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D-BRANES AND THEIR DYNAMICS

D-branes are non-perturbative objects defined as world-sheet boundaries with

Dirichlet b.c..

Interaction with closed strings.

Interaction through the exchange of

closed strings or fluctuation of open

strings.

It is convenient to describe D-branes with a closed string state |B〉 imple-

menting the b.c..

The couplings to closed strings can be extracted from the overlap of the

corresponding state |Ψ〉 with |B〉

〈Ψ〉 = 〈B|Ψ〉

The interaction between D-branes is given by the correlation

A = 〈B1|
1

H
|B2〉

The phase-shift for two // Dp-branes with v1,2 = tanhπǫ1,2 is (Bachas)

Ap−p =
Vp
8i

(4π2α′)4−p
∫ ∞
0

dt

(4πα′t)
8−p
2

e−
b2

4πα′t
ϑ4

1(i
ǫ
2
|2it)

ϑ1(iǫ|2it)η9(2it)

where ǫ = ǫ1 − ǫ2, Vp is the volume and b the transverse distance.
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At large distance, b ≫ ls, Ap−p is dominated by the exchange of massless

closed strings and one finds

Ap−p = VpT
2
p

3
4

+ 1
4
cosh 2πǫ− coshπǫ

sinhπǫ
G8−p(b)

with

Gd(r) =
1

4πd/2
Γ(d−2

2
)

rd−2

This is the eikonal approximation of the phase-shift for two p-brane in SUGRA,

with impact parameter b.

For v → 0, Ap−p ∼ v3 by SUSY (no force condition). Since

Exchange of spin s particle ⇒ cosh sπǫ

a cancellation occurs between the attractive dilaton and graviton exchange in

the NSNS sector and the repulsive (p+1)-form exchange in the RR sector

(gravitational multiplet).

At short distance, b≪ ls, Ap−p is dominated by loops of light open strings

Ap−p =
Vp

2(4π)
p
2

∫ ∞
0

dt

t1+p
2
e−( b

2πα′)
2
t 6 + 2 cosh 2 πǫ

2πα′t− 8 cosh πǫ
2πα′t

sinh πǫ
2πα′t

This is the one-loop effective action for the SYM theory with 16 SUSY de-

scribing the open strings living on the two Dp-branes. For b 6= 0, the theory

is broken to U(1). By T-duality, the relative velocity corresponds to E = πǫ,

and the particles running in the loop have m = b
2πα′ and e = 1

2πα′ .

Again, for v → 0, Ap−p ∼ v3 by SUSY (non-renorm. theorem). Since

Loop of spin s particle ⇒ cosh 2s
πǫ

2πα′t

a cancellation occurs between loops of spin 0 and 1 bosons and spin 1
2 fermions

(vector multiplet).
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The two large and short distance limits match for v → 0. The reason is that

for v → 0, Ap−p no longer depends on the scale ls because the bosonic and

fermionic oscillators cancel by SUSY. The exact non-relativistic potential is

Vp−p ∼
v4

r7−p

The phase-shift for two // Dp and D(p+4)-branes is (Lifschytz)

Ap−p+4 =
Vp
8i

(4π2α′)−
p(4−p)

2

∫ ∞
0

dt

(4πα′t)
4−p
2

e−
b2

4πα′t
ϑ2

1(i
ǫ
2
|2it)ϑ2

2(i
ǫ
2
|2it)

ϑ1(iǫ|2it)ϑ2
2(0|2it)η3(2it)

At large distance, b≫ ls, one finds

Ap−p+4 = VpTpTp+4
−1

4
+ 1

4
cosh 2πǫ

sinhπǫ
G4−p(b)

representing the eikonal approximation of the phase-shift in SUGRA.

For v → 0, Ap−p+4 ∼ v by SUSY (no force condition). Since

Exchange of spin s particle ⇒ cosh sπǫ

the cancellation occurs between the repulsive dilaton exchange and the at-

tractive graviton exchange in the NSNS sector, whereas the RR sector does

not contribute (gravitational multiplet).

At short distance, b≪ ls, one has

Ap−p =
Vp

2(4π)
p
2

∫ ∞
0

dt

t1+p
2
e−( b

2πα′)
2
t 2 − 2 cosh πǫ

2πα′t

sinh πǫ
2πα′t

which is the effective action for a SYM theory with 8 SUSY.

