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SYMMETRIES IN CLASSICAL FIELD THEORY

Canonical formulation

A classical field theory is specified by an action functional:

S =

∫

d4xL
(

φ, ∂µφ
)

The equations of motions are given by:

δS

δφ
≡ ∂L
∂φ

− ∂µ
∂L
∂∂µφ

= 0

The corresponding Hamiltonian has the form:

H =

∫

d3~xH
(

φ, ∂iφ, π
)

The equations of motions are then rewritten as

φ̇ =
δH

δπ
≡ ∂H
∂π

, π̇ = −δH
δφ

≡ −∂H
∂φ

+ ∂i
∂H
∂∂iφ
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In terms of Poisson brackets, these become

φ̇ =
{

φ,H
}

P
, π̇ =

{

π,H
}

P

For a generic functional F on phase space, one finds then:

Ḟ =
{

F,H
}

P

Conservation laws

A conserved quantity is associated with a current satisfying:

∂µJ
µ = 0

The corresponding conserved charge reads:

Q =

∫

d3~x J0

Assuming that Q does not dependent explicitly on time, one has then:
{

Q,H
}

P
= 0
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Global symmetries and Noether theorem

Conserved charges are associated to continuous global symmetries of S.
Consider indeed an infinitesimal transformation with parameter δα:

δαφ = δα
δφ

δα

Using the equations of motion, one finds:

δαS =

∫

d4x∂µ

(

δα Jµα

)

where

Jµα =
∂L
∂∂µφ

δφ

δα

The invariance of S under transformations with constant δα implies thus:

∂µJ
µ
α = 0

The corresponding conserved charge is

Qα =

∫

d3~xπ
δφ

δα
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The charge Qα generates the infinitesimal symmetry transformations in
phase space:

δφ

δα
=
{

φ,Qα

}

P
,

δπ

δα
=
{

π,Qα

}

P

For a generic functional F on phase space, one finds then:

δF

δα
=
{

F,Qα

}

P

If there are several symmetries forming some Lie group with structure
constants fijk, the corresponding charges Qi realize the group algebra
through Poisson brackets:

{

Qi, Qj

}

P
= f k

ij Qk

Note finally that generalized transformations with non-constant δα do not
represent an invariance, but induce a simple variation of S:

δαS =

∫

d4x∂µδα J
µ
α
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Local symmetries and gauge fields

A theory with fields φ possessing a global symmetry can be promoted to
a new theory involving also a gauge field Aαµ with suitable couplings and
transformation laws, in which the symmetry becomes local.

We assume that the action splits into two separately gauge-invartiant parts
SGand SM as follows:

S =

∫

d4xLG

(

Aαν , ∂µAαν
)

+

∫

d4xLM

(

φ, ∂µφ,Aαν , ∂µAαν
)

The new field Aαµ is assumed to transform as:

δαAαµ = g−1∂µδα

The current of the interacting theory is defined as the source term coming
from SM in the equation of motion for Aαµ:

Jαµ = −g−1 δSM

δAαµ
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The equations of motion for the gauge field take then the form:

δSG

δAαµ
= g Jαµ

The current Jµα is conserved, as a consequence of the invariance of SM

under local transformations with δα vanishing at infinity. Indeed, the only
source of non-stationarity of SM comes from δαAαµ, and thus:

δαSM =

∫

d4x
δSM

δAαµ
δαAαµ = −

∫

d4xJµα ∂µδα

Integrating by parts, we see that the invariance of SM implies:

∂µJ
µ
α = 0

This is the same conservation law as in the global case, except that Jµα
may now depend also on Aαµ.
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Example: CED

The Lagrangian for a free fermion is:

L = i ψ̄γµ∂µψ −mψ̄ψ

This has the global invariance δαψ = i δαψ, leading to the conserved
current

Jµ = ψ̄γµψ

The gauged version of this theory involves Dµ = ∂µ − i gAµ and

L = i ψ̄γµDµψ −mψ̄ψ − 1

4
FµνF

µν

This has the local invariance δαψ = i δαψ, δαAµ = g−1∂µδα, and the
conserved current is again:

Jµ = ψ̄γµψ
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SYMMETRIES IN QUANTUM FIELD THEORY

Operatorial formulation

In the operatorial formulation of quantum field theory, the fields become
operators φ acting on a Hilbert space of particle states |n〉, and Poisson
brackets become commutators or anticommutators:

{

··· , ···
}

P
→ −i

[

··· , ···
}

The field operators satisfy the differential equations of motion δS/δφ = 0

as function of the coordinates:

δS

δφ
≡ ∂L
∂φ

− ∂µ
∂L
∂∂µφ

= 0

The time evolution is dictated by the Heisenberg equations of motion, and
for any operator O constructed from the fields one has

Ȯ = −i
[

O,H
]
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The basic objects that one considers at the quantum level are correlation
functions of the type:

〈

φ(x1) ··· φ(xn)
〉

=
〈

0
∣

∣Tφ(x1) ··· φ(xn)
∣

∣0
〉

The generating functional of all such correlation functions is constructed by
introducing a external source current J for each field φ:

Z[J ] =
〈

0
∣

∣T exp
{

i

∫

d4xJ(x)φ(x)
}

∣

∣0
〉

Correlation functions satisfy a slightly different type of equations of motion
compared to the field operators.

