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SCHERK-SCHWARZ BREAKING

Consider a field theory in D dimensions, with a symmetry G.
One can break this symmetry by compactifying 1 dimension and

imposing boundary conditions twisted through g € G-

d(y+2rR) =g ¢(y) g~

In the D — 1 dimensional effective theory below M, = 1/R, the
symmetry group is broken down to G' = {¢’' € G|[¢’, g] = 0}.

The breaking mechanism is non-local.
Scherk, Schwarz

Consider a continuous twist of the form g(a) = e?™*T A D-
dimensional massless field with charge g under T' can be decom-

posed in D — 1-dimensional KK modes as:

(n+qa)y
=2 (@)

The mass of these modes has a g-dependent shift:

n+qa
R

myp, =

The symmetry breaking is then continuous and very similar to a
spontaneous breaking. This suggests that there should exist an

alternative description where this is manifest.



Supersymmetry

If G is the global R-symmetry group of a supersymmetric theory,
the supersymmetries that do not commute with G /G’ get broken,

and therefore supersymmetry is partially broken at M.
Scherk-Schwarz

For certain particular supergravity examples, it has been argued
that this twisting is equivalent to a spontaneous supersymmetry

breaking through the VEV of certain auxiliary fields.
Marti, Pomarol: Gersdorff, Quiros

Gauge symmetry
If G is a local gauge symmetry, the gauge bosons in G/G’ get a
mass proportional to M, and G is broken to G’ at M..

Hosotani; Fayet

Performing a non-periodic gauge transformation, one can in this
case demonstate that the twist in the b.c. is equivalent to a
VEV of Ap_1. The breaking is therefore spontaneous and the

corresponding order parameter is the VEV of the Wilson loop:
W ="Tr expifdy Ap-1(y)

Hosotani



RADIATIVE CORRECTIONS

Field theories in D >4 are not renormalizable, and must be
though as effective theories valid below a physical cut-off A as

approximations to a microscopic theory (e.g. a string theory).

The UV behaviour is very bad, but operators that are forbidden
by the broken symmetry are expected to be finite and controlled

by IR physics, since the SS breaking is non-local.
Supersymmetry breaking example

Consider a N =1 theory in D =5 compactified to D =4, and
twist it using a U(1)g C SU(2)g symmetry:

¢(y + 2 R) = ™R ¢(y)

Since bosons and fermions have different R-charges, supersym-
metry is completely broken, and the tree-level spectrum is:

g n+qia r n+gha

"TT R *"™TTR

The simplest protected quantities are the scalar mass corrections.

m

Supersymmetry forces Am? = 0, but when it is broken:

7

A? hard breaking
A .
Am? ~ | MszuSy In , soft breaking
susy
| M2, , SS breaking



The one-loop correction to the scalar mass from the gauge cou-

plings is given by:

2
AmZ — % Re [Li3(627riaq£) _ Li3(e27rz'aq£) Mc2

Antoniadis, Dimopoulos, Pomarol, Quiros

Gauge symmetry breaking example

Consider a SU(M+N) gauge theory compactified from D =5
to D = 4 with matter scalars in the fundamental representation,

and impose the boundary conditions:
A(y + 27TR) — eZm’aTA(y) e—27rz'aT

d(y + 2mR) = €™ T ¢(y)

N1
T = v 9
0 —Mly
The gauge symmetry is broken to SU(M) x SU(N) x U(1) and

the tree-level mass spectrum is:

where:

Adiag oMy, = % : Aoffdiag My, = n =+ (1\24— N)a
n+ Na n— Ma
o : my, = R : ¢down C My, = -



Consider now the corrections to the masses of ¢™ and ¢do™2.

Their difference Am? = Amiup - Amzdown is protected, since it
preserves SU(M) x SU(N) x U(1) but breaks SU(M+N).

At one-loop, one finds:

2
Am2 — ﬂ Re { _1|_ [Li3(627rz'Ma) . Li3(e27riNa)]

+8(M—N) [L13(1) - Li3(e2”(M+N)“)] } M?

The twisted theory with (A4) = 0 is equivalent to the untwisted
theory with (A4) = —aT/R. The tree-level shifts in the masses
arise from the gauge couplings, whereas loop correction must

comes from the effective interactions involving Wilson lines.

The one-loop corrections come from:

AL = 8 3 (BT Wiy ) ¢ 0) Wy + 2nnF)

+Tr W, ®'(y) <I>(y)] + h.c.

where:
y+2mnR

W, = expz'/ Ay

y
Corrections to symmetry breaking operators are therefore finite

because they are non-local.

