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• Viable SUSY breaking in SUGRA theories.

• Constraints for minimal chiral SUGRA models.

• Constraints for gauge invariant SUGRA models.

• Interplay between F and D breaking effects.

• Factorizable scalar manifolds.

• Symmetric scalar manifolds.

• Implications for string moduli.



SUSY BREAKING AND SUGRA

In a viable SUGRA model, the vacuum state must be associated with
a stationary point of the scalar potential where SUSY is spontaneously
broken.

To get a realistic situation, there are however two additional conditions
that must certainly be imposed:

• Flatness: The energy of the vacuum should be negligibly small,
and reproduce the tiny value of the cosmological constant.

• Stability: The squared masses for small fluctuations around the
vacuum should be positive.

The natural question is then whether these two conditions can be used to
restrict the class of models of potential interest.
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MINIMAL SUGRA MODELS

A model with chiral multiplets Φi is specified by a real Kähler potential K
and a holomorphic superpotentialW . It has a Kähler symmetry for which
(K,W ) → (K+F+F̄ , e−FW ), and depends only on:

G = K + logW + log W̄

In the superconformal formulation, with a chiral compensator multiplet Φ,
the Kähler symmetry becomes manifest, with Φ → eF/3Φ. One can then
set (K,W ) → (G, 1), and write the Lagrangian in the form:

L =

∫

d4θ
[

−3 e−G/3
]

Φ†Φ +

(
∫

d2θΦ3 + h.c.

)

The component action is obtained by freezing Φ to gauge fix the extra
conformal symmetries.
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The scalar fields φi behave as coordinates of a Kähler manifold, whose
metric can be used to raise and lower chiral indices and is given by the
second derivatives of G:

gij̄ = Gij̄

The auxiliary fields F i are instead completely determined by the first
derivatives of G:

F i = −eG/2Gi

The kinetic term is given by

T = gij̄ ∂µφ
i∂µφj̄

The potential has instead the form:

V = eG
(

GkGk − 3
)

Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen
Bagger, Witten
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Vacuum

The flatness condition is V = 0 and it implies that:

GkGk − 3 = 0

The stationarity conditions can be written as ∇iV = 0 and imply:

Gi +Gk∇iGk = 0

The stability conditions amount finally to imposing
(

m2
ij̄ m2

ij

m2
īj̄ m2

īj

)

> 0

where the blocks m2
ij̄ = ∇i∇j̄V and m2

ij = ∇i∇jV are given by:

m2
ij̄ = eG

[

gij̄ + ∇iGk∇j̄G
k −Rij̄pq̄ G

pGq̄
]

m2
ij = eG

[

2 ∇(iGj) +Gk∇(i∇j)Gk

]
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Supersymmetry is spontaneously broken, and the gravitino mass is:

m3/2 = eG/2

The would-be Goldstino fermion is identified with the linear combination
η = fiψ

i, where:

fi =
1√
3

Fi

m3/2
= − 1√

3
Gi

For fixed gij̄, the quantities fi can be treated as independent variables
without any particular constraint.

Flatness condition

The flatness condition is the constraint that the Goldstino vector should
have unit length:

gij̄ f
if j̄ = 1
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Stability condition

The stability condition is more complicated and can be studied only model
by model, by explicit diagonalization.

It is however possible to find simpler but weaker conditions for stability,
which are necessary but not sufficient, by looking at particular directions
in scalar field space.

In this case, there is only one special complex direction that appears in
the problem and that we could use: the Goldstino direction Gi.

Looking at the two independent real directions (Gi, Gī) and (iGi,−iGī),
one deduces the condition m2

ij̄G
iGj̄ > 0. Using the flatness and the

stationarity conditions, this gives:

Rij̄pq̄ f
if j̄fpf q̄ <

2

3
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Constraints

Summarizing, a stationary point can lead to a satisfactory situation only if
two simple flatness and stability conditions are satisfied at it.

It is convenient redefine the fields to locally switch to flat indices, with
gIJ̄ = δIJ̄ . The two conditions become then simply:

Flatness: δIJ̄ f
If J̄ = 1

Stability: RIJ̄P Q̄ f
If J̄fPf Q̄ <

2

3

The flatness condition fixes the overall amount of SUSY breaking. The
stability condition requires the existence of directions with R < 2/3, and
constrains the direction of SUSY breaking to be close to these.

Gomez-Reino, Scrucca
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GAUGE INVARIANT SUGRA MODELS

A model with chiral multiplets Φi and vector multiplets V a is specified by
a real Kähler function G and a holomorphic gauge kinetic matrix Hab.