Indeed, when the term involving ∂0π in the equation of motion hits the time
step-functions defining the T -product, one gets contact terms:

∂0Tπ(x)φ(y) =
[

π(x), φ(y)
}

δ(tx − ty)

= −i δ(x− y)
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One finds then that the equations of motion from the fields translate into
the following relations between correlation functions:

〈δS

δφ
(x)φ(x1) ··· φ(xn)

〉

= i
∑

k

〈

φ(x1) ··· φ(xk−1)φ(xk+1) ··· φ(xn)
〉

δ(x− xk)

The S matrix elements can be obtained through reduction as amputated
correlation functions. They depend only on the most singular part of the
correlation functions, with one pole for each external particle.

S-matrix elements = amputated correlation functions

These satisfy then the classical equations of motion, because the contact
terms always miss at least one of the poles and are not enough singular to
contribute.
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Path integral formulation

The correlation functions can be computed through a functional integral
over all possible paths, weighted by a phase given by the action:

〈

φ(x1) ··· φ(xn)
〉

=

∫

Dφφ(x1) ··· φ(xn)e
i S

∫

Dφei S

The generating functional for correlation functions is then given by

Z[J ] =

∫

Dφei S+i
∫

Jφ

In this formulation, the equations of motion satisfied by correlation functions
can be derived more directly, in a way that is similar to the classical case.

One uses a variational approach and considers an arbitrary infinitesimal
field variation δφ vanishing at infinity.
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One looks then at the path-integral with some field insertions and view this
transformation as a shift in the dummy integration variables. This should
leave the result unchanged, implying:

δ

(
∫

Dφφ(x1) ··· φ(xn)e
i S

)

= 0

Since the Jacobian of the field transformation is 1, so that δDφ = 0, this
equation implies:

∫

Dφ
(

i δφ(x)
δS

δφ
(x)φ(x1) ··· φ(xn)

+
∑

k
φ(x1) ··· δφ(xk) ··· φ(xn)

)

eiS = 0

Requiring that this should hold for any δφ and dividing by the path-integral
without field insertions, one finally recovers:

〈δS

δφ
(x)φ(x1) ··· φ(xn)

〉

= i
∑

k

〈

φ(x1) ··· φ(xk−1)φ(xk+1) ··· φ(xn)
〉

δ(x− xk)
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Conservation laws

Naively, it is expected that conserved quantities of the classical theory
should lead to corresponding conserved quantities in the quantum theory.

More precisely, any classical conservation law should turn into an equation
for the corresponding current operator:

∂µJ
µ
α = 0

The symmetry transformations associated to the conserved chargeQα are
realized through operatorial transformations induced by U(α) = eiαQα .
For an infinitesimal transformation, one finds

δO

δα
= i

[

O,Qα

]

Moreover, conserved charges must commute withH if they do not depend
explicitly on time:

[

Qα,H
]

= 0
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Ward identities

As for the equation of motions, which imply some identities for correlation
functions involving the fields, the conservation equation ∂µJµα = 0 implies
some identities for correlation functions involving the current.

Again, the difference with respect to the operatorial equations consists in
some contact terms, which are relevant off-shell but not on-shell.

In the operatorial formulation, the contact terms arise from the T -product,
as before. Using the form of the current and the canonical commutation
relations, one finds:

〈

∂µJ
µ
α(x)φ(x1) ··· φ(xn)

〉

= i
∑

k

〈

φ(x1) ··· δφ
δα

(xk) ··· φ(xn)
〉

δ(x− xk)

These identities imply again relations for S matrix elements, but the extra
terms do not contribute, because they are not enough singular, and these
matrix elements satisfy therefore the classical conservation law.
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In the path-integral formulation, these Ward identities can be derived by
proceeding as for the equations of motion, but considering an infinitesimal
symmetry transformation of the type:

δαφ = δα
δφ

δα

If this corresponds to a classical global symmetry, δαS = 0 for constant
δα. However, for non-constant δα vanishing at infinity, one finds:

δαS =

∫

d4x∂µδα J
µ
α = −

∫

d4x δα∂µJ
µ
α

Consider then the path integral with some field insertions, and view this
transformation as a change of the dummy integration variables. This should
leave the result unchanged:

δα

(
∫

Dφφ(x1) ··· φ(xn)e
i S

)

= 0
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Assuming that the Jacobian of the transformation is 1, as it turns out to
be for most of the relevant symmetries, so that δαDφ = 0, this relation
implies:

∫

Dφ
(

−i
∫

d4x δα(x)∂µJ
µ
α(x)φ(x1) ··· φ(xn)

+
∑

k
φ(x1) ··· δα(xk)

δφ

δα
(xk) ··· φ(xn)

)

eiS = 0

Requiring this to hold for any δα and dividing by the path-integral without
insertions, one recovers finally the same Ward identity as in the operator
formalism:

〈

∂µJ
µ
α(x)φ(x1) ··· φ(xn)

〉

= i
∑

k

〈

φ(x1) ··· δφ
δα

(xk) ··· φ(xn)
〉

δ(x− xk)
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Example: QED

Consider the special correlation function 〈Jµ(x)ψ(y1)ψ̄(y2)〉 in spinor
electrodynamics. The ward identity gives in this case:

〈

∂µJ
µ(x)ψ(y1)ψ̄(y2)

〉

= −
〈

ψ(y1)ψ̄(y2)
〉

δ(x− y1)

+
〈

ψ(y1)ψ̄(y2)
〉

δ(x− y2)

The left hand side corresponds to the coupling between one unphysical
gauge boson and two fermions, whereas the right hand side contains the
fermion propagator.