Masiero, Scrucca, Serone, Silvestrini
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General considerations

To get a finite result for protected quantities, it is crucial to include
the full tower of KK modes in loops to respect all the symmetries.
In the gauge symmetry example, the crucial symmetries are the

y-dependent gauge transformation.

Finitness is perhaps guaranteed just by the existence of a local
extension of the symmetry. In the gauge symmetry example, this
can be verified by computing corrections from Yukawa couplings;

one finds that they are non-local and finite Vg.

The spontaneous nature of SS symmetry breaking has an im-
portant implication: the twist shoud be dynamically determined

through the effective potential for the order parameter.



CHIRAL MODELS FROM FREE ORBIFOLDS

Compactifications on a S! are non-chiral (with and without SS).
Chirality can be achieved on an orbifold S*/Z,.

The SS mechanism itself can be reinterpreted as an orbifolding

through a translation combined with a twist:

SS(g) on S* = S /Zs(gt)

The most general situation combines these two kind of operations

in a freely acting orbifold.

With a single compact dimension, one can use only reflections

and translations. The most general situation is essentially given
by the orbifold S'/Zs(a) X Z2(3), where:

a:¢(y) = Puo(—y)
B:é(y) — Psé(y + mR)

The third non-trivial element is:
af: ¢(y) = Popd(—y + mR)

The same orbifold group is generated by any pair of elements.

Defining a1 = o and ag = a3, we have therefore:

Sl/Zz(a,-) XZz(,B) = SS(,B) on Sl/Zz(aj) . Vi,j



The a; elements have fixed points at y, = awR/2:

The wave functions for the 4 possible (a1, ) parities are:

() — ++ 20
_ 1 _ _ 2n+1
7—'1,_ (y) = \/ﬂ'_R COS m;'z_ Y, m;'z_ = R
_ | _ 2n+1
ET(y) = —sin m_ Ty, m = 7
1 2 2
&) = ——ssinmy Ty, mym =T

VTR " R

Supersymmetry breaking example

Consider a D = 5 N =1 theory and choose P,, and P,, to com-
mute with a different half of the supersymmetry. Pg = P, F,,

will then break all the supersymmetry.



A generic supermultiplet @ takes the form (®*+, d+— &=+ d——),
and at a generic point y there are 2 non-rigid supersymmetries:
QF 7 ¢t - dF~ and Q;F: ¢TE — O7E
From the form of ££F(y) we see that:

ai-fixed points : N =1 (Q1)

ag-fixed points : N =1"(Q2)
Bulk : N =0

The breaking is non-local. The reflections a; and a9 preserve
different supersymmetries at distinct fixed points; the translation

[ breaks all supersymmetries but decouples for R — oo.
To build interesting models, introduce:
e Gauge vector-multiplet : V(AtH,At= 5™, 277)
e Matter hyper-multiplet : M3/, o1, 857 T 57 7)
e Higgs hyper-multiplet :  H(¢5H, v, v ", 0% )

The tree-level Higgs scalar potential is fixed by supersymmetry.

ESB is radiative and triggered by supersymmetry breaking.

Using two conjugate Higgs hyper-multiplets, one can build models

with the massless spectrum of the MSSM with broken supersym-
metry at M, ~ 1 TeV.

Pomarol, Quiros; Delgado,Pomarol, Quiros
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Using a single Higgs hyper-multiplet, one can build models with
the massless spectrum of the SM and one less parameter. Fitting
the one-loop effective potential, one finds M, ~ 350 GeV and
predict that mg, ~ 130 GeV.

Barbieri, Hall, Nomura

Gauge symmetry breaking example

Consider a D =5 N =1 gauge theory, and choose P,, and P,,
to preserve half of the supersymmetry, as well as G and G' C G
respectively. P = P, P,, breaks then G to G".

One finds a non-local gauge symmetry breaking:

aj-fixed points : G, N =1(¢1)

ag-fixed points : G', N =1(G1)

Bulk : G', N=1(@1)
Taking G = SU(5) and G' = SU(3)xSU(2)xU(1), one can
build interesting SGUT models with M, ~ 1016 GeV and the

massless spectrum of the MSSM.

The two Higgs in the 5 and 5 live in the bulk, and doublet-triplet
splitting is automatic. The matter fields in 3 copies of 10 and 5
live at the a;-fixed points.

Kawamura

11



DISEASES OF FIELD THEORY ORBIFOLDS

Orbifolds intended as manifolds have conical singularities at their

fixed points, where the theory must be carefully defined.

In string theory, the twisted sectors provide blowing-up modes.
The orbifold is obtained from a smooth manifold in the singular
limit of vanishing VEV for these modes. This guarantees that

orbifold projections preserve consistency.

