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D-BRANES AND THEIR DYNAMICS

D-branes are non-perturbative objects defined as world-sheet boundaries with

Dirichlet b.c..

/

<> <> Interaction with closed strings.

— Interaction through the exchange of

<> O closed strings or fluctuation of open

strings.

It is convenient to describe D-branes with a closed string state |B) imple-

menting the b.c..
The couplings to closed strings can be extracted from the overlap of the
corresponding state |V) with |B)
(V) = (B|¥)
The interaction between D-branes is given by the correlation

1
A= <Bl‘E‘BQ>

The phase-shift for two // Dp-branes with vy o = tanh e 5 is (Bachas)

v oo dt e 91(i5|2it
&w=§ﬂﬂw4q)__jgem@_ﬂﬂgf
i (dmalt) V1 (i€|2it)n? (2it)

where € = €; — €9, V), is the volume and b the transverse distance.
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At large distance, b > [, A,_, is dominated by the exchange of massless

closed strings and one finds

3 4 i cosh 2re — cosh e

9
Ap—p = Vpr ) sinh e Gs—p(0)
with o
1 I(%2)
Galr) = A2 TdEQ

This is the eikonal approximation of the phase-shift for two p-brane in SUGRA

)

with impact parameter b.

For v — 0, A,_, ~ v? by SUSY (no force condition). Since
p—p
Exchange of spin s particle = cosh sme

a cancellation occurs between the attractive dilaton and graviton exchange in
the NSNS sector and the repulsive (p+1)-form exchange in the RR sector

(gravitational multiplet).

At short distance, b < [, A,_, is dominated by loops of light open strings

A |/ 6(ﬁ)2t6—|—2008h22§;,t—SCOShzzg/t
PP o(4m)s 0 g1ty sinh 575

This is the one-loop effective action for the SYM theory with 16 SUSY de-
scribing the open strings living on the two Dp-branes. For b # 0, the theory

is broken to U(1). By T-duality, the relative velocity corresponds to F = T,
b 1

2ma/ 2ral*

and the particles running in the loop have m = and e =

Again, for v — 0, A,_, ~ v? by SUSY (non-renorm. theorem). Since

e
t

Loop of spin s particle = cosh 25—
T

a cancellation occurs between loops of spin 0 and 1 bosons and spin % fermions

(vector multiplet).



The two large and short distance limits match for v — 0. The reason is that
for v — 0, A,_, no longer depends on the scale [; because the bosonic and

fermionic oscillators cancel by SUSY. The exact non-relativistic potential is

?}4

V}?*p ~

ri=p
The phase-shift for two // Dp and D(p+4)-branes is (Lifschytz)
Vp p(=p) I dt _ 2 9R(is|2it)05(i5] 2it)

A, — — 4 20/) ™ 2 —_— 4ralt
o 82( ) 0 (4m/t)¥e V1 (i€|2it)93(0]2it )n3(2it)

At large distance, b > [, one finds

1,1
1T 4cosh27re

Ap—pra = V1) T4 Gyp(D)

sinh e

representing the eikonal approximation of the phase-shift in SUGRA.

For v — 0, A,_,14 ~ v by SUSY (no force condition). Since
Exchange of spin s particle = cosh sme

the cancellation occurs between the repulsive dilaton exchange and the at-
tractive graviton exchange in the NSNS sector, whereas the RR sector does

not contribute (gravitational multiplet).

At short distance, b < [, one has
Vo oo dt 7(%)2752—2008}1 Tt

/
I 2o

2(4m)E o e sinh 7,1

2ma/

which is the effective action for a SYM theory with 8 SUSY.

Ap—p -

Again, for v — 0, A,_,14 ~ v by SUSY (non-renorm. theorem). Since

e
t

Loop of spin s particle = cosh 2s
2mal
the cancellation occurs occurs between loops of spin 0 bosons and spin %

fermions (hyper multiplet).



As before the two large and short distance limits match for v — 0, because
A, 14 does not depend on any scale in this limit. The exact non-relativistic

potential is

U2

Voepa ~ ——
p—p+4 3D

The ;% and T}{—Ep potentials give only the universal part of the interactions

in the Dp-Dp and Dp-D(p+4) systems.