Again, for v → 0, Ap−p+4 ∼ v by SUSY (non-renorm. theorem). Since

Loop of spin s particle ⇒ cosh 2s
πǫ

2πα′t

the cancellation occurs occurs between loops of spin 0 bosons and spin 1
2

fermions (hyper multiplet).
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As before the two large and short distance limits match for v → 0, because

Ap−p+4 does not depend on any scale in this limit. The exact non-relativistic

potential is

Vp−p+4 ∼
v2

r3−p

The v4

r7−p and v2

r3−p potentials give only the universal part of the interactions

in the Dp-Dp and Dp-D(p+4) systems.

Performing SUSY transformations, one can generate all the other spin-dependent

leading interactions. This program can be carried out in the Green-Schwarz

formalism, finding the scale-invariant interactions

Vp−p ∼
4
∑

k=0

v4−k

r7−p+k , Vp−p+4 ∼
2
∑

k=0

v2−k

r3−p+k
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BOUNDARY STATE IN THE G-S FORMALISM

Consider the Type II theories in the light-cone gauge. X+ = x+ + p+τ

whereas X− is completely determined in terms of the transverse fields and

after fixing the κ-symmetry, we are left with two left and right spinors, Sa e

S̃a, in the 8s representation of SO(8).

The Fock space is constructed on a vacuum representing the algebra of Sa0 e

S̃a0 . The representation is 8v ⊕ 8c both for the left and the right parts, and

Sa0 |i〉 =
1√
2
γiaȧ|ȧ〉 , Sa0 |ȧ〉 =

1√
2
γiaȧ|i〉

S̃a0
˜|i〉 =

1√
2
γiaȧ

˜|ȧ〉 , S̃a0
˜|ȧ〉 =

1√
2
γiaȧ

˜|i〉

The light-cone coordinates X± automatically satisfy Dirichlet b.c., whereas

the b.c. of the transverse coordinates X i, i = 1, 2, ..., 8 can be chosen freely.

It is possible to define a Dp-brane-like configuration by choosing Neumann

b.c. for µ = 1, 2, ..., p+ 1 and Dirichlet b.c. for I = p+ 2, ..., 8− p. “Time”

is temporarily identified with the 1 direction.

To recover the usual covariant description, it will be sufficient to perform the

double analytic continuation 0 ↔ i 1 in the final results.

The 32 SUSY supercharges are

Qa =
√

2p+
∮

dσSa , Qȧ =
1√
p+
γiȧa

∮

dσ∂X iSa

Q̃a =
√

2p+
∮

dσS̃a , Q̃ȧ =
1√
p+
γiȧa

∮

dσ∂̄X iS̃a

and satisfy the N = 2 SUSY algebra.

The boundary state describing a Dp-brane is defined to implement the b.c.

and preserve a combination of left and right SUSY.
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We introduce the combinations

Qa
± =

1√
2

(

Qa ± iMabQ̃
b
)

Qȧ
± =

1√
2

(

Qȧ ± iMȧḃQ̃
ḃ
)

satisfying the algebra

{Qa
+, Q

b
−} = 2p+δab , {Qȧ

+, Q
ḃ
−} = P−δȧḃ

{Qa
+, Q

ȧ
−} =

1√
2

[

γiaȧp
i + (MγiMT )aȧp̃

i
]

and impose the BPS conditions

Qa
+|B〉 = 0 , Qȧ

+|B〉 = 0 ⇒ Qa
+, Q

ȧ
+ preserved

Qa
−|B〉 6= 0 , Qȧ

−|B〉 6= 0 ⇒ Qa
−, Q

ȧ
− broken

The bosonic b.c. imply

(αin +Mijα̃
j
−n)|B〉 = 0

with

Mij =







−Ip+1 0

0 I7−p







For the fermionic b.c., we make the ansatz

(San + iMabS̃
b
−n)|B〉 = 0

Consistency with the BPS conditions requires

(MMT )ab = δab

(MγiMT )aȧ = Mijγ
j
aȧ

yielding

Mab = (γ1γ2...γp+1)ab

Mȧḃ = (γ1γ2...γp+1)ȧḃ
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The solution for the boundary state is

