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Abstract

We study spin interactions between two moving D-branes using the Green-

Schwarz formalism of boundary states. We focus our attention on the leading

terms for small velocities v, of the form v4−n/r7−p+n (v2−n/r3−p+n) for p-p

(p-p+4) systems, with 16 (8) supercharges. In analogy with standard G-S

computations of massless four-point one-loop amplitudes in Type I theory,

the above terms are governed purely by zero modes, massive states contri-

butions cancelling as expected by the residual supersymmetry. This implies

the scale invariance of these leading spin-effects, supporting the relevant ma-

trix model descriptions of supergravity interactions; in this context, we also

discuss similar results for more general brane configurations. We then give a

field theory interpretation of our results, that allows in particular to deduce

the gyromagnetic ratio g = 1 and the presence of a quadrupole moment for

D0-branes.
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I. INTRODUCTION

It is undoubt that D-branes [1] play at present a key role in the description of all non-

perturbative phenomena in string theory. This has motivated the study of their dynam-

ics [2–6] in different configurations and space-time dimensions; in particular, the so-called

boundary state formalism [7,8] has proven to be a powerful tool for studing these problems,

and has been succesfully applied to a number of problems, both in the covariant [9–16] and

light-cone [17–20] formulations. However, since D-branes are usually analyzed in a semi-

classical context, being heavy massive solitons at weak string coupling constant, most of

these works considered their interactions in the approximation in which D-branes do not

carry any spin.

The conjecture of [21] that the dynamics of M-theory in the infinite momentum frame

is governed by the degrees of freedom of a large number of D0-branes further motivated

the study of D0-brane dynamics. In particular, their spin-dependent long-range interactions

have been computed through duality arguments, mapping the scattering of D0-branes to

that of fundametal KK states [22]. In ref. [23], spin effects for generic p-branes have been

analyzed in the Green-Schwarz formalism, by inserting broken supercharges in the partition

function of two branes moving past each other. The structure of these interactions was then

considered in a long range regime through the technique of boundary states and at short

distances through a one-loop annulus analysis. This last open string point of view showed,

in particular, how for a D p-brane all the terms of the form v4−n/r7−p+n with n = 0, ..., 4, i.e.

all the spin-effects associated to the universal v4/r7−p interaction, are determined purely by

the open massless string states, meaning then that a one-loop M(atrix) theory computation

should be able to reproduce long range spin-dependent supergravity interactions. This has

been indeed explicitly shown in [24] for the spin-orbit v3/r8 coupling.

We want then to study interactions between two branes moving with small relative

velocity ~v and at an impact parameter ~b. We will work in the Green-Schwarz formalism

of the boundary state. The choice of this formalism is justified by the huge simplification

that takes over and that allows to compute spin effects basically by a simple analysis of

zero modes, as we will see. We consider in the following supersymmetric configurations

associated to the case of parallel p-p and p-p+4 systems of D-branes. Being interested

only in leading effects for small velocity, we will not compute the full partition function

associated to the configuration of two moving branes, but simply correlation functions of

vertex operators, corresponding to the velocity, on the boundary of the world-sheet, together

with insertions of broken supercharges encoding spin dependences. The approach we follow

to compute n-point functions in the boundary state formalism is that derived by [7,8]. It

is crucial to point out, however, that the results we obtain are exact for the particular
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terms considered, being given by a full string computation, in analogy with one-loop 4-point

functions between massless states of Type I theory in the G-S formalism [25]. In this context

it is trivial to see some important issues. A p-p (p-p+4) system leaves unbroken sixteen

(eight) supercharges meaning that our action will admit eight (four) fermionic zero modes

Sa
0 , in the notation of [25]. Since, as we will see, each insertion of a vertex operator associated

to the velocity provides at most two of them, it follows that the potential between branes

starts respectively with v4 (v2). On the other hand, the insertion of broken supercharges can

allow non-vanishing results for terms with less powers of v, providing the lacking fermionic

zero modes. Moreover, as has been shown in [19,23] and will be seen again in some detail,

the insertion of supercharges induces polarization-dependent non-minimal couplings between

D-branes, i.e. spin-effects. Alternatively, being all these terms related by supersymmetry

[22], it is natural that they are produced by insertion of supercharges.

The main point we want to stress here is that for the amplitudes we consider, associated

to the v4−n/r7−p+n terms discussed before ∗, our results will be governed by zero modes

only, since massive non-BPS bosonic and fermionic string states contribution will always

precisely cancel. This implies that the present results, that for large brane separations have

a clear interpretation as spin-dependent interactions, due to supersymmetry, are valid at

all scales and can be extrapolated to the substringy regime where, according to [6], the

dominant degrees of freedom are given by the massless open string states living on the

branes. This assertion is valid for a large class of interesting systems discussed in the final

section, besides the more detailed studied p-p and p-p+4 system, and shows that several

tests (if not all) performed until now to the proposal of [21], involving an agreement between

one-loop Super Yang-Mills computation and classical supergravity, are basically determined

by supersymmetry.

We then present a systematic way to construct the generic asymptotic form of spinning

p-brane supergravity solutions, working out in detail the case of the D0-brane, where we

perform a multi-pole expansion up to the quadrupole interaction. This analysis allows

easily to show that the electric and gravitational dipole moments for D0-branes vanish,

whereas there is a gravitational quadrupole term different from zero. The supersymmetric

cancellation of some terms of brane-interactions, as discussed before, allows finally to fix

uniquely the value of D0-brane’s gyromagnetic ratio g to one and similarly the relative

strength of the electric and gravitational quadrupole moments. This is consistent with their

conjectured [26] 11-dimensional KK origin and interpretation as solitonic solution of 10-

dimensional IIA supergravity, as recently discussed in ref. [30]. As a further check of this

∗For the p-p+4 system the corresponding terms are of the form v2−n/r3−p+n, with n = 0, 1, 2.
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correspondence, it would be interesting to work out, along the lines of [30], the quadrupole

moments of 0-brane solitons in supergravity and compare them to the results found here

for D0 branes. We then briefly mention how the knowledge of the asymptotic fields of the

0-brane solution allows to derive the 0-brane world-line effective action in an arbitrary Type

IIA background, valid in the weak-field approximation.

The structure of this paper is as follows. In section 2 and 3 we review the main properties

of G-S boundary states [18], introduce the set-up of the computation, and report one-point

functions of higher spin boundary states with massless closed string states. In section 4 and

5, we compute spin-dependent interactions associated to the p-p and p-p+4 parallel brane

configurations, and in section 6 the field theory interpretation of our results is given. In last

section we discuss possible extensions of our results to more general brane configurations,

relevant for one-loop tests of the matrix model conjecture, and give some conclusions. We

include in an appendix the light-cone computations of the standard phase-shift for two

moving D-branes.

II. BOUNDARY STATE FORMALISM

In this section we shall briefly review the boundary state description of spinning D-

branes [23] in the G-S formalism [18]. Consider type II theory in the light-cone gauge

X+ = x+ + p+τ . X− is completely determined in terms of the transverse X i’s, in 8v, and

the left and right spinors Sa and S̃a, in the 8s of the SO(8) transverse rotation group †. In

this gauge, the supercharges are

Qa =
√

2p+

∮

dσSa , Qȧ =
1√
p+
γi

ȧa

∮

dσ∂X iSa

with similar expressions for the right moving ones.