In the superconformal formulation, the Lagrangian has the form:

L =

∫

d4θ
[

−3 e−G/3
]

Φ†Φ +

(
∫

d2θΦ3 + h.c.

)

+

(
∫

d2θ
1

4
HabW

aαW b
α + h.c.

)

The gauge transformations of the superfields are encoded in a set of
holomorphic Killing vectors Xi

a:

δΦi = ΛaXi
a δV a = −i(Λa − Λ̄a)

The local charges are:

Q j
ai = −∇iX

j
a
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The function G must be invariant: δG = 0. This implies:

Ga = −iXi
aGi = iX ī

aGī

The first and second derivatives of these relations imply that:

Xai +Xk
a∇iGk +Gk∇iX

k
a = 0 Xai = −i∇iGa

∇iXaj̄ + ∇j̄Xai = 0 Qaij̄ = −∇i∇j̄Ga

The functionHab must instead transform in such a way to cancel possible
residual quantum anomalies: δHbc = iΛaAabc. This implies:

Xi
a∇iHbc = iAabc

The scalar fields φi parametrize now a symmetric Kähler manifold. The
metric for chiral indices is given by the second derivatives of G:

gij̄ = Gij̄
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The vector fields Aa
µ gauge the symmetries associated to the isometries

Xi
a. The real part of Hab effectively acts as a metric for vector indices,

while its imaginary part gives additional parameters:

hab = ReHab θab = ImHab

The auxiliary fields F i and Da are given by the first derivatives of G:

F i = −eG/2Gi Da = −Ga

The kinetic terms are:

T = gij̄

(

∂µφ
i −Xi

aA
a
µ

)(

∂µφī −X ī
aA

aµ
)

− 1

4
hab F

a
µνF

bµν − 1

4
θab F

a
µνF̃

bµν

The potential has instead the form:

V = eG
(

GkGk − 3
)

+
1

2
GaGa

Cremmer, Ferrara, Girardello, Van Proeyen
Bagger

P-10



Vacuum

The flatness condition is V = 0 and it implies that:

GkGk +
1

2
e−GGaGa − 3 = 0

The stationarity conditions can be written as ∇iV = 0 and imply:

Gi +Gk∇iGk + e−G
[

Ga
(

∇i−
1

2
Gi

)

Ga +
1

2
habiG

aGb
]

= 0

The stability conditions amount in this case to imposing the slightly weaker
requirement:

(

m2
ij̄ m2

ij

m2
īj̄ m2

īj

)

≥ 0

The equality sign holds for the would-be Goldstone bosons, which are
absorbed by the vector fields.
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The blocks m2
ij̄ = ∇i∇j̄V and m2

ij = ∇i∇jV are now given by the
following more complicated expressions:

m2
ij̄ = eG

[

gij̄ −Rij̄pq̄G
pGq̄ + ∇iGk∇j̄G

k
]

+
[1

2

(

GiGj̄−gij̄

)

GaGa+
(

G(ihabj̄)+h
cdhacihbdj̄

)

GaGb

− 2GaG(i∇j̄)Ga − 2Gahbchab(i∇j̄)Gc

+hab∇iGa∇j̄Gb +Ga∇i∇j̄Ga

]

m2
ij = eG

[

2 ∇(iGj) +Gk∇(i∇j)Gk

]

+
[1

2

(

GiGj −∇(iGj)

)

GaGa+
(

G(ihabj)+h
cdhacihbdj

)

GaGb

− 1

2
habijG

aGb − 2GaG(i∇j)Ga − 2Gahbchab(i∇j)Gc

+hab∇iGa∇jGb +Ga∇i∇j̄Ga

]
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Supersymmetry is spontaneously broken, and the gravitino mass has the
same expression as before:

m3/2 = eG/2

The would-be Goldstino fermion is η = fiψ
i + daλ

a, where:

fi =
1√
3

Fi

m3/2
= − 1√

3
Gi da =

1√
6

Da

m3/2
= − 1√

6
e−GGa

Gauge symmetries are also spontaneously broken, and the vector mass
matrix is:

M2
ab = 2 gij̄X

i
aX

j̄
b = 2 gij̄ ∇iGa∇j̄Gb

The would-be Goldstone bosons are σa = vaiφ
i + vaīφ

ī, where:

vai =
Xai

√

Xk
aXak
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For fixed gij̄, Xi
a and hab, the quantities fi and da can be thought as

variables, but with some relations involving the parameters:

xi
a =

Xi
a

m3/2
mab =

1

2

Mab

m3/2
qaij̄ =

Qaij̄

m3/2
aabc =

Aabc

m3/2

There is a dynamical relation holding at stationary points, which is implied
by stationarity along the directions Xi

a:

qaij̄ f
if j̄ −

√

2

3

[

2m2
ab +

(

3f ifi−1
)

hab

]

db + aabc d
bdc = 0

Kawamura

There is then a kinematical relation holding at any point, which is implied
by gauge invariance of G:

da = − i√
2
xi

afi =
i√
2
xī

afī

There is finally a kinematical bound, implied by this relation:

|da| ≤ maa

√

f ifi
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Flatness condition

The flatness condition is again simply the constraint that the Goldstino
vector should have unit length:

gij̄ f
if j̄ + hab d

adb = 1

Stability condition

The stability condition is as before a complicated condition, which can be
studied only model by model, by explicit diagonalization.

However, once again it is possible to find simpler but weaker conditions
for stability, which are necessary but not sufficient, by looking at particular
directions in scalar field space.

In this case, there are two kinds of special complex directions that appear:
the projected Goldstino direction Gi and the Goldstone directions Xi

a.
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Looking at the real directions (Gi, Gī) and (iGi,−iGī), one deduces
the condition m2

ij̄G
iGj̄ ≥ 0. Using the flatness and the stationarity

conditions, this yields:

Rij̄pq̄ f
if j̄fpf q̄ + 2

(

habhcd − 1

2
h i

ab hcdi

)

dadbdcdd

− 2hcdhacihbdj̄ f
if j̄ dadb +

√

3

2
aabc d

adbdc

− 8

3

(

m2
ab − 1

2
hab

)

dadb ≤ 2

3

Looking at the real directions (Xi
a, X

ī
a) and (iXi

a,−iX ī
a), one finds that

the former are flat directions whereas the latter imply the extra conditions
m2

ij̄X
i
aX

j̄
a ≥ 0, which have however a complicated form.

No extra useful condition
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Constraints

As before, a stationary point can lead to a satisfactory situation only if two
simple flatness and stability conditions are satisfied at it.

It is convenient redefine the fields to locally switch to flat indices, with
gIJ̄ = δIJ̄ and hAB = δAB. For simplicity, we also assume a constant
and diagonal gauge kinetic function. The two conditions read then:

Flatness: δIJ̄ f
If J̄ = 1−

∑

Ad
2
A

Stability: RIJ̄P Q̄ f
If J̄fPf Q̄ ≤ 2

3
+

8

3

∑

A

(

m2
A− 1

2

)

d2
A−2

(

∑

A
d2

A

)2

The flatness condition fixes as before the amount of SUSY breaking. The
stability condition constrains instead the directions of SUSY breaking.

The fI represent the basic qualitative seed for SUSY breaking, whereas
the dA provide additional quantitative effects.
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Indeed, the dA are not independent from the fI , but rather related to
them as follows:

Dynamical relation: dA =

√

3

8

qAIJ̄ f
If J̄

m2
A− 1

2
+

3
2
fIfI

Kinematical relation: dA = − i
√

2
xI

A fI

Kinematical bound: |dA| ≤ mA

√

fIfI

These 3 relations are gradually weaker and simpler, and can be used to
set up 3 different types of analyses of the constraints.

The effect of vector multiplets is generically to alleviate the constraints
and results in a lowering of the effective curvature for chiral multiplets.
One needs then R̃ < 3/2, which is a milder constraint.

Gomez-Reino, Scrucca
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RELATIVE EFFECT OF F AND D BREAKING

It is useful to introduce the new variables:

f̃I =
fI

√

1 −
∑

Bd
2
B

d̃A =
dA

√

1 −
∑

Bd
2
B

The constraints can then be rewritten as:

Flatness: δIJ̄ f̃
I f̃ J̄ = 1

Stability: RIJ̄P Q̄ f̃
I f̃ J̄ f̃P f̃ Q̄ ≤ 2

3

(

1 + ∆
(

d̃A

)

)

where:

∆
(

d̃A

)

= 4
∑

Am
2
A d̃

2
A + 4

∑

A

(

m2
A − 1

)

d̃2
A

∑

Bd̃
2
B
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The dynamical relation between auxiliary fields becomes:

d̃A

√

1+
∑

Bd̃
2
B

[

1+m2
A− 3

2

∑

Bd̃
2
B

1+
∑

B
d̃2

B

]

