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SUSY BREAKING AND SUGRA

Direct spontaneous SUSY breaking implies, in a renormalizable
and anomaly-free theory with rigid SUSY, a sum rule on the
mass spectrum:

STr M2 =Y "(-1)*2J +1)m% =0

J
This predicts generically that some superparticle is lighter than

its ordinary partner particle, in contradiction with experimental

observation.

The standard paradigm to evade this difficulty is to assume
that SUSY breaking occurs spontaneously in a hidden sector
with fields ®; and is transmitted to the visible sector with fields

(s only indirectly, through some suppressed interactions.

The effect of SUSY breaking on the visible sector can be
parametrized through super-renormalizable soft breaking terms,
which depend both on the details of the hidden sector theory

and on the mediation mechanism.

The relevant effective Lagrangian for phenomenology has then

the general form:
Leff = £susy + L:soft
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A natural mediation mechanism is provided by gravitational

interactions, which have a scale Mp. The general setup then
becomes that of SUGRA, with local SUSY.

SUSY breaking occurs spontaneously at some scale M <« Mp
in the hidden sector and is transmitted to the visible sector

through gravitational interactions.

The microscopic theory might be some superstring model. But
below Mp, and in particular at M, this can be effectively
described by a non-renormalizable SUGRA theory.

The soft terms originate from higher-dimensional operators
that mix visible fields ), to hidden fields ®; and are suppressed

by powers of Mp, and their scale is

Chamseddine, Arnowitt, Nath
Barbieri, Ferrara, Savoy
Hall, Lykken, Weinberg

The main delicate features that are needed in order to get a
satisfactory situation are:

e Soft terms with mgn ~ Mgw and peculiarities.

e Cosmological constant with Moo < Mgw.

e Hidden scalars with m > Mgw and stable.



CHIRAL SUGRA MODELS

A SUGRA theory with N chiral multiplets ®; is specified by a
real function G. Setting Mp = 1, this can be written as

G(®;, ®)) = K (D, ®]) + log W (®;) + log W (&)

This decomposition is however ambiguous, due to the Kahler

symmetry changing K > K+ F+F and W — e FW.

Mixed holomorphic/antiholomorphic derivatives of G depend
only on K and define a Kahler geometry for the manifold
parametrized by the scalars ¢*. The metric, the Chirstoffel

connection and the Riemann tensor are given by:

9i7 = Gij
E_ ok Tk _
Iy =Gi, I55=G3

¢ — ¢ r —-—
RLJPQ _ GZJPQ Gip GJ(I”'

Pure holomorphic or antiholomorphic derivatives of G depend
instead also on W, and determine the way SUSY is broken.
In particular, the auxiliary fields F* are given simply by:

Fi = G2 i

Cremmer, Julia, Scherk, Ferrara, Girardello, Van Nieuwenhuizen

Bagger, Witten



The scalars ¢* have a wave function factor given by Z;; = g;;
and a potential, which determines their vev and mass and

controls spontaneous SUSY breaking, of the form:
V = ¢ (G*Gy - 3)

The flatness condition of vanishing cosmological constant is

that V' = 0 on the vacuum and implies that at that point:
gij GiGj =3

The first derivatives of the potential controlling its variations

can be computed as §; = V;V and are given by:
0; = eC (Gz‘ + Gkvin)

The stationarity conditions defining extrema of the potential

are §; = 0 and imply:
Gi+G*"ViGy =0
The two types of second derivatives of the potential controlling

the squared masses can be computed as m; = V;V;V and

mg; = V;V;V, and one easily finds:

'm?]— =e¢ (gz-j + V,G* V;Gr — Rispg Gqu)

L)

m; = e°(ViG; + V;Gi + %G’“{Vz-, V;}G)
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The stability condition is that the 2/N-dimensional squared-
mass matrix is positive definite:

2 o2
mi; mg;
7 )
mé = 27 23 >0
ms; mg;

The only systematic way to determine the constraints that this

implies is to study the mass eigenvalues.

The fermions 1)* split into 1 Goldstino combination ¥ = Gj*
and N — 1 physical combinations '&Z They have wave-function

factor Zz-* = gi5, and their mass is encoded in:
1
.. — 0 (V. 4+ Q.
mij =€ (VZG’J + 3G’ZG’J)
More precisely, the 2IN-dimensional mass matrix is given by
0 'ﬁzz-j

myp=| _
mgy 0

The graviton and gravitino h*¥ and 9* have wave-function
factors Z9 = 1 and Z3/2 = 1, and masses:
m; =0, mg/o = eC/?

