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Abstract

We show that a flavour symmetry à la Froggatt-Nielsen can be naturally in-

corporated in models with gauge-Higgs unification, by exploiting the heavy

fermions that are anyhow needed to realize realistic Yukawa couplings. The

case of the minimal five-dimensional model, in which the SU(2)L ×U(1)Y elec-

troweak group is enlarged to an SU(3)W group, and then broken to U(1)em by

the combination of an orbifold projection and a Scherk-Schwarz twist, is stud-

ied in detail. We show that the minimal way of incorporating a U(1)F flavour

symmetry is to enlarge it to an SU(2)F group, which is then completely broken

by the same orbifold projection and Scherk-Schwarz twist. The general features

of this construction, where ordinary fermions live on the branes defined by the

orbifold fixed-points and messenger fermions live in the bulk, are compared to

those of ordinary four-dimensional flavour models, and some explicit examples

are constructed.

1



1 Introduction

In the last thirty years the central problem in particle physics has been the mechanism

for breaking the electroweak gauge symmetry and the consequent generation of masses

for gauge bosons and matter fermions. In the Standard Model (SM), the problem

manifests itself in two different ways: on the one hand in the instability of the weak

interaction scale (the so-called hierarchy problem), on the other in the arbitrariness of

the Yukawa couplings, which span at least five orders of magnitude, and the related

problem of the strength of the CKM [1] (and PMNS [2]) matrix elements. In the quest

for a solution of these fundamental problems, a plethora of extensions of the SM have

been proposed, like technicolor, softly broken global supersymmetry, supergravity

or string theory. None of the proposed solutions, however, is satisfactory, and this

motivates further investigation.

More recently the idea came on the stage that it might be possible to overcome the

hierarchy problem by implementing the breaking of gauge symmetries via alternative

mechanisms relying on the presence of one or more extra dimensions. In particular,

it has been known for a long time that realizing the Higgs field as the zero-mode

of the internal component of a higher-dimensional gauge field leads to an effective

potential with improved stability [3]. This idea has been recently reinvestigated from

various points of view [4], and exploited to construct concrete higher-dimensional

orbifold models with this type of gauge-Higgs unification [5–9] (see also [10–12] for

supersymmetric models). A simple prototype of this kind of models is the minimal

five-dimensional (5D) scenario described in [6], where the gauge symmetry is broken

by the combination of a Z2 orbifold projection [13] and a continuous Scherk-Schwarz

(SS) twist [14] along the extra compact dimension. The electroweak symmetry break-

ing is spontaneous and occurs through the Hosotani mechanism [15]. The order pa-

rameter is the Wilson loop W = exp {ig ∮A5(y)dy} of the internal component A5 of

the gauge field along the internal circle S1 (here and in the following we denote by

y the coordinate along the internal dimension). The role of the Higgs field is played

by the zero-mode of A5, but the effective potential can depend only on the non-local

gauge-invariant W and is therefore finite.

In this paper, we study the possibility of endowing the above-mentioned class

of higher-dimensional models with a flavour symmetry of the Froggatt-Nielsen (FN)

type [16]. This is done by introducing an extended flavour symmetry, which is then

broken, as for the electroweak symmetry, by the combination of an orbifold projection

and a SS twist. We focus on the model of ref. [6] and describe its minimal flavour

extension. We show that by a wise choice of the flavour quantum numbers for bulk

and brane fermion fields, it is possible to reproduce the observed pattern of the quark

masses and CKM angles, although the mass obtained for the down quark tends to be

too small, and observe that a similar approach is possible also for lepton masses and

PMNS angles. The resulting model generates a 4D effective theory with a stabilized
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electroweak scale and a U(1) FN symmetry.

The paper is organized as follows. After quickly reviewing gauge-Higgs unification

in sec. 2, we outline in sec. 3 the basic construction discussing explicitly a prototype

model. In sec. 4 we generalize our construction to arbitrary representations of the

electroweak and flavour groups. In sec. 5 we present more realistic examples of our

construction. Finally, in sec. 6 we draw some conclusions and discuss future develop-

ments.

2 Gauge-Higgs unification in 5D

Our starting point is the model of gauge-Higgs unification described in ref. [6]. The

basic physical idea is to break the electroweak symmetry in a non-local way, so that

the Higgs mass is protected by the gauge invariance of the 5D theory. Indeed, in a

5D theory compactified on a circle with SS symmetry breaking, all ultraviolet (UV)

divergent quantities at all orders in perturbation theory must be invariant under

the full symmetries of the 5D theory [17]. This means that all symmetry-breaking

quantities are finite, calculable and insensitive to the unknown UV dynamics. If one

could find a 5D symmetry that forbid the Higgs mass term, a non-local breaking of

this symmetry would protect the Higgs mass from any divergent radiative correction.

Gauge-Higgs unification implements this idea, by identifying the Higgs boson with

the internal component of a 5D gauge field, so that the 5D gauge symmetry protects

the Higgs mass.

To construct a model of gauge-Higgs unification one must consider a gauge group

large enough as to include 4D states corresponding to the SU(2)L ⊗ U(1)Y gauge

bosons plus the Higgs doublet. The minimal possibility corresponds to an SU(3)W

gauge group, broken first to SU(2)L ⊗ U(1)Y via a Z2 orbifold projection, and then

to U(1)em with a SS twist.1 The orbifold projection acting on the 5D gauge group

leaves as 4D zero modes the SM gauge bosons plus a scalar doublet with the quantum

numbers of the SM Higgs: the SS twist corresponds to a Vacuum Expectation Value

(VEV) for the Higgs via the Hosotani mechanism. From the 4D point of view, this cor-

responds to the SM Higgs mechanism: however, higher-dimensional gauge invariance

protects the Higgs mass. This remains true even though at the orbifold fixed points

only the SM gauge group is present: indeed, the zero-modes of A5 transform non-

homogeneously under gauge transformations belonging to SU(3)W/(SU(2)L⊗U(1)Y ),

so that the only possible counterterms are SU(3)W -invariant ones [18] (see also [19]).

The price one has to pay for this UV insensitivity is the absence of a tree-level

1In this way, one obtains sin2 θW = 3/4. An acceptable value of the weak mixing angle can be

achieved by adding an extra U(1)′ factor and tuning its coupling relatively to the weak coupling, as

done in ref. [6]. The additional U(1)X symmetry introduced in this way in the 4D effective theory

is anomalous, and must therefore be spontaneously broken and decoupled.
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potential for the Higgs. This implies that the Higgs mass generated at one loop

is generically too small (see ref. [6] for a detailed discussion of this problem). A

related issue is the value of the SS twist that is dynamically generated: unless bulk

fermions belonging to very high-rank representations of SU(3) are present, one obtains

twist parameters of order 10−1, corresponding to an extra dimension of inverse radius

1/R ∼ 10mW ∼ 1 TeV, far below the LEP indirect bounds. Since these problems

are unrelated to the issue of flavour symmetry breaking that will be discussed in this

work, from now on we will assume that the value of the SS twist α is of order 10−2

thanks to some unspecified mechanism, so that 1/R ∼ 10 TeV and Kaluza-Klein (KK)

excitations of electroweak gauge bosons do not pose any phenomenological problem.

As in the standard electroweak theory, the VEV of the Higgs field can induce a

mass for the matter fermions. The relevant Yukawa couplings, however, originate

in this case from the 5D gauge coupling. For bulk fermions, this implies that the

Yukawa couplings are universal and their magnitude is simply the gauge coupling

times a group-theoretical factor, depending only on the representation. Furthermore,

no flavour symmetry breaking can arise from electroweak gauge couplings, so that

one is left with a universal fermion mass and no flavour mixing. For brane fields

localized at the orbifold fixed-points, on the contrary, the SU(2)L ×U(1)Y symmetry

would allow Yukawa couplings to be arbitrary and non-universal, but the non-linearly

realized SU(3)W/(SU(2)L×U(1)Y ) symmetry implies that they all vanish. In order to

achieve realistic Yukawa couplings, one is therefore led to consider the more general

case of fermions that are a mixture of bulk and brane fields with wave functions

depending non-trivially on the internal dimension [11]. This situation is most easily

realized by considering bulk and brane fields that mix through non-universal bilinear

couplings localized at the fixed-points [6]. The new eigenstates, resulting from the

diagonalization of the quadratic Lagrangian for these fields, will then inherit non-

vanishing and non-universal Yukawa couplings to the Higgs field. The structure of

the mass couplings is pretty general, but their size is always at most of the order

of the gauge coupling. This implies that the natural value of all the fermion masses

induced in this way is of the order of mW .

In the case where the above construction is realized with bulk fields that are

much heavier than the brane fields, the lightest eigenstates are sharply localized

fields whose dynamics is well approximated by an effective Lagrangian for the orig-

inal brane fermions, obtained by integrating out the heavy bulk modes. From this

perspective, the non-vanishing and non-universal Yukawa couplings for the light lo-

calized modes emerge as effective interactions induced through the exchange of the

heavy bulk fermions, which have a non-vanishing but universal fundamental Yukawa

coupling. This framework is very similar to the one occurring in models with flavour

symmetries, the breaking of which is transmitted to the effective Yukawa couplings

through a heavy fermion, and suggests that it should be possible to naturally gener-

alize the model of ref. [6] to include a flavour symmetry.
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The usual implementation of a FN U(1)F flavour symmetry goes as follows. One

assigns a U(1)F charge to each of the SM fermions, and introduces some heavy vector-

like fermions in order to construct gauge- and flavour-invariant Yukawa couplings.