Dp-branes as defects can be described by suitable boundary states, implementing the

usual Neumann-Dirichlet boundary conditions. In this frame, the two light-cone directions

± = 0±9 satisfy automatically Dirichlet boundary conditions while the transverse directions

i = 1, ..., 8 can have either Neumann or Dirichlet boundary conditions. Since the time satis-

fies Dirichlet boundary conditions, we are actually dealing with Euclidean branes; however

following [23], we can identify the “time” with one of the transverse directions, say X1. The

†In the following we shall concentrate on Type IIB theory, for which the notation is somewhat

frendlier; the Type IIA case can be easily obtained by switching dotted and undotted indices in

the right-moving fermions.
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usual metric is then recovered through a double analytic continuation 0 → i1, 1 → i0 in the

final result. We can therefore include in our analysis only branes with p = −1, ..., 7. The

BPS boundary state is defined to preserve a combination of left and right supersymmetries

Qa
+|B〉 = 0 , Qȧ

+|B〉 = 0 ⇒ Qa
+, Q

ȧ
+ unbroken

Qa
−|B〉 6= 0 , Qȧ

−|B〉 6= 0 ⇒ Qa
−, Q

ȧ
− broken

where

Qa
± =

1√
2

(

Qa ± iMabQ̃
b
)

, Qȧ
± =

1√
2

(

Qȧ ± iMȧḃQ̃
ḃ
)

The boundary conditions are [18]

(αi
n +Mijα̃

j
−n)|B〉 = 0 , (Sa

n + iMabS̃
b
−n)|B〉 = 0 , (S ȧ

n + iMȧḃS̃
ḃ
−n)|B〉 = 0 (2.1)

with

Mij =

(−Ip+1 0

0 I7−p

)

(2.2)

Consistency with the BPS condition implies the M ’s to be orthogonal matrices related by

triality

(MMT )ab = δab

(MγiMT )aȧ = Mijγ
j
aȧ

which yields

Mab = (γ1γ2...γp+1)ab , Mȧḃ = (γ1γ2...γp+1)ȧḃ (2.3)

The solution for the boundary state can then be found in a standard way as the eigenstate

of the boundary conditions eqs.(2.1), and is written as

|B〉 = exp
∑

n>0

(

1

n
Mijα

i
−nα̃

j
−n − iMabS

a
−nS̃

b
−n

)

|B0〉 (2.4)

the zero mode part being

|B0〉 = Mij |i〉|j̃〉 − iMȧḃ|ȧ〉|
˜̇b〉 (2.5)

The complete configuration space boundary state is

|B,~x〉 = (2π
√
α′)4−p

∫

d9−pq

(2π)9−p
ei~q·~x |B〉 ⊗ |~q〉 (2.6)
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where

〈q|q′〉 = Vp+1 (2π)9−pδ(9−p)(q − q′)

and Vp+1 is the space-time volume spanned by the p-brane. With these normalizations, the

static force between two parallel branes is given by

A =
1

16

∫ ∞

0
dt 〈B,~x|e−2πtα′p+(P−−i∂/∂x+)|B, ~y〉 (2.7)

where

P− =
1

2p+

[

(pi)2 +
1

α′

∞
∑

n=1

(αi
−nα

i
n + α̃i

−nα̃
i
n + nSa

−nS
a
n + n S̃a

−nS̃
a
−n)

]

is the Hamiltonian in the light-cone gauge. The term i∂+ represents the substraction of

p− (remember that in this gauge the effective Hamiltonian is H − p−) and when applied

to the boundary state, it reproduces simply the covariant p2. The factor 1/16 is needed to

normalize correctly the D-brane charge; indeed, from eq.(2.7) we obtain

A =
1

16
Vp+1 (4π2α′)4−p

∫ ∞

0
dt
∫

d9−pq

(2π)9−p
ei~q·(~x−~y) e−πtα′q2

(8 − 8)
∞
∏

n=1

(1 − e−2πtn)8

(1 − e−2πtn)8
(2.8)

where the factor (8−8) is due to the trace performed on the zero mode part of the boundary

state, eq.(2.5). Performing the momenta and modulus integrations, one finds

A = 2 Vp+1 T
2
p G9−p(~x− ~y) (1 − 1) (2.9)

where Tp =
√
π(4π2α′)(3−p)/2 is the tension of a p-brane in units of the ten-dimensional

Planck constant k2 of Type II supergravity [1] and Gd(~x) is the massless propagator of a

scalar particle in d-dimensions

Gd(~x) =
1

4πd/2

Γ(d−2
2

)

|x|d−2

The generalization of the cylinder amplitude to the case of finite constant relative velocity

v between two branes is reported for completeness in the appendix.

III. SUPERSYMMETRY AND HIGHER SPIN BPS STATES

As we have seen, Dp-branes correspond to solitonic BPS saturated solutions of Type

IIA(B) supergravity, which preserve one half of the supersymmetries. The remaining half is

realized on a short-multiplet containing 256 p-brane configurations lying in the 44+84+128

representations of the little group SO(9) for massive states. The various components of the

short-multiplet are related by supersymmetry transformations generated by the 16 broken

supercharges.

5



In the formalism of previous section, the boundary state represents the semiclassical

source formed by the “in” and “out” branes; its overlap 〈B|Ψ〉 with a string state |Ψ〉
represents semiclassical 3-point functions as shown in figure 1.

〈ΨB|B〉 = ΨB

BB

BB

〈ΨF |Q−|B〉 = ΨF

BB

BF

〈ΨB|Q−Q−|B〉 = ΨB

BF

BF

Fig. 1

Different components of the supermultiplet spanned by these sources, are obtained by apply-

ing supersymmetry transformations to the scalar boundary state |B〉 through the operator

U = eǫQ−

=
16
∑

m=0

1

m!
(ǫQ−)m (3.1)

We have used the SO(9) notation ǫ = (ηa, η̃ȧ) and Q− = (Qa
−, Q

ȧ
−). Different components

of the supermultiplet, corresponding to the possible independent ǫ’s, can be thought as the

semiclassical multipole expansion of the source. In particular, terms in U |B〉 with an even

(odd) number of Q− describe couplings to bosonic (fermionic) closed string states ΨB (ΨF ).

We shall restrict ourselves to terms with an even number of supercharges, the relevant for

the study of semiclassical D-brane dynamics in the eikonal approximation. For instance, the

usual boundary state corresponds to the universal part of the source, whereas applying two

charges one obtains the part of the source due to angular momentum, and so on. As we
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are going to see in the following, the field theory counterpart of this source expansion is a

power series in the transfered momentum, each momentum corresponding to the insertion

of a pair of supercharges.

Among the different terms in expansion (3.1) we will always work out the ones with an equal

number of dotted-undotted SO(8) components (ηaQ
a
−η̃ȧQ

ȧ
−)n. All the other terms simply

combine to reconstruct the covariant answer. We consider then boundary states of the form:

|B〉(n) ≡ V n
η |B〉 (3.2)

with

Vη = ηaQ
−aη̃ȧQ

−ȧ (3.3)

The first interesting information we can extract from these higher spin boundary states is

about their couplings to the massless bulk fields. This analysis for the D-instanton case

was performed in the covariant NS-R formalism in ref. [19]. The formulae displayed in this

section are “T-dual” versions of the ones reported in that reference.

Qa
aη
Qa

aη

ΨQa
aη

Qa
aη

Fig. 2

In the following, we consider only terms with up to eight supercharges, n = 0, ..., 4, in

eq.(3.2). This covers all the physical information relevant to our considerations. The one-

point functions of the massless bosonic states of NSNS and RR sectors (in R-NS terminology)

are obtained simply by computing the boundary state overlap

Ψ(n) ≡ 〈Ψ|B0〉(n) (3.4)

with the massless NSNS and RR closed string states

|ΨNSNS〉 = ξmn|m〉 ˜|n〉 ⇒ ξmn ∼ φ δmn + gmn + bmn

|ΨRR〉 = Cȧḃ|ȧ〉
˜|ḃ〉 ⇒ Cȧḃ ∼

∑

k even

1

k!
Ci1...ik

(k) γi1...ik
ȧḃ
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|B0〉(n) indicates the massless content of (3.2)

|B0〉(n) ≡ V n
η |B0〉 = qi1 ...qin

[

η[a1
(η̃γi1)a2

...ηa2n−1
(η̃γin)a2n]

]

S−a1

0 ...S−a2n

0 |B0〉 (3.5)

Using the boundary conditions eqs.(2.1), we can express everything in terms of the left-

moving modes only. After applying the Fiertz identity

Sa
0S

b
0 =

1

2
δab +

1

4
γij

abR
ij
0

we can further rewrite eq.(3.5) in terms of the SO(8) generators Rij
0 = 1/4Sa

0γ
ij
abS

b
0. We are

then left with the effective operator

V n
η = qi1 ...qin ω

i1...in
j1...j2n

(η)Rj1j2
0 ...R

j2n−1j2n

0 , (3.6)

where

ωi1...in
j1...j2n

(η) =
1

2n

[

η[a1
(η̃γi1)a2

...ηa2n−1
(η̃γin)a2n]

]

γj1j2
a1a2

...γj2n−1j2n

a2n−1a2n
(3.7)

encodes the spin dependence. In this way, we can use standard results for Type I theory.