Taking the Fourier transform of this relation, with momenta k, p1, p2 which
satisfy k = p2 − p1 by translational invariance, one finds:

kµM
µ(p1, p2) = S(p2) − S(p1)

This represents a relation between the cubic vertex between a longitudinal
photon and two fermions, and the propagator of the fermions.
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Diagrammatically, this means the following relation between the connected
3-point and 2-point correlation functions:

kµ × = −

p2

p1

µ

k

p2

p2

p1

p1

In order to get the corresponding relation between S matrix elements, one
needs to amputate the two external fermion lines, by writing

Mµ(p1, p2) = S(p1)
(

−iΓµ(p1, p2)
)

S(p2)
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The ward identity becomes then

− i kµΓ
µ(p1, p2) = S−1(p1) − S−1(p2)

Finally, one can use the 1PI decomposition of the propagator

S(p) =
i

/p−m− Σ(/p)

and decompose the vertex as

Γµ(p1, p2) = γµ + Λµ(p1, p2)

One arrives then at the following relation:

(p2 − p1)µΛ
µ(p1, p2) = Σ(p2) − Σ(p1)

This implies that unphysical longitudinal photons are decoupled on-shell,
and have a simple and rigidly determined effect off-shell. This property is
crucial for the consistency of the quantum theory.
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REGULARIZATION AND ANOMALIES

Regularization and anomalies

In quantum field theory, there are UV divergences. One needs therefore
to regularize the theory with some finite cut-off, renormalize it, and finally
remove the cut-off.

Due to this complication, the formal derivation of the Ward identities can
happen to be invalidated, with the appearence of so-called anomalies. The
classical symmetry is then broken by quantum effects.

Quantum anomalies in a classical symmetry can appear only if there does
not exist any UV regularization of the theory which manifestly preserves
that symmetry.

However, anomalies are actually finite IR effects. They do not dependent
on the regularization method, but only on which symmetries this respects.
They represent thus genuine physical effects.
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The precise way anomalies show up varies with the formalism, but always
rests on some subtlety related to regularization.

Operatorial formalism

In the operatorial formalism, the subtlety is that the current Jµα associated
to a classical symmetry is a composite field, involving products of fields at
the same point, which gives a singular behavior.

Path integral formalism

In the path integral formalism, the subtlety is that the measure Dφ is a
formal infinite-dimensional product which needs to be properly defined, and
which can give rise to unexpected jacobians under transformations.

Diagrammatic expansion

In a perturbative diagrammatic expansion, the subtlety is that certain loop
diagrams are linearly divergent, and shifting the momentum integration
variables is not trivially allowed.
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Physical effects of anomalies

The effect of an anomaly in a symmetry existing in the classical limit is that
the symmetry disappears at the quantum level. More precisely, it is violated
by specific and computable effects.

For global symmetries, which correspond to true restrictions on the theory,
this is perfectly consistent. It may happen and means that the classical
selection rules are violated at the quantum level in a specific way.

The predicted violation of selection rules associated to these effects has
been verified experimentally in several situations.

For local symmetries, which correspond to fake redundancies of the theory,
this is inconsistent, because unphysical states do not decouple and ruin
unitarity. It must therefore be excluded.

The consistency requirements implied by the absence of such catastrophic
effects are satisfied in a non-trivial way by relevant physical models.
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ANOMALIES IN GLOBAL CHIRAL SYMMETRIES

Chiral symmetry for fermions

Consider the theory of a massless Dirac fermion interacting with an Abelian
gauge field in the standard minimal way through Dµ = ∂µ − igAµ:

L = iψ̄γµDµψ − 1

4
FµνF

µν

This has a U(1) local gauge symmetry associated to group elements of
the form eiα and acting as:

δψ = iδαψ , δψ̄ = −iδαψ̄
δAµ = g−1∂µδα

The corresponding conserved current is:

Jµ = ψ̄γµψ
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It also has a U(1)5 global chiral symmetry associated to group elements
of the form eiα5γ5 and acting as:

δ5ψ = iδα5γ5ψ , δ5ψ̄ = iδα5ψ̄γ5

δ5Aµ = 0

The corresponding conserved current is:

Jµ5 = ψ̄γµγ5ψ

At the classical level, both symmetries are present and:

∂µJ
µ = 0 , ∂µJ

µ
5 = 0

At the quantum level, however, it is impossible to regularize the theory while
preserving both of these symmetries, and one of the two is broken. Using
a regularization preserving Q but not Q5, one finds for instance:

〈

∂µJ
µ
〉

= 0 ,
〈

∂µJ
µ
5

〉

6= 0
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Operatorial computation

In the operatorial formalism, we need to regularize the current operator in
a gauge invariant way. This can be done by the so-called point-splitting
method, defining:

Jµ5 (x, ǫ) = ψ̄(x+
ǫ

2
)γµγ5ψ(x− ǫ

2
) exp

{

ig

∫ x+ǫ/2

x−ǫ/2

dyµAµ(y)

}

The Wilson line factor is needed in order for the regularized current to be
invariant under local gauge transformations.