|B〉 = exp
∑

n>0





1

n
Mijα

i
−nα̃

j
−n − iMabS

a
−nS̃

b
−n



 |B0〉

with the zero mode part

|B0〉 = Mij|i〉 ˜|j〉 − iMȧḃ|ȧ〉
˜|ḃ〉

The complete boundary state in configuration space is

|B, ~x〉 = (2π
√
α′)4−pδ(9−p)(~x0 − ~x)|B〉 ⊗ |~0〉

= (2π
√
α′)4−p

∫ d9−pq

(2π)9−p
ei~q·~x |B〉 ⊗ |~q〉

Being BPS states, Dp-branes fill short supermultiplets on which the broken

half of SUSY is realized. Performing an arbitrary broken SUSY transforma-

tion on |B〉, one obtains informations on the couplings of any components of

the multiplet.

The state

|B, η〉 = eηQ
−|B〉 =

16
∑

m=0

1

m!
(ηQ−)m|B〉

encodes the couplings to closed string states of a semi-classical current formed

by an “in” and an “out” Dp-branes (η = (ηa, η̃ȧ) and Q− = (Q−
a , Q

−
ȧ )).

The sum corresponds to a multipole expansion, and terms with an even and

odd number of Q− are relevant for bosonic and fermionic currents, coupling

to bosons and fermions respectively.

This is analog to what happens in SUGRA. The p-brane background has a

Killing spinor and the SUSY transformations depend only on a projection of

the parameter η.
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〈ΨB|B〉 = ΨB

BB

BB

〈ΨF |Q−|B〉 = ΨF

BB

BF

〈ΨB|Q−Q−|B〉 = ΨB

BF

BF

For elastic scatterings, it suffice to consider even powers of Q−. Moreover, in

each

(ηQ−)2 = (ηaQ
−
a + η̃ȧQ

−
ȧ )2

it will be enough to consider the SO(8) part ηaQ
−
a η̃ȧQ

−
ȧ , since the other

simply reconstruct the covariant result.

Consider therefore the insertion of the operator

Vη = ηaQ
−
a η̃ȧQ

−
ȧ

which produces |B〉(n) corresponding to 2n SUSY transformations

|B〉(n) = V n
η |B〉

In this way, the boundary state |B, η〉 for a generic bosonic current is

|B, η〉 =
8
∑

n=0

(

2n

n

) V n
η

(2n)!
|B〉 =

8
∑

n=0

1

(n!)2
|B〉(n)
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For the zero mode part, n ≤ 4 (Q−a
0 ∼ S−a

0 , Q−ȧ
0 ∼ piγiȧaS

−a
0 ) and one

obtains

|B0〉(n) = qi1...qin
[

η[a1
(η̃γi1)a2...ηa2n−1(η̃γ

in)a2n]

]

S−a1
0 ...S−a2n

0 |B0〉

Using the b.c. implemented by |B0〉 and the antisymmetry of [...], each S−
0

can be converted into
√

2S0, all left-moving.

The S0 satisfy the Fiertz identity

Sa0S
b
0 =

1

2
δab +

1

4
γijabR

ij
0

in terms of the SO(8) generators

Rij
0 =

1

4
Sa0γ

ij
abS

b
0

Using this property, |B0〉(n) = V n
η0|B0〉 with

V n
η0 = qi1...qin ω

i1...in
j1...j2n

(η)Rj1j2
0 ...R

j2n−1j2n
0

and

ωi1...inj1...j2n
(η) =

1

2n

[

η[a1
(η̃γi1)a2...ηa2n−1(η̃γ

in)a2n]

]

γj1j2a1a2
...γj2n−1j2n

a2n−1a2n

The action of Rij
0 in the 8v and 8c representations is

Rmn
0 |i〉 = (δniδmj − δmiδnj)|j〉

Rmn
0 |ȧ〉 = −1

2
γmnȧḃ |ḃ〉

and finally

|B0〉(n) = M
(n)
ij |i〉 ˜|j〉 − iM

(n)

ȧḃ
|ȧ〉 ˜|ḃ〉

with

M
(n)
ij = 2n qi1...qin ω

i1...in
ik1k1...kn−1kn−1kn

(η)Mknj

M
(n)