In field theory, no twisted sectors are specified and the orbifold
remains in general singular. The orbifold projections do not nec-
essarily preserve consistency, and one must checked. It is not even

enough to have an anomaly free zero-mode spectrum.
S1/Zyx Zy models

Consider a D =5 N =1 theory on Sl/szzz with a charged
hyper-multiplet with parities (¢++, =, =T, ).

The theory is chiral, although free of fermionic zero-modes, be-

cause conjugate spinors have different wave functions.

The divergence of the left and right currents J induced by tri-

angles are:

OnJIM (z,y) = £ - z[s W 5 94 - Fu F*(z,y)

12



The divergence of J = J+ 4+ J_ is therefore controlled by:

S (@) — W) = e ¥ 3 6y — arRy2)

n=0 4 a=—00
Restricting to y € [0, 27 R[ one finds:
1
On T (@, y) = 7|8y — w0) = 8y — )
9% o 7
— — — 7= Hv
+8(y = 1) = 8y — 18)] 52 5 Fuw F*(,0)

Therefore, there is 1/4 of a chiral spinor anomaly at the ;-
fixed points yo2 and —1/4 at the ap-fixed points y; 3. The total

anomaly in D = 4 vanishes, but the D = 5 theory is inconsistent.

The same result can be derived using equivariant index theorems.
The orbifold action is taken into account through the projector

P=1/4(14 a1+ a2+ ) (only a3 and asg contribute).

From the D = 4 point of view, triangle diagrams are subject to a

selection rule:
Aj

&

A; . anomalous if ¢ 4+ j + k = odd

13



Such diagrams lead to non-invariant operators in the effective
D = 4 theory obtained by integrating out all massive KK modes.

For example:

A2m

AYAYAVAVAVAVAVAVAY

AVAVAVAVAVAVAVAVA

Aopt1

Scrucca, Serone, Silvestrini, Zwirner

There is also a Fl term Lpr = &(y)D(z,y) induced at one-loop,
since conjugate scalars have different wave functions. One gets:

— o Z / p &))" — [é;; “(@)]

2
n=0 + may,

One can easily compute (§ =y mod wR/2):

S W - 6@ coshnRe/2(1— 49/7F)
oy P2 +m3, 4p sinhmRp/2

= 35[0 + 86 - /2]

The momentum integral converges everywhere in the bulk and:

EW) = 57 [C (3’ %) " C(3’ B j_ijz)]

14




This corresponds to a symmetric profile:

£(y) 4

e
o

Yo hn Y2 Ys Y
To get a D =4 interpretation of the divergence at each fixed

point, one can introduce a momentum cut-off A. Then:

Z 5 Yy— ya) + §ﬁn1te( )

~ 64m? =
The first pieces are divergent D =4 Fl| terms localized at the

fixed points, whereas the second piece is a finite non-local term.

Ghilencea, Groot Nibbelink, Nilles:

Scrucca, Serone, Silvestrini, Zwirner

The induced anomaly and Fl terms might be related in a super-
gravity version of the model. It is not impossible that one can cure

this kind of model by adding some physics at the fixed points.

15



STRING MODELS

String models with SS supersymmetry breaking can be constructed

by deforming the partition functions of supersymmetric orbifolds.

Kounnas, Porrati; Ferrara, Kounnas, Porrati, Zwirner;

Antoniadis, Dudas, Sagnotti

A more convenient and general method is to look for freely acting
orbifolds, constructed such that any element of the group either
preserves some supersymmetry or acts freely and trivializes there-

fore in the large volume limit.
Kiritsis, Kounnas

The general set up isa D = 10 N = 1 string model compactified

to D =4. The Lorentz group decomposes as
S0(9,1) — SO(3,1)x SO(6)x

The D = 10 supercharge gives rise to a 4g-plet of D = 4 super-
charges Qq, a = 1,2, 3,4, with different SO(6)g weights wy:

1 11 1 -1-1
=gy m=myy)
-1 1 -1 -1 -1 1
w=rgg) =gy

The orbifold group G is a discrete subgroup of SO(6)g.

16



A generic g(v, d;v") € G acts as a 2m(vy, V2, v3) rotation and a
27 (01, 82, 03) translation in T = T¢ x T3 X T32, and in addition

as a 2w (v}, - - ,V}) twist in the gauge group.
On the Q4 's:
9(v,5:) : Qo — M Q,

A given @, is thus preserved by g(v, §;v') € G if v - w, = integer.
This means v € SU(3)% and SO(6)r — U(1)%.

Freely acting Zy X Zy models
Consider a Zy(a) x Zn(0) orbifold model with [a, 5] = 0 and
a : preserves some (), and has fixed points
B : preserves no Qg but acts freely in some T
To have a non-local breaking, we further require for all the other
independent non-freely acting elements that:
aff* : preserve different Qg but have distinct fixed points

The same orbifold group is generated from a3* and 3 for any 3.