Using the equations of motion γµ∂µψ = igγµψAµ, one computes then
the divergence of the current:

∂µJ
µ
5 (x, ǫ) = −igJµ5 (x, ǫ)

[

Aµ(y)
∣

∣

∣

x+ǫ/2

x−ǫ/2
−∂µ

∫ x+ǫ/2

x−ǫ/2

dyµAµ(y)

]

At leading order in ǫ this yields:

∂µJ
µ
5 (x, ǫ) = igJµ5 (x, ǫ)Fµν(x)ǫ

ν
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Taking the vacuum expectation value of this object, and treating Aµ(x) as
an external field, one finds:

〈

∂µJ
µ
5 (x, ǫ)

〉

= ig
〈

Jµ5 (x, ǫ)
〉

Fµν(x)ǫ
ν

The quantity appearing on the right hand side is essentially the fermion
propagator in the background field Aµ(x). For small ǫ, one finds indeed:

〈

Jµ5 (x, ǫ)
〉

= i tr
[

γ5γ
µS(A(x), ǫ)

]

This has a singularity, which can be computed by expanding the fermion
propagator in power of the external gauge field Aµ(x). Diagrammatically,
this corresponds to the following series:

= + + ···
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The term without insertion is singular, but does not contribute to the trace.
The term with just one insertion is still singular and contributes to the trace.
The terms with more insertions are regular and negligible.

Computing the relevant diagram with one insertion, one finds:

〈

Jµ5 (x, ǫ)
〉

= ig

∫

d4k

(2π)4
e−ikx

∫

d4p

(2π)4
eipǫ tr

[

γ5γ
µ1

/p
/A(k)

1

/p−/k
]

= −4g

∫

d4k

(2π)4
e−ikx

∫

d4p

(2π)4
eipǫ

ǫµαβγpαAβ(k)(p−k)γ
p2(p−k)2

= −4g

∫

d4k

(2π)4
e−ikxǫµαβγkβAγ(k)

∫

d4p

(2π)4
eipǫ

pα
p2(p−k)2

In the limit of small ǫ, the integral in p becomes linearly divergent, and one
easily computes, by analytic continuation:

∫

d4p

(2π)4
eipǫ

pα
p4 = − i

8π2

ǫα
ǫ2
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This leaves:
〈

Jµ5 (x, ǫ)
〉

=
ig

4π2

ǫα
ǫ2
ǫµαβγFβγ(x)

For the divergence of the current, this implies:

〈

∂µJ
µ
5 (x, ǫ)

〉

= − g2

4π2

ǫαǫ
ν

ǫ2
ǫµαβγFβγ(x)Fµν(x)

Finally, one can take the limit ǫ → 0 in a symmetric way, with

lim
ǫ→0

ǫαǫβ

ǫ2
=

1

4
ηαβ

This yields a non-trivial finite result:

〈

∂µJ
µ
5 (x)

〉

= − g2

16π2 ǫ
µναβFµν(x)Fαβ(x)

On the other hand, proceeding in the same way one finds
〈

∂µJ
µ(x)

〉

= 0
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Path integral computation

In the path-integral formalism, we need to suitably define and regularize
the integration measure. This can be done by expanding the fermion fields
in a basis of eigenmodes of the kinetic operator i /D:

i /Dψn(x) = λnψn(x)

It is useful to temporarily make an analytic continuation to Euclidean space.
Then i /D is Hermitian, and the basis is orthonormal and complete:
∫

d4xψ†
m(x)ψn(x) = δmn ,

∑

n
ψn(x)ψ

†
n(y) = δ(x− y)

The fields ψ and ψ̄, which must be treated as independent, can now be
expanded as follows:

ψ(x) =
∑

n
anψn(x) , ψ̄(x) =

∑

n
ânψn(x)

The path integral measure is then defined as:

DψDψ̄ =
∏

n
dandân
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The local version of the chiral transformation, namely δ5ψ = iδα5γ5ψ

and δ5ψ̄ = iδα5ψ̄γ5 with non-constant δα5, acts on the modes as:

δam =
∑

n

(

δmn + δCmn

)

an , δâm =
∑

n

(

δmn + δCmn

)

ân

where:

δCmn = i

∫

d4x δα5(x)ψ
†
m(x)γ5ψn(x)

The Jacobian associated to each of these transformations has the form:

J = det(1 + δC) = exp
{

tr log(1 + δC)
}

= exp
{

tr δC
}

This gives a result of the form:

J = exp
{

i

∫

d4x δα5(x)A(x)
}

where:

A(x) =
∑

n
ψ†
n(x)γ5ψn(x)
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If A(x) 6= 0, then J 6= 1 and an additional term appears in the derivation
of the Ward identity. Indeed, viewing the transformation as a change of
variables, one should have:

δ5

(
∫

DψDψ̄ eiS
)

= 0

The action transforms as before, but the measure gets rescaled by J−2:

ei S → ei S exp
{

i

∫

d4x δα5(x) ∂µJ
µ(x)

}

DψDψ̄ → DψDψ̄ exp
{

−2i

∫

d4x δα5(x)A(x)
}

We conclude then that the Ward identity becomes in this case:
〈

∂µJ
µ
5 (x)

〉

= 2 A(x)

The anomalous exponent A is ambiguous and needs to be regularized,
since formally it takes the form:

A(x) = tr
[

γ5

]

δ(0) = 0 · ∞
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One can introduce for this a cut-off Λ and define:

A(x,Λ) =
∑

n
ψ†
n(x)γ5e

−λ2

n
/Λ2

ψn(x)

This corresponds to the following trace over the spectrum of states:

A(x,Λ) = Tr′
[

γ5 e
−(i /D)2/Λ2

]

To evaluated this, we first use the identity:

(i /D)2 = −1

4

{

γµ, γν
}{

Dµ, Dν

}

− 1

4

[

γµ, γν
][

Dµ, Dν

]

= −D2 +
g

2
σµνFµν

We next observe that what matters for large Λ is the asymptotic tail of large
eigenvalues. We can then expand in powers ofAµ and keep only as many
as needed to get a non-zero trace over spinor indices:

A(x,Λ) =
g2

8 Λ4 Tr′
[

e−2/Λ2
]

tr
[

γ5 σ
µνσαβ

]

Fµν(x)Fαβ(x)
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The trace over spinor indices gives tr[γ5 σ
µνσαβ] = 4iǫµναβ, whereas

the remaining trace over free states gives:

Tr′
[

e−2/Λ2
]

=

∫

d4p

(2π)4
ep

2/Λ2

=
i

16π2Λ4

We are finally left with a finite result when Λ → ∞:

A(x) = − g2

32π2 ǫ
µναβFµν(x)Fαβ(x)

This reproduces the same result as before for the anomalous Ward identity:

〈

∂µJ
µ
5 (x)

〉

= − g2

16π2 ǫ
µναβFµν(x)Fαβ(x)

One the other hand, proceeding similarly one finds:
〈

∂µJ
µ(x)

〉

= 0
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Diagrammatic approach

It is instructive to study how the anomaly emerges within a perturbative
approach in terms of Feynmann diagrams. It turns out that it entirely comes
from a linearly divergent one-loop triangle diagram.

Consider the matrix element of Jµ5 between the vacuum and a 2-photon
state, at the one-loop level. This receives contributions from two similar
diagrams:

+l−k1+k2
µ
q

l+k2

l−k1

α
k1

β
k2

µ
q

l+k1

l−k2

α
k1

β
k2

l−k2+k1

Note that the second diagram is identical to the first one but with crossed
external photons with (α, k1) ↔ (β, k2).
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One finds:

Tµαβ = ig2

∫

d4l

(2π)4

{

tr
[

γµγ5
1

/l−/k1
γβ

1

/l−/k1+/k2
γα

1

/l+/k2

]

+ tr
[

γµγ5
1

/l−/k2
γα

1

/l−/k2+/k1
γβ

1

/l+/k1

]

}

Taking the divergence of the current corresponds to contract this result with
qµ = (k1+k2)µ. One can then decompose

qµγ
µγ5 =

(

/l+/k2

)

γ5 + γ5

(

/l−/k1

)

=
(

/l+/k1

)

γ5 + γ5

(

/l−/k2

)

In each term of ∆αβ = qµT
µαβ there is then one propagator denominator

that cancels, and finally one finds:

∆αβ= ig2

∫

d4l

(2π)4

{

tr
[

γ5
1

/l−/k1
γβ

1

/l−/k1+/k2
γα−γ5

1

/l−/k1+/k2
γα

1

/l+/k2
γβ
]

+ tr
[

γ5
1

/l−/k2
γα

1

/l−/k2+/k1
γβ−γ5

1

/l−/k2+/k1
γβ

1

/l+/k1
γα
]

}

If one could freely shift l, each diagram would be antisymmetric under
(α, k1) ↔ (β, k2) and the result would cancel.
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But the integral is linearly divergent and must be regularized. A finite shift
in the integration variable leaves then a finite surface term:

∆(a) =

∫

d4l

(2π)4

[

f(l+ a) − f(l)
]

=

∫

d4l

(2π)4

[

aµ∂µf(l) + ···
]

=
i

8π2 lim
l→∞

aµlµ l
2f(l)

Applying this to the expression for ∆αβ with the appropriate shifts, and
evaluating the spinorial traces, one finds two identical terms adding up:

∆αβ =
g2

2π2 ǫ
αβρσk1ρk2τ

This result implies finally the anomalous Ward identity:
〈

∂µJ
µ
5 (x)

〉

= − g2

16π2 ǫ
µναβFµν(x)Fαβ(x)

A similar computation for the gauge current yields instead:
〈

∂µJ
µ(x)

〉

= 0
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Generalization to non-Abelian symmetries

The analysis of chiral anomalies can be extended to theories with several
fermions and more general symmetries, forming a groupG with generators
satisfying [Ta, Tb] = ifabcTc.

Consider for instance a theory with massless Dirac fermions interacting
with non-Abelian gauge fields with Dµ = ∂µ − igAaµTa:

L = iψ̄γµDµψ − 1

4
FaµνF

µν
a

This has a G local gauge symmetry associated to group elements of the
form eiαaTa and acting as:

δψ = iδαaTaψ , δψ̄ = −iδαaTaψ̄
δAaµ = g−1∂µδαa + fabcAbµδαc

The corresponding covariantly conserved currents are given by:

Jµa = ψ̄γµTaψ
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It also has a G5 global chiral symmetry associated to group elements of
the form eiα5aTaγ5 and acting as:

δ5ψ = iδα5aTaγ5ψ , δ5ψ̄ = iδα5aψ̄γ5Ta

δ5Aaµ = fabcAbµδα5c

The corresponding covariantly conserved currents are given by:

Jµ5a = ψ̄γµγ5Taψ

At the classical level, both symmetries are present and:

DµJ
µ
a = 0 , DµJ

µ
5a = 0

At the quantum level, however, one finds:
〈

DµJ
µ
a

〉

= 0 ,
〈

DµJ
µ
5a

〉

= − g2

16π2 dabc ǫ
µναβFbµνFcαβ

in terms of the symmetric constants:

dabc = symtr
[

TaTbTc

]
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Different regularizations

In the previous computations, we have used regularizations preserving
manifestly the local gauge symmetry, and found an anomaly in the global
chiral symmetry.