The flavour symmetry is then spontaneously broken by some VEV at a scale smaller

than the mass of the heavy fermions, so that the effective Yukawa couplings for SM

fermions generated at low energies are YIJ ∝ (〈φ〉/M)qI−qJ , where 〈φ〉 is the U(1)F -

breaking VEV, M is the mass of the heavy fermions, and qI are the SM fermion

flavour charges. Wave-function corrections and the potentially dangerous tree-level

FCNC generated by the heavy fermions are power suppressed and negligible if the

new particles live at a high scale.

It is then natural for us to consider the case of a U(1)F symmetry broken à la SS.

Since rank lowering can only be achieved by combining an orbifold projection with a

SS twist, we have to start from an SU(2)F symmetry in the bulk, broken to U(1)F

by the orbifold and then to nothing via a SS twist. Clearly, since the mass scale of

the heavy bulk fermions is around 10 TeV in the case of ref. [6], we should make sure

that wave function corrections and tree-level FCNC couplings are under control. We

have performed a preliminary analysis of this issue, which indicates that unwanted

effects might indeed be kept sufficiently small with reasonable choices of parameters.

A detailed analysis, together with a study of loop-induced FCNC’s, is currently under

way and will be presented elsewhere.

3 A prototype model

A minimal prototype of the models discussed in the previous section can be con-

structed as follows. The standard fermions are taken to live at the orbifold fixed-

points, whereas the messenger fermions that activate the mechanism of symmetry

breaking live in the bulk. A spontaneously broken Abelian flavour symmetry is then

incorporated much in the same way as for the spontaneously broken electroweak sym-

metry, and both symmetry breakings are implemented at once by letting the orbifold

projection and the SS twist act on both the electroweak and the flavour groups. The

minimal choice of 5D flavour group allowing an Abelian group in the intermediate

step and a full breaking in the final step is an SU(2)F group. For simplicity, we

assume this to be a global symmetry, but the case of a local symmetry is similar.

This flavour group is broken to a U(1)F subgroup through the orbifold projection,

and finally to nothing through the SS twist.

The above construction is very general, and exploits for both the electroweak and

the flavour symmetries the same minimal pattern of symmetry breaking discussed in

ref. [20], which consists in first promoting the 4D group to a larger 5D group and

then performing two non-commuting projections that enable to lower the rank. The

standard fermions at the fixed-points form representations of SU(2)L×U(1)Y ×U(1)F ,

5



whereas the messenger fermions in the bulk form representations of SU(3)W×SU(2)F .

The construction can be applied in a perfectly similar way both to the quark and the

lepton sectors. Here we shall focus on the quark sector. For the sake of clarity of

presentation, we will first illustrate the general qualitative features of the construction

with an explicit example, then generalize to arbitrary flavour charges and SU(3)W ⊗
SU(2)F representations, and finally discuss some realistic models.

3.1 Orbifold projection and SS twist

The projections defining the model are chosen as follows. The orbifold projection on

a bulk field ΦR,R′ in a generic representation (R,R′) of SU(3)W × SU(2)F is taken

to be

ΦR,R′(x,−y) = ±[PL ⊗ PR
W ⊗ PR′

F ] ΦR,R′(x, y) , (1)

where PL depends on which Lorentz representation the field corresponds to (PL = 1

for a scalar, PL = γ5 for a spinor, etc.) and PW and PF define the embedding of the

projection into the weak and flavour groups. In order to achieve the desired symmetry

breaking down to SU(2)W × U(1)Y × U(1)F , we use the T 8
W and T 3

F generators2 of

SU(3)W and SU(2)F respectively, and choose:

PW = e2iπ
√

3T 8

W , PF = e−iπ (d(T 3

F
)−1)/2 eiπT 3

F , (2)

where d(T ) is the dimension of the matrix T acting on the representation R′. The

residual SU(2)F ×U(1)Y electroweak gauge symmetries are associated with the gen-

erators T a
W with a = 1, 2, 3, 8 that commute with the projection: [T a

W , PW ] = 0.

Similarly, the surviving U(1)F flavour symmetry is associated to the only generator

T 3
F commuting with the projection: [T 3

F , PF ] = 0.

The Scherk-Schwarz twist on the generic representation (R,R′) of SU(3)W ×
SU(2)F is similarly of the form:

ΦR,R′(x, y + 2πR) =
[
TR

W (α) ⊗ TR′

F (β)
]

ΦR,R′(x, y) , (3)

where TW (α) and TF (β) define the embedding of the twist into the weak and flavour

groups and depend on two continuous parameters α and β. These must satisfy the

usual consistency constraints (TWPW )2 = (TFPF )2 = 1 [13, 21]. In order to further

break by the twist the electroweak and flavour symmetries SU(2)F ×U(1)Y ×U(1)F

preserved by the orbifold projection down to U(1)em, we use the T 6
W and T 1

F generators

of SU(3)W and SU(2)F respectively, and choose:

TW (α) = e4πiαT 6

W , TF (β) = e4πiβT 1

F . (4)

2We define the SU(3)W generators as T a = λa/2, where λa are the standard Gell-Mann matrices

with the normalization Trλaλb = 2δab. Similarly, we define the SU(2)F as T a = σa/2, where σa are

the standard Pauli matrices with the normalization Trσaσb = 2δab.
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The residual U(1)em electromagnetic gauge symmetry is associated with the only

generator T 3
W + T 8

W/
√

3 that commutes also with the twist: [T 3
W + T 8

W/
√

3, TW ] = 0.

Notice that this fixes the hypercharge to be Y = T 8
W/

√
3. The flavour symmetry is

instead completely broken since there is no generator commuting also with the twist.

The dimensionless quantities α and β are the order parameters for the rank-

reducing breaking of the electroweak and flavour symmetries. Indeed, it is evident

from eqs. (2) and (4) that the orbifold projection and the twist do not commute, that

is [PW , TW ] 6= 0 in the gauge sector and [PF , TF ] 6= 0 in the flavour sector, unless

α = n/2 and β = n/2, with n integer. For the gauge symmetry, it is possible to relate

the order parameter to the VEV of the Higgs field A5 by performing a non-periodic

gauge transformation that reabsorbs the twist [15]: α = g5R〈A5〉/2. For the flavour

symmetry, a similar relation would hold if it were local; the case where it is taken to

be global can however be understood in a similar way by taking a suitable decoupling

limit [17]. Notice finally that the electroweak and flavour symmetry breaking scales

are naturally defined by mW = α/R and mF = β/R.

The effect of the SS twist on the orbifold-projected spectrum of KK modes of bulk

fields will as usual amount to shifting the standard integer-moded masses mn = n/R

obtained for fields that are periodic along the internal circle S1 with radius R through

a quantity that depends on the symmetry breaking parameters α and β. To be

more precise, notice that the generators appearing in the exponents of the orbifold

projection and SS twist do not commute. Starting from the standard basis in which

the Cartan generators T 8
W and T 3

F appearing in the orbifold projection are diagonal,

the generators T 6
W and T 1

F appearing in the twist can be brought into diagonal forms,

which we denote by tW and tF , through some suitable unitary transformations UW

and VF :

tW = UWT
6
WU

†
W , tF = VFT

1
FV

†
F . (5)

In the transformed basis where the SS twist is diagonal (but the orbifold projec-

tion is not diagonal), the mass spectrum can be written in terms of the entries of

the diagonalized twist generator simply as mn(α, β) = (n + 2tWα + 2tFβ)/R (see

sec. 3.5.1).

3.2 Field content

The field content of the model is a generalization of the one considered in ref. [6], where

now all the brane fields must not only belong to SU(2)L ×U(1)Y representations but

also have definite charges under the U(1)F subgroup, and similarly all the bulk fields

must also belong not only to SU(3)W but also to SU(2)F representations. Notice

that the charge under the U(1)F flavour group preserved by the orbifold projection is

quantized, as a consequence of the fact that the original flavour group is non-Abelian,

and represented by qF = T 3
F . This constrains in an interesting way the allowed charge
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assignments for the brane fields. The minimal content of brane and bulk fields that

is required in order to construct the flavour extension of the model of ref. [6] is then

quite rigidly fixed.

The SM fermions are introduced as brane fields at the fixed-points of the orbifold

projection. Denoting by y the periodic coordinate of the extra dimension, the two

fixed-points are located at y = 0 and y = πR and represent the two boundaries of the

physical space, the segment [0, πR] in the extra dimension. Each of the left- and right-

handed fields can be located at any of the two fixed-points. The precise distribution

that is chosen is qualitatively not too important as far as the low-energy effective

theory is concerned, but it is quite relevant for the consistency of the theory, and

in particular for the issue of anomalies. Indeed, it is known that globally vanishing

localized anomalies occur in theories with a generic content of bulk and brane fields

and that requiring their cancellation may have non-trivial implications on the theory

[22, 23] (see [24] for a general review). The issue of localized anomalies has already

been discussed in ref. [6], and since the flavor extension examined here does not involve

any novelty in this respect, we shall not discuss it any further here. For simplicity,

we assume that all the left-handed fields are located at y = 0 and the right-handed

ones at y = πR, and their interactions are constrained to be invariant under the

residual symmetries described above. We introduce the following representations of

SU(2)L × U(1)Y × U(1)F :

• Left-handed fields localized at y = 0:

QL =

(
uL

dL

)
: 2 1

6
,q or equivalently Qc

R =

(
dc

R

-uc
R

)
= 2− 1

6
,−q . (6)

• Right-handed fields localized at y = πR:

uR = 1 2

3
,u , or equivalently -uc

L = 1− 2

3
,−u ,

dR = 1− 1

3
,d , or equivalently dc

L = 1 1

3
,−d ,

(7)

with the notation RqY ,qF
, where R is the SU(2)L representation and qY and qF are

the U(1)Y and U(1)F charges respectively. As a first example, we choose the charge

assignment reported in Table 1.

