SUSY BREAKING IN EXTRA DIMENSIONS

Claudio Scrucca

CERN

- Mechanisms for the transmission of SUSY breaking.
 Generic problems and possible solutions.
- Geometrical sequestering through extra dimensions.
 Soft masses and relevance of quantum corrections.
- Brane worlds from orbifold models.
 Microscopic and low energy effective theories.
 Loop corrections and SUSY cancellations.
- Radius-dependent loop effects in sequestered models.
 Universal correction to soft masses.
- Prototype of viable model.

Rattazzi, Scrucca, Strumia (hep-th/0305184)

SUSY BREAKING

The standard scenario is that SUSY breaking occurs at a scale M in a hidden sector and is transmitted to the visible sector through some interactions, generating soft breaking terms.

There are two main delicate points for phenomenology:

- ullet Sflavour: m_0^2 must be positive and nearly universal.
- Shierarchy: must have $\mu \sim m_0 \sim m_{1/2} \ll \Lambda_{\rm UV}$.

Gauge mediation

SUSY breaking at $M < M_{
m M}$ mediated by gauge interactions:

•
$$m_{1/2} \sim \frac{g^2}{16\pi^2} \frac{M^2}{M_M}$$
, $m_0^2 \sim \Big(\frac{g^2}{16\pi^2}\Big)^2 \Big(\frac{M^2}{M_M}\Big)^2$.

- m_0^2 universal $(M_{
 m F}\gg M_M)$ and positive.
- $\mu \sim M_{
 m M}$ from interactions.

Gravity mediation

SUSY breaking at $M \ll M_{\rm P}$ mediated by gravity interactions:

•
$$m_{1/2}, m_{3/2} \sim \frac{M^2}{M_{\rm P}}, m_0^2 \sim \left(\frac{M^2}{M_{\rm P}}\right)^2$$
.

- m_0^2 generic $(M_{\rm F} \sim M_{\rm P})$.
- $\mu \sim \frac{M^2}{M_{\rm P}}$ from interactions.

Symmetries

To naturally solve both problems, one can try to introduce new symmetries. Main options:

- Gauge mediation + complications for Shierarchy.
 No simple and compelling model so far.
- Gravity mediation + constraints for Sflavour. Difficult to forbid mixing of the two sectors at M_P .

Geometry

An interesting possibility, natural in string theory, is to separate the visible and the hidden sectors along an extra dimension. This framework has very peculiar characteristics going beyond symmetries:

- Geometric distinction between visible sector, hidden sector, and mediating interactions.
- New physical scale $M_{
 m C}$ acting as cut-off for the mixing between the two sectors.

GEOMETRICAL SEQUESTERING IN SUGRA

Consider a general SUGRA theory with:

Visible: $\Phi_0 = (\phi_0, \chi_0; F_0), V_0 = (A_0^{\mu}, \lambda_0; D_0).$

Hidden: $\Phi_{\pi}=(\phi_{\pi},\chi_{\pi};F_{\pi})$, $V_{\pi}=(A^{\mu}_{\pi},\lambda_{\pi};D_{\pi})$.

Interactions: $C=(e_{\mu}^a,\psi_{\mu};a_{\mu},b_{\mu})$, $S=(\phi_S,\psi_S;F_S)$.

After superconformal gauge-fixing, $b_{\mu} = 0$, $\phi_S = 1$, $\psi_S = 0$, and the structure of the matter action reads:

$$egin{aligned} \mathcal{L}_{ ext{mat}} &= \left[\Omega(\Phi,\Phi^\dagger)SS^\dagger
ight]_D + \left[P(\Phi)S^3
ight]_F^\dagger + \left[P(\Phi)S^3
ight]_F^\dagger \ &+ \left[au(\Phi)\mathcal{W}^2
ight]_F + \left[au(\Phi)\mathcal{W}^2
ight]_F^\dagger \end{aligned}$$

The functions Ω , τW^2 and P have expansions of the type:

$$\Omega = -3M_{\rm P}^2 + \Phi_0 \Phi_0^{\dagger} + \Phi_{\pi} \Phi_{\pi}^{\dagger} + \frac{h}{M_{\rm P}^2} \Phi_0 \Phi_0^{\dagger} \Phi_{\pi} \Phi_{\pi}^{\dagger} + \dots$$

$$P = \Lambda^3 + M_{\pi}^2 \Phi_{\pi} + \dots$$

$$egin{aligned} au \mathcal{W}^2 \ = \ rac{1}{g_0^2} \, \mathcal{W}_0^2 + rac{1}{g_{m{\pi}}^2} \, \mathcal{W}_{m{\pi}}^2 + rac{k}{M_{
m P}} \, \Phi_{m{\pi}} \mathcal{W}_0^2 + \ldots \end{aligned}$$

For a vanishing cosmological constant, we tune $\Lambda^3 \sim M_\pi^2 M_{\rm P}$.

The SUSY breaking VEVs are then:

$$|F_{\pi}| \sim M_{\pi}^2 \; , \; |F_S| \sim rac{\Lambda^3}{M_{
m P}^2} \sim rac{M_{\pi}^2}{M_{
m P}}$$

Classical theory

Leading soft masses at classical level:

$$m_{3/2} \sim |F_S| \sim rac{M_\pi^2}{M_{
m P}} \ m_{1/2} \sim k rac{|F_\pi|}{M_{
m P}} \sim k rac{M_\pi^2}{M_{
m P}} \ m_0^2 \sim h rac{|F_\pi|^2}{M_{
m P}^2} \sim h rac{M_\pi^4}{M_{
m P}^2}$$

Non-universal; separating visible and hidden sectors in an extra dimension, $h=k=0 \Rightarrow$ quantum corrections important.

