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1. Introduction

By now, it is well known that both D(irichlet)-branes and O(rientifold)-planes

must have Wess-Zumino (WZ) couplings to Ramond Ramond (RR) fields. These

couplings are required for a consistent cancellation of anomalies, and their general

form is well-known in quite arbitrary backgrounds [1]-[12] (see [13] for effects peculiar

to multiple branes). However, their dependence on the Neveu-Schwarz Neveu-Schwarz

(NSNS) b-field is not completely established, even for a single D-brane, and its rele-

vance has yet to be understood. At leading order in derivatives (i.e. for constant b),

the dependence of the WZ couplings on b is completely fixed by the observation of [14]

that the gauge invariant field strength living on a D-brane is F = F − b/2π, and has

indeed been explicitly verified. On general grounds, one expects that the presence of

torsion (H = db) will modify these couplings, much on the same way as the presence

of curvature does. For instance, it was pointed out in [13] that the restoration of a

T-duality symmetric WZ coupling seems indeed to require a non-trivial dependence

on the torsion, but no investigation has yet been done in this direction.

In this paper, we shall try to deduce the torsion-dependence of WZ couplings by

factorizing one-loop CP-odd amplitudes, along the lines of [10, 12, 15], although here

we will consider only D-branes. More precisely, we will compute the inflow of anomaly

arising from amplitudes with external curvature and torsion vertices. The one-loop

amplitudes in question can be exponentiated, reducing the problem to the evaluation

of a twisted partition function in the odd spin structure. In the case at hand, this

will be the partition function of a supersymmetric σ-model in a curved and contorted

background.

We consider D-branes that are trivially embedded in space-time. Requiring a triv-

ial embedding, that is the usual Neumann (N) or Dirichlet (D) boundary conditions

for the σ-model, puts severe constraints on the possible torsion terms that may ap-

pear. In particular the intrinsic torsion on both the tangent and normal bundle of

D-branes must vanish, but some mixed components of H are still allowed. They give

rise to an antisymmetric part in the so-called second fundamental form defining the

brane embedding in space-time (see the appendix). These are the torsion terms that

will be studied in this paper.

Unfortunately, we will not be able to derive a simple expression for the exact

torsion dependence in the most general gravitational background, which is neverthe-

less implicitly encoded in certain computable one-loop determinants1. However, in

the two particular cases of trivial tangent bundle and trivial normal bundle, we find

that the torsion dependence simply amounts to the standard generalization of the

1Strictly speaking, our results are derived for IIB D-branes but, as in [12], they apply to IIA

D-branes as well.
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curvature two-form in presence of torsion, as suggested in [13]2. Whether or not this

extends to arbitrary backgrounds is not clear.

Due to the limits of our analysis, the results of this paper should be taken as

a first effort to study and understand the torsion dependence of D-brane couplings.

It should also be pointed out that within this approach, non-anomalous torsion-

dependent couplings cannot be detected. A more complete analysis is therefore needed

to better understand these couplings. Also a more direct analysis along the lines of

[9, 11] would be very interesting. Finally, D-branes in presence of torsion can be

efficiently analysed within a different approach in the special case of group manifolds

(see for instance [21] and references therein). This might be another helpful direction

of investigation to better understand D-brane couplings.

2. World-sheet theory

As mentioned in the introduction, we analyse WZ couplings of D-branes by fac-

torizing anomalous one-loop amplitudes in the odd spin-structure. Their torsion

dependence can be studied by considering diagrams that contain both gravitons and

B-fields as external states. In complete analogy to previous cases [10, 12, 15], where

the torsion was set to zero, these amplitudes can be exponentiated. In this way one

extracts directly the polynomial of the inflow of anomaly that is given by the partition

function (in the odd spin-structure) of the resulting σ-model. By factorization, the

WZ couplings responsible for this inflow of anomaly can then be extracted without the

need of implementing the WZ descent procedure, that gives the actual gravitational

or Lorentz anomaly3.