ȧḃ
=

1

2n
qi1...qin ω

i1...in
j1...j2n

(η)(γj1j2...γj2n−1j2nM)ȧḃ

For the oscillators, one could proceed similarly.
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The generalization to moving Dp-branes is obtained through a Lorentz trans-

formation. Assuming that “time” is the 1 direction, the boundary state for

a Dp-brane moving along the 8 is

|B, η, ǫ〉 = e−iπǫJ
18|B, η〉

For the zero mode part, the angular momentum is given by

Jij = xi0p
j − xj0p

i − 2iRij
0

The bosonic part changes the momentum spectrum, whereas the fermionic

one acts on |B0〉(n). The net effect on |B0〉(n) is

M
(n)
ij → M

(n)
ij (ǫ) = (Σ(ǫ)M (n)ΣT (ǫ))ij

M
(n)

ȧḃ
→ M

(n)

ȧḃ
(ǫ) = (Σ(ǫ)M (n)ΣT (ǫ))ȧḃ

where Σ(ǫ) is the appropriate representation of the SO(8) rotation

Σij(ǫ) =

















cos πǫ 0 − sinπǫ

0 I6 0

sinπǫ 0 cosπǫ

















Σȧḃ(ǫ) = cos(
πǫ

2
) δȧḃ − sin(

πǫ

2
) γ18

ȧḃ

Again, for the oscillators one proceeds similarly.

Working exactly in ǫ would mask the role of SUSY. It is more convenient to

expand the boost for ǫ→ 0, inserting the operator

Vǫ = −iπǫJ18

whose zero mode part is

Vǫ0 = −2πǫR18
0

In this way

|B, η, ǫ〉 =
∞
∑

m=0

V m
ǫ

m!
|B, η〉 =

8
∑

n=0

∞
∑

m=0

V n
η V

m
ǫ

(n!)2m!
|B〉
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One-point functions

To obtain the couplings of a generic Dp-brane to massless closed strings, we

compute the overlap of the corresponding states |Ψ〉 with |B0〉(n)

Ψ(n) = 〈Ψ|B0〉(n)

The bosonic states are

|ΨNSNS〉 = ξmn|m〉 ˜|n〉 , ξmn ∼ δmn φ + gmn + bmn

|ΨRR〉 = Cȧḃ|ȧ〉
˜|ḃ〉 , Cȧḃ ∼

∑

k

1

k!
C(k)
m1...mk

γ
m1...mk

ȧḃ

One finds, apart from normalizations

ΨNSNS
(n) = qi1...qin ξ

ijωi1...inik1k1...kn−1kn−1kn
(η)Mknj

ΨRR
(n) = qi1...qin

∑

k

1

k!
C(k)
m1...mk

ωi1...inj1...j2n
(η)TrS[γm1...mkγj1j2...γj2n−1j2nM ]

From these one can read off all the couplings organized in a multipole expan-

sion (n = 0, 1, .., 4). If µ, ν, ... = Neumann and I, J, ... = Dirichlet, using

the symmetry properties of ωi1...inj1...j2n
(η) one finds

ΨNSNS
(n) ⇒























φ, gµν, gIJ , bµI , n even

gµI , bµν, bIJ , n odd

ΨRR
(n) ⇒ C(k) , k = p + 1 − 2n, ..., p + 1 + 2n

n=0 (universal)

ΨNSNS
(0) = ξijM

ij

ΨRR
(0) =

∑

k

1

k!
C(k)
m1...mk

TrS[γm1...mkM ]
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These can be covariantized by introducing Mµν with entry −1 for Neumann

and +1 for Dirichlet directions, and M = Γ0...Γp. One finds

ΨNSNS
(0) = ξµνM

µν

ΨRR
(0) =

∑

k

1

k!
C(k)
µ1...µk

TrS[γµ1...µkM]

n=1 (dipole)

ΨNSNS
(1) = ξikM

k
j (ηγijlη̃)ql

ΨRR
(1) =

∑

k

1

k!
C(k)
m1...mk

TrS[γm1...mkγijM ](ηγijlη̃)ql

To covariantize, we introduce the Majorana-Weyl spinor ψ which in a chiral

representation reads ψ = (η0) with η =
(

ηa

η̃ȧ

)