The Rij
0 generators are represented in the 8v and 8c representations by

Rmn
0 |i〉 = (δniδmj − δmiδnj)|j〉

Rmn
0 |ȧ〉 =

1

2
γmn

ċȧ |ċ〉 (3.8)

and some simple algebra leads to

|B0〉(n) ≡M ij
(n)|i〉 ˜|j〉 − iM

(n)

ȧḃ
|ȧ〉 ˜|ḃ〉

with

M
(n)
ij = 2n qi1 ...qin ω

i1...in
ik1k1...kn−1kn−1kn

(η)Mknj (3.9)

M
(n)

ȧḃ
=

1

2n
qi1 ...qin ω

i1...in
j1...j2n

(η)(γj1j2 ...γj2n−1j2nM)ȧḃ (3.10)

The 1-point functions can then be written as (up to numerical and α′ factors)

ΨNSNS
(n) = qi1 ...qin ξ

ijωi1...in
ik1k1...kn−1kn−1kn

(η)Mknj (3.11)

ΨRR
(n) = qi1 ...qin

∑

k

1

k!
Cm1...mk

(k) ωi1...in
j1...j2n

(η)TrS[γm1...mkγj1j2...γj2n−1j2nM ] (3.12)

Eqs.(3.11) and (3.12) contain all the non-minimal couplings of D-branes with the mass-

less bosonic states of the corresponding supergravity theory. In particular, for even n the
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boundary state couples potentially to the NSNS components φ, gµν, gIJ and bµI (µ, ν and

I, J denoting Neumann and Dirichlet directions respectively), and to the remainig NSNS

fields for odd n, as can be seen using the symmetry properties of ωi1...i2n. As a source of RR

fields, we can see that non-minimal couplings arise from the non-vanishing gamma-traces in

eq.(3.12), corresponding to forms with k = p + 1 − 2n, ..., p + 1 + 2n. The specific form of

these couplings depends on the polarization details and will be explicited for the first terms

in the following.

The first universal NSNS coupling is just

ΨNSNS
(0) = ξijMji (3.13)

We see that any p-brane couples to a specific linear combination of the dilaton φ and the

diagonal graviton polarizations g11...gp+1,p+1, as it must be for an object with definite mass

density ‡ (remember that g11 → −g00 after analytic continuation). The RR coupling is

ΨRR
(0) =

∑

k even

1

k!
Ci1...ik

(k) TrS[γi1...ikM ] (3.14)

The gamma-trace vanishes unless k = p+1, giving the usual Dp-brane charge. The covariant

expressions of eqs.(3.13) and (3.14) are

ΨNSNS
(0) = ξµνM

νµ , ΨRR
(0) =

∑

k even

1

k!
C(k)

µ1...µk
TrS[Γµ1...µkM ] (3.15)

where Γ are SO(1, 9) gamma-matrices, Mνµ is the covariant extension of eq.(2.2), with

diagonal entries only, -1 and +1 in Neumann and Dirichlet directions respectively, and

M = Γ0...Γp.

The first non-minimal NSNS coupling is given by

ΨNSNS
(1) = ξijMjkqlω

l
ki = ξijMjk ql ηγ

kilη̃ (3.16)

where we have used the fact that qjξij = qiξij = 0 and qkMkj = qj (there is a non-vanishing

momentum transfer only along the Dirichlet directions). As anticipated, eq.(3.16) represents

a non-minimal coupling of the brane with the antisymmetric tensor and graviton polariza-

tions bµν , bIJ and gµI . The covariant expression of eq.(3.16) is simply

ΨNSNS
(1) = ξµσM

σ
ν qρψ̄Γµνρψ (3.17)

‡The only exception is the D-instanton that has at this order only the coupling to the dilaton

(Mij = δij).
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where ψ is the Majorana-Weyl fermionic parameter associated to the broken supersymmetry.

In a chiral representation, it is simply ψ = (ǫ0), where ǫ = (ηa, η̃ȧ). The corresponding RR

coupling is

ΨRR
(1) =

∑

k even

1

k!
Ci1...ik

(k) TrS(γi1...ikγijM) ql ηγ
ijlη̃ (3.18)

where still the completely antisymmetric part in the fermion bilinear is the only non-

vanishing contribution, since qi1Ci1...ik
(k) = 0. The covariant form of eq.(3.18) is

ΨRR
(1) =

∑

k even

1

k!
C(k)

µ1...µk
TrS(Γµ1...µkΓνρM)qσψ̄Γνρσψ (3.19)

The next coupling is ΨNSNS
(2) , that is

ΨNSNS
(2) = ξij qj1qj2ω

j1j2
ii1i1i2M

i2j (3.20)

After some algebra eq.(3.20) can be rewritten, neglecting q2 contact terms which are irrele-

vant for our semiclassical analysis, as

ΨNSNS
(2) = ξ̃ij qmqn (ηγinkη̃ ηγjmkη̃ − ηγimη η̃γjnη̃) (3.21)

where ξ̃ij ≡ ξikMkj + ξjkMki. Notice that the combination of spinors in eq.(3.21) is the right

one reproducing the covariant expression [19]

ΨNSNS
(2) = ξ̃µν qαqβ ψ̄Γµαρψ ψ̄Γνβ

ρψ (3.22)

The RR coupling is

ΨRR
(2) =

∑

k even

1

k!
Ci1...ik

(k) TrS(γi1...ikγj1j2γj3j4M)ql1ql2ω
l1l2
j1...j4 (3.23)

Using again the gauge condition qi1Ci1...ik
(k) = 0 and after some manipulations, similar to

those so far performed, it is not difficult to put eq.(3.23) into the covariant form

ΨRR
(2) =

∑

k even

1

k!
C(k)

µ1...µk
TrS(Γµ1...µkΓν1ν2

Γν3ν4
M) qαqβ(ψ̄Γν1ν2αψ ψ̄Γν3ν4βψ) (3.24)

Following the same procedure, it is possible to write down all the other terms.

10



IV. SPIN EFFECTS FOR THE P-P SYSTEM

Let us consider now spin interactions between two parallel slowly moving Dp-branes with

impact parameter ~b. Recall that we identify the “time” with X1; accordingly, the boundary

state of a brane moving with velocity vi is obtained from the static one by applying the

boost operator eiviJ1i

[11], where

J1i =
∮

τ=0
dσ
(

X [1∂σX
i] − i

4
S̄ρ1 γ1iS

)

choosing to boost the boundary state defined in τ = 0. Since, on the boundary, iM (s)S̃ = S,

the vertex operator VB ≡ iviJ
1i can be written as

VB = vi

∮

τ=0
dσ
(

X [1∂σX
i] +

1

2
S γ1iS

)

(4.1)

where now S is just the left-moving part of the world-sheet spinor. The same operator (4.1)

could also have been derived from that of photons in Type I theory with a constant field

strength background after a T-duality transformation [2].