The σ-model in question is the supersymmetric σ-model in presence of a generic

gravitational and torsion background. In superspace, the action is given by

S(Φ) =
1

4

∫
d2x d2θ

[
gMN(Φ)D̄ΦMDΦN − bMN (Φ)(D̄ΦMγ3DΦN )

]
, (2.1)

where ΦM(x, θ) = φM(x) + θ̄ ψM(x) + 1/2 θ̄θ FM(x) denote ten chiral superfields

(M = 0, ..., 9), Dα = ∂/∂ θα − i(/∂ θ)α and D̄α is its complex conjugate. We take the

following conventions for two-dimensional γ-matrices: in terms of Pauli matrices σi,

γ0 = σ2, γ
1 = iσ1, γ

3 = σ3. These satisfy the property γ3γα = ǫαβγ
β, with ǫ01 = +1.

Moreover, it is natural to introduce the following connections

ΓM
PQ =

1

2
gMN (gNP,Q + gNQ,P − gPQ,N) , (2.2)

HM
PQ =

1

2
gMN (bNP,Q + bPQ,N + bQN,P ) , (2.3)

2The simple replacement R → R is known to occur for standard chiral fermions in four dimensions

[16, 17, 18] (see however [19] for a recent controversy), but a similar result in D dimensions has been

obtained only for completely antisymmetric torsion [20].
3See in particular section 2 of [15] for further details.
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and define the corresponding curvatures as

RM
NPQ = ΓM

NQ,P − ΓM
NP,Q + ΓM

RP ΓR
NQ − ΓM

RQ ΓR
NP , (2.4)

GM
NPQ = HM

NQ;P −HM
NP ;Q +HM

RP H
R
NQ −HM

RQ H
R
NP . (2.5)

Commas and semicolons denote the usual derivatives and covariant derivatives, in

terms of the symmetric connection (2.2).

By expanding in θ, θ̄ all the terms in (2.1), and eliminating the auxiliary fields

FM , one gets the following action in components [22]:

S =
1

2

∫
d2x

[
gMN∂αφ

M∂αφN + ǫαβbMN∂αφ
M∂βφ

N + igMN ψ̄
M /̂DψN (2.6)

+
i

2
∂α(bMN ψ̄

Mγαγ3ψN ) +
1

8
RMNPQψ̄

M(1 + γ3)ψP ψ̄N(1 + γ3)ψQ
]

in terms of the generalized covariant derivative

/̂DψM = γα[∂αψ
M + (ΓM

PQ − γ3HM
PQ) ∂αφ

PψQ] , (2.7)

and the generalized Riemann tensor

RMNPQ = RMNPQ +GMNPQ . (2.8)

constructed from ΓM
PQ +HM

PQ [23]. The action (2.6) is invariant under the following

supersymmetry transformations:

δǫφ
M = ǭψM ,

δǫψ
M = −i/∂φM ǫ+

1

2
(ΓM

ABψ̄
AψB +HM

ABψ̄
Aγ3ψB)ǫ . (2.9)

From a σ-model point of view, D-branes are represented as world-sheet boundaries

with suitable Neumann (N) or Dirichlet (D) boundary conditions (b.c.). D-branes in

flat spaces or trivially embedded in curved space satisfy the usual b.c.:

∂σφ
µ(0, τ) = 0 , ∂τφ

i(0, τ) = 0 ,

ψµ
1 (0, τ) = ψµ

2 (0, τ) , ψi
1(0, τ) = −ψi

2(0, τ) , (2.10)

where ψ1 and ψ2 are the two components of the Majorana spinor ψ. Here and through-

out the paper we use greek indices µ, ν, ... = 0, ..., p and latin indices i, j, ... = p+1, ..., 9

to denote respectively N and D directions of a Dp-brane. We now implement the b.c.

(2.10) in the action (2.6) and require, as usual, that all the boundary terms in the

variation of (2.6) vanish. It is a simple although laborious exercise to verify that all

boundary terms vanish if the following constraints on the background are satisfied:

gµi |M = ∂igµν |M= 0 ,

bµν |M = bij |M= ∂i bµj |M= 0 , (2.11)
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where |M is to remind that these conditions must hold only on the boundary of the

world-sheet, that is the D-brane world-volume M . In terms of the field strength H ,

(2.11) imply that Hµνρ = Hµij = Hijk = 0. In other words, the only possible torsion

components compatible with the usual b.c. (2.10) are those with two N and one D

indices, Hµνi
4.