The bulk fields consist of the 5D gauge fields and of the heavy fermions that are

needed to induce the effective Yukawa couplings as in ref. [6]. The rôle played by

the gauge fields has been extensively explained in ref. [6] and will not be discussed

again here. The only novelty concerns the heavy messenger fermions, which will now

carry flavour quantum numbers. We introduce two pairs l = u, d of fermion fields

(ψl, ψ̃l) with opposite orbifold parities, with a bulk mass term that makes all their
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Field qF Field qF Field qF

Q1L 4 d1R −1 u1R −4

Q2L 3 d2R 0 u2R −1

Q3L 1 d3R 1 u3R 1

Table 1: Flavour charges of SM fermions.

modes heavy. Following ref. [6], we take these two pairs to be weak triplets to generate

masses for down-type quarks, and weak sixplets to generate masses for up-type quarks.

Concerning the representation under SU(2)F , from Table 1 we see that QL and uc
L

have flavour charges with absolute value up to four: the minimal choice is therefore

a nineplet, which contains fields with U(1)F charges from −4 to 4. Summarizing, we

have bulk fields in the following representations of SU(3)W × SU(2)F :

• Bulk fields with negative overall parity:

ψd :
(
3, 9

)
, ψ̃u :

(
6, 9

)
, (8)

• Bulk fields with positive overall parity:

ψ̃d :
(
3, 9

)
, ψu :

(
6, 9

)
. (9)

The decomposition of the above representations of the SU(3)W × SU(2)F group

under its SU(2)Y × U(1)Y × U(1)F subgroup, which we will need to determine the

coupling of the bulk fields to the brane fields, has the following form:

(
3, 9

)
→ 2 1

6
,q ⊕ 1− 1

3
,d ,

(
6, 9

)
→ 3 1

3
,Q ⊕ 2− 1

6
,−q ⊕ 1− 2

3
,−u , (10)

with Q, q, u, d ranging from −4 to 4. The only components that have the right quan-

tum numbers to couple to the brane fermions are the SU(2)W doublets and singlets,

with U(1)F charges matching the SM ones given in Table 1.

The action of the orbifold projection on the bulk fermion fields is given by

P 3
W = diag(−1,−1, 1) , P 6

W = diag(1, 1,−1, 1,−1, 1) ,

P 9
F = diag(1,−1, 1,−1, 1,−1, 1,−1, 1) . (11)

This implies that after the projection the particle content is given by an electroweak

doublet and an electroweak singlet with flavour charges ranging from −4 to 4, be-

longing to ψl if the flavour charge is even and to ψ̃l if it is odd. In other words, one

and only one of the two bulk fields ψl and ψ̃l always has a component with the right

quantum numbers to couple to the SM brane fermions.

9



The choice of the SU(3)W representation for the messenger fermions in the bulk

influences only the overall magnitude of the induced Yukawa couplings, whereas the

choice of the SU(2)F representation for these bulk fermions, together with the U(1)F

charges for the matter brane fermions, determines the flavour structure.

3.3 Lagrangian

The structure of the Lagrangian is the same as in ref. [6]: in addition to the kinetic

terms for the bulk and brane fields, we introduce an arbitrary bilinear mixing be-

tween them. The couplings of the three generations of left- and right-handed brane

fields QL, uR, dR and their conjugates to the bulk fields ψl or ψ̃l are parametrized by

couplings el
L and el

R with mass-dimension 1/2, in each sector l = u, d. Each brane

field can couple either to ψl or ψ̃l, and has therefore only one relevant coupling. To

write these couplings more explicitly, it is convenient to embed the brane fields into

new fields χu,d
L,R, χ̃u,d

L,R which have the same matrix structure as the representations

of SU(3)W × SU(2)F to which the bulk fields belong, the extra entries being filled

with zeroes, and then further combine left and right components into Dirac fields:

χu,d = χu,d
L + χu,d

R and χ̃u,d = χ̃u,d
L + χ̃u,d

R . Correspondingly, it is convenient to em-

bed the diagonal matrices of couplings el
1 and el

2 in family space into new diagonal

matrices of couplings êl
1 and êl

2 in flavour space. In our example, we have:

χd =




1

0

0




W

⊗




u1
L

0

0

0

0

0

0

0

0




F

+




0

1

0




W

⊗




d1
L

0

0

0

0

0

0

0

0




F

+




0

0

1




W

⊗




0

0

0

0

d2
R

0

0

0

0




F

, (12)

χ̃d =




1

0

0




W

⊗




0

u2
L

0

u3
L

0

0

0

0

0




F

+




0

1

0




W

⊗




0

d2
L

0

d3
L

0

0

0

0

0




F

+




0

0

1




W

⊗




0

0

0

d3
R

0

d1
R

0

0

0




F

, (13)
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χu =




0

0

0

0

1

0




W

⊗




0

0

0

0

0

0

0

0

-uc1
R




F

+




0

0

1

0

0

0




W

⊗




0

0

0

0

0

0

0

0

dc1
R




F

+




0

0

0

0

0

1




W

⊗




uc1
L

0

0

0

0

0

0

0

0




F

, (14)

χ̃u =




0

0

0

0

1

0




W

⊗




0

0

0

0

0

-uc3
R

0

-uc2
R

0




F

+




0

0

1

0

0

0




W

⊗




0

0

0

0

0

dc3
R

0

dc2
R

0




F

+




0

0

0

0

0

1




W

⊗




0

0

0

uc2
L

0

uc3
L

0

0

0




F

, (15)

with u1,2,3 and d1,2,3 denoting the three generation quarks, and

êd
1 = diag(ed

1,1, e
d
1,2, 0, e

d
1,3, 0, 0, 0, 0, 0) ,

êd
2 = diag(0, 0, 0, ed

2,3, e
d
2,2, e

d
2,1, 0, 0, 0) ,

êu
1 = diag(0, 0, 0, 0, 0, eu

1,3, 0, e
u
1,2, e

u
1,1) ,

êu
2 = diag(eu

2,1, 0, 0, e
u
2,2, 0, e

u
2,3, 0, 0, 0) .

(16)

With this notation, and discarding irrelevant operators, which give negligible physical

effects at low energies, the most general local Lagrangian for the light SM fields and

the heavy flavour messengers that is compatible with the symmetries of the theory

has the structure

L = Lbulk + δ(y)L0 + δ(y − πR)LπR , (17)

with

Lbulk =
∑

l=u,d

[
iψ̄lγMDMψ

l + i
¯̃
ψlγMDM ψ̃

l −Ml(ψ̄
lψ̃l +

¯̃
ψlψl)

]
, (18)

L0 = iχ̄d
Lγ

µDµχ
d
L + i¯̃χ

d
Lγ

µDµχ̃
d
L + iχ̄u

Rγ
µDµχ

u
R + i¯̃χ

u
Rγ

µDµχ̃
u
R

+
[
χ̄d

L ê
d
1
† ψd + ¯̃χ

d
L ê

d
1
† ψ̃d + χ̄u

R ê
u
1
† ψu + ¯̃χu

R ê
u
1
† ψ̃u + h.c.

]
, (19)

LπR = iχ̄u
Lγ

µDµχ
u
L + i¯̃χu

Lγ
µDµχ̃

u
L + i¯̃χ

d
Rγ

µDµχ̃
d
R + iχ̄d

Rγ
µDµχ

d
R

+
[
χ̄d

R ê
d
2
† ψd + ¯̃χ

d
R ê

d
2
† ψ̃d + χ̄u

L ê
u
2
† ψu + ¯̃χu

L ê
u
2
† ψ̃u + h.c.

]
. (20)
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We have here tacitly excluded the possibility that odd operators might appear in the

Lagrangian with coefficients that are themselves odd functions of the coordinates,

behaving as constants in the bulk and jumping discontinuously at the branes. This

is reasonable, since this kind of odd operators can be distinguished from ordinary

even operators by a local parity symmetry [23]. It should be noticed, however, that

imposing the latter symmetry significantly restricts the possibilities for canceling

potential localized anomalies, since it forbids bulk Chern-Simons counterterms.

3.4 Structure of the induced couplings

QL qR

α

Ψ2 Ψ1

Figure 1: Diagram inducing the effective mass in the presence of SU(3)W gauge symmetry

breaking only: all the fields carry the same flavour charge. The insertion of α switches from

the doublet to the singlet components of the bulk field. Here QL and qR can be any left- and

right-handed brane fermion and Ψ represents the pair of bulk fermions.

As in ref. [6], effective Yukawa couplings, wave-function and vertex corrections

for the standard matter fermions are generated in the low-energy effective theory

defined by integrating out the heavy messenger fermions. For example, mass terms

are obtained from the diagrams in Fig. 1. In this case, however, a given brane fermion

can couple only to the flavour component of the bulk fermions that has the same U(1)F

charge. This implies that a non-vanishing Yukawa coupling, wave-function or vertex

correction is generated only if the involved brane fields have equal U(1)F charge, as

long as the U(1)F symmetry stays unbroken, that is for β = 0. The other Yukawa

couplings, wave-function and vertex corrections, involving brane fields with different

U(1)F charges, can be generated only if the U(1)F symmetry is broken, that is β 6= 0.

In this case, we have the diagrams in Fig. 2. Since T 1
F = (T+

F +T−
F )/2 can change the

U(1)F charge by 1 unit, in order to connect two brane fields with charges differing by

some integer k, we need |k| insertions of βT 1
F . The effect will thus be of order β |k|.