As discussed in the introduction, leading orders in the expansion in powers of v can be

read from correlations including the appropriate power of VB insertions in the static brane-

brane potential eq.(2.7). Before going on, it is important to point out that in computing

leading orders of velocity-dependent potentials through correlation functions, we can actually

directly extract potentials from the corresponding phase-shifts by simply dropping the overall

time factor; this can be easily understood remembering that the bosonic coordinates along

the velocity direction are not twisted and, according to eq.(2.6), the resulting zero mode

integration turns then the phase shift into the potential, evaluated at the space-time T = 0,

i.e. the time when the two D-branes are passing one each other at distance ~b.

Given these preliminaries, we can evaluate correlation functions involving in general n

VB’s and m Vη’s. The corresponding amplitudes are given by

An,m =
1

16n!(2m)!





2m

m





∫ ∞

0
dt 〈Bp, ~x = 0|e−2πtα′p+(P−−i∂/∂x+)(VB)n(Vη)

m|Bp, ~y = ~b〉 (4.2)

where the combinatorial factors come from the expansions of the boost and supersymmetry

operator, eq.(3.1). There is an evident analogy between eq.(4.2) and four-point 1-loop

amplitudes of massless states, in Type I string theory in the G-S formalism. In particular,

the zero mode trace is vanishing unless all the eight zero modes S0 are inserted [25], i.e.

〈B0|RN
0 |B0〉 = TrV [RN

0 ] − TrS[RN
0 ] = 0 , for N < 4

11



where the trace and matrix multiplication in both terms are over the vectorial and spinorial

indices. Since VB, as well as Vη, provides at most two of them, a total of n +m ≥ 4 vertex

insertions is needed in order to get a non-zero result. The first non-vanishing trace is

ti1...i8 ≡ TrS0
Ri1i2

0 Ri3i4
0 Ri5i6

0 Ri7i8
0

= −1

2
ǫi1...i8 − 1

2

[

δi1i4δi2i3δi5i8δi6i7 + perm.
]

+
1

2

[

δi2i3δi4i5δi6i7δi8i1 + perm.
]

(4.3)

where “perm.” means permutations of the pairs (i2n−1i2n) plus antisymmetrization within

all the pairs.

We will consider in the following the special case n + m = 4. This corresponds, for a

fixed m, to the leading order in the velocity of the associated spin potential. The interest

of this case lies in the fact that, being determined only by the fermionic zero mode part of

both vertex insertions VB and Vη, massive string contributions precisely cancel, exactly as in

eq.(2.8). These amplitudes are therefore scale invariant, in the sense that their dependence

on the distance ~b is exact, keeping the same functional form at any finite distance. In the

following, expressions similar to eq.(4.2) will be denoted simply by An ≡ 〈V n
B V 4−n

η 〉, in order

to light the notation. We wrote in eq.(4.2) all the supercharges applied to the same boundary

state; being fixed simply by a zero modes analysis, the computation will not depend on the

choice of the boundary, whereas the physical interpretation as polarization effects will be

different. The polarizations of the two D-branes are indeed given by the supersymmetric

parameters ηa
1 , η

ȧ
1 and ηa

2 , η
ȧ
2 associated to the two boundaries, as shown in figure 3.

Qη1
a

a

Qηa
a2

Qη1
a

a

Qηa
a2

VB

VB

Fig. 3: example of a spin-dependent term at v2 order, m = n = 2.

Let us start by inserting only the bosonic vertex operators VB, that means to consider the

universal v4 potential A4 = 〈V 4
B〉. From the above analysis, it follows that a non-vanishing

12



result is obtained only when we pick up the fermionic part of the operator (4.1) and in

particular the zero modes for each operator S. The computation is straightforward and the

result is

A4 =
Vp+1

64
T 2

p |v|4G9−p(~b) (4.4)

As well known, possible contributions to a static force or to v2-potentials are absent due to

a compensation between the gravitational and dilatonic fields (attractive) and the RR Ap+1

field, that for two Dp-branes is repulsive, of course. In this formalism, it is immediately

clear that supersymmetry implies a contribution starting only like v4.

The first spin effect is given by A3 = 〈V 3
B Vη〉; going through the same steps and after

some simple algebra, one obtains

A3 =
Vp+1

8
|v|2 (4π2α′)4−p

∫ ∞

0
dt
∫

d9−pq

(2π)9−p
ei~q·(~x−~y)−2πtα′q2

qjω
j
1i(η) v

i

= −iVp+1

16
T 2

p |v|2vi η̃γ1ijη ∂jG9−p(~b) (4.5)

that represents a spin-orbit like coupling between branes. From eqs.(3.11) and (3.12) we can

derive the NSNS and RR polarizations of the exchanged states, responsible of these non-

minimal couplings. In order to perform the analytic continuation of eq.(4.5) to Minkowskian

coordinates, it is convenient to write covariantly the term η̃γ1ijη, whose SO(1, 9) expression

is ψ̄Γ1µνψ. Performing the rotation we obtain iψ̄Γ0µνψ, and sending vi → ivi leads finally

to

AMink.
3 = −Vp+1

32
T 2

p |v|2vi ∂jG9−p(~b) J
0ij (4.6)

where i, j = 1, ..., 9 and Jµνρ ≡ iψ̄Γµνρψ The next spin effect is A2 = 〈V 2
B V

2
η 〉; in this case

we have to distinguish two possible configurations, depending to which boundary state we

apply the supercharges:

A(1)
2 = 〈V 2

B V
2
η 〉; A(2)

2 = 〈Vη1
V 2

B Vη2
〉

These two contributions can be written as

A(1)
2 =

Vp+1

32
T 2

p ω
ij
i1...i4(η) t

i1...i41k1l vkvl∂i∂jG9−p(~b) (4.7)

A(2)
2 =

Vp+1

32
T 2

p ω
i
[i1i2

(η1)ω
j
i3i4](η2) t

i1...i41k1l vkvl∂i∂jG9−p(~b) (4.8)

Noting that

ti1...i41k1l vkvl = v2 (4δ1i2δ1i4δi1i3 − δi1i3δi2i4) − 4vi1vi4δi2i3 (4.9)
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and working out the spinor algebra, it can be shown that eq.(4.7) reconstructs the covariant

amplitude, that after analytic continuation, takes the following form:

A(1)
2 =

Vp+1

768
T 2

p v
2(2Jm0qJn

0q − JmpqJn
pq + 4Jmρ

iJ
n
ρj v̂

iv̂j)∂m∂nG9−p(~b) (4.10)

Latin letters i, j, k, ... label SO(9) indices running from 1 to 9, in contrast to SO(1, 9) indices,

denoted with Greek letters. In the same way, one can reconstruct the explicit covariant form

of eq.(4.8) and all the remaining spin effects that will follow. We do not report the explicit

relations for all the cases, being quite lengthy, as well as the analytic continuation. The

remaining spin effects are

A(1)
1 = 〈VB V

3
η 〉 =

Vp+1

144
T 2

p ω
ijk
i1...i6(η) t

i1...i61l vl∂i∂j∂kG9−p(~b) (4.11)

A(2)
1 = 〈Vη1

VB V
2
η2
〉 =

Vp+1

144
T 2

p ω
i
i1i2

(η1)ω
jk
i3...i6(η2) t

i1...i61l vl∂i∂j∂kG9−p(~b)

and the static force

A(1)
0 = 〈V 4

η 〉 =
Vp+1

4(4!)2
T 2

p ω
ijkl
i1...i8(η) t

i1...i8 ∂i∂j∂k∂lG9−p(~b)

A(2)
0 = 〈Vη1

V 3
η2
〉 =

Vp+1

4(4!)2
T 2

p ω
i
i1i2

(η1)ω
jkl
i3...i8(η2) t

i1...i8 ∂i∂j∂k∂lG9−p(~b)

A(3)
0 = 〈V 2

η1
V 2

η2
〉 =

Vp+1

4(4!)2
T 2

p ω
ij
i1...i4(η1)ω

kl
i5...i8

(η2) t
i1...i8 ∂i∂j∂k∂lG9−p(~b)

In all these cases the one-point functions considered in last section allows to see which are,

in each configuration, the massless string excitations responsible of all these polarization

effects.