Generically, a world-sheet boundary also breaks both of the two world-sheet super-

symmetries. This is indeed the case for the conditions (2.10), in a generic background.

Interestingly, the same constraints (2.11) are required to leave a combination of the

left and right supersymmetries unbroken. In fact, if (2.11) hold, the combination

δ = δ1 − δ2 of the two original supersymmetry variations δ1,2 is preserved.

Notice finally that (2.11) are not the only possible solution to the boundary condi-

tions (2.10). One could also consider more complicated cases where different terms in

(2.11) are non-vanishing and compensate each other to give a total vanishing bound-

ary term in the variation of the action (2.6). We will not consider such cases.

3. Reduction to 0+1 dimension and quantization.

When the world-sheet theory is supersymmetric, the evaluation of the partition

function in the odd spin-structure is greatly simplified. Indeed, it is a topological

quantity, the Witten index [24], receiving contributions only from zero-energy states.

These correspond to field configurations which are constant in the space-like direction

of the world-sheet, and one can therefore use a 0+1 dimensional effective theory for

the computation of the index.

It is convenient to introduce fermions with flat indices both on the tangent and

the normal bundles. Defining then new fermions as ψµ
− = e

µ
−

µψµ and ψi
− = e

i
−

iψ
i, where

ψµ = ψµ
1 /
√

2 = ψµ
2 /

√
2 and ψi = ψi

1/
√

2 = −ψi
2/
√

2, the 1 + 0 dimensional reduction

of the action (2.6), with the restrictions (2.11), yields:

L =
1

2
gµν φ̇

µφ̇ν +
i

2
ψµ

−

(
ψ̇µ

−

+ ω(0)
ρ µ
−

ν
−

φ̇ρψν
−

)
+
i

2
ψi
−

(
ψ̇i
−

+ ω
(0)
ρ i
−

j
−

φ̇ρψj
−

)
+

1

4
Rµ

−

ν
−

i
−

j
−

ψµ
−ψν

−ψi
−ψj

−

− iHρµ
−

i
−

φ̇ρψµ
−ψi

− − 1

6
Hµ

−

ν
−

ρ
−

; i
−

ψµ
−ψν

−ψρ
−ψi

− +
1

8
Hk

−

µ
−

ν
−

H
k
−

ρ
−

σ
−

ψµ
−ψν

−ψρ
−ψσ

− , (3.1)

where ω(0) is the torsion-free connection one-form. The supersymmetry transforma-

tions leaving it invariant are (ǫ = ǫ1/
√

2 = −ǫ2/
√

2):

δǫφ
µ = i eµ

µ
−

ψµ
− ǫ ,

δǫψ
µ
− = e

µ
−

µ φ̇µ ǫ+ i eν
ν
−

ω
(0)µ

−

ν ρ
−

ψν
−ψρ

− ǫ ,

δǫψ
i
− = i eµ

µ
−

ω
(0)i

−

µ j
−

ψµ
−ψj

− ǫ+
i

2
H

i
−

µ
−

ν
−

ψµ
−ψν

−ǫ , (3.2)

4There is also an alternative and probably faster way to see how the conditions (2.11) arise. By

taking the usual vertex operator for B one easily verify, using the b.c. conditions (2.10), that on M

only the Hµνi components survive.
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and the supercharge is

Q = eµν
−

φ̇µψν
− − i

2
Hµ

−

ν
−

i
−

ψµ
−ψν

−ψi
− . (3.3)

Before starting to evaluate the partition function associated to the action (3.1), it

is very useful to quantize the theory to have a more precise understanding of which

kind of anomalies we are studying. Indeed, it is well-known that the ill-defined traces

encoding anomalies in Fujikawa’s approach can be regulated and evaluated as the

high temperature limit of the partition functions of suitable supersymmetric theories,

corresponding to indices of certain operators. An investigation in this direction is also

further motivated by the observation of [20] that the Atiyah-Singer index theorem in

presence of torsion is associated to a supersymmetric quantum mechanical model that

is not the reduction to 0+1 dimension of (2.6) with the constraints (2.10)5; the right

model is rather the reduction to 0+1 dimension of an heterotic σ-model. This is in

agreement with our result that for the purely Neumann case, no torsion is consistent

with the conditions (2.10).