=

√

3

8
qAIJ̄ f̃

I f̃ J̄

The kinematical relation becomes instead:

d̃A = − i√
2
xI

A f̃I

Finally the kinematical bound implies:

|d̃A| ≤ mA

Exploiting these relations to eliminate the d̃A, one can arrive to con-
straints involving only the f̃I and a corrected effective curvature R̃IJ̄P Q̄,
taking the simple form:

Flatness: δIJ̄ f̃
I f̃ J̄ = 1

Stability: R̃IJ̄P Q̄ f̃
I f̃ J̄ f̃P f̃ Q̄ ≤ 2

3
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Exploiting the dynamical relation

Whenever |d̃A| ≪ 1, as for instance when mA ≫ 1 or mA ≪ 1, the
dynamical relation can be linearized and:

d̃A ≃
√

3

8

1

1+m2
A

qAIJ̄ f̃
I f̃ J̄

Moreover, keeping only the leading term in ∆, one finds:

∆
(

d̃A

)

≃ 3

2

∑

A

[

mA

1+m2
A

]2
∣

∣

∣
qAIJ̄ f̃

I f̃ J̄
∣

∣

∣

2

The net effect of vector multiplets is then to change the effective curvature
for chiral multiplets to:

R̃IJ̄P Q̄ ≃ RIJ̄P Q̄ −
∑

A

[

mA

1+m2
A

]2

qAI(J̄ qAP Q̄)
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Whenever |d̃A| ∼ 1, as generically for mA ∼ 1, one can combine the
dynamical relation and the kinematical bound to derive the upper bound:

|d̃A|
√

1+
∑

B
d̃2

B ≤
√

3

8

1+
∑

B m
2
B

1+m2
A+

(

m2
A− 1

2

)

∑

Bm
2
B

∣

∣

∣
qAIJ̄ f̃

I f̃ J̄
∣

∣

∣

Dropping the negative term in ∆, one finds then:

∆
(

d̃A

)

≤ 3

2

∑

A

[

mA

(

1+
∑

Bm
2
B

)

1+m2
A+

(

m2
A− 1

2

)

∑

B
m2

B

]2
∣

∣

∣
qAIJ̄ f̃

I f̃ J̄
∣

∣

∣

2

This can be used to get a simpler but weaker form of the constraints,
where the net effect of vector multiplets is encoded in:

R̃IJ̄P Q̄ ≃ RIJ̄P Q̄−
∑

A

[

mA

(

1+
∑

Bm
2
B

)

1+m2
A+

(

m2
A− 1

2

)

∑

B
m2

B

]2

qAI(J̄ qAP Q̄)
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Exploiting the kinematical relation

Useful results only when the theory has special properties.

Exploiting the kinematical bound

Using the kinematical bound, one can derive an upper bound for ∆. This
is a complicated function of the m2

A. But it can also be further bounded
by above by a simple function of m2 =

∑

Am
2
A:

∆
(

d̃A

)

≤ m4

1−m2 θ
(1

2
−m2

)

+ 4m6 θ
(

m2− 1

2

)

This can be used to get a simpler but weaker form of the constraints,
where the net effect of vector multiplets is encoded in:

R̃IJ̄P Q̄ ≃
[

1+
m4

1−m2 θ
(

1
2

−m2
)

+4m6 θ
(

m2− 1
2

)

]−1

RIJ̄P Q̄
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FACTORIZABLE SPACES

Suppose that M is a product ofN distinct 1-dimensional manifolds. The
function K splits then into a sum of terms depending on a single field,
while W can instead still be arbitrary:

In this situation, gij̄ and Rij̄pq̄ are diagonal and have only N non-zero
components. Moreover, these are related by Riīiī = Ri g

2
iī, in terms of

the curvature scalars Ri of the various submanifolds.