Actually, a further restriction turns out to be present, depending on whether k is

12



QL qR

αβ β β β

Ψ2 Ψ2 Ψ2 Ψ1 Ψ1 Ψ1

Figure 2: Diagram inducing the effective mass in the presence of both gauge and flavour

symmetry breaking. Each insertion of β switches between two components of bulk fields

with flavour charges differing by one unit. The minimal number of such insertions that is

needed to get a non-vanishing result is equal to the difference between the flavour charges of

the left- and right-handed brane fields. Moreover, if this number is even, there is no mass

insertion for the bulk fields, whereas when it is odd, there must be one mass insertion. Here

QL and qR can be any left- and right-handed brane fermion and Ψ represents the pair of

bulk fermions.

even or odd, as a consequence of the fact that the two types of bulk fermions ψl and

ψ̃l can couple only to SM fermions with even and odd flavour charges respectively (in

the example under consideration). The Yukawa couplings can be generated through

the exchange of bulk fermions with an even or odd number of bulk mass insertions,

i.e. with or without a ψl ⇔ ψ̃l transition. Non-vanishing entries can therefore be

generated only with even or odd k, depending on whether the involved fields couple

to the same or to a different kind of bulk fields ψ or ψ̃. Wave-function and vertex

corrections can instead be generated only with an even number of bulk mass insertions,

i.e. without an overall ψl ⇔ ψ̃l transition, and a non-vanishing correction is therefore

generated only for k even.

The above reasoning shows that with a suitable assignment of the SU(2)F quan-

tum numbers for brane and bulk fermions, it is possible to induce effective mass

matrices with a pattern of matrix elements that can naturally explain the hierarchies

among observed masses and mixing angles for matter fermions. Just as with the FN

mechanism, the entries of the Yukawa couplings Y u,d
IJ (from now on we denote by I

and J the family index) and the wave-function factors ZQ
IJ and Zu,d

IJ for doublets and

singlets respectively, can be expressed as powers of the order parameter λ ≡ πβ for

the breaking of the Abelian flavour symmetry, modulo numerical factors of order one.

The results can be written in terms of the charges qI of the left-handed doublets Q

13



and the charges lI of the right-handed singlets l = u, d as:

Y l
IJ ∼ λ|qI−lJ | , (21)

ZQ
IJ ∼





δIJ + λ|qI−qJ | for |qI − qJ | even

δIJ for |qI − qJ | odd
, (22)

Z l
IJ ∼




δIJ + λ|lI−lJ | for |lI − lJ | even

δIJ for |lI − lJ | odd
. (23)

The physical Yukawa couplings are obtained after performing a transformation on

matter fermions that brings their kinetic terms to a canonical form. To do so (see

for example [25]), we first diagonalize the wave functions as ZQ = UQ†DQUQ and

Z l = U l†DlU l in terms of some unitary matrices UQ and U l. In general, the diagonal

matrices have entries of order one, DQ
II ∼ 1 and Dl

II ∼ 1, but differ from the identity,

while the U matrices have the same form as the wave-function corrections themselves,

i.e. UQ
IJ ∼ δIJ + λ|qI−qJ | and U l

IJ ∼ δIJ + λ|lI−lJ |. We then redefine the matter

fields to be Q̂ =
√
DQUQQ and l̂ =

√
DlU ll. In this way, the new wave-function

factors are Ẑq = 1 and Ẑ l = 1, whereas the new Yukawa coupling is given by Ŷ l =

(DQ)−
1

2UQY lU l†(Dl)−
1

2 . In terms of λ this means

Ŷ l
IJ ∼

∑

KL

λ|qI−qK |+|qK−lL|+|lL−lJ | ∼ λ|qI−lJ | . (24)

The last step, which follows from the inequality |x| + |y| ≥ |x + y|, shows that as

in standard 4D flavour models the wave function corrections do not mess up the

structure of the Yukawa couplings.

Equations (24) realize the starting point for building interesting flavour models.

However, a more careful analysis shows that our 5D construction presents a number

of peculiarities that make it much more constrained than a generic 4D flavour model

of the FN type, mostly due to the embedding in a non-Abelian group and to the

structure of the mediator sector:

• The flavour charge is quantized and charge differences are integer.

• The precise numerical factors appearing in the induced Yukawa couplings are

correlated, and contain potentially large group-theoretical coefficients.

3.5 Effective Lagrangian and induced couplings

We now present the explicit computation of the 4D effective Lagrangian, and in

particular the corrections to the kinetic and mass terms for the SM fields. The leading

effects are obtained by integrating out the heavy bulk fermions at the classical level.

14



The computation can be done along the lines of ref. [6]. In order to illustrate the

procedure, we start by discussing in detail the d-quark sector. The up quark sector

will then be easily explained.

3.5.1 Mode decomposition

In general, matter fields obey the compactification conditions in eqs. (1) and (3).

In the following, SU(3)W and SU(2)F indices will be denoted by i, j, . . . and a, b, . . .

respectively, and we work in a basis where the orbifold projection is diagonal, whereas,

in general, the twist is non diagonal. For fixed electroweak and flavour indices, the γ5

matrix acting in the orbifold projection causes the right- and left-handed matter field

components to have different parity. Hence we can write the matter field components

as follows:

ψi,a(x, y) = ψ+
i,a(x, y) + ψ−

i,a(x, y) , (25)

where ψ+
i,a(x, y) and ψ−

i,a(x, y) are fields with positive and negative orbifold parity

respectively and a given chirality which depends on i and a. Thus the superscript ±
refers to the orbifold parity. The fields satisfying the condition (1) can be expanded

in KK modes as

ψ+
i,a(x, y) =

1√
πR

+∞∑

n=0

(
1√
2
)δn,0(ψ+

i,a)n(x) cos(
ny

R
) ,

ψ−
i,a(x, y) =

1√
πR

+∞∑

n=1

(ψ−
i,a)n(x) sin(

ny

R
) . (26)

It is convenient to express ψ+
i,a(x, y), ψ

−
i,a(x, y) as sums over all integer modes, both

positive and negative; this is done by defining the negative modes of a given compo-

nent as reflection of the positive modes: (ψ±
i,a)

†
−n(x) = ±(ψ±

i,a)n(x). The new mode

expansion for untwisted fields is then

ψ+
i,a(x, y) =

1√
2πR

+∞∑

n=−∞
ηn(ψ+

i,a)n(x) cos(
ny

R
) ,

ψ−
i,a(x, y) =

1√
2πR

+∞∑

n=−∞
ηn(ψ−

i,a)n(x) sin(
ny

R
) , (27)

where

ηn =





1/
√

2 if n 6= 0

1 if n = 0
. (28)

We now switch to the basis in which the SS twist is diagonal. The eigenvectors Ψ±
i,a

of the twist TR,R′ can be written as follows:

Ψ+
i,a = (UW )Rij (VF )R

′

ab ψ
+
j,b , Ψ−

i,a = (UW )Rij (VF )R
′

ab ψ
−
j,b , (29)
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where (UW )R and (VF )R
′

are two unitary matrices in the gauge and flavour space and

the labels R and R′ denote the representation to which the matter fields belong. Since

the rotation mixes different indices i and a, corresponding to different chiralities, the

fields Ψ+
i,a and Ψ−

i,a do not have a definite chirality, when expanded in KK modes as

in eqs. (27). On the other hand, since the twist mixes fields with the same orbifold

parity, it is possible to diagonalize it with transformations acting separately on ψ+

and ψ−.

In the new basis, the twist is diagonal. The explicit expressions for the unitary ma-

trices (UW )3, (UW )6 and (VF )9 that diagonalize the twist matrices (T 6
W )3, (T 6

W )6 and

(T 1
W )9 to the forms (tW )3 = diag(1/2, 0,−1/2), (tW )6 = diag(1, 1/2, 0, 0, 0,−1/2,−1)

and (tF )9 = diag(−4, 4,−3, 3,−2, 2,−1, 1, 0) are given by:

(UW )3 =
1√
2




0 1 1√
2 0 0

0 -1 1


 , (UW )6 =

1

2




0 0 0 1
√

2 1

0
√

2
√

2 0 0 0

0 0 0 -
√

2 0
√

2

2 0 0 0 0 0

0 -
√

2
√

2 0 0 0

0 0 0 1 -
√

2 1




,

(VF )9 =
1

16




1 -
√

8
√

28 -
√

56
√

70 -
√

56
√

28 -
√

8 1

1
√

8
√

28
√

56
√

70
√

56
√

28
√

8 1

-
√

8 6 -
√

56
√

28 0 -
√

28
√

56 -6
√

8

-
√

8 -6 -
√

56 -
√

28 0
√

28
√

56 6
√

8√
28 -

√
56 4

√
8 -

√
40

√
8 4 -

√
56

√
28√

28
√

56 4 -
√

8 -
√

40 -
√

8 4
√

56
√

28

-
√

56
√

28
√

8 -6 0 6 -
√

8 -
√

28
√

56

-
√

56 -
√

28
√

8 6 0 -6 -
√

8
√

28
√

56√
70 0 -

√
40 0 6 0 -

√
40 0

√
70




. (30)

Let us now define

Ψ̂i,a =
(
Ψ+

i,a,Ψ
−
i,a

)
. (31)

In this basis, the effect of the twist amounts to shifting the masses of the KK modes

by the quantity 2(tW )iiα + 2(tF )aaβ. Therefore, suppressing all the indices, the new

KK mass spectrum is given by

mn(α, β) =
nσ1 + (2tWα + 2tFβ)11

R
, (32)

where σ1 and 11 act at fixed i, a on the space (Ψ+
i,a,Ψ

−
i,a) and connect terms with

opposite and equal orbifold parity respectively. Finally, a complete diagonalization
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can be achieved by mixing states with opposite orbifold chirality:

(Ψi,a)n = ηn

[
(Ψ+

i,a)n + (Ψ−
i,a)n

]
(33)

where now positive and negative n components of Ψi,a are independent, and their

mass is simply given by

mn(α, β) =
n + (2tWα + 2tFβ)

R
. (34)

3.5.2 Construction of the effective Lagrangian

In order to derive the effective Lagrangian that is induced for the SM fermions by

integrating out the bulk fermions at the classical level, we use for the latter the mode

decomposition derived in previous subsection, and switch to 4D momentum space.

