qα XiTA, S
Visible sector: Qα

Hidden sector: Xi, TA, S

The general structure of the effective Kähler potential is the following:

K = − log
(

S + S̄
)

− log Y (Qα, Q̄α, Xi, X̄i, TA, T̄A)

Interestingly, the dilaton enters in a universal way. But unfortunately it
cannot dominate supersymmetry breaking, because this would lead to a
tachyonic sGoldstino. One then has to involve the other fields.
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Viable possibilities

The couplings among the fields Qα, Xi, TA are a priori expected to be
non-universal. One may then try to realize in this sector a starting point
with vanishing masses, using approximate global symmetries.

If this can be done and the vacuum energy is non-zero, one may then rely
on the extra universal effect of S to go in business. The fields Xi and TA

would then play the role of an uplifting sector.

One may also rely on quantum corrections, and try to reach a situation
similar to the one discussed for minimal brane worlds.

The general problem is then to determine the full dependence of the
Kähler potential K on the matter and moduli fields Qα, Xi, TA, and
study its properties.
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DERIVATION OF THE EFFECTIVE THEORY

Reduction of the standard heterotic string
Witten 1985

Ferrara, Kounnas, Porrati 1986
Candelas, de la Ossa 1990

The light 4D fields arise from the possible zero-modes of the 10D fields.
The Qα, Xi come from harmonic 1-forms in H1(M,Ev), H1(M,Eh),
while the TA come from harmonic (1, 1)-forms in H1,1(M):

Qα ⇔ uα Xi ⇔ ui TA ⇔ ωA

The effective K for the light fields may be derived by working out their
kinetic terms by reduction on M and comparing with the general structure
of supergravity theories.

Discarding rather than integrating out heavy non-zero modes associated
to non-harmonic forms is justified only whenever:

tr(uα ∧ ūβ̄) and tr(ui ∧ ū̄) harmonic ⇔ ωA
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General result for matter fields and Kähler moduli
Paccetti Correia, Schmidt 2008

Andrey, Scrucca 2011

The effective Kahler potential is found to be

K = − log
(

dABCJ
AJBJC

)

where

JA = TA + T̄A− cAαβ̄Q
αQ̄β̄− cAi̄X

iX̄ ̄

The numerical quantities defining this result are:

dABC =
∫
ωA ∧ ωB ∧ ωC

cAαβ̄ =
∫
ωA ∧ tr(uα ∧ ūβ̄) cAi̄ =

∫
ωA ∧ tr(ui ∧ ū̄)

This extends the results for the special cases of the untwisted sector of
orbifolds, where harmonic forms are covariantly constant, to a larger class
of cases, where harmonic forms close under multiplication.
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Canonical parametrization

With an appropriate parametrization of the fields, which corresponds to
a suitable basis for the harmonic forms, where the moduli fields are split
into an overall modulus T 0 and some relative moduli T a, one may rewrite
K in the form:

K = − log
(

J03−
1

2
J0JaJa +

1

6
dabcJ

aJbJc
)

where

J0 = T 0+ T̄ 0 −
1

3
QαQ̄ᾱ −

1

3
XiX̄ ı̄

Ja = T a+ T̄ a− caαβ̄Q
αQ̄β̄ − cai̄X

iX̄ ̄

Contact terms

The leading terms in the Kähler function for Ja ≪ J0 are

Ω ≃ −3 J0 +
1

2
(J0)–1JaJa −

1

6
dabc(J

0)–2JaJbJc
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Effect of heavy vector multiplets in the M-theory picture

In the M-theory picture, the contact terms in Ω are induced by the heavy
vectors V a coming with the light moduli T a in N = 2 vector multiplets.
In terms of 5D N = 1 superfields, the Lagrangian for these modes is:

L =
[

−
1

4
Nab(T

0, T e)W aW b+
1

48
NabcD̄

2(V a
↔

D∂yV
b)W c

]

F
+ c.c.