Performing SUSY transformations, one can generate all the other spin-dependent
leading interactions. This program can be carried out in the Green-Schwarz

formalism, finding the scale-invariant interactions
Vo—p ~ go T—pt+k Vo—pra ~ IEO 3—p+k

2—k




BOUNDARY STATE IN THE G-S FORMALISM

Consider the Type II theories in the light-cone gauge. X+ = 7 + p'7
whereas X~ is completely determined in terms of the transverse fields and
after fixing the rk-symmetry, we are left with two left and right spinors, S e

S, in the 8 representation of SO(8).

The Fock space is constructed on a vacuum representing the algebra of Sf e

5’8. The representation is 8, ¢ 8. both for the left and the right parts, and

. L. . I
SO|Z> - ﬁ%a|a> ) SO|a> - ﬁvad‘w
1

~al s 1 . ~al - i -
Spli) = ﬁ%a‘@ , Sgla) = —Q%aW

The light-cone coordinates X+ automatically satisfy Dirichlet b.c., whereas

the b.c. of the transverse coordinates X', ¢ = 1,2, ..., 8 can be chosen freely.

[t is possible to define a Dp-brane-like configuration by choosing Neumann
b.c. for p =1,2,...,p+ 1 and Dirichlet b.c. for I =p+2,...,8 —p. “Time”
is temporarily identified with the 1 direction.

To recover the usual covariant description, it will be sufficient to perform the

double analytic continuation 0 < ¢ 1 in the final results.

The 32 SUSY supercharges are

. 1 : :
Q" = 2pTpdoSt , Q" = bo $ doOX'S*
f N
1

O = fdoS | Q-

and satisfy the N = 2 SUSY algebra.

o Ve 7{ dodX'S"

The boundary state describing a Dp-brane is defined to implement the b.c.
and preserve a combination of left and right SUSY.
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We introduce the combinations

= (Q“ +iMuQ")

(Qa +iM,.0 )

5= 8l

satisfying the algebra
{Q1.Q" = 2p+5ab - {QLQly=pro?
{Q+7 Qa} - \/’ haap + (MVZMT)aaﬁZ]

and impose the BPS conditions

QLB)=0 |, QEHB> =0 = Qi,@‘i preserved

QLIB)#0 , QLB)#0 = Q,Q" broken
The bosonic b.c. imply

(a, + Mj;al,)|B) =0

with , .
M@'j _ ( p+1 )
0 I,

For the fermionic b.c., we make the ansatz
(S4+iMyS",)|B) =0
Consistency with the BPS conditions requires
(MM") oy = b
(M’YiMT)aa = z’ﬂga
yielding

May = (Y9247

My = (v 7" "
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The solution for the boundary state is

1 . ‘ -
B) = exp 3 (—A{Ualnéjn——iﬂﬁwsﬂnsbn)\E%)

n>0 \T

with the zero mode part
[Bo) = Myjli) ) = iM,gla)]b)
The complete boundary state in configuration space is
B, %) = (2rVa/)* 2607 (%, — 7)|B) @ |0)
— (2#\/& )P /

dPq
e el

Being BPS states, Dp-branes fill short supermultiplets on which the broken
half of SUSY is realized. Performing an arbitrary broken SUSY transforma-

tion on | B), one obtains informations on the couplings of any components of

the multiplet.

The state
nQ~ 161 —\m
By =@ By = 3> L )mB)
m=0 1!

encodes the couplings to closed string states of a semi-classical current formed
by an “in” and an “out” Dp-branes (1 = (1,,7,) and @~ = (Q,, Q).
The sum corresponds to a multipole expansion, and terms with an even and

odd number of ()~ are relevant for bosonic and fermionic currents, coupling

to bosons and fermions respectively.

This is analog to what happens in SUGRA. The p-brane background has a
Killing spinor and the SUSY transformations depend only on a projection of

the parameter 7).



(Up|BY = Uy
Bp
Bp
(Vrp|Q™|B) = \— U
By
By
WAQ QB = Y U
By

For elastic scatterings, it suffice to consider even powers of (). Moreover, in
each

Q) = (.Q, +7:Qs)
it will be enough to consider the SO(8) part 1,Q, 7,0, since the other

simply reconstruct the covariant result.