The relevant linear and quadratic parts of the Lagrangian for the modes of the bulk

fermions then becomes

L =
∞∑

n=−∞

[
Lbulk

n + L0
n + (−1)nLπR

n

]
, (35)

where

Lbulk
n =

∑

l=u,d

[
Ψ̄l

n(p/−mn)Ψl
n + ¯̃Ψl

n(p/+mn)Ψ̃l
n −Ml

(
Ψ̄l

nΨ̃
l
n + ¯̃Ψl

nΨl
n

)]
, (36)

L0
n =

1√
2πR

[
χ̄d

L(UWVF ê
d
1)

†Ψd
n + ¯̃χ

d
L(UWVF ê

d
1)

†Ψ̃d
n

+ χ̄u
R(UWVF ê

u
1)

†Ψu
n + ¯̃χu

R(UWVF ê
u
1)

†Ψ̃u
n + h.c.

]
, (37)

LπR
n =

1√
2πR

[
χ̄d

R(UWVF ê
d
2)

†Ψd
n + ¯̃χ

d
R(UWVF ê

d
2)

†Ψ̃d
n

+χ̄u
L(UWVF ê

u
2)

†Ψu
n + ¯̃χu

L(UWVF ê
u
2)

†Ψ̃u
n + h.c.

]
. (38)

From these expressions it is clear that the physics of the light modes depends on the

mass mixings ê1,2/
√

2πR encoding the couplings between brane and bulk modes and

on the masses Ml for the bulk modes. The relevant dimensionless parameters are

then the products of these masses with the length πR of the internal dimension:

ǫl1,2 =
√
πR/2 êl

1,2 , xl = πRMl . (39)

For convenience, we also define the ǫ couplings in the basis of diagonal twist:

εl
1,2 = UWVF ǫ

l
1,2 . (40)

The mass and wave-function corrections are generated by diagrams similar to the

ones in Figs. 1 and 2. The result depends on the vacuum expectation value of the
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Higgs field A5 through the dimensionless parameter α = g5R〈A5〉/2, and on the phase

β induced by the twist. If the flavour symmetry were local, β would be related to the

fifth component of the corresponding SU(2)F field. For a global symmetry, β is a free

parameter related to the phase accumulated by the twist. The tree-level propagator

in momentum space for the KK modes of Ψl and Ψ̃l is given, in two-by-two matrix

notation, by the following expression:

Sn
l =

i

p2 −mn(α, β)2 − (Ml)2


 p/+mn(α, β) Ml

Ml p/−mn(α, β)


 . (41)

The effective action is then obtained by integrating out the bulk fermions at the

classical level, using the above propagator and treating the brane fields as sources,

as in ref. [6]. We find a contribution to the effective Lagrangian in momentum space

of the form Leff
d = Lkin

d + Lm
d , where Lkin

d contains the kinetic term corrections of SM

matter fields and is given by

Lkin
d = χd

Lε
d†

1 (p/) F (p,Md, 2tWα + 2tFβ) εd
1χL

+ χd
Rε

d†

2 (p/) F (p,Md, 2tWα+ 2tFβ) εd
2χ

d
R

+ χ̃
d
Lε

d†

1 (p/) F (p,Md, 2tWα + 2tFβ) εd
1χ̃

d
L

+ χ̃
d
Rε

d†

2 (p/) F (p,Md, 2tWα+ 2tFβ) εd
2χ̃

d
R , (42)

whereas Lm
d contains the effective mass terms and is given by

Lm
d =

1

πR

{ [
χd

Lε
d†

1 G1(p,Md, 2tWα + 2tFβ) εd
2χ

d
R + h.c.

]

−
[
χ̃

d
Lε

d†

1 G1(p,Md, 2tWα+ 2tFβ) εd
2χ̃

d
R + h.c.

]

+
[
χd

Lε
d†

1 G2(p,Md, 2tWα + 2tFβ) εd
2χ̃

d
R + h.c.

]

+
[
χ̃

d
Lε

d†

1 G2(p,Md, 2tWα + 2tFβ) εd
2χ

d
R + h.c.

] }
. (43)

For the u quarks, one can proceed exactly in the same way. In the Euclidean space-

time, the explicit expressions of the functions F , G1 and G2 are given by

F (p,M, ρ) =
1

(πR)2

∞∑

n=−∞

1

p2 + (n+ρ
R

)2 +M2

=
1

πR
√
p2 +M2

Re

[ ∞∑

m=−∞
e−|2m|πR

√
p2+M2

e−|2m|πiρ

]

=
1

πR
√
p2 +M2

Re coth(πR
√
p2 +M2 + iρπ) ,

G1(p,M, ρ) =
1

πR

∞∑

n=−∞
(−1)n

n+ρ
R

p2 + (n+ρ
R

)2 +M2
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= Im

[ ∞∑

m=−∞
e−|2m+1|πR

√
p2+M2

e−|2m+1|πiρ

]
(44)

= −Im csch (πR
√
p2 +M2 + iρπ) ,

G2(p,M, ρ) =
1

πR

∞∑

n=−∞
(−1)n M

p2 + (n+ρ
R

)2 +M2

=
M√

p2 +M2
Re

[ ∞∑

m=−∞
e−|2m+1|πR

√
p2+M2

e−|2m+1|πiρ

]

= Re csch (πR
√
p2 +M2 + iρπ) .

3.6 Low energy limit

We now study the effective Lagrangian in the low energy limit p2 ≪ M2
l . In this

limit, the non-local p-dependent couplings of eqs. (42)-(43) and the analogous terms

for up-type quarks reduce to local kinetic and mass terms. After diagonalization and

canonical normalization of the physical fields, these generate the physical fermion

masses and mixings.

In the low-energy limit p2 ≪ M2
l , the momentum variable πR

√
p2 +M2

l reduces

to the constant parameter xl defined in eq. (39). The functions F , G1 and G2 become

simple trigonometric functions of the three parameters xl, α and β. Notice moreover

that not all the functional dependence on the parameters α and β is relevant. First of

all, for various phenomenological reasons that were explained in ref. [6] and in sec. 2

and that we will review below, we must assume that α is small and retain only the

leading effects that are at most linear in α. Since α is related to the VEV of the Higgs

field, this corresponds to keeping only those effective operators that involve at most

one Higgs field. Moreover, it is easy to check that only even powers of β are relevant

in F and G1, and similarly only odd powers of β are relevant in G2, due to the flavour

quantum numbers of the brane fields (see eqs. (12)-(15)). The above functions can

therefore be effectively substituted with:

F (p,Ml, 2tWα+ 2tFβ) ⇒ f(xl, 2tFβ) ,

G1(p,Ml, 2tWα+ 2tFβ) ⇒ (2πtWα) g1(xl, 2tFβ) , (45)

G2(p,Ml, 2tWα+ 2tFβ) ⇒ (2πtWα) g2(xl, 2tFβ) ,

where

f(xl, 2tFβ) =
1

xl
Re coth

[
xl + 2πitFβ

]
,

g1(xl, 2tFβ) = Re
(
coth

[
xl + 2πitFβ

]
csch

[
xl + 2πitFβ

])
, (46)

g2(xl, 2tFβ) = Im
(
coth

[
xl + 2πitFβ

]
csch

[
xl + 2πitFβ

])
.
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Let us be more quantitative on the range of values that the above dimensionless

parameters are allowed to take by basic phenomenological constraints. A first impor-

tant requirement is that mW ≪ 1/R, since indirect experimental constraints imply

that the compactification scale should be at least a few TeV. A second requirement is

that Ml ≫ mW , in such a way that even the lightest modes of the extra bulk fermions

that we have introduced are heavy enough to satisfy direct experimental constraints.

This two conditions imply respectively the following restrictions:

πα≪ 1 , πα≪ xl . (47)

Notice that the above conditions justify in a more precise way the approximation

done to derive eqs. (46). Notice also that they do not fix the size of the parameters

xl related to the masses of the bulk fermions.

The total effective Lagrangian is obtained by adding up the first rows of the brane

Lagrangians (19)-(20) and the correction Leff
u + Leff

d . After simplifying the traces

over gauge and flavour indices, which in the approximation leading to eqs. (46) are

disentangled, it can be rewritten in terms of the original three generations of fields

uL, uR, dL, dR and couplings ǫlL,R, and has the following general form:

Lphen =
3∑

a,b=1

{
ūa

L p/ZuL

ab u
b
L + ūa

R p/ZuR

ab u
b
R +

(
ūa

LMu
abu

b
R + h.c.

)

+ d̄a
L p/ZdL

ab d
b
L + d̄a

R p/ZdR

ab d
b
R +

(
d̄a

LMd
abd

b
R + h.c.