One can generalize these computations by using families of regularizations
that depend on a continuous parameter ξ, and which preserve the gauge
symmetry only for ξ = 0.

The deformation concerns respectively the phase of the Wilson line factor,
the gauge field dependence of the operator used to regulate the trace and
a shift in the loop momentum in the three methods that have been used.

It turns out that such regularizations preserve then the chiral symmetry for
some other non-zero value of the parameter, which we can conventionally
take to be ξ = 1.
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One finds in this way that the two Ward identities become:
〈

DµJ
µ
a

〉

= 2 ξAa ,
〈

DµJ
µ
5a

〉

= 2 (1 − ξ) Aa

where

Aa = − g2

32π2 dabc ǫ
µναβFbµνFcαβ

This shows that it is possible to preserve either the gauge symmetry, for
ξ = 0, or the chiral symmetry, for ξ = 1, but not both simultaneously.

Since the gauge symmetry is local and the chiral symmetry is global, we
are forced by consistency to choose the option where gauge invariance is
preserved and chiral symmetry is sacrificed.
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ANOMALIES IN LOCAL GAUGE SYMMETRIES

Gauged chiral symmetry

Much as an ordinary gauge symmetry is local thanks to a vector gauge
field Aµ, a global chiral symmetry can be made local by introducing an
additional axial gauge field A5µ.

Consider then a theory with massless Dirac fermions interacting vectorially
with gauge fields Aaµ and axially with gauge fields A5aµ, with couplings
determined by Dµ = ∂µ − igAaµTa − igγ5A5aµTa:

L = iψ̄γµDµψ − 1

4
FaµνF

µν
a − 1

4
F5aµνF

µν
5a

This theory has two independent groups G and G5 of local symmetries,
associated to the currents:

Jµa = ψ̄γµTAψ

Jµ5a = ψ̄γµγ5Taψ
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The occurrence of an anomaly implies now a breakdown of gauge-invariance
for the quantum effective action of the gauge fields:

Γ[A,A5] = −i log〈eiS[ψ,A,A5]〉ψ

Indeed, under infinitesimal gauge transformation one gets:

δΓ[A,A5] =

∫

d4x δαa(x)
〈

DµJ
µ
a (x)

〉

δ5Γ[A,A5] =

∫

d4x δα5a(x)
〈

DµJ
µ
5a(x)

〉

In the presence of a non-trivial anomaly, these cannot be made both zero,
and the theory becomes therefore unavoidably inconsistent.

A change in regularization allows to shift but not to eliminate the anomaly.
It corresponds to adding to the action a local non-invariant counter-term:

∆Γ[ξ,A,A5] = local counter-term

The anomalous correlations are those with an odd number of γ5: 〈J5JJ〉
and 〈J5J5J5〉. The standard choice it to preserve G and give up G5.
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One can reformulate this theory in a more symmetric way in terms of two
chiral sectors, with:

ψL,R =
1

2

(

1 ± γ5

)

ψ , AµaL,R = Aµa ±Aµ5a

The symmetries get then reshuffled to GL and GR, with currents

JµaL,R =
1

2

(

Jµa ± Jµ5a
)

In this language, the anomalous correlations are those with only L or R
fields: 〈JLJLJL〉 and 〈JRJRJR〉.

Notice now that ψL,R is equivalent to ψcR,L, and one can thus reinterpret
this theory as a chiral fermion interacting with a gauge field with group
GL ×GR in a representation of the type (R, 1) ⊕ (1, Rc).

In this formulation, it becomes clear that this theory can be generalize to
less symmetric situations, with an arbitrary gauge group and chiral fields in
arbitrary representations.
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Gauge symmetry for chiral fermions

Consider first the theory of a massless Weyl fermion interacting with an
Abelian gauge field in the standard way with Dµ = ∂µ − igAµ:

L = iχ̄γµDµχ− 1

4
FµνF

µν

This has a U(1) local gauge symmetry associated to group elements of
the form eiα and acting as:

δχ = iδαχ , δχ̄ = −iδαχ̄
δAµ = g−1∂µδα

The corresponding conserved current is:

Jµ = χ̄γµχ

There are no extra global symmetries in this case
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At the classical level, the symmetry is present and:

∂µJ
µ = 0

At the quantum level, however, it is impossible to regularize the theory while
preserving this symmetry, because of the chiral nature of the fermion field.
One finds:

〈

∂µJ
µ
〉

6= 0

Computation of the anomaly

The precise form of the gauge anomaly can be computed in the same way
as for the chiral anomaly, in all the three different approaches that we have
seen.

The fact that χ is a Weyl fermion of some definite chirality η = ±1 implies
that one can rewrite it as a projection of a Dirac fermion ψ:

χ =
1

2

(

1 + ηγ5

)

ψ
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One can then rewrite the current as:

Jµ =
1

2

(

ψ̄γµψ + η ψ̄γµγ5ψ
)

From the form of this expression, we see that the computation is almost
identical, except for a factor η/2, and the result is:

〈∂µJµ〉 = − η g2

32π2 ǫ
µναβFµν(x)Fαβ(x)

Generalization to non-Abelian symmetries

Consider now similarly a more general theory with massless Weyl fermions
interacting with a non-Abelian gauge field with Dµ = ∂µ − igAaµTa:

L = iχ̄γµDµχ− 1

4
FaµνF

µν
a

This possesses a local gauge symmetry associated to group elements of
the form eiαaTa and acting as:

δχ = iδαaTaχ , δχ̄ = −iδαaTaχ̄
δAaµ = g−1∂µδαa + fabcAbµδαc
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The corresponding covariantly conserved currents are given by:

Jµa = χ̄γµTaχ

As before, the theory does not posses any additional and independent
global symmetries.