The supertrace of the squared mass matrix for the whole theory

is found to be:
STrM? = 2¢°(N — 1 - Ry G'GY)

Cremmer, Ferrara, Girardello, Van Proeyen
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FLATNESS AND STABILITY CONSTRAINTS

It would be interesting to understand better what flatness and
stability imply on G. More precisely, it would be very useful
to derive a condition concerning only K and the geometry,

independently of W and the mechanism of SUSY breaking.

Our strategy is to impose the flatness condition V' =0 and
look for some simpler condition that is only necessary and in

general not sufficient for having stability with m2 > 0.

The crucial point is that all the upper-left submatrices of m3
must also be positive definite. In particular, the N-dimensional

submatrix mzzj should be positive definite:
2
m;; > 0

This condition means that V2* one must have mzzjzizj > 0.
One can then look for a specific 2* that leads to a particularly

simple condition. The right choice is 2* = G*, for which:

mg; G'G? = e%(6 — Rizpg G'G'GPGY)
The corresponding necessary condition mzzj— G'G7 > 0 reduces
then to the extremely simple curvature constraint:
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Note that the special direction 2 = G* considered to derive
mfj— G'GJ > 0 for the scalars corresponds to the direction of

the Goldstino for the fermions, and m;; G*G? = 0.

Summarizing, a stationary point can lead to a satisfactory

situation only if the following two conditions are satisfied:

Flatness: ¢i5 G*'G? = 3 (necessary & sufficient)

Stability: Ry G'G'GPGI < 6 (necessary)

The tensors g;5 and R;j depend only on K and characterize

the geometry. The vectors G* depend also on W and control
the SUSY breaking direction, since G* = Fi/m3/2.

For a given geometry, the flatness condition determines the
overall amount of SUSY breaking, and the stability condition

constrains its direction to lie with a certain cone.

To solve the conditions, one must first determine the direction
that minimizes R;jps G*G7GPGY for fixed gi5 G'GY, and then

check how far apart from it the former stays small enough.

This variational problem is hard to solve in full generality.
However, it is possible to obtain very simple and strong results
for the subclass of models based on spaces that are factorizable

or symmetric.



Notice finally that the flatness and stability conditions refer
to a particular stationary point. It is then extremely useful to

switch to normal coordinates around that point.

These special coordinates are defined in the usual way by a
holomorphic vielbein ez-J and its inverse ef,, which allow to make

the metric tensor trivial.
In these coordinates, the metric and the Riemann tensors are
given by:
Or7 = €1 63: grs
Ryjpg = €] €} €p €g Rrsa
The new variables of the problem are correspondingly:

G' = el

The flatness and stability conditions defining the problem can

then be rewritten simply as:
Flatness: d;7 GG =3
Stability: Ryjpg GTG'GFG? < 6



FACTORIZABLE SPACES

Suppose that M is a product of N 1-dimensional manifolds.
The function K splits then into a sum of terms depending on

a single field, while W can instead still be arbitrary:
K =) K®(®;, o)
k
W =W(®y,...,0,)

This assumption represents a Kahler-invariant constraint on
G, implying that all its mixed holomorphic/antiholomorphic

off-diagonal derivatives vanish.

In this situation, g;7 and R;jp5 become both diagonal and have
only N non-vanishing components. This simplifies enough to

problem to solve it exactly.

The non-vanishing components of the metric are g; = G;,

and those of the curvature tensor are related to these by:
it = Ri gx

where the crucial parameters are the N curvature scalars R;

associated to each complex scalar field:

R — Gizw GG
o2 3
G Gy
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In flat coordinates, the Riemann tensor has then the form:
R,, tfI=J=P=(
RIJPQ —
0 , otherwise.

The two flatness and stability conditions derived before then

simplify to the following expressions:

Flatness: Z 0?2 =

Stability: ZRk @k < %

in terms of the IN real and positive variables

1
0; = —|G!