V. SPIN EFFECTS FOR THE P-P+4 SYSTEM

Let us now consider spin potentials for parallel p-p+4 brane configurations. Like more

general p-q systems with mixed Neumann-Dirichlet boundary conditions in four directions,

these BPS configurations preserves 1/4 of the initial supersymmetries, rather than the 1/2

of the p-p system. This residual supersymmetry protects as before the leading order term

in the velocity from higher massive modes contributions; however, unlike the p-p system,

the reduced amount of supersymmetry allows now a non-trivial metric in the Dp moduli

space. In particular the D0-D4 system, studied in [6], was proposed in [27] as a matrix

description for the scattering of an eleven dimensional supergraviton off the background of

a longitudinal fivebrane. The aim of this section is to study the leading spin dependence
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of the potential felt by slowly moving p-branes in the p+4 background. The relevant zero

mode traces are in this case of the form

〈Bp|O|Bp+4〉 = TrS0
[ON ] ≡ TrV [ON ] − TrS[ON ] (5.1)

where O is a product ofRij
0 arising from the zero mode part of the VB and Vη vertex insertions

and

N ij ≡ (MT
p Mp+4)

ij =









Ip+1 0 0

0 −I4 0

0 0 I3−p









Nȧḃ ≡ (MT
p Mp+4)ȧḃ = (γp+2...γp+5)ȧḃ (5.2)

By simple inspection of eq.(5.1), using the matrices (5.2) and the representation of the

operators (3.8), we get vanishing traces for O = 1, Rij
0 . The first non trivial result is

ti1...i4 ≡ TrS0
Ri1i2

0 Ri3i4
0

= 2 ǫi1...i4p+2...p+5

+2
(

δi1p+2δi2p+3δi3p+4δi4p+5 +N i2i4δi1i3 + perm.
)

(5.3)

where by “perm.” we mean as before an antisymmetrization within each pair (i1, i2), (i3, i4)

and symmetrization under the exchange of each of these pairs.

The relevant amplitudes describing leading spin-effects are then

An =
1

16n!(4 − 2n)!





4 − 2n

2 − n





∫ ∞

0
dt 〈Bp, ~x = 0|e−2πtα′p+(P−−i∂/∂x+)(VB)n(Vη)

2−n|Bp+4, ~y = ~b〉

where the total number of vertex insertions now is two providing the four zero modes required

to get the first non-trivial result from eq.(5.3). The rest of the computation follow the lines

of last section. We are left with the universal term

A2 =
Vp+1

4
TpTp+4 |v|2G5−p(~b) (5.4)

and the leading spin potentials

A1 =
Vp+1

4
TpTp+4 ω

i
i1i2

(η) t1ji1i2 vj ∂iG5−p(~b)

A(1)
0 =

Vp+1

16
TpTp+4 ω

ij
i1...i4(η) t

i1...i4 ∂i∂jG5−p(~b)

A(2)
0 =

Vp+1

16
TpTp+4 ω

i
i1i2

(η1)ω
j
i3i4(η2) t

i1...i4 ∂i∂jG5−p(~b) (5.5)

15



The appearence of Tp+4 and G5−p instead of the Tp and G9−p for the p-p system is due to

the lack of four Dirichlet-Dirichlet transfered momentum integrations.

We recall that eqs.(5.4) and (5.5) are exact to any order in the brane separation ~b. Of

course this is a peculiar property only of these leading order terms and of the supersymmetric

p-p, p-p+4 configurations. Higher order terms or more general brane configurations will

involve contributions from the oscillator part of the vertices (4.1), (3.3) described by modular

functions with non-trivial transformation properties which in general distinguish the large

and short distance behaviors. We should say however that this property is shared by an

amount of other interesting brane systems. In a final discussion we will go on through many

of these examples showing how supersymmetry is enough to ensure the scale invariance of

all their relevant leading interactions.

VI. FIELD THEORY INTERPRETATION AND D0-BRANE

GYROMAGNETIC RATIO

In the present section we discuss the field theory interpretation of our results. We will

show in particular that the knowledge of all the one-point functions of the massless fields of

Type IIA/B supergravity allows to infer the complete and generic asymptotic form of the

corresponding p-brane solution. Moreover, the spin-effects in scattering amplitudes that we

have computed in section 4 and the supersymmetric cancellation of some of their leading

orders proves to constitute an extremely efficient way to fix unambiguously the various coef-

ficients entering the solution, and in particular the relative strength of the NSNS attraction

and the RR repulsion (the fact that normalizations are better encoded in scattering am-

plitude than in one-point functions, especially through the vanishing of leading order, was

already appreciated in Polchinski’s computation of the Dp-brane charge [1]). As we will see,

this approach yields a powerful technique to extract informations about a generic compo-

nent of the p-brane multiplet. The analogous computation in supergravity would consist in

performing supersymmetry transformations to the usual p-brane solution, to determine all

the spinning superpartners; this requires looking up to eight variations, a program that, as

can be appreciated from previous works [28–30], is out of reach within the component fields

formalism.

Collecting the covariant one-point functions (3.15), (3.17), (3.19), (3.22) and (3.24),

for up to four supercharge insertions, the NSNS and RR asymptotic fields for a generic

component of the Dp-brane multiplet can be written as a multipole expansion in momentum

space:

ξµν = κ2
[

A0M
µν + A1J

µσαMν
σ qα + A2J

µαρJσβ
ρM

ν
σ qαqβ + ...

]

(6.1)
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Cµ1...µk

(k) =
κ2

k!
[B0TrS[Γµ1...µkM] +B1TrS[Γµ1...µkΓν1ν2

M]Jν1ν2αqα

+ B2TrS[Γµ1...µkΓν1ν2
Γν3ν4

M]Jν1ν2αJν3ν4βqαqβ + ...
]

(6.2)

We have restored the ten-dimensional Plank constant κ2 for convenience. Dots stand for

six and eight supercharge insertions, corresponding to three and four powers of momentum,

that we shall not consider. The constants Ai, Bi could in principle be fixed by correctly

normalizing the one-point functions reported in section 3; however, this is awkward, and

since any final conclusion will eventually depend in a crucial way on these constants, we will

take advantage of our results for the scattering amplitude to fix them unambiguously.

From now on we specialize to the D0-brane, for which M0
0 = −1, M i

j = δi
j and M = Γ0;

the other cases can be treated in the same way. Recall that in the NSNS sector, a generic

field ξµν is decomposed into trace, symmetric and antisymmetric parts φ, hµν and bµν as

ǫ(φ)
µν =

1

4
(ηµν − qµlν − qν lµ) , ǫ(h)

µν = ξ(µν) , ǫ(b)µν = ξ[µν]

where lµ is a vector satifying q · l = 1, l2 = 0. The asymptotic fields in the NSNS sector are

then found to be

φ =
3

2
κ2MG9(r) +

1

4
κ2CJmpqJn

pq∂m∂nG9(r) + ...























h00 = κ2MG9(r) + κ2CJm0qJn
0q∂m∂nG9(r) + ...

hij = δijκ
2MG9(r) + κ2CJm ρ

i Jn
jρ∂m∂nG9(r) + ...

h0i = 2κ2AJ m
0i ∂mG9(r) + ...











bij = κ2AJ m
ij ∂mG9(r) + ...

b0i = 2κ2CJm
0qJ

n q
i ∂m∂nG9(r) + ...

(6.3)

whereas eq.(6.2) in the RR sector become











C0 = 2κ2QG9(r) + κ2DJmρτJn
ρτ∂m∂nG9(r) + ...

Ci = 2κ2BJ m
0i ∂mG9(r) + ...











C0ij = κ2BJ m
ij ∂mG9(r) + ...

