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• Standard model of particle physics and beyond.

Need for new physics at higher energy scales.

• Theoretical prejudices suggesting extra dimensions.

Number and size of new dimensions.

• Possible scenarios for an ultimate fundamental theory.

String theories and their peculiarities.
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STANDARD MODEL AND BEYOND

Gauge interactions among elementary particles are described

by a quantum field theory: the SM. This theory has a typical

scale
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F ∼ 300 GeV ⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16⇔ Lew ∼ 10−16 mm

It is well tested for L > 10−15L > 10−15L > 10−15 mm ⇔⇔⇔ E < 100E < 100E < 100 GeV, and the

strength of classical interactions is

• Electromagnetic: g ∼ 1g ∼ 1g ∼ 1.

• Strong: g ∼ 1g ∼ 1g ∼ 1.

• Weak: geff ∼ E/Mewgeff ∼ E/Mewgeff ∼ E/Mew at low EEE; g ∼ 1g ∼ 1g ∼ 1 at high EEE.

Gravitational interactions among macroscopic bodies are in-

stead described by a classical field theory: Einstein’s GR. This

theory has a fundamental scale

Mpl = G
−1

2
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2
N ∼ 1019Mpl = G
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2
N ∼ 1019 GeV ⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32⇔ Lpl ∼ 10−32 mm

It is tested only in the region L > 1L > 1L > 1 mm ⇔⇔⇔ E < 10−13E < 10−13E < 10−13 GeV,

and the strength of interaction is:

• Gravity: geff ∼ E/Mplgeff ∼ E/Mplgeff ∼ E/Mpl at low EEE; g ∼ 1g ∼ 1g ∼ 1 at high EEE ?

There are strong doubts that this description of gravitational

interactions can hold true at the quantum level.
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When all interactions become equally important, a yet more

fundamental quantum theory describing them in a unified way

is supposed to take over.

This suggests that the SM and GR are effective field theories,

giving a satisfactory description of physics only at low enough

energies, E ≪ MeffE ≪ MeffE ≪ Meff. The UV cut-off ΛΛΛ needed to regulate

quantum corrections acquires a physical meaning: Λ ∼ MeffΛ ∼ MeffΛ ∼ Meff.

Hierarchy problem

The classical symmetry breaking scale MewMewMew is destabilized by

large quantum corrections, which naturally drive it to MeffMeffMeff,

unless some parameter is fine-tuned:

Meff ≫ MewMeff ≫ MewMeff ≫ MewMeff ≫ MewMeff ≫ MewMeff ≫ MewMeff ≫ MewMeff ≫ MewMeff ≫ Mew unnatural

In order to stabilize MewMewMew, its seems unavoidable to have new

physics already not much beyond MewMewMew and much before MplMplMpl,

although the SM is renormalizable.

The fundamental scale MplMplMpl is instead related to physics of the

fundamental theory.

Unification

What is the fundamental scale MMM at which the strength of all

interactions becomes comparable ?
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HIGH SCALE SCENARIO
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Mpl
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0

Mew

Mpl

E

SM

Extended SM

Supersymmetry ?
GR

Fundamental theory with M ∼ MplM ∼ MplM ∼ Mpl

Heterotic string theory ?

Nice features:

• Effective couplings unify quite precisely around MplMplMpl.

• Nice properties of the SM natural up to MplMplMpl.

• Neutrino masses of order M 2
ew/MplM 2
ew/MplM 2
ew/Mpl are natural.

Bad features:

• The huge hierarchy Mew/MplMew/MplMew/Mpl is difficult to explain.

Experimental implications

• Heavy superpartners.

• Gravity holds true at short distances.
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EXTRA DIMENSIONS

Presently available candidates for a fundamental theory of par-

ticle physics including gravity all require more dimensions than

what we apparently see.

A possible way out is that our spacetime of the form:

X4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = RnX4+n = X4 × Xn , VXn = Rn

In this setting, long range interactions behave as:
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At L ≫ RL ≫ RL ≫ R, one finds thus effectively a standard Coulomb in-

teraction on X4X4X4 with strength:
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New compact dimensions affect thus physics only for E > R−1E > R−1E > R−1,

and are compatible with experiments if RRR is small enough:

• Gauge interactions: R < 10−15R < 10−15R < 10−15 mm

• Gravity: R < 1R < 1R < 1 mm
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In a fundamental theory with characteristic scale MMM in which

gauge and gravitational interactions feel different numbers n1n1n1

and n2n2n2 of extra dimensions:

G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1G̃gauge ∼ q2M−n1 ⇒⇒⇒⇒⇒⇒⇒⇒⇒ g ∼
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Transverse dimensions felt by gravity but not gauge interac-

tions control therefore their relative effective strength. Gravity

could be weaker than gauge interactions due to flux spreading

through large dimensions with Ri > M−1Ri > M−1Ri > M−1.

In the presence of nnn transverse directions of radius RRR, corre-

sponding to Mc = R−1Mc = R−1Mc = R−1, one finds:
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For n ≥ 2n ≥ 2n ≥ 2, one can make MMM as low as MewMewMew with McMcMc safely

big and approaching MMM :
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LOW SCALE SCENARIO
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Extra dimensions ?

Fundamental theory with M ∼ MewM ∼ MewM ∼ Mew

Type I string theory ?

Nice features:

• No stabilization problem and smaller hierarchy.

Bad features:

• Effective couplings unify only approx. at MewMewMew.

• Specific symmetries must be imposed on the funda-

mental theory.

Experimental implications:

• Exotic physical processes and new heavy particles.

• Gravity modified at short distances.
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STRING MODELS

String theories are characterized only by their fundamental

scale Ms = T
1
2
sMs = T
1
2
sMs = T
1
2
s ⇔⇔⇔ Ls = T

−1
2

sLs = T
−1

2
sLs = T
−1

2
s , and require 101010 dimensions.

One can postulate that spacetime has 444 non-compact and 666

compact dimensions at a scale McMcMc. However, this geometry

should arise dynamically ⇒⇒⇒ McMcMc naturally close to MsMsMs.

The modes occurring in the effective theory are:

• Vibration modes: m ∼
√

n Msm ∼
√

n Msm ∼
√

n Ms.

• KK modes: m ∼ p Mcm ∼ p Mcm ∼ pMc.

• Winding modes: m ∼ q M 2
s /Mcm ∼ q M 2
s /Mcm ∼ q M 2
s /Mc.

Closed strings

Non-localized.

Open strings

Localized end-points.

Unification scenarios

• High scale if neutral ⇔⇔⇔ closed, charged ⇔⇔⇔ closed.

• Any scale if neutral ⇔⇔⇔ closed, charged ⇔⇔⇔ open.
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OUTLOOK

• Extra dimensions should be taken seriously !

• Forthcoming experiments could be exciting ...

• Time to merge bottom-up and top-down views.
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