The conjugate momenta for φµ, ψµ
− and ψi

− are given by

πµ = gµνφ̇
ν +

i

2
ω

(0)
µ α

−

β
−

ψα
−ψβ

− +
i

2
ω

(0)
µ i
−

j
−

ψi
−ψj

− − iHµν
−

i
−

ψν
−ψi

− , τµ
−

=
i

2
ψµ

−

, τi
−

=
i

2
ψi
−

, (3.4)

and the Hamiltonian is

H =
1

2
gµν φ̇

µφ̇ν − 1

4
Rµ

−

ν
−

i
−

j
−

ψµ
−ψν

−ψi
−ψj

− +
1

6
Hµ

−

ν
−

ρ
−

; i
−

ψµ
−ψν

−ψρ
−ψi

− − 1

8
Hkµ

−

ν
−

Hk
ρ
−

σ
−

ψµ
−ψν

−ψρ
−ψσ

− .

The Hamiltonian formulation and the quantization of supersymmetric quantum me-

chanical models like the one studied here presents some well-known subtleties. Indeed,

due to the constraints in the fermionic sector of phase-space, it is necessary to use

the Dirac procedure, and replace the standard Poisson brackets with Dirac brack-

ets which are compatible with these constraints. Quantization can then proceed in

the usual way, replacing Dirac brackets with commutators or anticommutators (see

[26, 27, 28]). We will assume here that the net result of this lengthy procedure is that

one can use as canonical variables φµ, πµ, ψ
µ
− and ψi

−, with the following non-vanishing

commutations relations:

[φµ, πν ] = iδµ
ν , {ψµ

−, ψν
−} = ηµ

−

ν
− , {ψi

−, ψj
−} = δi

−

j
− . (3.5)

In terms of these variables, the supercharge becomes:

Q = −ieµ
µ
−

ψµ
−

(
iπµ +

1

2
ω(0)

µ ρ
−

σ
−

ψρ
−ψσ

− +
1

2
ω

(0)
µ i
−

j
−

ψi
−ψj

− − 1

2
Hµρ

−

i
−

ψρ
−ψi

−

)
, (3.6)

5When the torsion vanishes, these are the standard constraints to compute pure gravitational

anomalies [25] (see [12] for the relevance of Dirichlet boundary conditions for non-trivial normal

bundles) whose form is also given by the Atiyah-Singer index theorem.
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and it is straightforward to check that Q does indeed generate the correct super-

symmetry transformations (3.2): δǫ = [ǫQ, ]. Also, the supersymmetry algebra

guarantees that H = 1/2{Q,Q}.
According to (3.5), the canonical operators φµ, πµ, ψµ

− and ψi
− can be realized on

the target space as

φµ → xµ , πµ → −i∂µ , ψµ
− → γµ

−/
√

2 , ψi
− → γi

−/
√

2 , (3.7)

where γµ
−, γi

− are the space-time γ-matrices in the directions which are respectively

parallel and transverse to the brane. The supercharge (3.6) is then finally given by

Q = −i/D/
√

2, where /D is the following world-volume Dirac operator:

/D = eµ
µ
−

γµ
−

(
∂µ +

1

4
ω(0)

µ ρ
−

σ
−

γρ
−

σ
− +

1

4
ω

(0)
µ i
−

j
−

γi
−

j
− − 1

4
Hµρ

−

i
−

γρ
−γi

−

)
. (3.8)

The operator (3.8) contains as expected a mixed torsion connection, beside the usual

tangent and normal bundle spin connections. This shows that the index computed

here encodes the anomaly of a chiral spinor in a curved and contorted background.