Consider therefore the insertion of the operator
Vi =n.Q, maQy

which produces |B) ;) corresponding to 2n SUSY transformations
‘B>(n) - Vr;n‘B>

In this way, the boundary state | B, n) for a generic bosonic current is

o 8 2n ‘/;7n - 8 1
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For the zero mode part, n < 4 (Qy" ~ Si% Qu* ~ p'~.,S;*) and one

obtains
‘BO>(H) = iy ---4iy, [n[al (ﬁfyil)@'“nam1(ﬁ7in)a2n]] So_al”'SO_aQn|B0>

Using the b.c. implemented by |By) and the antisymmetry of [...], each S;
can be converted into v/2 .5, all left-moving.

The S satisfy the Fiertz identity

) 1 1
S350 = 50 ’ 4 ZV%RBJ

in terms of the SO(8) generators
RY = 15015%
Using this property, |Bo) ) = V,5|Bo) with
00 = i )1, (MR RGP

and
1

on
The action of Réj in the 8, and 8, representations is

Ry™|i) = (8"'0™ — 6™6™ )| 5)

o (1) = o [ (Y™ Ty (1Y) | Va2

mn| - 1 mn|i
Ry"a) = — 22l
and finally
|Bo)wy = M i) |5) — iM} ) |b)
with

M 1 Gir o qi, W () (4712, A Pen i £
db 2n /Ll.-. /Ln ]1'.']277/ s e ab

For the oscillators, one could proceed similarly.
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The generalization to moving Dp-branes is obtained through a Lorentz trans-
formation. Assuming that “time” is the 1 direction, the boundary state for

a Dp-brane moving along the 8 is

—imeJ'8
1B,n,e) =e 7| B,n)

For the zero mode part, the angular momentum is given by
Jij = xp’ — wp’ — 20 Ry
The bosonic part changes the momentum spectrum, whereas the fermionic

one acts on |By)(,). The net effect on [By) ) is

M — M (e) = (S(e) MM (e));,

] ]

M — M) = (S MY (6)),

where Y(€) is the appropriate representation of the SO(8) rotation

cosme (0 —sinme
sinwme 0 COS TTE
e . TE€
Yaple) = COS(;) 04 — Sm(?) 7;5

Again, for the oscillators one proceeds similarly.

Working exactly in € would mask the role of SUSY. It is more convenient to

expand the boost for ¢ — 0, inserting the operator
V. = —imeJ™®

whose zero mode part is

Vg = —2meRy’

In this way
00 VTTL 8 00 anm
B = “|B,n) = - 1B
B,m.€) mz—:O m!‘ ) nz—:()mz—:() (n!)Qm!‘ )

11



One-point functions

To obtain the couplings of a generic Dp-brane to massless closed strings, we

compute the overlap of the corresponding states |V) with |By)

The bosonic states are

‘\IJNSNS> — gmn‘m>|7;> ) gmn ~ 5mn ¢ + 9mn + bmn

Wrr) = Cyla)|b) , C, NZ CH)

One finds, apart from normalizations

NSNS 17, 11...lp
\D(n) - Qil"'Qingjwiijlkl kn_lkn_lkn(n)Mknj
RR i Zn mi...m 117 19— 1.J2n
\D(n) = Gi,---Gi, Z m1 mkwﬁ o (U)TTS[’Y LMy J1I2 || 2172 M}

From these one can read off all the couplings organized in a multipole expan-
sion (n = 0,1,..,4). If p,v,... = Neumann and I, J, ... = Dirichlet, using

the symmetry properties of w7 (n) one finds

J1---J2n

\PévaS N ¢79uvngJ7bu[ , T even
n

gulab,ul/abIJ ) n odd

\If@? = Cuy , k=p+1-2n,..,p+1+2n
n=0 (universal)
\IféVSNS gwsz

1
Vit =x —cl) | Trgly™ " M]

TRl
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These can be covariantized by introducing M#*” with entry —1 for Neumann

and +1 for Dirichlet directions, and M = ['V...I'”. One finds
\IjéVSNS f;wMW

1
R

n=1 (dipole)

TS = & MY (Vg

1 m m ?
Ui =5 SO0 Trsly ™"y M (7' )

k‘k' mi...mg

To covariantize, we introduce the Majorana-Weyl spinor ¢ which in a chiral

representation reads 1) = ({}) with n = ( ) Defining
JHVP = (fTHPe)
one finds
\I/éVSNS guUMU J,ul/p