. Defining

Jµνρ = ψ̄Γµνρψ

one finds

ΨNSNS
(1) = ξµσM

σ
νJ

µνρqρ

ΨRR
(1) =

∑

k

1

k!
C(k)
µ1...µk

TrS[Γµ1...µkΓµνM]Jµνρqρ

n=2 (quadrupole)

ΨNSNS
(2) = ξµσM

σ
ν J

µραJ νβ
ρ qαqβ

ΨRR
(2) =

∑

k

1

k!
C(k)
µ1...µk

TrS[Γµ1...µkΓν1ν2Γν3ν4M]Jν1ν2αJν3ν4βqαqβ

n=n (n-pole)

ΨNSNS
(n) = ξµσM

σ
νJ

µρ1α1...J ναn
ρn−1

qα1...qαn

ΨRR
(n) =

∑

k

1

k!
C(k)
µ1...µk

TrS[Γµ1...µkΓν1ν2...Γν2n−1ν2n
M]Jν1ν2α1...Jν2n−1ν2nαnqα1...qαn
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P-P INTERACTION

The phase-shift for two // Dp-branes with parameters ηi and ǫi is

Ap−p =
1

16

∫ ∞
0
dt 〈Bp, η1, ǫ1, ~x1|e−2πα′tp+(P−−p−)|Bp, η2, ǫ2, ~x2〉

where

P− =
1

2p+



(pi)2 +
1

α′
∞
∑

n=1
(αi−nα

i
n + α̃i−nα̃

i
n + nSa−nS

a
n + n S̃a−nS̃

a
−n)





This can be rewritten as

Ap−p =
Vp (4π2α′)4−p

16 sinhπǫ

∫ ∞
0
dt

∫ d8−pq

(2π)8−p
ei~q·

~b e−πα
′t~q2Z0(ηi, ǫi)Zosc(t, ηi, ǫi)

with

Z0(ηi, ǫi) = 〈Bp0, η1, ǫ1|Bp0, η2, ǫ2〉

Zosc(t, ηi, ǫi) = 〈Bp, η1, ǫ1|e−2πα′tp+P−|Bp, η2, ǫ2〉osc

Case ηi = 0 and ǫi = 0

The Dp-Dp system preserves 1/2 of the SUSY and is therefore BPS. As a

consequence

Z0 = TrV [11] − TrS[11] = 8 − 8 = 0

Zosc(t) =
∞
∏

n=1

(1 − e−2πtn)8

(1 − e−2πtn)8
= 1

Integrating over the momentum and the modulus one finds

Ap−p = Vp+1 T
2
p (1 − 1)G9−p(b)

This is zero but exact in α′.
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Case ηi = 0 but ǫi 6= 0

Z0(ǫ) = TrV [MT (ǫ2)M(ǫ1)] − TrS[MT (ǫ2)M(ǫ1)]

= 16 sin4 πǫ

2
∼ v4

Zosc(t, ǫ) =
∞
∏

n=1

|1 − eiπǫ/2e−2πtn|8
|1 − eiπǫe−2πtn|2(1 − e−2πtn)6

∼ 1

After the analytic continuation ǫ→ iǫ, one finds

Ap−p =
Vp
8i

(4π2α′)4−p
∫ ∞
0

dt

(4πα′t)
8−p
2

e−
b2

4πα′t
ϑ4

1(i
ǫ
2|2it)

ϑ1(iǫ|2it)η9(2it)

The behavior of Ap−p for v → 0 is completely determined by SUSY.

Notice that Z0(ǫ) can be rewritten as a trace in a Type I theory

Z0(ǫ) = TrS0[e
Vǫ0]

This is the analog of the integration over the fermionic zero modes in the

path-integral representation of the open string vacuum amplitude.

The trace is 0 unless at least 8 zero modes Sa0 are inserted. The first 6= 0 is

ti1...i8 = TrS0[R
i1i2
0 Ri3i4

0 Ri5i6
0 Ri7i8

0 ]

= −1

2
ǫi1...i8 − 1

2

[

δi1i4δi2i3δi5i8δi6i7 + perm.
]

+
1

2

[

δi2i3δi4i5δi6i7δi8i1 + perm.
]

Each Vǫ0 provides 2 Sa0 and 1 ǫ, and expanding one check that Z0(ǫ) ∼ |v|4.