4. Inflow of anomaly and WZ couplings

We now turn to the computation of the inflow of anomaly. This section follows

closely the analysis reported in [12], with some modifications due to the presence of

torsion. According to the previous considerations, the inflow of anomaly is given by

the high temperature limit of the partition function

Z = Tr [ΓD+1e−t(i/D)2 ] , (4.1)

where ΓD+1 is the chiral matrix in D dimensions and /D is the Dirac operator (3.8).

The functional integral representation for (4.1) is

Z =
∫

P
Dφµ(τ)

∫

P
Dψµ

−(τ)
∫

P
Dψi

−(τ) exp
{
−

∫ t

0
dτ L

(
φµ(τ), ψµ

−(τ), ψi
−(τ)

)}
, (4.2)

with L as in (3.1). All the fields are periodic (P ) in the odd spin-structure. In order

to evaluate this path-integral in the high-temperature limit t → 0, it is convenient

to expand the fields in normal coordinates around constant paths φµ = φµ
0 + ξµ,

ψµ
− = ψ

µ
−

0 + χµ
− and ψi

− = ψ
i
−

0 + χi
−.

By doing the expansion described above, one should pay attention to dangerous

terms involving four Neumann fermionic zero modes and leading to divergences. A

term of this type, involving the standard Riemann tensor, has already been dropped

because it vanishes thanks to the Bianchi identity, but the last term in (3.1) remains,

essentially as a consequence of the fact that the torsion part of the curvature (2.5)

does not satisfy the same Bianchi identity as the geometric part (2.4). Here, we shall

assume a very safe approach and restrict to the particular case in which

Hi
−

[µ
−

ν
−

H
i
−

ρ
−

σ
−

] = 0 . (4.3)
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In this case, for the same arguments explained in subsection 2.1.1 of [12], it is sufficient

to keep only interaction terms up to quadratic order in the fluctuations and, among

these, only those involving fermionic zero modes ψ
µ
−

0 in the Neumann directions. One

gets then the following effective Lagrangian:

Leff =
1

2

[
ξ̇µ
−

ξ̇µ
−+iχµ

−

χ̇µ
−+iχi

−

χ̇i
−+iRµ

−

ν
−

ξµ
−ξ̇ν

−+Ri
−

j
−

χi
−χj

−+2iHµ
−

i
−

ξ̇µ
−χi

−+Ri
−

j
−

ψ
i
−

0ψ
j
−

0

]
(4.4)

with6

Rµ
−

ν
−

=
1

2
Rµ

−

ν
−

ρ
−

σ
−

(φ0)ψ
ρ
−

0ψ
σ
−

0 , Ri
−

j
−

=
1

2
Ri

−

j
−

ρ
−

σ
−

(φ0)ψ
ρ
−

0ψ
σ
−

0 , Hµ
−

i
−

= Hµ
−

i
−

ρ
−

(φ0)ψ
ρ
−

0 . (4.5)

Since the effective Lagrangian (4.4) is quadratic, it is in principle straightforward

at this point to compute the partition function (4.2). As expected, the result is

independent of t, as can be seen by rescaling the Neumann fermionic zero modes. As

in the torsionless case, the last term in (4.4) produces the Euler class of the normal

bundle e(R′). The remaining pieces of the Lagrangian give a bunch of determinants,

which for the time being we denote by Y 2(R,R′, H). The result is therefore:

Z =
∫

M
Y 2(R,R′, H) e(R′) . (4.6)

As noted in [7], the Euler class term in (4.6) is due to a topological property of

currents and it appears only in the inflow of anomaly, and must not be taken into

account when factorizing (4.6) to extract the WZ couplings for D-branes7. Once Y is

known, the D-brane WZ couplings we are looking for are given by

SDp
=
µp

2

∫

M
C ∧ Y |(p+1)−form , (4.7)

using the same conventions of [12] to normalize the Dp brane charge µp and denoting

with C the formal sum of all the RR forms.

In spite of the fact that the effective Lagrangian (4.4) is quadratic, the evaluation

of the corresponding determinants is difficult, due to the presence of a mixing between

bosons and fermions. The general result for Y does not seem to lead to any simple

combination of characteristic classes. This is quite disappointing but actually per-

fectly sensible, and probably just reflects the well-known difficulties in incorporating

unambiguously the effects of torsion in characteristic classes. Rather than insisting

on the exact result, we will limit ourselves to the two particular cases in which either

the tangent or the normal bundle is trivial, which lead to simple results.