The flat-index curvature tensor entering the constraints takes then the
following form:

RIJ̄P Q̄ =

{

Ri , if I = J = P = Q

0 , otherwise

This simplifies enough to problem to allow for an exact solution.
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The flatness and stability conditions simplify to

Flatness:
∑

k
Θ2

k = 1

Stability:
∑

kRk Θ4
k <

2

3

in terms of the N real and positive variables

Θi = |fI |

These constraints admit solutions only if the curvatures satisfy
∑

k R
-1
k >

3

2

The allowed breaking directions fill then a cone around the axis

Θ0
i =

√

R -1
i

∑

kR
-1
k
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More precisely, one finds Θi ∈
[

Θ−
i ,Θ

+
i

]

, with:

Θ+
i =



























√

√

√

√

√

R -1
i +

√

2

3
R -1

i

(

∑

k 6=iR
-1
k

)(

∑

kR
-1
k − 3

2

)

∑

kR
-1
k

, R -1
i <

3

2

1 , R -1
i >

3

2

Θ−
i =



























√

√

√

√

√

R -1
i −

√

2

3
R -1

i

(

∑

k 6=iR
-1
k

)(

∑

kR
-1
k − 3

2

)

∑

kR
-1
k

,
∑

k 6=iR
-1
k <

3

2

0 ,
∑

k 6=iR
-1
k >

3

2

The relevance of each Φi for SUSY breaking depends thus on the size of
the corresponding R -1

i with respect to 3/2.
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SYMMETRIC SPACES

Suppose that M is a coset space G/H, where G is a group of global
isometries and H a local stability group. The function K has then some
special form, but W can still be arbitrary:

In this situation, gij̄ and Rij̄pq̄ are G-invariant and there are relations
among their components. Moreover Rij̄pq̄ can always be related to gij̄,
through some overall curvature scale Rall.

Calabi, Vesentini

The flat-index curvature tensor entering the constraints has the special
structure

RIJ̄P Q̄ = Rall

(

G-invariant combination of H-invariant δ’s
)

This again simplifies enough to problem to allow for an exact solution.
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Generalized spheres

With N = 1 + q fields Φi one can have:

M =
SU(1, 1 + q)

U(1) × SU(1 + q)
⊃ SU(1, 1)

U(1)

The Riemann tensor in normal coordinates reads

RIJ̄P Q̄ =
1

2
Rall

(

δIJ̄ δP Q̄ + δIQ̄ δP J̄

)

The flatness and stability conditions can then be rewritten as

Flatness: Θ2 = 1

Stability: Rall Θ
4 <

2

3

in terms of just 1 real and positive variable

Θ =
√

∑

k |fK |2

The situation is then as for 1 field with R = Rall ⇒ R -1
all > 3/2.
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Unitary Grassmannians

With N = p (p+ q) fields Φia one can have:

M =
SU(p, p+ q)

U(1) × SU(p) × SU(p+ q)
⊃
(

SU(1, 1)

U(1)

)p

The Riemann tensor in normal coordinates reads

RIA J̄B̄ P C Q̄D̄ =
1

2
Rall

(

δIJ̄ δP Q̄ δAD̄ δCB̄ + δIQ̄ δP J̄ δAB̄ δCD̄

)

The flatness and stability conditions reduce then simply to

Flatness:
∑

k Θ2
k = 1

Stability:
∑

k
Rall Θ

4
k <

2

3

in terms of the p real and positive variables

Θi =
∣

∣Eigenvaluei

(

fIA

)
∣

∣

The situation is then as for p fields with Ri = Rall ⇒ R -1
all > 3/(2p).

P-29



Orthogonal Grassmannians

With N = 2 + q fields Φi one can have:

M =
SO(2, 2 + q)

SO(2) × SO(2 + q)
⊃
(

SU(1, 1)

U(1)

)2

The Riemann tensor in normal coordinates reads

RIJ̄P Q̄ =
1

2
Rall

(

δIJ̄ δP Q̄ + δIQ̄ δP J̄ − δIP δJ̄Q̄

)

The flatness and stability conditions reduce then to

Flatness: Θ2
+ + Θ2

− = 1

Stability: Rall

(

Θ4
+ + Θ4

−

)

<
2

3

in terms of the 2 real and positive variables

Θ± =
1√
2

√

∑

k |fK |2 ±
√

(

∑

k |fK |2
)2

−
∣

∣

∣

∑

k (fK)2
∣

∣

∣

2

The situation is then as for 2 fields with Ri = Rall ⇒ R -1
all > 3/4.
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MODULI IN STRING MODELS

In string models, a natural candidate for the breaking sector is that of
the moduli Mi controlling the coupling strength and the compactification
geometry, and the Wilson lines Za of the hidden gauge groups.

Kaplunovky, Louis

In the simplest models, the scalar manifold is factorizable and symmetric,
because it emerges as a projection of a D = 10 SUSY theory. For a
gauge group of rank s, this has the form

M =
SU(1, 1)

U(1)
× SO(6, 6 + s)

SO(6) × SO(6 + s)

∣

∣

∣

∣

proj

Narain

The first factor describes the dilaton modulus S, and is always present.
The second factor is spanned by the Kähler and complex structure moduli
Tp andUq, as well as the Wilson linesZa, and depends on the projection.