Quantum corrections

Corrections from gauge loops due to superconformal anomaly:

$$\delta m_{1/2} \sim \frac{g^2}{16\pi^2} |F_S| \sim \frac{g^2}{16\pi^2} \frac{M_\pi^2}{M_P}$$

$$\delta m_0^2 \sim \left(\frac{g^2}{16\pi^2}\right)^2 |F_S|^2 \sim \left(\frac{g^2}{16\pi^2}\right)^2 \frac{M_\pi^4}{M_P^2}$$

Universal; positive for squarks and negative for sleptons!

Randall, Sundrum;

Giudice, Luty, Murayama, Rattazzi

With an extra dimension, corrections from gravity loops are cut off at $M_{\rm C}=(\pi R)^{-1}$ and computable:

$$\delta m_0^2 \sim rac{M_{
m C}^2}{16\pi^2 M_{
m P}^2} rac{|m{F_\pi}|^2}{M_{
m P}^2} \sim rac{M_{
m C}^2}{16\pi^2 M_{
m P}^2} rac{M_{
m T}^4}{M_{
m P}^2}$$

Universal; positive or negative ?

Gauge and gravitational quantum corrections can compete if (gravity loop at $M_{\rm C}$) \sim (gauge loop)², that is:

$$\frac{M_{\rm C}^2}{16\pi^2 M_{\rm P}^2} \sim \left(\frac{g^2}{16\pi^2}\right)^2 \implies \frac{M_{\rm C}}{M_{\rm P}} \sim \frac{g^2}{4\pi}$$

This is reasonable \Rightarrow possible very interesting hybrid models of SUSY breaking.

Dynamics of extra dimensions

In the 4D effective theory for $E \ll M_{\rm C}$, the dynamics of an extra dimension is described by a chiral multiplet:

Radion: $T = (T, \psi_T; \mathbf{F}_T)$.

The VEV of T controls the radius $(\operatorname{Re} T = \pi R)$, whereas a VEV for F_T gives additional SUSY-breaking effects.

There are various ways to get a satisfactory radion dynamics. F-terms: e.g. strong coupling condensation of bulk gaugino. D-terms: e.g. Casimir energy with localized kinetic terms.

Luty, Sundrum; Ponton, Poppitz

To compute radiative effects involving the radion multiplet, one needs a full 5D supergravity description. All these effects are non-local and therefore finite and insensitive to UV physics.

$S^1/\mathbf{Z_2}$ ORBIFOLD MODELS

The extra dimension is a circle with coordinate $x^5 \in [0, 2\pi]$ and gauged parity $\mathbf{Z_2}: \mathbf{x^5} \to -\mathbf{x^5}$. The radius is $e_5^{\dot{5}} = R$.

The visible and hidden sectors are located at the fixed-points at 0 and π , and have N=1 SUSY with U(1) R-symmetry (bosons: q, fermions: q-1, aux: q-2):

Visible:
$$\Phi_0 = (\phi_0, \chi_0; F_0)$$
, $V_0 = (A_0^{\mu}, \lambda_0; D_0)$.

Hidden:
$$\Phi_{\pi}=(\phi_{\pi},\chi_{\pi};F_{\pi}),\ V_{\pi}=(A^{\mu}_{\pi},\lambda_{\pi};D_{\pi}).$$

The interactions are in the bulk, and have N=2 SUSY with SU(2) R-symmetry (bosons: 1, fermions: 2, aux: 1 or 3):

Gauge:
$$\mathcal{V} = (A_M, \lambda, \Sigma; \vec{X})$$
.

Gravity:
$$\mathcal{M}=(e_M^A,\psi_M,A_M; \vec{V}_M, \vec{t},v_{AB}, \pmb{\lambda}, \pmb{C})$$
, $\mathcal{T}=(\vec{Y},B_{MNP}, \pmb{
ho}; \pmb{N}).$

Bulk and boundary theories: fixed by N=2 and N=1 SUSY. Bulk-boundary couplings: fixed by N=1 SUSY with N=2 bulk multiplets decomposed into N=1 boundary multiplets.

The Lagrangian (with e factored out) has the form:

$$\mathcal{L} = \mathcal{L}_5 + e_5^5 \, \delta(x^5 - 0) \mathcal{L}_{4,0} + e_5^5 \, \delta(x^5 - \pi) \mathcal{L}_{4,\pi}$$

Singularities

Auxiliary fields have a dimensionless propagator and could give divergences in the sums over KK modes with $m_n = n/R$.

In the natural formulation, auxiliary and odd fields mix through $\partial_5 \Rightarrow$ propagators \Box_4/\Box_5 and $1/\Box_5$. Matter couples to auxiliary fields \Rightarrow no singularities.

Making a shift, auxiliary and odd fields can be decoupled \Rightarrow propagators 1 and $1/\Box_5$. Matter couples to odd fields through $\partial_5 \Rightarrow$ singularities cancelled by contact terms proportional to

$$\delta(0) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} 1 = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \frac{p^2 - m_n^2}{p^2 - m_n^2}$$

Gauge interactions

In this case, the off-shell formulation of the bulk theory is simple. The bulk-to-boundary couplings are well understood.

Mirabelli, Peskin

Gravity interactions

In this case, the off-shell formulation is rather involved and has been formulated only recently.

Zucker

The bulk-to-boundary couplings have been only partly studied.