6In the following, we shall distinguish through a prime the normal bundle curvature from the

tangent bundle curvature.
7There is a subtlety here for the D3-brane [7]. In this case the anomaly A = 2πiZ(1) =

2πi
∫
M

e(R′)(1) does not vanish, whereas the inflow of anomaly does, since the descent procedure for

the inflow has not to be taken to the Euler class term. We do not have a resolution to this issue,

that seems to be due to additional subtleties in the definition of the WZ coupling of the self-dual

D3-brane [7].
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In the case of generic tangent bundle but trivial normal bundle, Ri
−

j
−

= 0, it is

convenient to redefine the fermionic fluctuation as χi
−

→ χi
−

+ iHi
−

µ
−

ξµ
−. By doing

so, the torsion term in (4.4) gets reabsorbed and an effective bosonic interaction is

generated:

Leff =
1

2

[
ξ̇µ
−

ξ̇µ
− + iχµ

−

χ̇µ
− + iχi

−

χ̇i
− + i

(
Rµ

−

ν
−

−Hi
−

µ
−

H
i
−

ν
−

)
ξµ
−ξ̇ν

−

]
. (4.8)

The evaluation of the determinants is then straightforward, and one finds:

Y =
√
Â(R) , (4.9)

in terms of the generalized curvature of the tangent bundle, eq.(A.6).

In the case of trivial tangent bundle, Rµ
−

ν
−

= 0, but generic normal bundle, it is

instead more convenient to redefine the bosonic fluctuations ξµ
− in such a way that

ξ̇µ
−

→ ξ̇µ
−

+ iHµ
−

i
−

χi
−. By doing this, the torsion term in (4.4) gets again reabsorbed and

this time an effective fermionic interaction is generated:

Leff =
1

2

[
ξ̇µ
−

ξ̇µ
− + iχµ

−

χ̇µ
− + iχi

−

χ̇i
− +

(
Ri

−

j
−

−Hµ
−

i
−

H
µ
−

j
−

)
χi
−χj

− +Ri
−

j
−

ψ
i
−

0ψ
j
−

0

]
. (4.10)

One finds then:

Y =

√√√√ 1

Â(R′)
, (4.11)

in terms of the generalized curvature of the normal bundle, eq.(A.7).

5. Conclusions

In this note, we have shown that D-brane anomalous couplings do have a non-

trivial dependence on torsion. The precise form of this dependence is implicitly

encoded in certain one-loop determinants, but does apparently not admit any simple

expression in terms of standard characteristic classes. Specialising to the two cases of

trivial tangent and normal bundles, we were however able to prove that the torsion

dependence amounts simply to the replacement R → R and R′ → R′ in the usual

torsion-free RR couplings. One might then wonder whether, as guessed in [13], the

result for generic curvature and torsion is miraculously:

Y =

√√√√ Â(R)

Â(R′)
. (5.1)

Unfortunately, we are not able to answer unambiguously to this question since in

this general case we did not find a sensible way to compute the determinants arising

from the Lagrangian (4.4). Furthermore, we will not adress here the issue of whether

the couplings we find restore T-duality, as proposed in [13], because the restricted

region of validity of our results does not allow to make any precise statement in this

direction.
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We also find a bit problematic to relax the condition (4.3) on the torsion. We did

not analyze in full detail the consequence of the presence of such a term in (3.1), but

it is not excluded that the potential divergence we found is linked to similar divergent

terms appearing in the literature for the computation of the four-dimensional chiral

anomaly in presence of torsion8.

An important observation is now in order. As shown in [29], torsion does not give

rise to new true anomalies, as long as it appears just through generalized curvatures

in the usual characteristic classes. Indeed, the addition of a covariant term to the

spin-connection gives rise to a modification to the gravitational anomaly that may

be reabsorbed by adding to the action a local counter-term. This suggests that there

could be some ambiguity in deriving results in this context using anomaly arguments.