Expanding the whole eVǫ in series

Z0(ǫ) =
∞
∑

m=0

1

m!
TrS0[V

m
ǫ0 ]

Zosc(t, ǫ) =
∞
∑

q=0

1

q!
〈Bp|V q

ǫ e
−2πα′tp+P−|Bp〉osc

We discard the effect of the boost on the bosonic zero modes.
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We see that the first non-vanishing order in ǫ in Z(t, ǫ) = Z0(ǫ)Zosc(t, ǫ)

receives a unique contribution from m = 4 e q = 0 (⇔ Zosc(t, η1,2, ǫ) = 1).

Therefore Z(t, ǫ) → |v|4 and is independent of t, meaning that only BPS

(massless) states contribute. The non-relativistic amplitude reduces to

Ap−p =
|v|4
8
Vp+1 T

2
p G9−p(r)

and is exact in α′.

Case ηi 6= 0 and ǫi 6= 0

We can use the same strategy for the dependence on the SUSY parameters

ηi. Expanding both in η1,2 and ǫ one finds

Z0(η1,2, ǫ) =
n1+n2≤4

∑

n1,n2

∞
∑

m=0

1

(n1!)2(n2!)2m!
TrS0[V

n1
η10V

n2
η20V

m
ǫ0 ]

Zosc(t, η1,2, ǫ) =
p1+p2≤8

∑

p1,p2

∞
∑

q=0

1

(p1!)2(p2!)2q!
〈Bp|V p1

η1
V p2
η2
V q
ǫ e

−2πα′tp+P−|Bp〉osc

To get Z0(η1,2, ǫ) 6= 0 we need n1 + n2 + m ≥ 4. The leading behavior is

obtained by taking n1 +n2 +m = 4 and p1, p2, q = 0 (⇔ Zosc(t, η1,2, ǫ) = 1)

and is independent of the modulus t. Each Vη0 brings also a momentum q

producing a derivative on the propagator G9−p. The behavior is therefore

A(n1,n2)
p−p ∼ η2n1

1 η2n2
2 |v|4−n1−n2∂n1+n2G9−p(r) ∼ η2n1

1 η2n2
2

v4−n1−n2

r7−p+n1+n2

All these interactions are exact in α′, that is scale-invariant. They can be

written in terms of ti1...i8 and the tensor ωi1...inj1...j2n
(η).
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Case n1 + n2 = 0

A(0,0)
p−p =

Vp+1

8 · 4!
T 2
p vm1vm2vm3vm4 t

1m11m21m31m4 G9−p(r)

Case n1 + n2 = 1

A(1,0)
p−p =

Vp+1

8 · 3!
T 2
p vm1vm2vm3 t

i1i21m11m21m3 ωj1i1i2(η1) ∂j1G9−p(r)

Case n1 + n2 = 2

A(2,0)
p−p =

Vp+1

8 · 2!3
T 2
p vm1vm2 t

i1...i41m11m2 ωj1j2i1...i4(η1) ∂j1∂j2G9−p(r)

A(1,1)
p−p =

Vp+1

8 · 2!2
T 2
p vm1vm2 t

i1...i41m11m2 ωj1i1i2(η1)ω
j2
i3i4(η2) ∂j1∂j2G9−p(r)

Case n1 + n2 = 3

A(3,0)
p−p =

Vp+1

8 · 3!2
T 2
p vm1 t

i1...i61m1 ωj1j2j3i1...i6 (η1) ∂j1∂j2∂j3G9−p(r)

A(2,1)
p−p =

Vp+1

8 · 2!2
T 2
p vm1 t

i1...i61m1 ωj1j2i1...i4(η1)ω
j3
i5i6(η2) ∂j1∂j2∂j3G9−p(r)

Case n1 + n2 = 4

A(4,0)
p−p =

Vp+1

8 · 4!2
T 2
p t

i1...i8 ωj1...j4i1...i8 (η1) ∂j1∂j2∂j3∂j4G9−p(r)