Cijk = 2κ2DJm
0[iJ

n
jk]∂m∂nG9(r) + ...

(6.4)

The constants Ai, Bi have been redefined and called M,A,B,Q,C,D for later convenience,

and again, dots stand for higher derivative terms associated to further supercharge insertions.
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Comparing eqs.(6.3) and (6.4) with the usual 0-brane solution [31] and the general result

valid in D dimensions derived in [32], we conclude that M is the mass and Q the electric

charge, whereas 2AJ0ij = Jij is the angular momentum and BJ0ij = µij the magnetic mo-

ment, so that the gyromagnetic ratio, defined by the relation µij = (gQ)/(2M)J ij, is given

by g = (MB)/(QA). Also, the electric and gravitational dipole moments vanish, since they

would correspond to one-derivative terms in C0 and h00, hij respectively. On the contrary,

the presence of non-vanishing two-derivative terms in eqs.(6.3) shows the presence of a grav-

itational quadrupole moment for D-particles. Similarly, there are two-derivative terms also

in eqs.(6.4) corresponding to gauge quadrupole effects. Actually, the one in C0 vanishes due

to a Fiertz identity, showing that D-particles have a vanishing electric quadrupole moment

with respect to the RR one-form. However, analogously to the gyromagnetic ratio g, we can

define the ratio of the gauge and quadrupole moments by g̃ = 4(MD)/(QC).

It is now straightforward to show how the semiclassical analysis of the phase-shift between

two of these configurations can be used to determine in a simple way the value of the

gyromagnetic ratio g and its quadrupole analogue g̃ associated to D0-branes. According to

[33,30], massive Kaluza-Klein states present a common value g = 1, contrarily to the usual

and “natural” [34–36] value g = 2 shared by all the known elementary particles (neglecting

radiative corrections, of course). This particular signature of Kaluza-Klein states can be

useful to establish the 11-dimensional nature of D0-branes, implying g = 1. This consistency

check has been recently performed in [30] considering D0-branes as extended extremal 0-

brane solution of IIA supergravity. We present an alternative and independent argument

that relies on the “stringy” nature of D0-branes as points on which open strings can end; in

particular, we show that g = 1 is the only possible value compatible with the cancellation of

the linear term in velocity in the first spin effect, eq.(4.6) §. Similarly, we will show that our

stringy analysis predicts for the quadrupole analog the value g̃ = 1 from the cancellation of

the static contribution to the second spin effect, eq.(4.7).

Consider first the scattering of a scalar 0-brane, taken as a probe, off a spinning 0-brane,

acting as source. The effective action for the probe is (in the string frame)

S = −M
∫

dτ e−φ
√

−gµνẊµẊν −Q
∫

dτCµẊ
µ (6.5)

For a trajectory with constant velocity v = tanh πǫ, we can choose X0(τ) = τ cosh πǫ,

X i(τ) = τ v̂i sinh πǫ. Expanding for small velocities and weak fields (κ → 0), one finds,

dropping a constant term, S =
∫

dτ
∑

n≥0 v
nLn with

§Actually the fact that the value of g is related to the cancellation of the leading term linear in v

was implicit in ref. [23,24], even if its significance was not completely recognized.
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L0 = Mφ +
1

2
Mh00 −QC0

L1 = Mh0iv̂
i −QCiv̂

i , L2 =
1

2
M(h00 + hij v̂

iv̂j) − 1

2
QC0

L3 = Mh0iv̂
i − 1

2
QCiv̂

i , L4 =
1

2
M(h00 + hij v̂

iv̂j) − 3

8
QC0 (6.6)

We know from the amplitudes computed in section 4 that the leading non-vanishing contribu-

tions to the scattering amplitude behave like vn/r7+n, all lower orders in velocity cancelling

by supersymmetry. Substituing the relevant asymptotic fields of the spinning 0-brane from

eqs.(6.3) and (6.4), one then finds the following conditions:

L0|G = 0 ⇒ M = Q , L0|∂2G = 0 ⇒ MC = 4QD

L1|∂G = 0 ⇒ MA = QB (6.7)

L2|G = 0 ⇒ M = Q

Altogether, this yields

Q = M , g = 1 , g̃ = 1 (6.8)

One can now use these results to write down the structure of the leading non-vanishing

contributions to the scattering amplitude. Actually, thanks to the results obtained in section

four we can write down the amplitude with all the coefficients fixed. Up to an overall factor,

we get

A = κ2M2v4G9(r) + 2κ2Mv3J m
0i v̂i∂mG9(r)

+
1

12
κ2Mv2(2Jm0qJn

0q − JmpqJn
pq + 4Jmρ

iJ
n
ρj v̂

iv̂j)∂m∂nG9(r) + ... (6.9)

The matching of the tensor structure of the v3 and v2 terms with expressions (4.6) and

(especially) (4.10) is a non-trivial check of the consistency of the whole picture.

A comment is in order on how our boundary state formalism for describing higher spin

Dp-branes is related to the supergravity description, where p-branes appear as solitonic

solutions. As already said, the asymptotic fields found by applying the procedure of this

section correspond to supergravity solutions obtained by taking supersymmetric variations

of the usual scalar ones. This has been partially done in [30] for the D0-brane solution,

where the second supersymmetry variation was used to compute the angular momentum

dependence of hµν and Cµ. Using the same strategy, we have similarly checked that the

angular momentum contributions to the higher forms bµν and Cµνρ (which have not been

considered in [30]) correctly reproduce those in eqs.(6.3) and (6.4). We have also checked
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that the fourth supersymmetry variation reproduces all the two-derivative terms we find,

but it is unrealistic to compute and trust the coefficient because of the increasing complexity

of the involved expressions.

Finally, another interesting outcome of the knowledge of the asymptotic fields (6.3), (6.4)

is the possibility to derive the supersymmetric completion of the 0-brane world-line effective

action (6.5) in an arbitrary Type IIA background, at least for weak fields. For example, it is

not dificult to verify that, in much the same way as the part of the asymptotic fields going

like 1/r7 can be derived from the linearization of the action (6.5), the part of the fields going

like 1/r8 can be derived from the following non-minimal couplings

S2Q =
∫

dτ
[

−∂ih0jJ
0ij +

1

4
∂ibjkJ

ijk + ∂iCjJ
0ij − 1

4
∂iC0jkJ

ijk
]

(6.10)

The coefficients have been further checked by computing the static force contribution of

order 1/r9 between two spinning 0-branes, that vanishes as expected.

Notice that the covariant form of eq.(6.10) should be obtained by replacing each 0 index

by a contraction with the momentum Ẋµ; in such a way, the fields generated by a moving

0-brane are given by the boost of those produced by a static one. One obtains

S2Q =
∫

dτ
[

Γρ
σµẊ

µẊνJ σ
ρ ν +

1

24
HµνρJ

µνρ +
g

2
FµνẊ

ρJµν
ρ +

g

72
FµνρσẊ

µJνρσ
]

(6.11)

where Fµν , Fµνρσ and Hµνρ are the field-strengths of Cµ, Cµνρ and bµν . We recognize a two-

fermion gravitational term showing up through a coupling to the Christoffel connection Γµ
αβ,

coming from the (linearized) spin-connection entering the spinor covariant derivative, and

similar non-minimal couplings to the gauge field curvatures. At next order, a four-fermion

term manisfesting itself through a coupling to the Riemann tensor is expected, among further

non-minimal couplings. The coupling to the higher RR forms and the NSNS antisymmetric

tensor seems to occur through more complicated terms which correctly disappear in the

absence of fermionic background. From the eleven-dimensional point of view, eq.(6.11) is

the Kaluza-Klein reduction (keeping J to be ten-dimensional) of an action containing only

the first and last terms for the eleven-dimensional metric and three form. In order to work,

this requires g = 1, as it is.

VII. FINAL REMARKS AND CONCLUSIONS

We studied in the present paper interactions between brane configurations associated

to two parallel p-p and p-p+4 branes, using the Green-Schwarz boundary state formalism.