However, the quantity we compute can be interpreted as the inflow of anomaly arising

from the RR interaction of D-branes with couplings (4.7). As such, we believe that

our results are not affected by this ambiguity. We stress this important point because,

differently from the torsion-free case, the supersymmetric quantum mechanical models

relevant to compute the inflow of anomaly on D-branes and generic anomalies with

torsion are different, as already mentioned in section 3.
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A. Geometry of sub-manifolds with torsion

In this appendix we give a brief review of the geometry of sub-manifolds, along

the lines of standard books [30]. A good reference is also [31]. A similar analysis

for the torsion-free case, and applied again to D-brane physics, can also be found in

appendix A of [32].

Let X be the ten-dimensional space-time endowed with a generic connection and

let M be a p+ 1-dimensional sub-manifold of X, corresponding to the embedding of

the D-brane world-volume into space-time. The embedding is defined by the equations

φM = φM(σµ) (µ = 0, ..., p). Cartan’s structure equations on X read then

TM = dθM + ω
M

N ∧ θN , (A.1)

RM
N = dω

M
N + ω

M
P
−

∧ ωP
−

N , (A.2)

8It might be that this divergent term is irrelevant upon integration over the world-volume.
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where underlined indices represent flat indices and we denoted the two-form curvature

with R to distinguish it from the geometric curvature R, constructed in terms of the

torsion-free connection form ω(0).

It is always possible to choose an orthonormal frame, the so-called “adapted

frame” [30], in which θi
− |M= 0 (i

−

= p + 1, ..., 9). In such a frame, (A.1) with M = i
−

yields ω
i
−

ν
−

∧ θν
− = T i

−. By writing ω
i
−

ν
−

= Ω
i
−

ν
−

µ
−

θµ
− and using the explicit form in

components for the torsion form, T i
− = H

i
−

µ
−

ν
−

θµ
− ∧ θν

−, this can be rewritten as

(
Ω

i
−

ν
−

µ
−

+H
i
−

µ
−

ν
−

)
θµ
− ∧ θν

− = 0 . (A.3)

The most generic solution for (A.3) is Ω
i
−

µ
−

ν
−

= Ω
i
−

(µ
−

ν
−

) + H
i
−

µ
−

ν
−

. The tensor Ωi
µ
−

ν
−

is

called the second fundamental form and plays an important role in relating tensors

on a manifold with those defined in its sub-manifolds.

From (A.2) with M = µ
−

,N = ν
−

, one gets instead generalized Gauss equations,

(RT )µ
−

ν
−

= Rµ
−

ν
−

+ Ωi
−

µ
−

ρ
−

Ω
i
−

ν
−

σ
−

θρ
− ∧ θσ

− , (A.4)

relating the intrinsic curvature RT on M to the space-time curvature R. Analogously,

taking M = i
−

,N = j
−

in (A.2), gives generalized Ricci equations,

(RN )i
−

j
−

= Ri
−

j
−

+ Ωµ
−

ρ
−

i
−

Ω
µ
−

σ
−

j
−

θρ
− ∧ θσ

− , (A.5)

relating the intrinsic curvature RN on the normal bundle of M to the space-time

curvature R.

The considerations discussed so far are general. We may now apply them to

our particular situation, that is a trivial embedding (φi = const., φµ = σµ) and

backgrounds satisfying the constraints (2.11). In this case, it can be shown (for

instance going in normal coordinates) that the symmetric part of the second fun-

damental form Ω
i
−

(µ
−

ν
−

) vanishes. Moreover, since Hµ
−

ν
−

ρ
−

= Hµ
−

i
−

j
−

= 0, one finds that

(RT )µ
−

ν
−

= (RT )µ
−

ν
−

= Rµ
−

ν
−

and (RN )i
−

j
−

= (RN)i
−

j
−

= Ri
−

j
−

. Therefore, defining the one-

forms Hµ
−

i
−

= Hµ
−

i
−

ρ
−

θρ
−, equations (A.4) and (A.5) yield the following simple expressions

for the generalized curvatures of the tangent and the normal bundles:

Rµ
−

ν
−

= Rµ
−

ν
−

−Hi
−

µ
−

∧H i
−

ν
−

, (A.6)

Ri
−

j
−

= Ri
−

j
−

−Hµ
−

i
−

∧Hµ
−

j
−

. (A.7)

References

[1] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724-4727, hep-th/9510017.