At the classical level, the symmetry is present and:

DµJ
µ
a = 0

At the quantum level, however, one finds:

〈

DµJ
µ
a

〉

= − η g2

32π2 dabc ǫ
µναβFbµνFcαβ

in terms of the symmetric constants:

dabc = symtr
[

TaTbTc

]
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Conditions for anomaly cancellation

Gauge anomalies must be avoided, since they ruin the consistency of the
theory. Chiral gauge theories can thus be consistent only if the various
contributions to gauge anomalies cancel out.

A fermion of chirality η in a representation R is equivalent to a fermion of
opposite chiralilty −η in the conjugate representation Rc. These give the
same contribution to the anomaly, because dabc(R) = −dabc(Rc).

A chiral fermion in a real representation does not contribute to the anomaly,
because in this case dabc = 0. As a consequence, only massless fermions
can contribute to the anomaly.

Anomaly cancellation implies then a non-trivial restriction on the allowed
spectrum of massless chiral fermions:

∑

R
ηR dabc(R) = 0
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GENERAL STRUCTURE OF ANOMALIES

Gauge theories and differential forms

Using differential forms, and rescaling the coupling g, one can describe a
Yang-mills theory with arbitrary group G in terms of the following forms:

A = AaµTa dx
µ

F =
1

2
FaµνTa dx

µdxν

J = JaµTa dx
µ

The covariant derivative can be represented with the help of the exterior
derivative d, which when applied to a p-form produces a (p+ 1)-form:

D = d+
[

A, ···
]

, D2 =
[

F, ···
]

The relation between F and A implies that:

F = dA+A2
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Using the Hodge dual operation ∗, which converts any p-form into a dual
(4−p)-form, the Bianchi identity, the equations of motion and the classical
conservation law can be written as:

DF = 0 , D∗F = −∗J , D∗J = 0

For the particular case of an Abelian theory with group U(1), the above
formulae simplify, because:

D = d , D2 = 0

The field strength is then just:

F = dA

and the Bianchi identity, equations of motion and classical conservation law
become:

dF = 0 , d∗F = −∗J , d∗J = 0
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Mathematical interpretation of the chiral anomaly

Consider now the theory of a massless Dirac fermion with a generic G
local gauge symmetry and the minimal U(1)5 global chiral symmetry. This
is the prototypical example where anomalies arise.

The anomaly is encoded in the following gauge-invariant 4-form constructed
out of the 2-form F :

A = − 1

8π2 trF 2

The local version of the conservation law takes the form of a deformed
continuity equation ruling the flow of charge and can be written as:

d∗J5 = 2 A

The integrated version of this conservation law defines instead the total
variation of charge between asymptotic past and future:

∆Q5 = 2

∫

A
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It turns out that the anomaly is a closed form, by the Bianchi identity:

dA = 0

It is also exact, in the sense that if F can be expressed in terms of A, then
it can be rewritten as

A = − 1

8π2
dC

in terms of a Chern-Simons 3-form depending on the 1-form A:

C = AdA+
2

3
A3

The local conservation law is violated by any non-zero F . Note that one
can define a new current J̃5 = J5 − 2∗C which is conserved: d∗J̃5 = 0,
but this is not gauge invariant.

The global conservation law is preserved for any F that can be written in
terms of an A. But, it is violated by an integer for topologically non-trivial
fiber bundles, where F cannot be described by a globally defined A.
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More precisely, the Atyah-Singer index theorem states that the integral of
A is the index of the Dirac operator, which counts the difference between
the numbers nL and nR of its L-handed and R-handed zero-modes:

∫

A = dim ker
(

i /DPL
)

− dim ker
(

i /DPR
)

= nL − nR

This difference can be non-zero only in a topologically non-trivial back-
ground F , which somehow distinguishes the two chiralities.

The eigenmodes of i /D with non-zero eigenvalues occur in pairs of opposite
chirality and eigenvalues. The index can then be written also as:

∫

A =

∫

d4x
∑

n

ψ†
n(x)γ5ψn(x)

= Tr [γ5]

From this writing, we see that the path-integral evaluation of the anomaly
represents a physicist proof of the Atyah-Singer theorem.
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IMPLICATIONS OF ANOMALIES IN PARTICLE PHYSICS

Global anomalies in the standard model

Consider the SU(3) × U(1) gauge theory of strong and electromagnetic
interactions, in the limit where the SU(2) week interactions are neglected.
This is a vectorial theory, with no axial couplings distinguishing chiralities.

Neglecting the masses and the electromagnetic coupling of the first family
of quarks q = (u, d), the model has an approximate SU(2)L × SU(2)R
symmetry, rotating independently qL = (uL, dL) and qR = (uR, dR).