Gherghetta, Riotto

GAUGE INTERACTIONS

The Lagrangian for the N=2 bulk vector mult. \mathcal{V} is $(g_5 \to 1)$:

$$\mathcal{L}_{5} = -\frac{1}{4}F_{MN}^{2} + \frac{i}{2}\bar{\lambda}\partial \lambda + \frac{1}{2}|\partial_{M}\Sigma|^{2} + \frac{1}{2}\vec{X}^{2}$$

The $\mathbf{Z_2}$ parities of $\mathcal V$ are:

V	A_M	λ	\sum	$ec{X}$
+	A_{μ}	λ^1		X^3
_	A_5	λ^2	\sum	$X^{1,2}$

At the fixed-points, the even components of \mathcal{V} form an N=1 vector multiplet $V=(A_{\mu},\lambda^1;\textbf{\textit{D}})$ with

$$D = X^3 - \partial_{\dot{5}} \Sigma$$

The interaction with an N=1 boundary chiral multiplet Φ is:

$$\mathcal{L}_{4}^{\Phi} = |D_{\mu}\phi|^{2} + i\bar{\chi}D\chi + |F|^{2} + |\phi|^{2}D + \dots$$

with

$$D_{\mu} = \partial_{\mu} - iA_{\mu}$$

After integrating out $X^{1,2}$ and F, the total Lagrangian reads:

$$\mathcal{L} = -\frac{1}{4}F_{MN}^{2} + \frac{i}{2}\bar{\lambda}\partial \!\!\!/ \lambda + \frac{1}{2}|\partial_{\mu}\Sigma|^{2} + \frac{1}{2}D^{2}$$
$$+ e_{5}^{5}\delta(x^{5}) \left[|D_{\mu}\phi|^{2} + i\bar{\chi}D\!\!\!/ \chi\right] + \left(\partial_{5}\Sigma + \rho_{5}(x^{5})\right)D + \dots$$

The density which couples to D is given by:

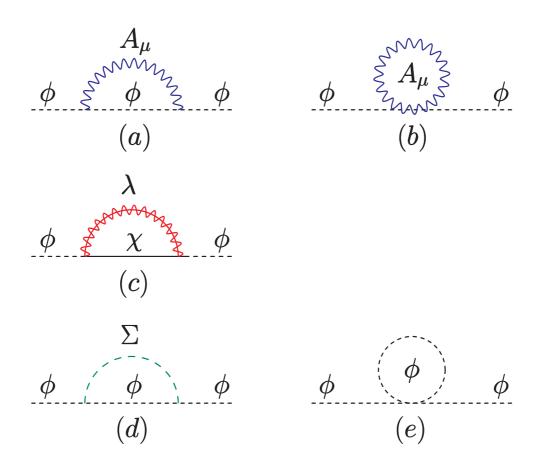
$$\rho_{\dot{5}}(x^5) = e_{\dot{5}}^5 \, \delta(x^5) \, |\phi|^2$$

Redefining D through a shift to complete squares, one gets:

$$\mathcal{L} = -\frac{1}{4}F_{MN}^{2} + \frac{i}{2}\bar{\lambda}\partial \!\!\!/ \lambda + \frac{1}{2}|\partial_{\mu}\Sigma|^{2} + \frac{1}{2}\tilde{D}^{2}$$
$$+ e_{5}^{5}\delta(x^{5})\left[|D_{\mu}\phi|^{2} + i\bar{\chi}D\!\!\!/ \chi\right]$$
$$- \frac{1}{2}\left(\partial_{5}\Sigma + \rho_{5}(x^{5})\right)^{2} + \dots$$

Loop corrections

Consider for example the 1-loop correction to the mass of ϕ . This must vanish by SUSY non-renormalization theorem.



The result is:

$$\Delta m^{2} = \frac{i}{2\pi R} \sum_{\alpha} \sum_{n=-\infty}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{N_{\alpha,n}}{p^{2} - m_{n}^{2}}$$

with

$$egin{array}{lll} N_{a,n} &=& -p^2 & N_{b,n} &=& 4\,p^2 \ N_{c,n} &=& -4\,p^2 & \ N_{d,n} &=& m_n^2 & N_{e,n} &=& p^2 - m_n^2 \end{array}$$

Low-energy theory

The low energy theory for $E \ll M_{\rm C}$ is obtained by integrating out Σ . Neglecting $\partial_{\mu} \sim E$ with respect to $\partial_5 \sim M_{\rm C}$, its equation of motion is:

$$\partial_{\dot{5}} \Big(\partial_{\dot{5}} \Sigma + \rho_{\dot{5}}(x^5) \Big) = 0$$

The solution is

$$\partial_{\dot{5}}\Sigma = -\left(\rho_{\dot{5}}(x^5) - \frac{1}{2\pi R}\rho\right)$$

with

$$ho = \int_0^{2\pi} \!\! dx^5 e_5^{\dot{5}} \,
ho_{\dot{5}}(x^5) = |\phi|^2$$

Substituting back in the Lagrangian and integrating over x^5 , one finds:

$$\mathcal{L}^{\text{eff}} = -\frac{1}{4}F_{\mu\nu}^2 + \frac{i}{2}\bar{\lambda}^1 \partial \!\!\!/ \lambda^1$$
$$+ |D_{\mu}\phi|^2 + i\bar{\chi} D \!\!\!/ \chi - \frac{1}{2}\frac{\rho^2}{2\pi R} + \dots$$

GRAVITY INTERACTIONS

The Lagrangians for the N=2 bulk minimal multiplet \mathcal{M} and tensor multiplet \mathcal{T} are $(M_5 \to 1)$:

$$\begin{split} \mathcal{L}_{5}^{\mathcal{M}} &= -32\,\vec{\boldsymbol{t}}^{2} - \frac{1}{\sqrt{3}}F_{AB}\boldsymbol{v}^{AB} + \bar{\psi}_{M}\vec{\tau}\gamma^{MN}\psi_{N}\vec{\boldsymbol{t}} \\ &- \frac{1}{6\sqrt{3}}\varepsilon^{MNPQR}(A_{M}F_{NP} - \frac{3}{2}\bar{\psi}_{M}\gamma_{N}\psi_{P})F_{QR} \\ &- 4C - 2i\bar{\lambda}\gamma^{M}\psi_{M} \\ \mathcal{L}_{5}^{\mathcal{T}} &= \boldsymbol{Y}^{-1}\bigg(-\frac{1}{4}|\mathcal{D}_{M}\vec{Y}|^{2} + \boldsymbol{W}_{A}^{2} - \frac{i}{2}\bar{\rho}\mathcal{D}\rho - (\boldsymbol{N} + 6\,\vec{\boldsymbol{t}}\vec{\boldsymbol{Y}})^{2} \\ &- \frac{1}{24}\varepsilon^{MNPQR}\vec{\boldsymbol{Y}}(\vec{\boldsymbol{H}}_{MN} - \boldsymbol{Y}^{-2}\mathcal{D}_{M}\vec{\boldsymbol{Y}}\times\mathcal{D}_{N}\vec{\boldsymbol{Y}})B_{PQR} \\ &- \frac{1}{4}\bar{\psi}_{M}\vec{\tau}\gamma^{MNP}\psi_{N}(\vec{\boldsymbol{Y}}\times\mathcal{D}_{P}\vec{\boldsymbol{Y}}) + 4\,\bar{\rho}\,\vec{\tau}\lambda\,\vec{\boldsymbol{Y}}\boldsymbol{Y}\bigg) \\ &+ \boldsymbol{Y}\bigg(-\frac{1}{4}\mathcal{R}(\hat{\omega}) - \frac{i}{2}\bar{\psi}_{M}\gamma^{MNP}\mathcal{D}_{N}\psi_{P} - \frac{1}{6}\hat{F}_{MN}^{2} \\ &+ 20\,\vec{\boldsymbol{t}}^{2} + \boldsymbol{v}_{AB}^{2} - \frac{i}{2}\bar{\psi}_{A}\psi_{B}\boldsymbol{v}^{AB} - \bar{\psi}_{M}\vec{\tau}\,\gamma^{MN}\psi_{N}\,\vec{\boldsymbol{t}} \\ &- \frac{i}{4\sqrt{3}}\bar{\psi}_{P}\gamma^{MNPQ}\psi_{Q}\hat{F}_{MN} + 4C + 2i\bar{\lambda}\gamma^{M}\psi_{M}\bigg) \\ &+ \rho\text{-dep. }\boldsymbol{\lambda}\text{-indep.} \end{split}$$

Notation:

$$W^{M} = \frac{1}{12} \epsilon^{MNPQR} \partial_{N} B_{PQR} + \frac{1}{4} \bar{\psi}_{P} \vec{\tau} \gamma^{PMQ} \psi_{Q} \vec{Y}$$

$$\hat{F}_{MN} = \partial_{M} A_{N} - \partial_{N} A_{M} + i(\sqrt{3}/2) \, \bar{\psi}_{M} \psi_{N}$$

$$\vec{H}_{MN} = \mathcal{D}_{M} \vec{V}_{N} - \mathcal{D}_{N} \vec{V}_{M}$$

The derivatives \mathcal{D}_M are $SU(2)_R$ and super-Lorentz covariant. In particular:

$$\mathcal{D}_{M}\vec{Y} = \partial_{M}\vec{Y} + \vec{V}_{M} \times \vec{Y}$$

$$\mathcal{D}_{M}\vec{V}_{N} = D_{M}(\hat{\omega})\vec{V}_{N} + \vec{V}_{M} \times \vec{V}_{N}$$

$$\mathcal{D}_{M}\psi_{N} = D_{M}(\hat{\omega})\psi_{N} - \frac{i}{2}\vec{V}_{M}\vec{\tau}\psi_{N}$$

The $\mathbf{Z_2}$ parities of \mathcal{M} and \mathcal{T} are:

\mathcal{M}	e_M^A	ψ_M	A_M	$ec{t}$	v_{AB}	$ec{V}_M$	λ	C
+	$e^a_\mu, e^{\dot{5}}_5$	ψ^1_μ, ψ^2_5	A_5	$t^{1,2}$	$v_{a\dot{5}}$	$V_{\mu}^3, V_5^{1,2}$	λ^1	C
	$e^{\dot{5}}_{\mu},e^a_5$	ψ_{μ}^2, ψ_5^1	A_{μ}	t^3	v_{ab}	$V_{\mu}^{1,2}, V_{5}^{3}$	λ^2	

\mathcal{T}	$ec{Y}$	B_{MNP}	ho	N
+	$Y^{1,2}$	$B_{\mu u ho}$	$ ho^1$	N
_	Y^3	$B_{\mu u 5}$	$ ho^2$	

At the fixed-points, the even components of ${\cal M}$ form an N=1 intermediate multiplet $I=(e_\mu^a,\psi_\mu^1;a_\mu,b_a,t^2+it^1,\lambda^1,S)$ with

$$egin{align} m{S} &= m{C} + rac{1}{2} e_5^5 ar{m{\lambda}}^1 \psi_5^2 - rac{1}{2} \mathcal{D}_{\dot{5}} \, m{t}^3 \ m{a}_{\mu} &= -rac{1}{2} \Big(m{V}_{\mu}^3 + 4 \, m{v}_{\mu \dot{5}} \Big) - rac{2}{\sqrt{3}} \, e_{\dot{5}}^5 \, \widehat{F}_{\mu 5} \ m{b}_{a} &= m{v}_{a \dot{5}} \ \end{pmatrix}$$

plus an N=1 chiral mult. $T=(\pi e_5^{\dot 5}+i(2\pi/\!\sqrt{3})A_5,\pi\psi_5^2;{\pmb F}_T)$ with $q_T=0$ and

$$F_T = \pi \left[V_5^1 - 4 e_5^{\dot{5}} t^2 \right] + i \pi \left[V_5^2 + 4 e_5^{\dot{5}} t^1 \right]$$

Similarly, the even components of ${\cal T}$ form an N=1 chiral multiplet $S=(Y^2+iY^1, \rho; F_S)$ with $q_S=2$ and

$$F_S = \left[-2N + \mathcal{D}_{\dot{5}}Y^3 \right] + i \left[-2W_{\dot{5}} + 12(Y^2t^1 - Y^1t^2) \right]$$

After gauge-fixing: I conformal gravity multiplet, $S^{1/3}$ chiral compensator multiplet, T radion chiral multiplet.