We found explicit expressions for spin-dependent interactions between moving branes. Our
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general strategy can be summarized as follows: instead of considering the full configuration

of moving branes, where supersymmetry is broken, we perturbed through appropriate vertex

operators the supersymmetric vacuum associated to the static p-p (p-p+4) system, allowing

in this way to easily derive important results on the structure of the exact (in powers of

α′) leading spin interactions in a velocity expansion. The cylinder computation of these

terms collapses to its zero mode contribution, supporting an equivalent description in terms

of either the open (matrix model) or closed (supergravity) massless degrees of freedom.

However the analysis performed on the relevant cylinder correlations is quite general and can

be easily extended to several other previously studied brane configurations (see for example

[5,37–41]) where a similar long-short distance matching of their leading interactions were

observed. They fall in general into two main groups: supersymmetric brane configurations,

which include besides the examples studied above, the p-p+8 systems, bound states between

p-p+2, p-p+2-p+4, p-p+4, ... D-branes, and any S or T-dual combinations of these systems;

and brane configurations which are supersymmetric only in a certain limit of their moduli

space. Bound states can be considered in general as fluxes for the gauge field living on

the boundary of the biggest D-brane, modifying therefore its boundary conditions. The

corresponding light-cone boundary state for a generic condensate was constructed in [18].

The cylinder amplitude defined by two of these boundary states, in the case that some of

the supersymmetries are preserved (take for example two indentical p-p+2 bound states or

the S-dual analog of two D-strings with equal electric fluxes turned on [10]) , will lead to

similar vanishing traces as in eq.(5.1), unless N/4 velocity insertions soak the N/2 left zero

modes, N being the number of supercharges left unbroken by the system. Again the spin-

dependent dynamics can be studied by inserting supercharges on the cylinder, and once more

an equivalent matrix-supergravity description for the slowly moving regime is garanteed.

The second interesting class of configurations (and less straight) for which an analysis

along the lines of this paper can be followed, is inspired from the brane systems studied in

[38], which although not supersymmetric, become so in a given limit of the moduli space. In

the analysis of these systems one can follow a strategy parallel to the one previously applied

to the case of moving branes. In that case supersymmetry is broken for finite velocity v, but

the existence of a supersymmetric limit v = 0 allow us to study leading orders by a simple

analysis of the zero mode structure of amplitudes involving the insertion of vertex operators

corresponding to the deformation (in that case v) from the supersymmetric point. Similarly,

now we look at the neighborhood of a specific choice of flux for which some supersymmetry

is restored. The fermionic part of the operators corresponding to deformations about this

supersymmetric point coincide with the vertex (4.1), once we substitute the plane (1i)

defining the boost operation with the condensate euclidean plane (mn), and therefore the

results can be read directly from the ones quoted above for the moving brane systems. We
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can ilustrate this with the simple example of a Dp-brane, wrapped around a T 2 with a

magnetic flux f1 = N
2πRmRn

turned on. The boundary state for this specific condensate can

be read from the more general one found in [18] to be defined by eqs.(2.4) and (2.5) through

the matrices

Mij =
√

(1 + f 2)













−Ip−1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 I7−p













Mȧḃ = (γ12 + f)γ1 · · ·γp+1 (7.1)

where cosα ≡ −1−f2

1+f2 . Notice that eqs.(7.1) reduce, in the large f limit, to the matrices

(2.2),(2.3) defining the D(p-2) brane, up to an overall f factor and the missing of two

momentum modes corresponding to the Neumann-Dirichlet directions. As we discussed

before, we can study the leading interactions of this bound state with a D(p-2) ordinary

brane by simply perturbing the system by a small c ≡ 1/f quantity from the supersymmetric

c = 0 point. The universal potential is then defined by correlators involving insertions of

Ri1
0 v

i and Rmn
0 πc in the D(p-2)-D(p-2) cylinder, and as before we have vanishing traces

unless at least four of these insertions soak the eight zero modes, leaving

〈Bp−2|Bp, c, v〉 =
1

πc

Vp−1

32
TpTp−2(v

4 + 2v2(πc)2 + (πc)4)G7−p(r). (7.2)

The 1/c factor can be interpreted as the number of D(p-2) branes arising from the Dp-brane

in the c → 0 limit, while the two missing powers in r represents the reduced transverse

space to the system, and the relative coefficients are fixed by the kinematical tensor (4.3)
∗∗. Given, as before, by an exact string computation at the relevant order in the v, c

expansion, this potential is valid at any transverse distance r and in particular admits

equivalent Super Yang-Mills and supergravity descriptions. The p=2 case is the relevant

one for the analysis performed in [38]. In that reference the authors study the graviton-

membrane, static membrane-antimembrane and orthogonal moving membranes scattering.

In each case the infinite boost (N → ∞ or equivalently c → 0) represents a point where

the 16 supercharges are recovered (for v = c = 0). The leading orders in v, c are given by

eq.(7.2), and the scale invariance of these terms is garanteed by our previous analysis, and

checked explicitly in that reference. The case of orthogonal membranes is particular in the

sense that contains two line of deformations c ≡ c1 + c2 = 0 and c′ ≡ c1 − c2 = 0 (this is the

case studied in [39]), c1, c2 being defined by the fluxes in each membrane, along which half

∗∗A flip in the sign of the v2 comes from the analytic continuation to the Minkowski plane.
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the supersymmetries of the D0-D0 system are preserved. Along these lines, the potential

starts then with v2 as for the previously discussed p-p+4 system. The leading scale invariant

interactions are in general given by

〈c2, Bp2|Bp1, c1, v〉 =
1

π2c1c2

1

32
T2T2(v

2 + (πc)2)(v2 + (πc′)2)G5(r). (7.3)

The absence of the static c4 and c′4 terms reflects the surviving of half-supersymmetries

along the aforementioned lines. In [39,40] an exhaustive list of brane configurations was

shown to present again agreement between the one-loop SYM and semi-classical supergravity

descriptions of their potentials. Once more, homogenous polynomials of order four in the

fluxes and velocities as in (7.2),(7.3) were found; an iteration of the analysis for the above

discussed example provides a unified understanding of those results. We believe that this

example can give a flavour of the generality of the analysis performed here, which extends

to any supersymmetric (at least in a point of the moduli space) brane configuration and

covers all (to our knowlegde) one-loop scattering tests of a given matrix description. We

should say that scale invariance is however stronger than what a correct matrix description

of supergravity interactions really requires. In fact higher loop potentials will not display

a simple decoupling of their massive modes as in the examples studied here and only a

matching between the two open-closed massless truncated computations can be at most

expected. Understanding from the string point of view the results quoted in [42,43], where

the v6 potential arising at two loops in the super Yang-Mills effective action was shown to

agree with the corresponding long range correction, or performing other higher loop tests

of this correspondence between SYM and supergravity descriptions of D-brane interactions,

is an essential step in the completion of the picture. It should be pointed out, however,

that the light-cone formalism we used becomes awkward at higher loops, being affected by

several disadvantages.

Finally, we applied our results about the spin-dependent D-brane interactions to the

interesting case of the D-particle. The potential defined by a cylinder ending on two spin-

ning D-particles allowed us to derive supersymmetric analogs of the universal BPS condition

Q = M for the rest of the components of the D0 supermultiplet. In particular we computed

the gyromagnetic ratio g = 1 and a ratio of quadrupole moments g̃ = 1. The value g = 1 is

the consistent value for D0 branes considered as Kaluza-Klein modes of eleven dimensional

supergravity and was reproduced by a corresponding supergravity computation in [30]. The

results presented here can be considered as a further check of the identification of the 0-brane

solitonic supergravity solution with the D-particle string definition as a point-defect where

open strings can end. Moreover, the string analysis provides a compact and efficient way to

obtain generic supergravity asymptotic solutions for spinning p-branes.
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APPENDIX A: PHASE-SHIFT COMPUTATION IN THE G-S FORMALISM

In this Appendix, we briefly show how the full phase-shift computation, performed in

the covariant formalism in ref. [2] as an open string vacuum amplitude and in ref. [11] as an

overlap of boundary states, is reproduced in the Green-Schwarz light-cone formalism. As

troughout all this article, we will use the double analytic continuation described in [23] in

order to define a moving brane; we will therefore work in Euclidean space-time and only at

the end of the calculation we continue analytically our result back to Minkowski space-time††.