)}
. (48)

3.7 Fermion masses and mixings

Let us now specialize to the case at hand and work out in detail the expressions for

fermion masses and mixing angles that can be obtained from Lphen in eq. (48). In

order to make the physics behind Lphen clear, it is instructive to study the two limits

xl ≪ 1 and xl ≫ 1, where many of the expressions drastically simplify. We start by

discussing the case xl ≫ 1, since the corrections to the quark field wave functions are

simpler in this limit.

xl ≫ 1

In the limit of xl ≫ 1, the functions in eqs. (46) take the form

f(xl, 2tFβ) ∼ 1

xl

(
1 + 2 e−2xl cos 4πtFβ

)
∼ 1

xl
,

g1(xl, 2tFβ) ∼ 2e−xl cos(2πtFβ) , (49)

g2(xl, 2tFβ) ∼ −2e−xl sin(2πtFβ) .

20



Under the hypothesis that λ = πβ is of the order of the Cabibbo angle, we expand

up to the appropriate order equations (49). For the case at hand, this order is λ8.

Our expansion gives the following effective mass matrices:

Md
ad = − mW e−xd (Ed

1 )†ab Ỹ
d
bc (Ed

2 )cd (50)

Mu
ad = −

√
2 mW e−xu (Eu

1 )†ab Ỹ
u
bc (Eu

2 )cd , (51)

where, keeping only the leading terms for each entry,

Ỹ d =




−2
√

14λ5
√

70λ4 2
√

14 λ3

−5
√

7λ4 2
√

35 λ3 3
√

7λ2

10 λ2 −2
√

5 λ −1


 , (52)

Ỹ u =




λ8 −2
√

14λ5 2
√

14λ3

2
√

2 λ7 −5
√

7 λ4 3
√

7 λ2

−2
√

14λ5 10 λ2 −1


 , (53)

and for convenience we have defined

Ed
k = diag(ǫdk,1, ǫ

d
k,2, ǫ

d
k,3) , Eu

k = diag(ǫuk,1, ǫ
u
k,2, ǫ

u
k,3) . (54)

We see from eqs. (52) and (53) that we have obtained the desired structure in powers

of λ, but the group-theoretical coefficients are large and modify substantially masses

and mixing angles. However, since these coefficients are entirely fixed by the flavour

symmetry, one can tolerate their presence and design the texture in such a way to

obtain suitable additional powers of λ to compensate for the fact that they are not of

order 1. In other words, we can still obtain a good description of masses and mixings

in terms of a single parameter λ, but with non-conventional textures, which take into

account the fact that the numerical coefficients can become of order λ−1 or larger.

We will discuss in sec. 5.1 an explicit realization of this idea. The wave-function

corrections are instead given by

ZuL = ZdL = 1 +
1

xd
Ed†

1 Ed
1 +

1

xu
Eu†

1 Eu
1 ,

ZdR = 1 +
1

xd
Ed†

2 Ed
2 , (55)

ZuR = 1 +
1

xu
Eu†

2 Eu
2 .

The physical quark Yukawa couplings are obtained by redefining the quark fields

to reabsorb the wave-function corrections Z. The structure of the latter is such that

the physical mass matrix cannot grow indefinitely when the ǫu,d
a are increased. The

reason is that the ǫ-parameters encode the mixing between bulk and brane fermions.

The resulting mass of the hybrid fields must therefore interpolate between the value
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that one would get for a bulk field (ǫu,d
a → ∞) and the vanishing value that one would

get for a brane field (ǫu,d
a → 0).

In the simple case where the ǫua and ǫda are real, it is useful to introduce the

following bulk-brane mixing angles:

αu
1,a = Arctan




√
1/xu ǫ

u
1,a√

1 + 1/xd

(
ǫd1,a

)2


 , αd

1,a = Arctan




√
1/xd ǫ

d
1,a√

1 + 1/xu

(
ǫu1,a

)2


 ,

αu
2,a = Arctan

(√
1/xu ǫ

u
2,a

)
, αd

2,a = Arctan
(√

1/xd ǫ
d
2,a

)
.

(56)

The physical masses, obtained by rescaling the quarks fields in order to have a canon-

ically normalized kinetic term, e.g. ūL p/ uL, are then found to be:

Mu = −
√

2xu e
−xu mW Su

1 Ỹ
u Su

2 ,

Md = −xd e
−xd mW Sd

1 Ỹ
d Sd

2 , (57)

where

Sl
1 = diag(sinαl

1,1, sinα
l
1,2, sinα

l
1,3) ,

Sl
2 = diag(sinαl

2,1, sinα
l
2,2, sinα

l
2,3) . (58)

At this point, we proceed exactly as in the SM, by diagonalizing the mass matrices

via a bi-unitary transformation

uα
L,R → Uαβ

L,Ru
β
L,R , dα

L,R → Dαβ
L,Rd

β
L,R ⇒ VCKM = U †

LDL . (59)

The masses in eq. (57) are suppressed with respect to mW = α/R by the factor

xle
−xl, which is a small parameter since we are now considering the limit xl ≫ 1,

and by a trigonometric factor parametrizing the bulk-brane mixing. In this situation

we therefore obtain mass matrices with an absolute scale much smaller than the W

mass:

Mu,d ∼ xu,de
−xu,dmW ≪ mW . (60)

This is phenomenologically not acceptable for the top quark mass. Notice, neverthe-

less, that the exponential dependence on xu and xd of the overall scale for the masses

in the up and down sectors could allow to account for the significant hierarchy ob-

served between the latter through a modest hierarchy between the two parameters

xu and xd. The physical origin of the above exponential suppression is related to

the higher-dimensional gauge symmetry constraining the Higgs interactions. More

precisely, the only invariant Yukawa-type effective operators turn out to involve the

Higgs field in the form of a Wilson line, which connects the two branes where the

relevant left- and right-handed fermions are located and winds at least once around

the internal interval [6]. The exchanged bulk fermion of mass Ml must therefore prop-

agate at least over a distance πR and this implies a suppression factor proportional

to e−xl in the limit xl ≫ 1.
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xl ≪ 1

In the limit of xl ≪ 1, the functions in eqs. (46) also simplify. Actually, to have a

significant simplification we really need xl ≪ πβ, but deriving an asymptotic expres-

sion in this limit would contrast with the philosophy of flavour models, which always

assumes a power expansion in the order parameter πβ ≪ 1. For this reason, we

will consider this situation only for the case of flavour-singlet bulk fermions, which

are blind to the flavour symmetry. We will see in sec. 5.2 that it is possible to take

advantage of the possibility of adding such a flavour-neutral fermion, in addition to

flavour-charged ones, to improve the magnitude of the masses of the third familiy

of quarks. We therefore set πtFβ to 0. Under these assumptions, the functions of

eqs. (46) reduce to

f(xl, 0) ≃ 1

x2
l

, g1(xl, 0) ≃ 1

x2
l

, g2(xl, 0) ≃ 0 . (61)

The induced wave functions are then given by (there is no matrix structure here since

we are considering flavour singlets):

Z l
L ≃ 1 +

1

x2
d

ǫd†L ǫ
d
L +

1

x2
u

ǫu†L ǫ
u
L , Z l

R ≃ 1 +
1

x2
l

ǫl†Rǫ
l
R . (62)

Similarly, the induced masses are found to be

Mu ≃
√

2
1

x2
u

ǫu
†

L ǫ
u
R mW , Md ≃ 1

x2
d

ǫd
†

L ǫ
d
R mW . (63)

The physical quark masses emerging after canonical normalization are then found to

be

mu ≃
√

2 sinαu
L sinαu

RmW , md ≃ sinαd
L sinαd

RmW , (64)

where now

αu
L = arctan

√√√√ (ǫuL)2/x2
u

1 + (ǫdL)2/x2
d

, αd
L = arctan

√√√√ (ǫdL)2/x2
d

1 + (ǫuL)2/x2
u

,

αu
R = arctan

√
(ǫuR)2/x2

u , αd
R = arctan

√
(ǫdR)2/x2

d .

(65)

In this case the quark masses are of order mW . In this situation we can therefore

achieve mass matrices with a trivial flavour structure but a sizable magnitude:

ml

mW
∼ 1 . (66)

Notice also that for ǫlL,R ∼ 1 the angles (65) parametrizing the brane-bulk mix-

ings tend to the large values αu
L ≃ δ, αd

L ≃ π/2 − δ and αl
R ≃ π/2, with δ =

Arctan(ǫuL/ǫ
d
Lx

d/xu), reflecting the fact that since ǫlL,R ≫ xl the brane-bulk mixing is

maximal; the masses (64) tend then to md ≃ cos δ mW and mu ≃
√

2 sin δ mW .
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xl ∼ 1

In the general case xl ∼ 1, the effect of the wave-function corrections on the O(1)

numerical coefficients in the physical Yukawa couplings depends in a complicated way

on the parameters xl and ǫl1,2, and must be separately studied for each point in this

parameter space. We will present the results of this general analysis in sec. 5. It is

however clear that the induced masses will always have a scale that is parametrically

given by mW times some suppression factor dictated by the spontaneously broken

flavor symmetry. As already mentioned in the introduction, the large top mass is

therefore generically difficult to accommodate in this framework [6].

4 Generalization to arbitrary representations

In this section, we generalize the construction discussed above to arbitrary represen-

tations of the electroweak and flavour groups.