The Lagrangians for an N=1 boundary chiral multiplet Φ and vector multiplet V with $q_{\Phi}=2/3$ and $q_{V}=0$ are:

$$\mathcal{L}_{4}^{\Phi} = |\mathcal{D}_{\mu}\phi|^{2} + i\bar{\chi}\mathcal{D}\chi + |F - 4\phi(t^{2} - it^{1})|^{2}$$

$$+ \frac{1}{6}|\phi|^{2}(\mathcal{R} + 2i\bar{\psi}_{\mu}^{1}\gamma^{\mu\nu\rho}D_{\nu}\psi_{\rho}^{1}) + \cdots$$

$$\mathcal{L}_{4}^{V} = -\frac{1}{4}G_{\mu\nu}^{2} + i\bar{\lambda}\mathcal{D}\lambda + \frac{1}{2}D^{2} + \cdots$$

The chiral $U(1)_R$ -covariant derivatives are given by

$$\mathcal{D}_{\mu} = D_{\mu} + i \, q \, \left(\mathbf{a}_{\mu} + 3 \, \mathbf{b}_{\mu} \right) (i \gamma^{\dot{5}})^{F}$$

with

$$q_{\phi} = 2/3 \qquad q_{\chi} = -1/3$$

$$q_{A_{\mu}} = 0 \qquad q_{\lambda} = -1$$

The only non-trivial auxiliary field dependence in the boundary Lagrangian is through $a_{\mu} + 3b_{\mu}$. All the other auxiliary fields can be integrated out through their equations of motion.

The fields C and λ act as Lagrangian multipliers and enforce the contraints Y=1 and $\rho=0$. After gauge-fixing $\vec{Y}=(0,1,0)^T$, the remaining decoupled auxiliary fields can be integrated out, keeping only the coupled combination:

$$V_{\mu} = -2(\mathbf{a}_{\mu} + 3\mathbf{b}_{\mu}) = V_{\mu}^{3} - 2\mathbf{v}_{\mu\dot{5}} - \frac{2}{\sqrt{3}}e_{\dot{5}}^{5}\widehat{F}_{\mu 5}$$

The resulting Lagrangian is:

$$\mathcal{L} = \frac{1}{6} \Omega_{\dot{5}}(x^{5}) \left[\mathcal{R} + 2i \bar{\psi}_{M} \gamma^{MNP} D_{N} \psi_{P} + \frac{2}{3} V_{\mu}^{2} \right] - \frac{1}{4} \hat{F}_{\mu\nu}^{2}$$

$$+ e_{\dot{5}}^{5} \delta(x^{5}) \left[|\partial_{\mu} \phi|^{2} + i \bar{\chi} D \chi - \frac{1}{4} G_{\mu\nu}^{2} + i \bar{\lambda} D \lambda \right]$$

$$+ \frac{1}{\sqrt{3}} \left(\partial_{\dot{5}} A_{\mu} + \frac{1}{\sqrt{3}} J_{\mu \dot{5}}(x^{5}) \right) V^{\mu} + \cdots$$

The Kähler kinetic function is defined as

$$\Omega_{\dot{5}}(x^5) = -\frac{3}{2} + e_{\dot{5}}^5 \, \delta(x^5) |\phi|^2$$

The current which couples to V_{μ} is the sum of

$$\begin{split} J^{\Phi}_{\mu\dot{5}}(x^5) \; &=\; e^5_{\dot{5}}\,\delta(x^5) \Big[i (\phi^* \partial_\mu \phi - \text{c.c.}) - \frac{i}{2} \bar{\chi} \gamma_\mu \gamma^{\dot{5}} \chi + \cdots \Big] \\ J^V_{\mu\dot{5}}(x^5) \; &=\; e^5_{\dot{5}}\,\delta(x^5) \Big[-\frac{3i}{2} \bar{\psi} \gamma_\mu \gamma^{\dot{5}} \psi + \cdots \Big] \\ J^T_{\mu\dot{5}}(x^5) \; &=\; -\sqrt{3}\,e^5_{\dot{5}}\,\partial_\mu A_5 + \cdots \end{split}$$

Note that:

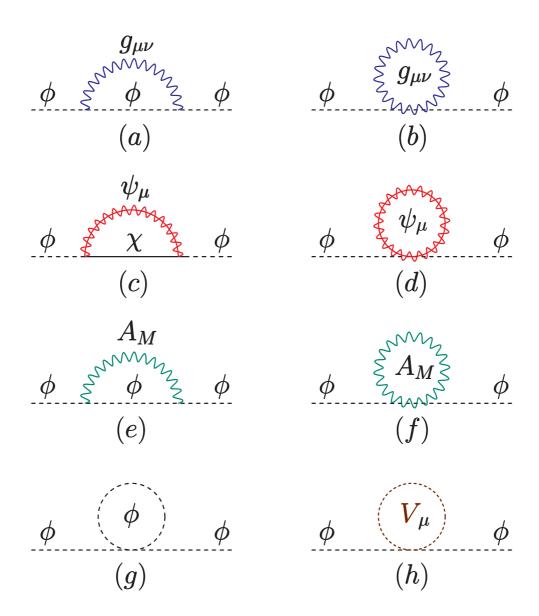
$$\partial_{\dot{5}}A_{\mu} + \frac{1}{\sqrt{3}}J_{\mu\dot{5}}^{T}(x^{5}) = -e_{\dot{5}}^{5}\widehat{F}_{\mu 5}$$

Redefining V_{μ} through a shift to complete the squares, one finds finally:

$$\mathcal{L} = \frac{1}{6} \Omega_{\dot{5}}(x^{5}) \Big[\mathcal{R} + 2i \bar{\psi}_{M} \gamma^{MNP} D_{N} \psi_{P} + \frac{2}{3} \tilde{V}_{\mu}^{2} \Big] - \frac{1}{4} \hat{F}_{\mu\nu}^{2} + e_{\dot{5}}^{5} \delta(x^{5}) \Big[|\partial_{\mu} \phi|^{2} + i \bar{\chi} D \chi - \frac{1}{4} G_{\mu\nu}^{2} + i \bar{\lambda} D \lambda \Big] - \frac{3}{4 \Omega_{\dot{5}}(x^{5})} \Big(\partial_{\dot{5}} A_{\mu} + \frac{1}{\sqrt{3}} J_{\mu \dot{5}}(x^{5}) \Big)^{2} + \cdots$$

Loop corrections

Consider as before the 1-loop correction to the mass of ϕ , which must vanish by SUSY non-renormalization theorem.



