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SCALAR MASSES IN SUPERGRAVITY

General structure of soft scalar masses

In a supergravity theory with Kahler potential K and superpotential W,
the scalar fields have a kinetic function and a potential given by:

ZIJ_ = KIj V = eK {KIJ_(WI—I—KIW) (V_Vj—l—KjV_V) — 3|W|2}

At a given vacuum where V;V = 0, susy breaking is controlled by
Fr = —e®/2(W;+ K;W) and m3,, = e®/2|W|. To get a vanishing
cosmological constant V' = 0 one then needs to adjust |F'| = v/3 mg /2.
Finally, the masses are mi]- = ViV;iVand m%, = ViV,;V.

The mass matrix depends on W and K, with susy and non-susy parts.
But along certain particular directions it simplifies and its value is mostly

controlled by the geometry defined by K and less by the form of W.
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Gomez-Reino, Scrucca 2006
Denef, Douglas 2005

The average mass for the sgoldstino defined by the normalized direction
f1 of susy breaking in the hidden sector is given by:

2
mggold — 3<R(f) T g)mg/Z

Average sGoldstino mass in the hidden sector

in terms of the sectional curvature along f!:
R(f) — —RIJ‘PQfIfJfPfQ
A necessary condition for metastability is that m?2__,, should be positive.

sgol
This implies:

2

R(f)>_§

This represents a non-trivial constraint on K, even if W is allowed to be
arbitrary.
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Kaplunovsky, Louis, 1993
Brignole, Ibanez, Munoz 1993

The soft mass induced for the sfermions defined by a normalized direction
v! in the visible sector when susy is broken along a normalized direction
f1 in the hidden sector is given by

1
mgferm — S(R(U7 f) + g)m§/2

Soft sfermion masses in the visible sector

in terms of the bisectional curvature along v! and f!:
R(v, f) = _RIJ‘PQ’UI’UJfPfQ
For positivity and universality, one then needs:

R($, f) > — 3

This represents once again a non-trivial constraint on K, even if W is
allowed to be arbitrary.
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EFFECTIVE THEORY OF CALABI-YAU STRING MODELS

Field content

The minimal chiral multiplets are the dilaton S, the K&hler moduli T and
some matter fields <. They naturally split in visible and hidden sectors.

Effective Kahler potential

The Kahler potential controlling the kinetic energy is always dominated by
a classical contributions of the form:

K = —log (S + 5’) — log [Y(TA—I- T4, @aiﬂ)}
Effective superpotential

The superpotential controlling the potential energy can be dominated by
non-classical contributions, and can thus a priori be quite arbitrary:

W =W(S,T", &%)
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Casas 1996

Dilaton sector domination Brustein, de Alwis 2004
Gomez-Reino, Scrucca 2006

The dilaton belongs to a fixed and factorized manifold SU(1,1)/U (1)
with constant curvature —2. One then finds:

R(f)= -2 R(v,f) =0

This unavoidably leads to a negative m?2 but automatically yields a

sgold’
positive universal m2,___:
2 2 — 2
msgold 4f’n’3/2 Mgterm = m3/2

This means that it is impossible to realize this scenario in a controllable
weak coupling situation.
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Cremmer, Ferrara, Kounnas, Nanopoulos 1983

No-scale sector domination Ellis, Lahanas, Nanopoulos, Tamvakis 1984
Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

The moduli and matter fields span a no-scale manifold. For 1 modulus
and m matter fields, one gets SU(1,1 + m)/(U(1) x SU(1 + m))
with constant curvature —g. One then finds

2 1
R(f):_g R(’Uaf):_g
This implies vanishing m2,,, and vanishing m2._ ., which can be a
good starting point:
m? =0 m? =0

sgold sferm

For 1 + n moduli and m matter fields, one gets a more general M5
with a curvature that is a priori not constant but must behave as in the
previous case along some special direction.

This shows that it may be possible to realize this scenario in a controllable
weak coupling situation, at least in models with several moduli.
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GEOMETRY OF NO-SCALE MANIFOLDS

General no-scale manifolds

A general no-scale manifold spanned by moduli and matter fields fields
Z' = T4, &= is described by a Kahler potential of the form

K=—logY(J?) J*=T"4+T"+ N*(®*®°)

The real functions N4 are arbitrary, while the real function Y must be
homogeneous of degree three in the variables J4. This implies that:

K'=-6,J" K'K;=3

As a consequence, the geometry of such spaces has a restricted form
along the special direction k* = —%K"' In the hidden sector and any
direction v* in the visible sector.
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Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008
Farquet, Scrucca 2012

Geometry
The metric, Chistoffel symbol and Riemann tensor are found to be:

i =YY+ Y2Y,Y;

g
e T Y 7YY — Y (girY; + 955 Y5)

Lk = -Y'Y;
Rispg = 9i79pa + 9ig9p7 — Y " Yizpg — Y ?YipsY °55

Along the special directions k* and v* one then finds:
gis k'K = 1 .
T, kR = —
13k \/g
Rijpq k'K kPET = g R;

This implies that

QO | b=



HETEROTIC MODELS

Cecaotti, Ferrara, Girardello 1988
Candelas, de la Ossa 1990
Buchbinder, Ovrut 2003

. _ Paccetti Correia, Schmidt 2008
One finds: Andrey, Scrucca 2011

Y = %dABCtAtBtC

Geometry of the no-scale sector

where

th =J4

JA = TA4 T4 — ¢y 237
The function Y (J#) is homogeneous of degree 3 and also polynomial.
The quantities d 4 g and cg‘ﬁ are defined by integrals of harmonic forms:



ORIENTIFOLD MODELS

Grimm, Louis 2004

Geometry of the no-scale sector Grafia, Grimm, Jockers, Louis 2005
Jockers, Louis 2005

One finds:
2
Y = (%dABCtAtBtC)
where
t, =t,(JP) suchthat d*PCt t, =2J4
JA = TA—l— TA— Cgﬁ(I)a(i)’B

The function Y (J#) is homogeneous of degree 3 but not polynomial.
The quantities d o g and c;;‘ﬂ are defined by integrals of harmonic forms:

dABC:/ wA A wB A W€

X

céﬂ = / i*w? Atr(u, A Ug)
C
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CANONICAL PARAMETRIZATION

_ Gunaydin, Sierra, Townsend 1984
Canonical frame  cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, de Wit, Girardello 1985
Farquet, Scrucca 2012

At any reference point corresponding to T4 # 0 and ®* = 0, one may
switch to a canonical parametrization where

TO;? T°=0 &*=0

One may moreover require that g;; = d;; and Y = 1, by a further linear
field redefinition and a Kahler transformation.

In this new frame, T, T® and &< correspond to the volume modulus,
cycle moduli and suitably rotated matter fields, and one finds:

2 1 :
dgoo = 3 dooq =0 dogp = /3 O dgpe = GENEriC
0 1 a
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GEOMETRY IN THE CANONICAL FRAME

Metric

The metric is by construction trivial:

doo — 1 9ab — 5ab
9dap — 5(1,8

Christoffel symbol

The Christoffel symbol is found to be identical in heterotic and orientifold
models and reads:

2
FOO(_) — _ﬁ FOCLE — _ﬁéab Fabé — _dabc
1
FOaB — _ﬁda,ﬂ Faaé — —CZB
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Riemann tensor Andrey, Scrucca 2011

Farquet, Scrucca 2012
The Riemann tensor for heterotic and orientifold models is instead:

2 2 1

RO(_)O(_) — g RO(_)aE — g ab RaEc(_) — ﬁdabc R abed — (a3 + a’)abcd
1 1 3

Ra,@O(_) — g3 apB RaBaE — _(y + b)a,@ab Ra,@OE — 7§ a3
1

Rofys = 5 (0apdys + 0asdyp) + capcis + Cashp
In terms of the following combinations of parameters:
1 1
Aobed — o <dabrdrcd+dadr rbc_l_dacrdrbd) _ g( ab50d+5ad5bc+5a05bd)

2
Labed — <dabr drcd -I_ dadr rbe dacr drbd) + g <5ab50d + 5ad5bc - 5ac(sbd)

b

ba,@ab — 5 {Ca7 c }a,@ 35ab5 _dabrcg,ﬂ
1 b

YaBab — 5 [Ca? c }a,@ 35ab(s T _dabr a3
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Cremmer, Kounnas, Van Proeyen, Derendinger, Ferrara, de Wit, Girardello 1985

Coset spaces Farquet, Scrucca 2012
The space is symmetric, with a covariantly constant Riemann tensor,

whenever:
Aobed = 0 ba,@ab =0

There is also another mild algebraic condition on the matrices cg, 3, but it
IS essentially automatically satisfied whenever these form an algebra.

D’Auria, Ferrara, Trigiante 2004
Farquet, Scrucca 2012

The manifolds arising in the heterotic and orientifold models based on the
same Calabi-Yau space coincide if and only if:

Degeneracy of heterotic and orientifold models

upea =0 bygep = arbitrary
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AVERAGE SGOLDSTINO MASS

Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

Sectional curvature Farquet, Scrucca 2012

. - 2 . ,i.
The sectional curvature controlling mg, 4 Is, for real f*:

R(f) = —2 % a(f) +4b(f) — 26°(f) w"(f)
where
a(f) = aopea FAFFFT B(F) = baga, FAFOFSP
() = T I P+ dae S'F + i £OF°
Metastability and the lightest scalar
The condition R(f) > — 2 for metastability implies:
+a(f)>0 or b(f)>0

The lightest scalar then has mi, ;. < max {0, (£a)up, 2bup } M3 /5.
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SOFT SFERMION MASSES

Andrey, Scrucca 2011
Farquet, Scrucca 2012

is, for real f* and v*:

Bisectional curvature

The bisectional curvature controlllng m?

sferm

R(’U, f) — _§ + b(va f) — Ca(v)wa(f)

where
b(’U, .f) — ba,@abv vﬁfafb
c(v) = chpv 0  W(f) = = fU0 4 Jdap fOLC + chpfLP

73

Positivity, universality and global symmetries

The condition R(9, f) > — 3 for positivity and universality calls for:
w*(f) =0 and b(p,f)>0

A set of global symmetries might explain the first of these conditions.
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CONCLUSIONS

® The scalar geometry in Calabi-Yau string models is controlled by
two kinds of parameters a ;.4 and b, g, related to the deviations
from coset situations in the moduli and matter sectors.

® Heterotic and orientifold models lead to dual geometries, which
coincide in symmetric situations with a,;.; = 0 and b, z,, = 0,
but also in non-symmetric cases with a,;.q = 0 but b, 5,, 7 0.

® The properties of the sgoldstino and sfermion masses are directly
linked to the parameters a,,;., but b, 5., and this allows to study
the possibilities of achieving metastability and universality.