In the axial-vector nomenclature, we have then the following symmetries
and currents:

SU(2) : Jµa = q̄γµτaq (isospin symmetry)

SU(2)5 : Jµa = q̄γµτaγ5q (chiral symmetry)

The isospin symmetry is observed to approximately hold true, whereas the
chiral symmetry is not observed at all.
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The interpretation is that the vacuum contains a quark condensate 〈q̄q〉
and spontaneously breaks this symmetry. The Goldstone bosons are q̄q′

bound states identified with the pion triplet π = (π+, π−, π0).

The chiral symmetry currents Jµ5a have non-zero matrix elements between
the vacuum and the pion states, which is parametrized as:

〈0|Jµ5a(0)|πb(p)〉 = −ifπpµδab

This implies:

〈0|∂µJµ5a(0)|πa(p)〉 = fπm
2
πδab

The approximate operatorial conservation law for the chiral symmetry must
therefore be of the type:

∂µJ
µ
5a(x) = m2

πfππa(x) + 2 Aa(x)

The first term is proportional tomπ and encodes the small explicit breaking
of the symmetry. The second is a possible anomaly, to be computed.
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To compute the anomalous contribution, we just need to apply the general
results, for the case of an SU(2)5 global symmetry interfering with an
SU(3) × U(1) local gauge symmetry. The result is:

Aa(x) = −
∑

groups

g2

32π2 daBC ǫ
µναβFBµνFCαβ

where in this case:

daBC = tr
[

τaTBTC

]

For the SU(3) part, the matrices TA act on a different space than the
matrices τa, and the trace factorizes and vanishes: daAB = 0.

For the U(1) part, one has T =
√

2 diag(2/3,−1/3) for each color, and
this gives a non-zero trace with τ3 =diag(1/2,−1/2): daQQ = δa3.

Finally, one finds:

Aa(x) = −δa3
αem

8π
ǫµναβFµνFαβ
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This means that the conservation law of Jµ53 corresponding to the π0 is
anomalous, whereas those of Jµ51,2 corresponding to the π± are regular.

A remarkable implication of this anomaly is that it is the dominant reason
for the observed decay π0 → γγ. To see this, we can consider the low-
energy effective theory for the pions πa and the photon γ.

According to the derived Ward identities, the effective action Γ[π,A] must
behave under infinitesimal SU(2) and SU(2)5 transformations as:

δΓ[π,A] = 0

δ5Γ[π,A] = −
∫

d4x δα5a(x)
[

m2
πfππa(x) + 2 Aa(x)

]

At the linearized level, the πa and Aµ fields transforms as follows:

δπa = ǫabcδαbπc , δAµ = 0

δ5πa = δαafπ , δ5Aµ = 0
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In order to reproduce the violations of the chiral symmetry by the mass and
anomaly terms, Γ[π,A] must contain the following two breaking terms:

Γ[π,A] ⊃
∫

d4x
[

− 1

2
m2
π ~π ·~π +

αem

4π

π3

fπ
ǫµναβFµνFαβ

]

The second term gives a contribution to the π0 → γγ decay rate, which is
equal to:

Γ =
α2

em

64π3

m3
π

f2
π

This turns out to be in very good agreement with experiment, within a few
percent of error. This was also one of the first pieces of evidence for the
fact that there are 3 colors of quarks.

Gauge anomalies in the standard model

Consider now the full SU(3) × SU(2) × U(1) theory of strong, week
and electromagnetic interactions, with the 3 generations of all the known
quarks and leptons.
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This is a chiral gauge theory, and it therefore potentially suffers from gauge
anomalies. However, it turns out that the contributions from the various
matter fermions cancel, within each family.

The quantum numbers of a family of quarks and leptons are the following:
(

u1 u2 u3

d1 d2 d3

)

L

: (3, 2)1/6 ,

(

νl

l

)

L

: (1, 2)−1/2

(

u1 u2 u3

)c

R
: (3̄, 1)−2/3

(

d1 d2 d3

)c

R
: (3̄, 1)1/3

,
νcR : (1, 1)0

lcR : (1, 1)1

The coefficients of the various anomalies are given by:

Cabc =
∑

R
dabc(R) =

∑

R
symtr

[

TaTbTc

]

R

A non-trivial anomaly can arise only when there are 0, 2 or 3 non-Abelian
generators, and any number of Abelian generators. This leaves 5 potential
types of anomalies, which all cancel.
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• SU(3) − SU(3) − SU(3)

Only triplets contribute: C ∼ 2 − 2 = 0.

• SU(2) − SU(2) − SU(2)

Even doublets do not contribute, because they are real: C = 0.

• U(1) − U(1) − U(1)

All fields contribute proportionally to the cube of they hypercharge:
C ∼ 6·(1/6)3+ 3·(–2/3)3+ 3·(1/3)3+ 2·(–1/2)3+ (1)3 = 0.

• SU(3) − SU(3) − U(1)

Only triplets contribute proportionally to their hypercharge, so that
C ∼ 2·(1/6) + (–2/3) + (1/3) = 0.

• SU(2) − SU(2) − U(1)

Only doublets contribute proportionally to their hypercharge, and
C ∼ 3·(1/6) + (–1/2) = 0.
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Thus all the dangerous gauge anomalies cancel in the standard model.
The need for this cancellation led to the prediction of the existence of the t
quark, before its discovery.

Another remarkable fact is that the gauge group SU(3) × SU(2) ×U(1)

of the standard model can be unified in the larger simple group SO(10),
with all the 15+1 fermions of a family becoming a single 16 representation.

Anomaly cancellation follows then simply from the fact that the 16 spinorial
representation is real, and can thus not give anomalies.
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