1 14
\pﬁl)? — zk: k'q(”) Mle"S[FM T, MTPg,

n=2 (quadrupole)
\IjéVSNS guUMU JMPQJ l/ﬁq s

1
\Ifgg% B zk: k‘!Cl(M) MkTrS[FM MkFV1V2FV3V4M]JVWW‘]V?’VM qdodp

n=n (n-pole)
\Ifé\[SNS guaMU Jheian J l/an ol

@F—z

oo Von—1Vonc
2 X m MkTrS[Fm IukFl/ll/Q FVQn—WQnM}J 1200 JVan—1V2n nqalmqan
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P-P INTERACTION

The phase-shift for two // Dp-branes with parameters 7; and ¢; is

—2ma’tpT (P~

J R . - N
Ap—p — 1—6/0 dt <Bp77717€173:1‘6 ! >‘Bp7n27€275€2>

: 00 . : . : -
(pZ)Q + J 21<O{Z_n052 + &Z—n&% +n Sgnsg +n Sgnsgn)
n=

This can be rewritten as

V, (42 )P
16 smhwe

dS_ Z —7TO/
IEdt [ s T 7o (11, €1) Zose i, €0)

Ap—p -
with

ZO(Th'a ei) - <Bp07 m, El‘Bpoa T2, €2>

ZOSC(t7 Mi, 6@') — <Bp7 M, €1 ‘6—27ro/tp+P* ‘Bpa 2, €2>osc

Casen,=0and ¢, =0
The Dp-Dp system preserves 1/2 of the SUSY and is therefore BPS. As a

consequernce

Zy=Try[l] — Trg[l] =8 —8 =0

1 — —2mtn\8
(1 e

Integrating over the momentum and the modulus one finds
Ap—p = Vpi1 Tp2 (1—=1) Go—p(b)

This is zero but exact in /.
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Case 1, =0 but ¢ # 0

Zo(e) = TrV[MT(EQ)M(el)] — TrS[MT(EQ)M(el)]
— 16sin? % ~ v

0 ‘1 o eiﬂe/Qe—Qﬂtn|8

Zosc(ta 6) — H

n=1

~ 1

‘1 _ 6”66_2“”‘2(1 _ 6—27rtn)6
After the analytic continuation € — ¢, one finds

v oo dt 2 91(ig|2it
Ap_p _ 8_p (47_(_20/)4—])/0 —He ot : 1(2‘2| 7/9) .
i (4ra't) V1 (i€|2it)n?(2it)

The behavior of A,_, for v — 0 is completely determined by SUSY.

Notice that Zy(e) can be rewritten as a trace in a Type I theory
Zo(e) = Trg,["]

This is the analog of the integration over the fermionic zero modes in the

path-integral representation of the open string vacuum amplitude.

The trace is 0 unless at least 8 zero modes S are inserted. The first # 0 is

i1..08 _ 1112 Pi3i4 pi5ie HITIY
t' S—TI"SO[RO RO RO RO ]

_ _5611...18 o 5 [511@45%@35@5@85@6@7 4+ perm.]
—i—1 {5i2i35i4i55i6i75i8i1 + perm.}
2

Each V. provides 2 S$ and 1 ¢, and expanding one check that Zy(e) ~ |v|*.

Expanding the whole €' in series

oo ] "
Zofe) = 3 T V3]

= 1 —2rdtpT P~
ZOSC(t,e) :q§Oa<Bp‘V€q€ ety p ‘Bp>osc

We discard the effect of the boost on the bosonic zero modes.
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We see that the first non-vanishing order in € in Z(t,€) = Zy(€)Zys(t,€)

receives a unique contribution from m =4 e ¢ =0 (& Zs(t,m12,€) = 1).

Therefore Z(t,e) — |v|* and is independent of ¢, meaning that only BPS

(massless) states contribute. The non-relativistic amplitude reduces to

4
v
Ap*p = % Vit Tp2 G9fp(7’)

and is exact in o,
Case n; # 0 and ¢; # 0

We can use the same strategy for the dependence on the SUSY parameters
n;. Expanding both in 7, » and € one finds

n1+ne<4 oo

Zo(ma, €)= > X

ny,n2 m=0 (nl')Q(ng')Qm'
P1+p2<8 oo 1

Zosc t; 3 —
A N N R

nq n9 m
TrSO [‘/;]10‘/7/20 €0 }

(B,|VIy P2y o 2matpt P~ 1B, ose

m o"n2 €

To get Zy(n1.2,€) # 0 we need ny + ny +m > 4. The leading behavior is
obtained by taking ny +mng +m = 4 and p1,p2, ¢ = 0 (& Zose(t,m2,€) = 1)
and is independent of the modulus ¢. Each V, brings also a momentum ¢
producing a derivative on the propagator Gg_,. The behavior is therefore