The result is:

$$\Delta m^{2} = \frac{i}{6\pi R} \sum_{\alpha} \sum_{n=-\infty}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{N_{\alpha,n}}{p^{2} - m_{n}^{2}}$$

with

$$N_{a,n} = 0$$
 $N_{b,n} = 5 p^2$ $N_{c,n} = 0$ $N_{d,n} = -8 p^2$ $N_{e,n} = p^2 - m_n^2$ $N_{f,n} = -p^2 + 4 m_n^2$ $N_{g,n} = -p^2 + m_n^2$ $N_{h,n} = 4 p^2 - 4 m_n^2$

Low-energy theory

The low energy theory for $E \ll M_{\rm C}$ is obtained by integrating out A_{μ} . Neglecting $\partial_{\mu} \sim E$ with respect to $\partial_5 \sim M_{\rm C}$, its equation of motion is:

$$\partial_{\dot{5}} \left[\frac{1}{\Omega_{\dot{5}}(x^5)} \left(\partial_{\dot{5}} A_{\mu} + \frac{1}{\sqrt{3}} J_{\mu \dot{5}}(x^5) \right) \right] = 0$$

The solution is

$$\partial_{\dot{5}}A_{\mu} = -\frac{1}{\sqrt{3}} \left(J_{\mu\dot{5}}(x^5) - \frac{\Omega_{\dot{5}}(x^5)}{\Omega} J_{\mu} \right)$$

with

$$\Omega = \int_0^{2\pi} dx^5 e_5^{\dot{5}} \, \Omega_{\dot{5}}(x^5) = -\frac{3}{2} (T + T^*) + |\phi|^2$$

and

Substituting back in the Lagrangian and integrating over x^5 , one finds:

$$\mathcal{L}^{\text{eff}} = \frac{1}{6} \Omega \left[\mathcal{R} + 2i \bar{\psi}_{\mu}^{1} \gamma^{\mu\nu\rho} D_{\nu} \psi_{\rho}^{1} \right] - \frac{1}{4 \Omega} J_{\mu}^{2}$$

$$+ \Omega_{\phi\phi^{*}} \left[|\partial_{\mu} \phi|^{2} + \bar{\chi} \mathcal{D} \chi \right] + \left[-\frac{1}{4} G_{\mu\nu}^{2} + i \bar{\lambda} \mathcal{D} \lambda \right] + \cdots$$

LOOP EFFECTS IN SEQUESTERED MODELS

A generic sequestered model is defined by:

$$\Omega_{\dot{5}}(x^5) = -\frac{3}{2}M_5^3 + \Omega_0 e_{\dot{5}}^5 \, \delta(x^5 - 0) + \Omega_{\pi} e_{\dot{5}}^5 \, \delta(x^5 - \pi)$$

We take:

$$\Omega_{0,\pi} = -3L_{0,\pi}M_5^3 + \Phi_{0,\pi}\Phi_{0,\pi}^{\dagger}$$

The kinetic function of the effective theory is then

$$\Omega(\Omega_{0,\pi},T+T^{\dagger}) = -\frac{3}{2}(T+T^{\dagger})M_5^3 + \Omega_0 + \Omega_{\pi}$$

and

$$M_{\rm P}^2 = \left(\operatorname{Re}T + L_0 + L_{\pi}\right)M_5^3$$

The 1-loop correction to this has a divergent T-indep. (local) plus a finite T-dep. (non-local) parts. The relevant part is:

$$\Delta\Omega(\Omega_{0,\pi}, T + T^{\dagger}) = \sum_{m,n=0}^{\infty} \frac{c_{m,n} \Omega_0^m \Omega_{\pi}^n}{M_5^{3(m+n)} (T + T^{\dagger})^{2+m+n}}$$

The corresponding component effective action is $\Delta\Gamma = \left[\Delta\Omega\right]_D$. In particular, when $F_\pi \neq 0$ and/or $F_T \neq 0$:

Vac. energy:
$$c_{m,n}L_0^mL_{\pi}^n|\pmb{F}_T|^2$$
, $c_{m,n}L_0^mL_{\pi}^{n-1}|\pmb{F}_{\pi}|^2$

Soft masses:
$$c_{m,n}L_0^{m-1}L_{\pi}^n|F_T|^2$$
, $c_{m,n}L_0^{m-1}L_{\pi}^{n-1}|F_{\pi}|^2$

To derive the $c_{m,n}$ s, one chooses one operator for each superspace term in $\Delta\Omega$, and computes its induced coefficient.

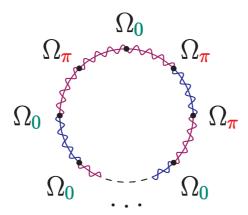
Strategy

Crucial trick: use non-SUSY background with $F_T=2\pi\epsilon\neq 0$. This corresponds to a $SU(2)_R$ Wilson line, and can be achieved in two ways: SS twist or constant boundary superpotentials. Only the gravitino KK modes are affected: $m_n=(n+\epsilon)/R$. von Gersdorff, Quiros, Riotto; Bagger, Feruglio, Zwirner

This leads to huge simplifications:

- One can use operators with scalars and no derivatives
 ⇒ Few diagrams, mostly with quartic couplings.
- The amplitudes must vanish in the SUSY limit $\epsilon \to 0$ \Rightarrow All the information is in the gravitino diagrams.