Defining a; = a3~ fori =1,--- , N, one has therefore:

TG/ZN(az-) XZN(,B) = SS(,B) on TG/ZN(CVJ') : V’i,j
Supersymmetry and part of the gauge symmetry are broken below

Mc == 1/\/ VT2.

17



The partition function of the model is given by:

where Z[Z] = Tr(® [g g¥0 gZo] is the g-twisted partition function

in the h-twisted sector.

To get consistent models, one must impose modular invariance
and tadpole cancellation. This will constrain the possible actions

of the twists in the gauge group.

Using the fact that Z[Z] =0 if g and h have no common fixed

points, one can rewrite for any :

N
_gU z 7
Z = Zzye)xznp) + X; ZZN(O‘J') T Zzy(s)
J=

The only possible source of tachyons is the 3-twisted sector. But
since 3 acts as a pure translation along some T2, the states in this
sector have a positive definite contribution to their m? depending

on the moduli:

2 |T(1+U)?
2> 2
m 2Tt M TImU

The complex structure U is in general fixed, and the absence of

tachyons restricts the Kahler modulus T' = (B + i R?)/c/ to:
o' (—m3) ImU

T —iTy| >To, To=
T—iTol 2To, To=—p TENGE

18



ImTA

-

To ReT

One must then verify that the effective potential drives T into the

stable region.
Scrucca, Serone

Explicit examples

Consider a Zs(a)x Z3(3) example. This model is essentially
unique; there is only one possible choice for B and three for a,

but all lead to equivalent models. Take:

11

—,=,0), 6,=(0,0,0

373,)704 (7))
2 1

: =(0,0,=), dg= (=
/B Vg ( ) 73)7 B (37070)

As before, define a; = a8~ for 4 = 1,2,3. One can verify that

a . 'Uaz(

a1 preserves (Ja2.3, a2 preserves (4 and ag preserves 1, whereas

3 preserves no Qg but acts freely in the first T2.

19



The complex structure is U = ei™/3 and the shift sends fixed

points of each element into each other.

In the first T2:

yl A

(8]
______ 3-/.--------/.,(---------
‘P2 P
_____sz__x'_____c_k_l_l” _____ t:

1 /pl  /p3
P Paj3 /P
. -

aq

Therefore:

. i i+1
B : P, — P

One can easily construct an explicit heterotic model of this type.

Choosing the standard embedding for both v and (3, one finds:

ag-fixed points : E7 x U(1) , N =2 (Q23)
ag-fixed points : Eg x SU(3), N =1 (Q4)

ag-fixed points : E§ x SU(3), N=1(¢1)
Bulk : SO(10) x SU(2) x U(1)2, N =0

One can also construct similar unoriented models.

Scrucca, Serone
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Scales

In order to solve the hierarchy problem, one needs M, ~ 1 TeV.

In string theory, however, the natural value is M, ~ M.

In heterotic models, Mg ~ 1018 GeV. One must then look for
models free of dangerous threshold corrections (the Z3 x Z3 model

is the first example of this kind).
Antoniadis

In unoriented models, 1 TeV < M < 1018 GeV. One can thus
arrange that M, ~ M; ~ 1 TeV.

Antoniadis, Arkani-Hamed, Dimopoulos, Dvali

M-theory perspective

The microscopic quantum theory is not yet under control, but one
can use efficiently consistency arguments to investigate orbifold

compactifications of M-theory.

The basic example is M-theory compactified from D =11 to
D =10 on S'/Zy. This respresents the exact non-perturbative

description of the supersymmetric Fg X FEg heterotic string.

Horava, Witten
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One can construct a similar model with SS supersymmetry break-
ing by compactifying on S1/Z2xZs. One gets then a non-

perturbative non-supersymmetric Eg x Ejg theory.
Antoniadis, Quiros; Dudas, Grojean; Fabinger, Horava

One can obtain interesting D = 4 models by further compactify-
ing these theories on a CY. From an effective theory point of
view:

e Mg >Mcey : D=11-D=10—-D =4

e Ma <KMoy : D=11—-D=5—-D=4

In this case, supersymmetry breaking is mediated only by gravity,
and Mgusy ~ Mf/Mp. We need then M, ~ 101 GeV.
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OUTLOOK

e Freely acting orbifolds with Scherk-Schwarz symmetry

breaking are very attractive for model building.

e [he quantities protected by the broken symmetry are

finite thanks to the non-local nature of the breaking.

e Field theory realizations have in general diseases at the

orbifold singularities.

e String realizations can be constructed systematically.

The only potential problem are tachyons.
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