U4—n1—n2

r(—p+ni+ng

(n1,m2) 2ny, 2no | 14—ni—ng qni+n 2n1_ 2n9
Ap—p ~ MM T |U‘ mmgm 2G9—p(7“)’\“771 72

All these interactions are exact in o', that is scale-invariant. They can be

written in terms of ¢1-¢ and the tensor wﬁ%‘n(n)
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Case n; +n9 =10

V
pH+1 2 1mqlmolmalmy
T Vi Uiy Umng Uy b Glo_p(r)

(0.0) _
e =gy

Case n1 +ny =1

p+1 2 i1iglmylmalms 71

Case n; +ny =2

V. o o
p+1 2 i1...141m11lme  J1J2
] . 2!3Tp UmyUmy t wil...i4 (771) 8j18j2G9—p(T)

V}?H T2 til...i41m11m2 J1 j9
3. gy UmVm Wiyin (M) wigi, (112) 05,05, Go— (1)

Case ny+ny =3

Vp+1 2 i1...iglmy1  J1j2J
3 gz Lp O £ WL () 05,0,05 Gy (1)

V}?H 2 i1..iglmy  J1J '
3. o Lp O T W () widia (12) 07,0, 05, G- (1)

1,0
Aé—p) -

2,0
Aé—p) -

1,1
Aé?—p) -

3,0
Az(o—p> -

2,1
Az(ﬂ—z} -

Case ny +ny =4

40) _ Vor1 o iy i

App = oLy 1 w5 (m) 8,05,05,05,Go-p(r)
(31 _ Vo1 o iyis jiiaj |

Aply = 8 .pS!QTp g wgllﬂi]ﬁg (m) w#is (72) ajlaj28j3aj4G9—p(r>
22) _ Vo1 o inis . i a9

Apy = gLy 1 Wi (m) W () 0,03,0550;,Glop (1)
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P-P+4 INTERACTION

The phase-shift for two // Dp and D(p+4)-branes with parameters 7;, €; is
1 — | —27a! T —p —
Ap—pra = 16/ dt <Bp77717 €1, T1e amaltyt (P —p )\Bp+4,772, €2, T3)

As before, this can be rewritten as

dPq

V (47.(.20/) p(4; )/ dt/ qu —7T0/tq Zo(n E)Z (t 77 6)
27T 4—p R o

16 sinh e

Ap—prs =
with

Zo(ni, €i) = (Bpo, 1, €1|Bp+a0, M2, €2)

—2ma/tpt P~ ‘

Zosc(ta )i, Ei) = <Bp7 m, 61\6 Bp+47 12, €2>osc

Casen,=0and ¢, =0
The Dp-D(p+4) system preserves 1/4 of the SUSY and is therefore BPS. As

a consequence

Zy="Try[N] —Trg[N]=(4—-4)—0=0

Zosc(t) N ﬁ ( :27Ttn)4<1 + 6:27Ttn)4 : 1
=1 (1 —e 27rtn)4(1 +e 27rtn)4
where
p+1
NY = (M, My4)"” [
—p

N (MTMp+4 <7p+2 p+5

Integrating over the transverse momentum one finds

Ap—p+4 - V;?Jrl 1 Tp+4( ) Gs p(b)

This is zero but exact in /.
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Case 1, =0 but ¢ # 0

Zo(€) = Try [M,) (€3) My 1a(er)] — Trg[M,) (€2) My ia(er)]

me . TTE
— 16 cos® — sin? — ~ v?
2 2
50 |1 o 6i7re/2€—27rtn|4|1 + 6i7re/26—27rtn‘4
Zosc<t7 6) - H

o1 |1 — eimee=2ntn|2(1 — g=2ntn)2(] 4 e~2nin)d -
After the analytic continuation € — e

Vi PREPPIN s dt 2 07 (i5]24t)05(i5|2it)
- (47°a’) /0 g€ et
8i (4ralt) V1 (i€|2it)v5(0(2it)n3(2it)

Ap—pra =

Again, the behavior of A,_, .4 for v — 0 is completely determined by SUSY.