P-31



Minimal modulus geometry

The minimal factor that can arise for a single modulusMi is described by
the following Kähler potential:

Ki = −ni ln
(

Mi +M†
i

)

Witten

This corresponds to the simplest possible symmetric space:

Mi =
SU(1, 1)

U(1)

This is the basic one-dimensional space with constant curvature that can
appear, and the curvature scalar is given by:

Ri =
2

ni
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Maximally symmetric enhancement

Certain moduli Mi can mix to some number qi of related Wilson lines
Zai

, and these 1 + qi fields have then

Ki = −ni ln
(

Mi +M†
i −

∑

ai

Z†
ai
Zai

)

Ellis, Kounnas, Nanopoulos
Ferrara, Kounnas, Porrati

The corresponding scalar manifold is given by:

Mi =
SU(1, 1 + qi)

U(1) × SU(1 + qi)
⊃ SU(1, 1)

U(1)

This behaves as 1 copy of the minimal geometry for the flatness and
stability constraints, with curvature scale:

Ri =
2

ni
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Unitary enhancement

A set of pr moduli with the same nr can get enhanced to p2
r moduli

Mirjr
and couple to some number prqr of related Wilson lines Zirar

.
These pr(pr + qr) fields have then

Kr = −nr ln det
(

Mirjr
+M†

irjr
−
∑

ar

Z†
irar

Zjrar

)

Ferrara, Kounnas, Porrati

The corresponding scalar manifold is:

Mr =
SU(pr, pr + qr)

U(1) × SU(pr) × SU(pr + qr)
⊃
(

SU(1, 1)

U(1)

)pr

This behaves as pr copies of the minimal geometry for the flatness and
stability constraints, with overall curvature scale given by:

Rr =
2

nr
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Orthogonal enhancement

A pair of 2 moduli M1r
and M2r

with the same nr can also mix in a
more peculiar fashion to some number qr of related Wilson lines Zar

.
The 2 + qr involved fields have then:

Kr = −nr ln
(

(

M1r
+M†

1r

)(

M2r
+M†

2r

)

−
∑

ar

(

Zar
+ Z†

ar

)2
)

Derendinger, Kounnas, Petropoulos, Zwirner

The corresponding scalar manifold is in this case:

Mr =
SO(2, 2 + qr)

SO(2) × SO(2 + qr)
⊃
(

SU(1, 1)

U(1)

)2

This behaves as 2 copies of the minimal geometry for the flatness and
stability constraints, with an overall curvature given by:

Rr =
2

nr
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Flatness and stability constraints

The structure of the flatness and stability constraints is blind to symmetry
enhancements and is controlled by the minimal geometry:

Mmin =
SU(1, 1)

U(1)
× SU(1, 1)

U(1)
× · · ·

The crucial parameters in the constraints are the numerical coefficients
ni, related to the curvature of the basic submanifolds by Ri = 2/ni.

The curvature bound
∑

kR
-1
k > 3/2 implies a simple restriction on the

coefficients ni:
∑

knk > 3

The Goldstino cone is also entirely specified in terms of the ni, and re-
stricts the direction of supersymmetry breaking:

Θi :

{

upper bound smaller than 1 if ni < 3

lower bound larger than 0 if
∑

k 6=ink < 3

P-36



Dilaton and volume moduli

The most relevant moduli are the dilaton S, controlling the coupling, and
the global volume modulus T , controlling the size of the internal manifold.
These universally occur in all models, with:

nS = 1 , nT = 3

Taking each field separately, the curvature bound is always violated. To
fulfill it, one would need corrections. These should be large for S, but
could be small for T .

Keeping both fields, the curvature bound is instead fulfilled. However T
must dominate over S, and the Goldstino angle θ is constrained to the
range [0, π/4].

This demonstrates in an extremely robust way that the scenario where S
dominates over T is impossible to realize, at least in the controllable limit
where both are large.
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CONCLUSIONS AND OUTLOOK

• In a generic SUGRA model with chiral and vector multiplets, there
exist necessary conditions for flatness and stability that strongly
constrain the geometry and the SUSY breaking direction.

• When F breaking dominates, the constraints are simple and
rather strong. What matter is the Kähler curvature.

• The effect of an additional D breaking to alleviate the constraints.
What matter is then a smaller effective Kähler curvature.
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