[2] M.R. Douglas, hep-th/9512077.

[3] M. Li, Nucl. Phys. B460 (1996) 351-361, hep-th/9510161.

[4] M. Bershadsky, V. Sadov and C. Vafa, Nucl. Phys. B462 (1996) 420-434, hep-

th/9511222.

10



[5] M.B. Green, J.A. Harvey and G. Moore, Class. Quant. Grav. 14 (1997) 47-52,

hep-th/9605033.

[6] K. Dasgupta, D.P. Jatkar and S. Mukhi, Nucl. Phys. B523 (1998) 465-484, hep-

th/9707224.

[7] Y-K.E. Cheung and Z. Yin, Nucl. Phys. B517 (1998) 69-91, hep-th/9710206.

[8] R. Minasian and G. Moore, JHEP 11 (1997) 002, hep-th/9710230.

[9] B. Craps and F. Roose, Phys. Lett. B445 (1998) 150-159, hep-th/9808074; Phys.

Lett. B450 (1999) 358, hep-th/9812149.

[10] J.F. Morales, C.A. Scrucca and M. Serone, Nucl. Phys. B552 (1999) 291-315,

hep-th/9812071.

[11] B. Stefanski, jr, Nucl. Phys. B548 (1999) 275-290, hep-th/9812088.

[12] C.A. Scrucca and M. Serone, Nucl. Phys. B556 (1999) 197-221, hep-th/9903145.

[13] R.C. Myers, JHEP 9912 (1999) 022.

[14] E. Witten, Nucl. Phys. B460 (1996) 335-350.

[15] C.A. Scrucca and M. Serone, Nucl. Phys. B564 (2000) 555-590, hep-th/9907112.

[16] Y.N. Obukhov, Nucl. Phys. B212 (1983) 237-254.

[17] A. Dobado and A.L. Maroto, Phys. Rev. D54 (1996) 5185-5194, hep-ph/9509227.

[18] K. Peeters and A. Waldron, JHEP 9902 (1999) 024, hep-th/9901016.

[19] O. Chand̀ıa and J. Zanelli, hep-th/9906165 and references therein.

[20] N.E. Mavromatos, J. Phys. A21 (1988) 2279-2290.

[21] J.M. Figueroa-O’Farrill and S. Stanciu, hep-th/0008038.

[22] T.L. Curtright and C.K. Zachos, Phys. Rev. Lett. 53 (1984) 1799-1801.

[23] J. Scherk and J.H. Schwarz, Phys. Lett. 52B (1974) 347-350.

[24] E. Witten, Nucl. Phys. B202 (1982) 253-316.

[25] L. Alvarez-Gaumè and E. Witten, Nucl. Phys. B234 (1984) 269-330;

[26] A.C. Davis, A.J. Macfarlane, P.C. Popat and J.W. van Holten, J. Phys. A17

(1984) 2945-2954.

[27] E. Braaten, T.L Curtright and C.K. Zachos, Nucl. Phys. B260 (1985) 630-688.

[28] H.W. Braden, Ann. Phys. 171 (1986) 433-462.

[29] C. Hull, Phys. Lett. B167 (1986), 51;

L. Bonora, P. Pasti and M. Tonin, J. Math. Phys. 27 (1986) 2259.

[30] T. Okubo, Differential Geometry, Marcel Dekker, 1987; S. Kobayashi and K.

Nomizu, Foundations of Differential Geometry, J. Wiley and Sons, 1969, vol.2.

[31] L.P. Eisenhart, Riemannian geometry, Princeton U. Press, 1926; Non-

Riemannian geometry, Princeton U. Press, 1927.

[32] C.P. Bachas, P. Bain and M.B. Green, JHEP 9905 (1999) 011, hep-th/9903210.

11