In the end, there is a single type of diagram for each $c_{m,n}$:



The set of operator that we want to compute is given by the effective potential $\Delta V = -\partial_T \partial_{T^*} \Delta \Omega |F_T|^2$, function of R and

$$\alpha_{0,\pi} = \frac{\Omega_{0,\pi}}{6\pi R M_5^3} = -\frac{L_{0,\pi}}{2\pi R} + \frac{|\phi_{0,\pi}|^2}{6\pi R M_5^3} = -r_{0,\pi} + |\varphi_{0,\pi}|^2$$

The precise expression of the operators to be matched is:

$$\Delta V(\alpha_{0,\pi}, R, \epsilon) = \frac{-\epsilon^2}{4\pi^2 R^4} \sum_{m,n=0}^{\infty} c_{m,n} (2+m+n) (3+m+n) \alpha_0^m \alpha_{\pi}^n$$

Computation

The gravitino contribution to the full effective potential is:

$$\Delta W_{\psi}(\alpha_{0,\pi}, R, \epsilon) = -\frac{1}{2} \ln \det \left[\Box_5 + \left(\alpha_0 \, \delta_0 + \alpha_{\pi} \, \delta_{\pi} \right) \Box_4 \right]$$

The $lpha_{0,\pi}$ -independent part is

$$\ln \det \left[\Box_5\right] = 8 \operatorname{Re} \int \frac{d^4p}{(2\pi)^4} \ln \left[F(pR,\epsilon)\right]$$

with

$$F(pR,\epsilon) = \prod_{n=-\infty}^{+\infty} \Bigl(p+i\,m_n\Bigr) = (\mathsf{Div.}) \sinh \pi (pR+i\epsilon)$$

The $\alpha_{0,\pi}$ -dependent part is

$$\ln \det \left[1 + \left(\alpha_0 \, \delta_0 + \alpha_{\pi} \, \delta_{\pi} \right) \frac{\square_4}{\square_5} \right]$$

$$= 8 \operatorname{Re} \int \frac{d^4 p}{(2\pi)^4} \ln \left| \begin{array}{ccc} 1 - p \alpha_0 G_0(pR, \epsilon) & -p \alpha_{\pi} G_{\pi}(pR, \epsilon) \\ -p \alpha_0 G_{\pi}(pR, \epsilon) & 1 - p \alpha_{\pi} G_0(pR, \epsilon) \end{array} \right|$$

with

$$G_0(pR,\epsilon) = \frac{1}{2\pi R} \sum_{n=-\infty}^{+\infty} \frac{e^{i0n}}{p+i m_n} = \frac{1}{2} \coth \pi (pR+i\epsilon)$$

$$G_{\pi}(pR,\epsilon) = \frac{1}{2\pi R} \sum_{n=-\infty}^{+\infty} \frac{e^{i\pi n}}{p+i m_n} = \frac{1}{2} \operatorname{csch} \pi(pR+i\epsilon)$$

Putting these two pieces together and simplifying one finds:

$$\Delta W_{\psi}(\alpha_{0,\pi}, R, \epsilon)$$

$$= \text{Div.} - \frac{1}{2\pi^6 R^4} \text{Re} \int_0^\infty \!\!\! dl \, l^3 \ln \left| 1 - \frac{1 + \alpha_0 l}{1 - \alpha_0 l} \frac{1 + \alpha_\pi l}{1 - \alpha_\pi l} e^{-2(l + i\pi\epsilon)} \right|$$

The $\mathcal{O}(\epsilon^0)$ part cancels the contributions of other bulk fields. The $\mathcal{O}(\epsilon^2)$ part yields the relevant potential ΔV that we need. The $\mathcal{O}(\epsilon^{2n})$ terms map to D-terms with superderivatives.

Expanding $\Delta W_{\psi}|_{\epsilon^2}$ in powers of $\alpha_{0,\pi}$ and comparing with the general expression for ΔV , one extracts the coefficients $c_{m,n}$. The first few ones are:

$$c_{0,0} = \frac{\zeta(3)}{4\pi^2}$$
, $c_{1,0} = c_{0,1} = \frac{\zeta(3)}{6\pi^2}$, $c_{1,1} = \frac{\zeta(3)}{6\pi^2}$, ...

An independent and direct computation exploiting supergraph techniques leads to the same results.

Buchbinder et al.

Since we know the exact expression $\Delta W_{\psi}|_{\epsilon^2}$ for ΔV , we can do better and find the exact expression for $\Delta\Omega$ by solving the differential equation $\Delta V = -\epsilon^2\,\partial_R^2\,\Delta\Omega$. The result is:

$$\Delta\Omega(\Omega_{0,\pi},T+T^{\dagger})$$

$$= -\frac{9}{\pi^2} M_5^2 \int_0^\infty \!\!\! dx \, x \ln \left[1 - \frac{1 + \frac{\Omega_0}{M_5^2} x}{1 - \frac{\Omega_0}{M_5^2} x} \frac{1 + \frac{\Omega_\pi}{M_5^2} x}{1 - \frac{\Omega_\pi}{M_5^2} x} e^{-6(T + T^\dagger)M_5 x} \right]$$

This shows in particular that all the $c_{m,n}$ s are positive.