We generalize the minimal choice of ref. [6] by taking ψd and ψu to belong respec-

tively to the (nd
W+ 1)(nd

W+ 2)/2 (nd
W times symmetric) and (nu

W+ 1)(nu
W+ 2)/2

(nu
W times symmetric) of SU(3)W ; the 3 and 6 that were used in ref. [6] and in the

previous discussion correspond to the particular cases nd
W = 1 and nu

W = 2. More-

over, we take these fields to belong to the 2jF+ 1 (spin-jF ) representation of SU(2)F ,

so that there are now 2jF + 1 replicas of them with identical SU(2)L × U(1)Y quan-

tum numbers but different U(1)F charges. Summarizing, we have bulk fields in the

following representations of SU(3)W × SU(2)F :

ψl, ψ̃l :
((nl

W+ 1)(nl
W+ 2)

2
, 2jF+ 1

)
, (67)

The decomposition of the above general representations of the SU(3)W ×SU(2)F

group under its SU(2)L × U(1)Y × U(1)F subgroup, which we need to determine the

coupling of the bulk fields to the brane fields, has the following form:

((nl
W+ 1)(nl

W+ 2)

2
, 2jF+ 1

)
→ ⊕

nl
W

/2

jW =0
⊕
jF

mjF
=−jF

(2jW+ 1)jW−nl
W

/3,mjF
. (68)

We get therefore a set of representations of SU(2)L with half-integer spins jW ranging

from 0 to nl
W/2, canonically normalized U(1)Y charge equal to jW −nl

W /3 and U(1)F

charges mjF
ranging from −jF to jF . The only components that have the right

quantum numbers to couple to the brane fermions are the SU(2)L doublets and

singlets with jW = 1/2 and jW = 0, which have U(1)Y charge3 equal to 1/2 − nl
W/3

and −nl
W/3, and U(1)F charges ranging from −jF to jF .

3Notice that these have automatically the right hypercharge to couple to the standard left-handed

doublets and right-handed singlets only in the special case nd

W
= 1 and nu

W
= 2 chosen in ref. [6]. For
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The action of the orbifold projection and the SS twist on the bulk fermion fields

can be easily deduced by using some simple group-theoretical techniques. In the

electroweak sector, the completely symmetric representations of SU(3)W we are con-

sidering contain states with values of the two Cartan generators T 3
W and 2T 8

W/
√

3

that fill an equilateral triangle in the corresponding plane. This triangle is oriented

with its tip at the bottom and one of his sides at the top and horizontal. It can

be sliced in essentially two different ways in a sum of lines, corresponding to decom-

positions with respect to nonequivalent but isomorphic maximal subgroups. Slicing

the SU(3)W representation horizontally in rows, one obtains the decomposition with

respect to the SU(2)L × U(1)Y preserved by the orbifold projection, with generators

T 1,2,3
W and T 8

W/
√

3. It is then clear that the generator T 8
W/

√
3 appearing in the orbifold

projection has a definite value for each SU(2)L × U(1)Y representation appearing in

the decomposition (68). More precisely, it acts as jW −nl
W /3 on the component with

SU(2)L spin jW . In matrix form, where these components are ordered in block with

a fixed jW ranging from nl
W/2 to 0 in decreasing order and sub-entries corresponding

to mjW
ranging from −jW to jW in increasing order4, the orbifold twist has therefore

the following form:

P
(nl

W
+1)(nl

W
+2)/2

W = diag((−1)nl
W , . . . , (−1)nl

W

︸ ︷︷ ︸
nl

W
+1 times

; . . . ; 1, 1, 1;−1,−1; 1) . (69)

Slicing the SU(3)W representation diagonally, that is parallel to one of the two non-

horizontal sides of the triangle, one obtains the decomposition with respect to a

different SU(2)′ × U(1)′ subgroup associated to the Scherk-Schwarz twist, with gen-

erators T 6,7
W , (−T 3

W +
√

3 T 8
W )/2 and (−T 3

W −T 8
W /

√
3)/2. For each state of the original

representation, the SU(2)′ spin j′ and its third component mj′ are related to the the

SU(2)L spin jW and its third component mjW
by the relations j′ = (nl

W −jW −mjW
)/2

andmj′ = (−nl
W +3jW−mjW

)/2. This decomposition is useful to determine the action

of the generator T 6
W appearing in the Scherk-Schwarz twist. Indeed, one can rewrite

T 6
W = (T+

W + T−
W )/2 in terms of the raising and lowering operators T±

W = T 6
W ± iT 7

W

of the SU(2)′ subgroup. These leave j′ unchanged and raise/lower mj′ by 1 unit,

or equivalently, they raise/lower jW by 1/2 unit and lower/raise mjW
by 1/2 unit.

The generator T 6
W acts in a non-diagonal way on the decomposition (68), but its

matrix elements can be easily determined using the standard SU(2) results. Its di-

agonal form is also easily derived, thanks to the fact that any generator of an SU(2)

group has the same diagonal form, due to the fact that there is only one Cartan

more general values of nd

W
6= 1 and nu

W
6= 2, one needs to assign to the bulk fields a non-vanishing

charge under the extra U(1)′ factor that is needed to tune the weak mixing angle, which is equal

to (nd

W
− 1)/3 for ψd, ψ̃d and (nu

W
− 2)/3 for ψu, ψ̃u. Notice however that unless these charges are

opposite to each other, that is if nu

W
+ nd

W
= 3, two different fields are needed to give mass to

the u and the d quarks, due to the restrictions set by the U(1)′-invariance of the coupling to the

left-handed quarks.
4This ordering of the states differs from the one used for the particular example of section 3.
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generator. In our case, the diagonal form of T 6
W must coincide in from with the gen-

erator (−T 3
W +

√
3T 8

W )/2 representing the third component of the SU(2)′ spin. In

terms of the quantum numbers defined by the decomposition (68), the latter acts as

(−nl
W +3jW −mjW

)/2 on the mjW
-th element of the spin jW component. In the same

matrix notation as above, this means

t
(nl

W
+1)(nl

W
+2)/2

W = diag(0,
1

2
, . . . ,

nl
W

2
; . . . ;−n

l
W

2
+

1

2
,−n

l
W

2
+ 1;−n

l
W

2
) . (70)

In the flavour sector, the situation is similar but much simpler, since we start

with an SU(2)F group. The generator T 3
F appearing in the orbifold projection is just

the third component of the SU(2)F spin, and acts therefore as mjF
on the mjF

-th

component of the decomposition (68). One then finds that the projection matrix

PF acts as (−1)jF−mjF on the mjF
-th component of the representation. In matrix

notation, where these components are ordered with decreasing mjF
ranging from jF

to −jF 5, the orbifold twist has therefore the following form:

P 2jF+1
F = diag(1,−1, 1,−1, . . .) . (71)

The generator T 1
F appearing in the Scherk-Schwarz twist can be written more usefully

as T 1
F = (T+

F + T−
F )/2 in terms of the raising and lowering operators T±

W = T 1
F ± iT 2

W

of the SU(2)F subgroup. This allows to compute in a simple way any of its matrix

elements. Its diagonal form must coincide with that of the Cartan generator T 3
F ,

which acts as mjF
on the mjF

-th component of the decomposition (68). The diagonal

form of the twist is therefore given by

t2jF+1
F = diag

(
jF , jF − 1, . . . ,−jF + 1,−jF

)
. (72)

We now describe the general situation that can be achieved in this more generic

setting, in order to illustrate the basic features of the construction and its peculiarities

compared to standard 4D flavour models.

4.1 Lagrangian

The structure of the Lagrangian is the same as in the previous section. The couplings

of the family triplets of left- and right-handed brane fields φ = QL, uR, dR and their

conjugates φc = Qc
R, -u

c
L, d

c
L to the bulk fields ψl or ψ̃l are parametrized by family

triplets of couplings el
1 and el

2 with mass-dimension 1/2, in each sector l = u, d. Each

φ or φc can couple either to ψl or ψ̃l, and has therefore only one relevant coupling.

To write these couplings more explicitly, it is convenient to embed the fields φ and

φc into new fields Φ = Q, u, d, Q̃, ũ, d̃ and their conjugates Φc = Qc, uc, dc, Q̃c, ũc, d̃c,

which have the same matrix structure as the representations of SU(3)W ×SU(2)F to

5Again, this ordering differs from the canonical one used for the particular example of section 3.
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which the bulk fields they couple to belong, the extra entries being filled with zeroes6.

The untilded and tilded fields in Φ or Φc contain those SM fermions φ or φc that have

the right quantum numbers to couple to ψl and ψ̃l respectively. With this notation,

which is the appropriate generalization of the one used to deal with the particular

example of sec. 3, the Lagrangian is obtained from eq. (17) by replacing the localized

terms with

L0 = iQ̄γµDµQ+ i ¯̃QγµDµQ̃

+
[
Q̄ êd

1
†ψd + ¯̃Q êd

1
†ψ̃d + Q̄c êu

1
†ψu + ¯̃Qc êu

1
†ψ̃u + h.c.

]
, (73)

LπR = iūcγµDµu
c + i¯̃ucγµDµũ

c + i¯̃dγµDµd̃+ id̄γµDµd

+
[
d̄ êd

2
†ψd + ¯̃d êd

2
†ψ̃d + ūc êu

2
†ψu + ¯̃uc êu

2
†ψ̃u + h.c.

]
. (74)

To be more precise about the embeddings, let us denote SU(2)L×U(1)Y and family

indices by α, β, . . . and I, J, . . . = 1, 2, 3, and SU(3)W and SU(2)F indices by i, j, . . .

and a, b, . . .. The embedding of each field is then specified by some (nl
W+1)(nl

W+2)/2

by 2jW + 1 matrix (IW )iα for gauge indices, where jW is 0 for singlets and 1/2 for

doublets, and similarly by some 2jF + 1 by 3 matrix (IF )aI for flavour indices. The

position of each field φ or φc in Φ or Φc is uniquely determined by its SU(2)L×U(1)Y

and U(1)F quantum numbers in the gauge and flavour sectors respectively. For the

couplings, the embedding is trivial for gauge indices and is determined in an obvious

way in terms of that of the fields for flavour indices: it is a diagonal 2jF+1 by 2jF+1

matrix whose non-zero entries are the couplings that are relevant for each field, in

the corresponding positions.