Zy(€) can be rewritten as a trace in a Type I theory, with only 4 zero modes

Zo(€) = Trg,[e"*N| = Trl

; [GVGO]

The trace is 0 unless one inserts at least 4 zero modes S§j. The first # 0 is
til...i4 _ TI,/SO RéﬂgRégM
—9 6i1...i4p+2...p+5
+9 5i1p+25i2p+35i3p+45i4p+5 + Ni2i45i1i3 + perm.]
Since Vo provides 2 S¢ and 1 €, expanding we recover Zy(e) ~ |v]*.

Expanding the whole " in series

> 1 / m
Zo(e) = mz::() %Tl"so Vo'l
x 1 —2ma/ a
Zosc(t,e) - Zoa<Bp|Veqe Zmaltpt P |Bp+4>osc
q: .

we see that the first non-vanishing order in € in Z(t,€) = Zy(€)Zys(t,¢€)

receives a unique contribution with m =2 e ¢ =0 (& Z,s(t,n12,€) = 1).
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Therefore Z(t,¢) — |v|* and is independent of ¢, meaning that only BPS

(massless) states contribute. The non-relativistic amplitude reduces to
[vf*

5 Vo1 TpTpa G- p(7)

Ap—p+4
and is exact in o'.

Case 7, # 0 and ¢; # 0

Expanding both in 7, and e

n1+n2<12 oo

Z — T, [V V
0(7]1’27 6) n%zg mZ::() (nl')z(ng')Qm' rSO[ 0 ]
p1+tp2<12 o 1 Cord! _
Zosc(ta 11,2, 6) — Z Z 9 <Bp‘v;7]i1 ‘/771;2‘/6(] € 2ralty™ P ‘Bp+4>osc

pip2 g=0 (p1!)*(p2!)?q!
To get Zy(n12,€) # 0 we need ny + ny +m > 2. The leading behavior is
obtained by taking n; +ns+m =2 and py, p2, ¢ = 0 (& Zose(t,m12,€) = 1)
and is independent of . As before, each Vo also brings a momentum ¢

producing a derivative on the propagator G's_,. The behavior is therefore
2—n1—n9

(n1,m2) 2n1 n2 2—n1—n9 qni+no ony 2ng U
Ap—p+4 m 0] 0 G—p(r) ~ 11" 3—ptny+ng

All these interactions are exact in o, that is scale-invariant. One finds
Case n; +n9 =10

V miim
Aﬁ%@ 8p+21'T T4 Uy Oy 2 G5 (1)

Case ny +ny =1

V, m
Aél_’%lrzl = p+1T Tp+4 Umy grrezimy wzm (771) ajl G5—p<r)

8
Case n; +ns =2

Vv
2,0 +1 11...1
A, = Do s () 9,0, 1)

Vit i1...10
i TTp+ A 40%122(771) 2314<772) ajlaj2G5—p(r)

1,1
A](7 p)4r4 ]

20



MATRIX THEORY EFFECTIVE ACTION
The results for the DO-D0 amplitude can be made explicit and covariant. In

SO(9) notation, 0 = (ZZ), one finds the following complete potential

+2i v*v,, (07™"0) O,
—2v, v,(09""0)(60+7"0) 0,,0,
4

— 5 0i(07"0)(67"0)(67"'0) D 0n D,

2

_|_
63

(67™'0)(67"'0)(0+™"0)(6~0) 8,,0,0,0,| Gi(r)
Since this is scale-invariant, it has to be reproduced both in SUGRA and
SYM.
Several explicit checks exists in the literature:
All terms in SUGRA : Plefka, Serone and Waldron
15 term in SYM : Douglas, Kabat, Pouliot and Shenker
2" term in SYM : Kraus
37 term in SYM : McArthur
5" term in SYM : Barrio, Helling and Polhemus
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CONCLUSIONS
e SCALE INVARIANCE IN D-BRANE DYNAMICS v — 0.
e ONE-LOOP SUGRA < SYM EQUIVALENCE DICTATED BY
SUSY. NON-TRIVIAL CHECKS AT TWO-LOOPS.
e SPIN-EFFECTS COMPUTABLE IN STRING THEORY.
SAME PROBLEM IN SUGRA MORE DIFFICULT.
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