A(3,1)
p−p =

Vp+1

8 · 3!2
T 2
p t

i1...i8 ωj1j2j3i1...i6 (η1)ω
j4
i7i8(η2) ∂j1∂j2∂j3∂j4G9−p(r)

A(2,2)
p−p =

Vp+1

8 · 2!4
T 2
p t

i1...i8 ωj1j2i1...i4(η1)ω
j3j4
i5...i8(η2) ∂j1∂j2∂j3∂j4G9−p(r)
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P-P+4 INTERACTION

The phase-shift for two // Dp and D(p+4)-branes with parameters ηi, ǫi is

Ap−p+4 =
1

16

∫ ∞
0
dt 〈Bp, η1, ǫ1, ~x1|e−2πα′tp+(P−−p−)|Bp+4, η2, ǫ2, ~x2〉

As before, this can be rewritten as

Ap−p+4 =
Vp (4π2α′)−

p(4−p)
2

16 sinhπǫ

∫ ∞
0
dt

∫ d4−pq

(2π)4−p
ei~q·

~b e−πα
′t~q2Z0(ηi, ǫi)Zosc(t, ηi, ǫi)

with

Z0(ηi, ǫi) = 〈Bp0, η1, ǫ1|Bp+40, η2, ǫ2〉

Zosc(t, ηi, ǫi) = 〈Bp, η1, ǫ1|e−2πα′tp+P−|Bp+4, η2, ǫ2〉osc

Case ηi = 0 and ǫi = 0

The Dp-D(p+4) system preserves 1/4 of the SUSY and is therefore BPS. As

a consequence

Z0 = TrV [N ] − TrS[N ] = (4 − 4) − 0 = 0

Zosc(t) =
∞
∏

n=1

(1 − e−2πtn)4(1 + e−2πtn)4

(1 − e−2πtn)4(1 + e−2πtn)4
= 1

where

N ij = (MT
p Mp+4)

ij =

















Ip+1 0 0

0 −I4 0

0 0 I3−p

















Nȧḃ = (MT
p Mp+4)ȧḃ = (γp+2...γp+5)ȧḃ

Integrating over the transverse momentum one finds

Ap−p+4 = Vp+1 TpTp+4 (1 − 1)G5−p(b)

This is zero but exact in α′.
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Case ηi = 0 but ǫi 6= 0

Z0(ǫ) = TrV [MT
p (ǫ2)Mp+4(ǫ1)] − TrS[MT

p (ǫ2)Mp+4(ǫ1)]

= 16 cos2
πǫ

2
sin2 πǫ

2
∼ v2

Zosc(t, ǫ) =
∞
∏

n=1

|1 − eiπǫ/2e−2πtn|4|1 + eiπǫ/2e−2πtn|4
|1 − eiπǫe−2πtn|2(1 − e−2πtn)2(1 + e−2πtn)4

∼ 1

After the analytic continuation ǫ→ iǫ

Ap−p+4 =
Vp
8i

(4π2α′)−
p(4−p)

2
∫ ∞
0

dt

(4πα′t)
4−p
2

e−
b2

4πα′t
ϑ2

1(i
ǫ
2|2it)ϑ2

2(i
ǫ
2|2it)

ϑ1(iǫ|2it)ϑ2
2(0|2it)η3(2it)

Again, the behavior of Ap−p+4 for v → 0 is completely determined by SUSY.

Z0(ǫ) can be rewritten as a trace in a Type I theory, with only 4 zero modes

Z0(ǫ) = TrS0[e
Vǫ0N ] = Tr′S0

[eVǫ0]

The trace is 0 unless one inserts at least 4 zero modes Sa0 . The first 6= 0 is

ti1...i4 = Tr′S0
Ri1i2

0 Ri3i4
0

= 2 ǫi1...i4p+2...p+5

+2
[

δi1p+2δi2p+3δi3p+4δi4p+5 +N i2i4δi1i3 + perm.
]

Since Vǫ0 provides 2 Sa0 and 1 ǫ, expanding we recover Z0(ǫ) ∼ |v|2.