Results

The results for the vacuum energy and soft masses are:

$$\delta \mathcal{E}^{4} = -\frac{\zeta(3)}{16\pi^{2}} \left[\frac{1}{3} f_{\pi} \frac{|F_{\pi}|^{2}}{M_{4}^{2}} M_{C}^{2} + \frac{3}{2} f_{T} |F_{T}|^{2} M_{C}^{4} \right]$$

$$\delta m_{0}^{2} = -\frac{\zeta(3) M_{C}^{2}}{16\pi^{2} M_{4}^{2}} \left[\frac{1}{6} g_{\pi} \frac{|F_{\pi}|^{2}}{M_{4}^{2}} + g_{T} |F_{T}|^{2} M_{C}^{2} \right]$$

These depend on the parameters $r_{0,\pi}$ through

$$M_4^2 = \frac{1}{1 + r_0 + r_{\pi}} M_{
m P}^2$$

and the normalized functions

$$\begin{split} f_{\pi} &= \frac{4}{3\zeta(3)} \int_{0}^{\infty} dl \, l^{2} e^{-2l} \, \frac{(1-\eta_{0}l)/(1+r_{\pi}l)}{[(1+\eta_{0}l)(1+r_{\pi}l)-(1-\eta_{0}l)(1-r_{\pi}l)e^{-2l}]} \\ f_{T} &= \frac{2}{3\zeta(3)} \int_{0}^{\infty} dl \, l^{3} e^{-2l} \, \frac{(1-r_{0}^{2}l^{2})(1-r_{\pi}^{2}l^{2})}{[(1+\eta_{0}l)(1+r_{\pi}l)-(1-\eta_{0}l)(1-r_{\pi}l)e^{-2l}]^{2}} \\ g_{\pi} &= \frac{8}{3\zeta(3)} \int_{0}^{\infty} dl \, l^{3} e^{-2l} \, \frac{1}{[(1+\eta_{0}l)(1+r_{\pi}l)-(1-\eta_{0}l)(1-r_{\pi}l)e^{-2l}]^{2}} \\ g_{T} &= \frac{4}{3\zeta(3)} \int_{0}^{\infty} dl \, l^{4} e^{-2l} \, \frac{(1-r_{\pi}^{2}l^{2})[(1+\eta_{0}l)(1+r_{\pi}l)+(1-\eta_{0}l)(1-r_{\pi}l)e^{-2l}]}{[(1+\eta_{0}l)(1+r_{\pi}l)-(1-\eta_{0}l)(1-r_{\pi}l)e^{-2l}]^{3}} \end{split}$$

For $r_{0,\pi}=0$, $\delta \mathcal{E}^4$ and δm_0^2 are negative \Rightarrow not interesting. For $r_{0,\pi}\neq 0$, $\delta \mathcal{E}^4$ and δm_0^2 can have any sign \Rightarrow interesting.

Three main cases for the dependence on R at fixed $L_{0,\pi}$:

- $L_0=0$, $L_\pi=0$: $\delta \mathcal{E}^4$ unstable, $\delta m_0^2 \sim -(\delta \mathcal{E}^4)'$.
- $L_0 = 0$, $L_{\pi} \neq 0$: $\delta \mathcal{E}^4$ stable, $\delta m_0^2 \sim -(\delta \mathcal{E}^4)'$.
- $L_0 \neq 0$, $L_{\pi} \neq 0$: $\delta \mathcal{E}^4$ metastable, $\delta m_0^2 \not\sim -(\delta \mathcal{E}^4)'$.

PROTOTYPE MODEL

The goal is to achieve values of T, F_T , F_π , F_S such that:

- $\mathcal{E}^4 \sim 0 \Rightarrow$ tuning of P.
- $\delta^{\rm grav} m_0^2 > 0 \Rightarrow {\rm needs} \ r_{\pi} \neq 0$.
- $\delta^{\rm grav} m_0^2 \sim \delta^{\rm gau} m_0^2 \Rightarrow$ indep. stab. mech.

One can try to combine localized kinetic terms with gaugino condensation, with:

$$\Omega = -\frac{3}{2}(T + T^{\dagger})M_5^3 + \Phi_0 \Phi_0^{\dagger} - 3L_{\pi} M_5^3 + \Phi_{\pi} \Phi_{\pi}^{\dagger}$$

$$P = \Lambda_{\pi}^3 + M_{\pi}^2 \Phi_{\pi} + \Lambda^3 e^{-\alpha \Lambda T}$$

To have $\mathcal{E}^4 \sim 0$ we need $\Lambda_\pi^3 \sim M_\pi^2 M_{\rm P}$. We then get:

$$M_{\rm C} \sim \alpha \Lambda \; , \; \; F_T \sim \frac{M_{\pi}^2}{\Lambda M_{\rm P}} \; , \; \; F_S \sim \frac{M_{\pi}^2}{M_{\rm P}} \; , \; \; F_{\pi} \sim M_{\pi}^2$$

To have $r_{\pi} \gg 1$ we need $L_{\pi} \gg (\alpha \Lambda)^{-1}$. In this limit:

$$f_{\pi}, g_{\pi} \to \frac{2\ln(2)}{3\zeta(3)} \frac{1}{r_{\pi}^2}, \quad f_T, g_T \to -\frac{3}{4}$$

 $\delta^{\rm grav} m_0^2$ becomes positive for $r_\pi \sim \alpha^{-1}$; OK with $\alpha \ll 1$. $\delta^{\rm grav} m_0^2$ is of the same order of magnitude as $\delta^{\rm gau} m_0^2$ if:

$$\alpha^2 \frac{M_{\mathrm{C}}^2}{16\pi^2 M_{\mathrm{A}}^2} \sim \left(\frac{g^2}{16\pi^2}\right)^2 \Rightarrow \frac{M_{\mathrm{C}}}{M_{\mathrm{P}}} \sim \frac{g^2}{4\pi\sqrt{\alpha}}$$

OUTLOOK

- Bulk-to-boundary couplings now well understood and full theory under controll.
- Radius-dependent quantum corrections to sfermion squared masses generally negative, but can become positive with sizable localized kinetic terms.
- Sequestered models can work, but radion dynamics plays a crucial.