+
[

−3N 1/3(J0
y, J

e
y)
]

D

with prepotential N (Z, Ze) = Z3− 1
2
ZZaZa+ 1

6
dabcZaZbZc and

J0
y = T 0+ T̄ 0−

1

3
QαQ̄ᾱδv(y) −

1

3
XiX̄ ı̄δh(y)

Jay = −∂yV
a+ T a+ T̄ a− caαβ̄Q

αQ̄β̄δv(y)− cai̄X
iX̄ ̄δh(y)

Integrating out V a effective sets (J0
y, J

a
y,W

a) → (J0, Ja, 0) and gives
L = Ω|D, where Ω corresponds to the previous result for K.
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Geometry of the scalar manifold

In general the scalar manifold is not a coset. But one may nevertheless
restrict to the following reference point:

T 0 ≃
1

2
T a ≃ 0 Qα ≃ 0 Xi ≃ 0

At this point, the metric is diagonal:

g00̄ = 3 gab̄ = δab gαβ̄ = δαβ̄ gi̄ = δi̄

and the relevant components of the curvature tensor read:

Rαβ̄00̄ = δαβ̄ Rαβ̄ab̄ =
(

2

3
δabδ+dabcc

c−cacb
)

αβ̄ Rαβ̄0b̄ = cbαβ̄

Rαβ̄i̄ =
1

3
gαβ̄gi̄ + caαβ̄c

a
i̄ Ri̄pq̄ =

2

3
gi(̄gpq̄)+2cai(̄c

a
pq̄)

R00̄00̄ = 6 Rab̄00̄ = 2δab Rab̄cd̄ = δabδcd + δadδcb −
1

3
δacδbd

R00̄i̄ = δi̄ Rab̄i̄ =
(

2

3
δabδ+dabcc

c−cacb
)

i̄ R0āi̄ = cai̄
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STRUCTURE OF SOFT SCALAR MASSES

General structure of soft scalar masses

The general structure taken by soft scalar masses in these models can
be studied by restricting to the previously defined reference point, around
which the canonical parametrizaton is particularly convenient.

Using the general result that has been derived for K and imagining an
arbitrary form for W , one obtains:

m2
αβ̄ ≃ −caαβ̄c

a
i̄F

iF̄ ̄ −
(

1

3
δabδ + dabcc

c− cacb
)

αβ̄F
aF̄ b̄

− caαβ̄F
aF̄ 0 + c.c.

This vanishes identically if the Goldstino direction is suitably constrained:

m2
αβ̄ ≃ 0 ⇔ F a ≃ 0 and cai̄F

iF̄ ̄ ≃ 0
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Smooth Calabi-Yau models Andrey, Scrucca 2011

The Goldstino direction can be guaranteed to point in a direction for which
m2
αβ̄ ≃ 0 by postulating that the following transformations represent two

approximate symmetries not only of K but also of W :

δ1
aT

b = iδba ⇔ F a ≃ 0

δ2
aX

i = −ica̄iX
j ⇔ cai̄F

iF̄ ̄ ≃ 0

Clearly δ1
a always form a group U(1)# and give exact symmetries of K.

However δ2
a only form a group H if cai̄ generate a closed algebra and

only extends to exact symmetries of K if dabc is a symmetric invariant of
this algebra.

We conclude that a mild sequestering relying on symmetries is possible
only for certain very specific models:

Mild sequestering possible only for some Calabi-Yau models
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Untwisted sector of orbifolds Li, Peschanski, Savoy 1987
Andrey, Scrucca 2010

One special class of models where one is automatically in business is
provided by orbifold constructions. In the untwisted sector, the formula for
K that has been obtained applies, with:

caαβ̄, c
a
i̄ : generators of some H ⊂ SU(3)

dabc : symmetric invariant of this H ⊂ SU(3)

The scalar manifold is always a symmetric coset manifold, and H belongs
to the stability group. As a result, U(1)# × H is an exact symmetry of
K, and imposing it also to W leads to vanishing masses.

We conclude that a mild sequestering relying on symmetries is possible
for any such model:

Mild sequestering possible for all orbifold models
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VALUE OF THE SGOLDSTINO MASS

Structure of the sGoldstino mass
Gomez-Reino, Scrucca 2006

Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008
Farquet, Scrucca [in progress]

The average sGoldstino mass has the following general form:

m2
ϕ = −2 cai̄c

a
pq̄

F iF̄ ̄F pF̄ q̄

|F |2
+ terms involving some F a

For the special directions F Γ identified before this also vanishes:

m2
ϕ ≃ 0 ⇔ F a ≃ 0 and cai̄F

iF̄ ̄ ≃ 0

Smooth Calabi-Yau models

For smooth Calabi-Yau models, m2
ϕ > 0 for certain other choices of F Γ.

Orbifold untwisted sector

In the untwisted sector of orbifold models, m2
ϕ ≤ 0 for any choice of F Γ.
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CONCLUSIONS

• Under some assumptions, the Kähler potential of heterotic models
can be fully computed. The resulting soft scalar masses are found
to vanish for suitably oriented Goldstino directions.

• The Goldstino direction can be forced to align along such special
directions by relying on some global symmetries, but this appears
to be possible only under some extra assumptions.

• A special class of models where this mechanism can always work
is that of orbifold models. But it might be possible to put it at work
also for other special classes of Calabi-Yau models.