It is now easy to show that for R; > 0 these constraints admit

solutions only if the following curvature bound is satisfied:
ZRk > -~

The SUSY breaking direction must lie in a certain Goldstino
cone specified by the curvature scalars. Its axis is the preferred

direction minimizing the quartic curvature form:
R
-1
k

Its solid angle grows with the excess of the effective inverse

QY —

curvature 3" Rzl with respect to the threshold 3/2.
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More precisely, the allowed configurations correspond to a

bounded domain in the space of variables:
6 € |6;,6]]

One easily finds:

R'1+\/ R (R (2R ——)
sl Ri<S
SHER \ Xk:RI'c z
1, R'> g
Ril- \/ '1(ZR )(ZRk ——)
s D RI<
67 =1 \ Zk:R;;I s
0, ZR,;l > —
\ k#i

A given ©; can become as large as 1 only if its curvature
satisfies R;! > 3/2, and as low as 0 only if the curvatures of

the remaining fields satisfy 3 Rl > 3/2.

The relevance of a particular chiral multiplet ®; for SUSY
breaking depends thus on the size of the corresponding inverse

curvature R;! with respect to the threshold value 3/2.
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SYMMETRIC SPACES

Suppose that M is a coset space G/H, where G is a group of
global isometries and H a local stability group. The function

K has then some special form, but W can be arbitrary:
K = K@/ (@, 01, ..., &, &)
W =W(®y,...,0,)

The metric and curvature tensors are G-invariant and there
are relations among their components. The problem simplifies

then again sufficiently much to be able to solve it exactly.

For all the possible coset Kahler manifolds, the components

of the metric and the Rieman tensor are somehow related:

R;5,; related to grs
Calabi, Vesentini
The crucial ingredients are in this case the overall scale Ray

of the curvature and the group structure of the space.

In flat coordinates, the Riemann tensor has in these cases a

particularly simple structure of the form:

R;5pg = G-invariant combination

of H-invariant 0's
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Generalized spheres

Suppose that there are N =1 + q fields ®; and

K=—2 1n(1—Z<I>,-<I>;!)

Ran

The corresponding scalar manifold is the Kahlerian analogue

of the Riemannian sphere:

SU(1,1+q)
U(l) x SU(1+q)

M =

The Riemann tensor in normal coordinates takes in this case

the very simple form

R
R;jpg = % (5IJ dpg + 910 5PJ)

The two flatness and stability conditions can then be rewritten

in the simple form

Flatness: ©%2 =1

Stability: Raq et < g

in terms of just 1 real and positive variable

]' 2
@=%@'G’{'

The situation is then as for 1 field with R = Ry:

_ 3
Ra.lll>§
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Unitary Grassmannians

Suppose that there are N = p (p + q) fields ®;, and

2
_ = B,
K -_— 1 111 det( 1) - - @za@ja)

The corresponding scalar manifold is the unitary Grassmannian

manifold

SU(p,p+ q)
U(1) x SU(p) x SU(p + q)

M =

The Riemann tensor in normal coordinates takes in this case

the following form

R
Rraj8pPcgb = % (6178p0 645 05 + 816 5p7 845 6cp)

The two conditions reduce then simply to

Flatness: » 0% =
: 2

Stability: ZRall @% < g
k

in terms of the p real and positive variables
1 . IA
O; = 7 ‘Elgenvaluez- (G’ )‘

The situation is then as for p fields with R; = R,y

3
R} >—
all 2p
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Orthogonal Grassmannians

Suppose that there are N = 2 + q fields ®; and
2
K=——In (1 —2) &0l + ) (<I>z-<I>})2)
Ran i ij
The corresponding scalar manifold is the orthogonal Grass-

mannian manifold
SO(2,2+ q)

M= 50@) x 502+ 9

The Riemann tensor in normal coordinates takes in this case

the form

R,
211 (5Ij5pQ + 5[(2 5P.7 — J7p 5jQ)

RIJPQ =
The two conditions reduce then simply to

Flatness: ('-)3_ +0%2 =1
Stability: Rgn (@i + @i) <

Wl N

in terms of the 2 real and positive variables

B4 = % \l Zk: |GK|2 + \l (Zk: |GK|2)2— ‘Z (GK)z

k

2

The situation is then as for 2 fields with R; = Rap:
3 3
Ralll > Z
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MODULI IN STRING MODELS

In string models, a natural candidate for the hidden sector is
the one containing the neutral moduli controlling the coupling
strength and the compactification geometry, and possibly also
the Wilson lines of the hidden gauge groups.

Kaplunovky, Louis

In the simplest models, the scalar manifold characterizing the
moduli sector is symmetric and sometimes also factorizable.

This is due to the fact that this sector emerges as a projection
of a SUSY theory in 10 dimension.