1. Closed string channel

The moving boundary state can be obtained from the static one, eqs. (2.4)-(2.6), by

performing a Lorentz transformation with negative rapidity ǫ. As explained, this will be

performed in Euclidean space-time by a transverse rotation generated by the operator J ij =

J ij
B + J ij

F , where

J ij
B = xipj − xjpi − i

∞
∑

n=1

1

n

(

αi
−nα

j
n − αj

−nα
i
n − α̃i

−nα̃
j
n + α̃j

−nα̃
i
n

)

(A.1)

J ij
F = − i

4

∞
∑

n=−∞

(

Sa
−nγ

ij
abS

b
n + S̃a

−nγ
ij
abS̃

b
n

)

(A.2)

Taking the velocity in the X8 direction, we have to compute |Bv〉 = eivJ18 |B〉. The zero

mode part of J18
B breaks translational invariance along the X8 direction and turns eq.(2.6)

into

††Throughtout this appendix we fix α′ = 1/2.
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|Bv, ~x〉 = (
√

2π)4−p
∫

d9−pq

(2π)9−p
ei~q·~x |Bv〉 ⊗ |qB〉 (A.3)

with qi
B = (q8 sin πǫ,~0, q8 cos πǫ). The boosted boundary state (in momentum space) |Bv〉

is obtained by applying J18 to eqs.(2.4)-(2.5). The result corresponds to the replacement

[23]

M ij →M ij(v) = (Σ(v)MΣT (v))ij (A.4)

Mab →Mab(v) = (Σ(v)MΣT (v))ab (A.5)

where Σ(v) is the appropriate representation of the SO(8) rotation:

Σv(v) =









cosπǫ 0 − sin πǫ

0 I6 0

sin πǫ 0 cos πǫ









(A.6)

Σs(v) = cos(
πǫ

2
) δab − sin(

πǫ

2
) γ18

ab (A.7)

After diagonalizing γ18 with a suitable global SO(8) rotation of Sa
n and S̃a

n, the cylinder

amplitude between two Dp-branes moving with relative velocity v is found to be

A =
1

16
Vp (2π2)4−p

∫ ∞

0
dt
∫

d8−pq

(2π)8−p
ei~q·(~x−~y) e−

π
2
tq2

ZF
0

× 1

sin πǫ

∞
∏

n=1

|1 − eiπǫ/2e−2πtn|8
|1 − eiπǫe−2πtn|2(1 − e−2πtn)6

(A.8)

The zero mode part ZF
0 no longer vanishes

ZF
0 = 〈B0, v|B0〉 = TrVM

T (v)M(0) − TrSM
T (v)M(0) = 16 sin4 πǫ

2

and after the analytic continuation ǫ→ iǫ, the final result is

A =
Vp

16πi
(2π2)4−p

∫ ∞

0

dt

(2πt)
8−p

2

e−
b2

2πt

ϑ4
1(i

ǫ
2
|2it)

ϑ1(iǫ|2it)
ϑ′1(0|2it)
η12(2it)

(A.9)

which coincides with the well known result of ref. [2] after using the Riemann identity and

the modular transformation t→ 1/t.

2. Open string channel

We compute now the phase-shift from the standard [2] open channel point of view in

the light-cone gauge. The X+ and X− coordinates are here Neumann, as usual (and not
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Dirichlet as before), and we could in principle consider only p-branes with p ≥ 2, although

the final result is clearly extendable to all branes.

Similarly to ref. [2], the action for two moving branes in the frame where one of them is

at rest, is given by:

S = − 1

2π

∫

d2σ∂αX
i∂αX i +

i

π

∫

d2σS̄ρa∂aS +
v

π

∮

σ=π
dτ(X1∂σX

8 − i

4
S̄ρ1γ18S)

Varying this action, we require the boundary term to vanish and solve for the constraint;

for the bosonic coordinates the result is identical to that of ref. [2] (with ǫ→ iǫ), while the

fermionic boundary conditions are found imposing δSa = −iMabδS̃
b The result is:

Sa(τ, σ) = P ab
+

+∞
∑

n=−∞

Sb
−ne

−i(n+ǫ/2)(τ+σ) + P ab
−

+∞
∑

n=−∞

Sb
−ne

−i(n−ǫ/2)(τ+σ)

S̃a(τ, σ) = −iMab

(

P bc
+

+∞
∑

n=−∞

Sc
−ne

−i(n+ǫ/2)(τ−σ) + P bc
−

+∞
∑

n=−∞

Sc
−ne

−i(n−ǫ/2)(τ−σ)

)

(A.10)

where P± = 1/2(1 ± iγ18) and tanπǫ = v.

The fermionic part of the normal ordered light-cone Hamiltonian P− is then

P−
F =

1

2

+∞
∑

n=−∞

(

Sa
−n(1 + iγ18)abS

b
n(n+

ǫ

2
) + Sa

−n(1 − iγ18)abS
b
n(n− ǫ

2
)
)

=
∞
∑

n=1

(2nSa
−n S

a
n + ǫ Sa

−niγ
18
abS

b
n) +

ǫ

2
Sa

0 iγ
18
abS

b
0 (A.11)

Note that since the Sn modes are space-time fermions, they are twisted by ǫ/2, whereas the

bosonic coordinate present a twist of ǫ. This implies that the eight ǫ/2-twisted fermions and

the two ǫ-twisted bosons give a total contribution to the Hamiltonian equal to

8 · 1

4

ǫ

2
(1 − ǫ

2
) − 2 · 1

4
ǫ(1 − ǫ) =

ǫ

2
(A.12)

As before, we can perform an SO(8) rotation to the Sn oscillator modes to put the S−niγ
18Sn

term in a diagonal form; the total Hamiltonian P− takes then the following form:

P− =
1

2p+

[

(pi)2 +
b2

π2
+ 2

4
∑

a=1

(n+
ǫ

2
)Sa

−nS
a
n + 2

8
∑

a=5

(n− ǫ

2
)Sa

−nS
a
n

+
ǫ

2
Sa

0 iγ
18
abS

b
0 + ǫ + (bos. osc.)

]

(A.13)

We can now compute the partition function
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A =
∫ ∞

0

dt

t
Tr e−πtp+(P−−i∂+)

= Vp

∫ ∞

0

dt

t

∫

dpp

(2π)p
e−

πt
2

(p2+b2/π2) e−πtǫ/2

1 − e−πtǫ
TrS0

e−iπtǫR18
0 × (A.14)

×
∞
∏

n=1

(1 − e−πt(n+ǫ/2))4(1 − e−πt(n−ǫ/2))4

(1 − e−πtn)6(1 − e−π(n+ǫ)t)(1 − e−π(n−ǫ)t)

The trace over the zero modes S0 yields

TrS0
e−iπtǫR18

0 = 16 sinh4 πtǫ

4
(A.15)

Performing finally the integral over the momentum and the analytic continuation ǫ → iǫ,

the result can be written in terms of ϑ-functions as:

A =
Vp

2πi

∫ ∞

0

dt

t
(2π2t)−

p

2 e−
b2t
2π
ϑ4

1(
ǫt
4
| it
2
)

ϑ1(
ǫt
2
| it
2
)

ϑ′1(0| it2 )

η12( it
2
)

(A.16)

Again, eq.(A.16) reproduces the usual result after having performed the spin-structure sum.
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