Expanding the whole eVǫ in series

Z0(ǫ) =
∞
∑

m=0

1

m!
Tr′S0

[V m
ǫ0 ]

Zosc(t, ǫ) =
∞
∑

q=0

1

q!
〈Bp|V q

ǫ e
−2πα′tp+P−|Bp+4〉osc

we see that the first non-vanishing order in ǫ in Z(t, ǫ) = Z0(ǫ)Zosc(t, ǫ)

receives a unique contribution with m = 2 e q = 0 (⇔ Zosc(t, η1,2, ǫ) = 1).
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Therefore Z(t, ǫ) → |v|2 and is independent of t, meaning that only BPS

(massless) states contribute. The non-relativistic amplitude reduces to

Ap−p+4 =
|v|2
2
Vp+1 TpTp+4G5−p(r)

and is exact in α′.

Case ηi 6= 0 and ǫi 6= 0

Expanding both in η1,2 and ǫ

Z0(η1,2, ǫ) =
n1+n2≤12

∑

n1,n2

∞
∑

m=0

1

(n1!)2(n2!)2m!
Tr′S0

[V n1
η10V

n2
η20V

m
ǫ0 ]

Zosc(t, η1,2, ǫ) =
p1+p2≤12

∑

p1,p2

∞
∑

q=0

1

(p1!)2(p2!)2q!
〈Bp|V p1

η1
V p2
η2
V q
ǫ e

−2πα′tp+P−|Bp+4〉osc

To get Z0(η1,2, ǫ) 6= 0 we need n1 + n2 + m ≥ 2. The leading behavior is

obtained by taking n1 +n2 +m = 2 and p1, p2, q = 0 (⇔ Zosc(t, η1,2, ǫ) = 1)

and is independent of t. As before, each Vη0 also brings a momentum q

producing a derivative on the propagator G5−p. The behavior is therefore

A(n1,n2)
p−p+4 ∼ η2n1

1 η2n2
2 |v|2−n1−n2∂n1+n2G5−p(r) ∼ η2n1

1 η2n2
2

v2−n1−n2

r3−p+n1+n2

All these interactions are exact in α′, that is scale-invariant. One finds

Case n1 + n2 = 0

A(0,0)
p−p+4 =

Vp+1

8 · 2!
TpTp+4 vm1vm2 t

1m11m2 G5−p(r)

Case n1 + n2 = 1

A(1,0)
p−p+4 =

Vp+1

8
TpTp+4 vm1 t

i1i21m1 ωj1i1i2(η1) ∂j1G5−p(r)

Case n1 + n2 = 2

A(2,0)
p−p+4 =

Vp+1

8 · 2!2
TpTp+4 t

i1...i4 ωj1j2i1...i4(η1) ∂j1∂j2G5−p(r)

A(1,1)
p−p+4 =

Vp+1

8
TpTp+4 t

i1...i4 ωj1i1i2(η1)ω
j2
i3i4(η2) ∂j1∂j2G5−p(r)
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MATRIX THEORY EFFECTIVE ACTION

The results for the D0-D0 amplitude can be made explicit and covariant. In

SO(9) notation, θ =
(

ηa
η̃ȧ

)

, one finds the following complete potential

V =
1

8

[

v4

+2i v2vm(θγmnθ) ∂n

−2vp vq(θγ
pmθ)(θγqnθ) ∂m∂n

−4i

9
vi(θγ

imθ)(θγnlθ)(θγplθ) ∂m∂n∂p

+
2

63
(θγmlθ)(θγnlθ)(θγpkθ)(θγqkθ) ∂m∂n∂p∂q



 G9(r)

Since this is scale-invariant, it has to be reproduced both in SUGRA and

SYM.

Several explicit checks exists in the literature:

All terms in SUGRA : Plefka, Serone and Waldron

1st term in SYM : Douglas, Kabat, Pouliot and Shenker

2nd term in SYM : Kraus

3rd term in SYM : McArthur

5th term in SYM : Barrio, Helling and Polhemus
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CONCLUSIONS

• SCALE INVARIANCE IN D-BRANE DYNAMICS v → 0.

• ONE-LOOP SUGRA ⇔ SYM EQUIVALENCE DICTATED BY

SUSY. NON-TRIVIAL CHECKS AT TWO-LOOPS.

• SPIN-EFFECTS COMPUTABLE IN STRING THEORY.

SAME PROBLEM IN SUGRA MORE DIFFICULT.
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