The scalar manifold is a Kahler submanifold of the space that
would occur by compactifying on a 7. With a hidden gauge
group of rank s, this has the form

SU(1,1) SO(6,6 + 5)

M="Ta) > 50(6) x S0+ s)

Narain

The first factor is associated to the universal dilaton S, and is
always present. The second factor is instead spanned by the
Kahler moduli T3, the complex structure moduli Uy, and the

Wilson lines Z,, and gets in general reduced.
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Minimal moduli space

The simplest situation for each modulus ®; is that

K; = —n; ln(CIJZ- + (I);r)
Witten

This corresponds to the simplest symmetric space:

= SULY
U(1)
The curvature scalar is:
2
Ri==
n;

Unitary enhancement by Wilson lines

Certain moduli ®; can mix to some number g; of related Wilson

lines Xg;, and these 1 + g; fields have then
K= —niln (cbz- Iy X:[iXaz.)
a;
Ellis, Kounnas, Nanopoulos

Ferrara, Kounnas, Porrati

The corresponding scalar manifold is given by:
M= SUA1+q)
YU) x SU(+ ¢)

This is a generalized sphere, which behaves as 1 copy of the

minimal geometry for the flatness and stability constraints,

with curvature scale:

18



Unitary enhancement by extra moduli

A group of p, moduli with the same n, can get enhanced to

a matrix of p? moduli ®;,,. These p? fields have then
KT = — Ny lIl det ((I)Z'r]r + q)IrJT)

Ferrara, Kounnas, Porrati

The corresponding scalar manifold is:

SU (pr, pr)
U(1) x SU(pr) x SU(py)

This is a unitary Grassmannian space, which behaves as p;

Mr=

copies of the minimal geometry for the flatness and stability

constraints, with overall curvature:

2
R, = —

Uz

Unitary enhancement by Wilson lines and extra moduli

A group of pr moduli with the same n; can get enhanced to p?
moduli ®;,;, and also couple to some number p,g, of related

Wilson lines Xj,q,. These pr(pr + gr) fields have then
K, = —n, In det (cb,—,,jr +of, -3 x} arxjra,,)

Ferrara, Kounnas, Porrati

The corresponding scalar manifold is:

SU(praPr + Qr)
U(1) x SU(pr) x SU(pr + gr)

19
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This is again a unitary Grassmannian space, which still behaves
as p, copies of the minimal geometry for the flatness and

stability constraints, with overall curvature scale given by:

2
R, = —

Ny

Orthogonal enhancement by matter

A pair of 2 moduli ¢3, and g9, with common n, can also mix in
more peculiar and synchronized way to a number g, of related
Wilson lines X,,.. The 2 + g, fields that are involved are then
described by:

2
K,=—n.ln ((<I>1r—|— <1>{,,) (<1>2,.+ <1>;r) - Z(Xa,.+ X;fr) )

ar

Derendinger, Kounnas, Petropoulos, Zwirner

The corresponding scalar manifold has in this case a different

structure and is given by:

802,24+ qr)
~ 80(2) x SO(2 + ¢)

This is an orthogonal Grassmannian space, which behaves as

My

2 copies of the minimal geometry for the flatness and stability

constraints, with an overall curvature given by:

2
R, = —

ny
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Flatness and stability constraints

The structure of the flatness and stability constraints for string
moduli spaces is controlled by the minimal factorizable and

symmetric geometry.

All the enhancements that we have analyzed just reshuffle the
relevant combinations of fields, and do not allow to alleviated

the resulting constraints for viable SUSY breaking.

The crucial parameters for these constraints are the numerical

coefficients mn; controlling the curvature associated to each
modulus ®;, with R; = 2/n,.

The necessary condition 34 R;! > 3/2 on the curvatures does

then imply the following restriction on these coefficients n;:

an>3
k

The Goldstino cone is also entirely specified in terms of the
parameters n;, and puts very severe restrictions on the relative

sizes of the auxiliary fields F;. In particular, one finds that:
bounded by above if n; < 3

|Fil -
bounded by below if 3 ;. ng <3
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CONCLUSIONS AND OUTLOOK

e In SUGRA models with only chiral multiplets, there
exist necessary conditions for stability that strongly

constrain the curvature of the geometry and the
SUSY breaking direction.

e The form of these constraints can be worked out in
full detail for factorizable and symmetric geometries,
as those occurring for instance in the moduli sector

of string models.

e |t would be of great interest to generalize this study
to models involving also vector multiplets gauging

isometries of the scalar manifold.
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