The embedding in the gauge sector generalizes the one used in ref. [6]. Rather

than reporting the matrices IW for each field, we can exhibit the same information

by reporting the expressions of the fields ΦW = IΦ
Wφ and Φc

W = IΦc

W φc. These are

(nl
W + 1)(nl

W + 2)/2-dimensional vectors will all the entries set to zero apart from the

last three, which host the SM fields:

QW = Q̃W =




0
...

0

uL

dL

0




, dW = d̃W =




0
...

0

0

0

dR




, (75)

6We denote the new embedded fields with the same letter as the original ones, but drop the L,R

subscripts to them.
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Qc
W = Q̃c

W =




0
...

0

dc
R

-uc
R

0




, uc
W = ũc

W =




0
...

0

0

0

-uc
L




. (76)

The embedding in the flavour sector is done in a similar way and depends on the

choice of flavour quantum numbers. Again, rather than reporting the matrices IF for

each field, one can consider directly the redefined fields ΦF = IΦ
F φ and Φc

F = IΦc

F φc.

For ΦF , each SM fermion φ is embedded at the (jF − qF + 1)-th entry if its flavour

charge is qF , and appears only in the untilded or tilded redefined fields if jF − qF is

respectively even or odd. Similarly, for the conjugate Φc
F , each conjugate SM fermion

φc is embedded at the (jF + qF + 1)-th entry if its flavour charge is −qF , and appears

only in the untilded or tilded redefined fields if jF − qF is respectively even or odd.

As a consequence, for the embedding of the SM fields φ in Φ, only the odd and even

entries of respectively the untilded and the tilded redefined fields are relevant, all the

other being always zero; for the embedding of the conjugate SM fields φc in Φc, the

situation is similar, and Φc is obtained from Φ through a reflection. Schematically,

the structure is as follows, with at most three non-vanishing entries for each vector:

QF =




0
...

0

(QL)I1

0
...

0

0




, Q̃F =




0

0
...

0

(QL)Ĩ1

0
...

0




, dF =




0
...

0

(dL)J1

0
...

0

0




, d̃F =




0

0
...

0

(dL)J̃1

0
...

0




, (77)

Qc
F =




0

0
...

0

(Qc
R)I1

0
...

0




, Q̃c
F =




0
...

0

(Qc
R)Ĩ1

0
...

0

0




, uc
F =




0

0
...

0

(-uc
L)K1

0
...

0




, ũc
F =




0
...

0

(-uc
L)K̃1

0
...

0

0




. (78)

In this expressions, I1, J1, K1 and Ĩ1, J̃1, K̃1 are restricted family indices running

respectively over those families for which the left-handed doublets, the right-handed
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down singlets and the right-handed up singlets are embedded in untilded and tilded

vectors.

Finally, the brane-bulk couplings are correspondingly embedded into diagonal

matrices êl
1,2 at those entries that correspond to a non-vanishing entry of the redefined

fields. They have the following schematic form, with three non-vanishing entries

labeled by a family index M :

êl
1,2 = diag(0, . . . , 0, (el

1,2)M1
, 0, . . . , 0, (el

1,2)M2
, 0, . . . , 0, (el

1,2)M3
, 0, . . . , 0) . (79)

4.2 Fermion masses and mixings

From the Lagrangian above one can proceed exactly as in Sec. 3 to derive the effective

Lagrangian for the SM fermions, which still has the form of eq. (48). The general

expressions of M and Z depend on the matrix elements of the generator T 6
W im-

plementing the electroweak symmetry breaking and those of arbitrary powers of the

generator T 1
F implementing the flavour symmetry breaking, which appear in the func-

tions of eqs. (45). The relevant matrix element of T 6
W is universal and can be computed

in general. It is the one connecting the next-to-last element of the embedding vector

of the left-handed fields and their conjugates, that is the mjW
= −1/2 component

of the doublet with jW = 1/2, and the last element of the embedding vector of the

right-handed fields and their conjugates, that is the singlet with mjW
= 0 and jW = 0.

As already explained, this can be easily evaluated by rewriting T 6
W = (T+

W +T−
W )/2 in

terms of the raising and lowering operators T±
W = T 6

W ± iT 7
W of the SU(2)′ subgroup

defined by the twist, which have non-vanishing matrix elements between neighbour

states, namely
√

(j′ ∓mj′)(j′ ±mj′ + 1). The matrix element we are interested in

is therefore an ordinary transition from the component with mj′ = −nl
W/2 to the

component with mj′ = −nl
W/2 + 1 of an SU(2)′ representation of spin j′ = nl

W/2,

and gives a factor
√
nW

l /2. The matrix elements of a generic power of T 1
F can be

computed similarly. Here we simply rewrite the flavour traces in terms of the 2jF + 1

by 3 matrices IF defining how the family triplet of each SM field is embedded into an

(2jF + 1)-dimensional flavour vector. The results are given by the following expres-

sions:

Zd
L = 1 + Ed†

1

[
IQ

F
†f(xd, T

1
Fβ) IQ

F + IQ̃
F

†f(xd, T
1
Fβ) IQ̃

F

]
Ed

1

+ Eu†
1

[
IQc

F
†f(xu, T

1
Fβ) IQc

F + IQ̃c

F
†f(xu, T

1
Fβ) IQ̃c

F

]
Eu

1 ,

Zu
L = 1 + Eu†

1

[
IQc

F
†f(xu, T

1
Fβ) IQc

F + IQ̃c

F
†f(xu, T

1
Fβ) IQ̃c

F

]
Eu

1

+ Ed†
1

[
IQ

F
†f(xd, T

1
Fβ) IQ

F + IQ̃
F

†f(xd, T
1
Fβ) IQ̃

F

]
Ed

1 ,

Zd
R = 1 + Ed†

2

[
Id

F
†f(xd, T

1
Fβ) Id

F + I d̃
F
†f(xd, T

1
Fβ) I d̃

F

]
Ed

2 ,

Zu
R = 1 + Eu†

2

[
Iuc

F
†f(xu, T

1
Fβ) Iuc

F + I ũc

F
†f(xu, T

1
Fβ) I ũc

F

]
Eu

2 ,

(80)
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and

Md =
√
nd

W Ed
1
†
[
IQ

F
†g1(xd, T

1
Fβ) Id

F − IQ̃
F

†g1(xd, T
1
Fβ) I d̃

F

+ IQ
F
†g2(xd, T

1
Fβ) I d̃

F + IQ̃
F

†g2(xd, T
1
Fβ) Id

F

]
Ed

2 mW ,

Mu =
√
nu

W Eu
1
†
[
IQc

F
†g1(xu, T

1
Fβ) Iuc

F − IQ̃c

F
†g1(xu, T

1
Fβ) I ũc

F

+ IQc

F
†g2(xu, T

1
Fβ) I ũc

F + IQ̃c

F
†g2(xu, T

1
Fβ) Iuc

F

]
Eu

2 mW .

(81)

Once the above quantities have been computed, the physical implications of the

Lagrangian (48) are uniquely determined and can be analyzed as follows. First, one

performs a suitable redefinition of the fermions fields to reabsorb the non-trivial wave

function factor and canonically normalize their kinetic terms. In this process, the mass

matrices will however be changed to new matrices M̂l. Second, one proceeds as in the

SM and diagonalizes these two mass matrices through some unitary transformations

UL,R and DL,R in the u and d sectors. This will then induce a CKM mixing matrix

given by VCKM = U †
LDL.

The above procedure is complicated by the non-diagonal field redefinition that is

required to get read of the wave function. One might fear that the new mass matrices

M̂l that are generated after wave-function renormalization might have hierarchical

structures in powers of λ that are messed up compared to those of Ml. However, as

shown in general in Sec. 3.4, this is not the case: at most the order one coefficients

multiplying the powers of λ in the various entries are changed. We now generalize

the discussion of Sec. 3.7 for generic representations.

xl ≫ 1

In the limit of xl ≫ 1, the functions in eqs. (46) simplify to the form in eq. (49). As

we have seen, at leading order in e−xl the wave functions reduce to diagonal constants:

Z l
L ≃ 1 +

1

xd
Ed†

L Ed
L +

1

xu
Eu†

L Eu
L , Z l

R ≃ 1 +
1

xl
E l†

RE l
R . (82)

The masses Ml take instead the form

Ml ≃
√
nl

W e−xlE l
L
†Ỹ lE l

RmW , (83)

where Ỹ l are two 3× 3 matrices that are functions of λ and carry all the information

about the group-theoretical details of the flavour sector. Assuming that λ ≪ 1,

they have the form (21), but with completely fixed numerical coefficients, which can

be easily computed using the standard realization of the SU(2) algebra in terms of

raising and lowering operators. Further assuming, for simplicity and without loss of

generality, that the flavour charges lI of the right-handed fields are larger than the

30



charges qI of the left-handed fields, and recalling that λ = πβ, the result is, modulo

a sign:

Ỹ l
IJ ≃

lJ−qI∏

k=1

√

1 +
jF − lJ
k

√

1 +
jF + qI
k

λlJ−qI . (84)

The first subleading corrections to these expressions can be easily evaluated using

again creation and annihilation operators. The relative effect represented by these

corrections is of order λ2, and its precise expression, modulo a sign, is given by

∆Ỹ l
IJ

Ỹ l
IJ

≃
lJ−qI+1∑

k=0

(jF + qI + k)(jF − qI − k + 1)

(lJ − qI + 1)(lJ − qI + 2)
λ2 . (85)

From this expression it is clear that there is an obstruction against increasing too much

the spin jF of the representation of the bulk mediators at fixed flavour charges for the

brane fields. Indeed, doing so increases the relative impact of the subleading terms

and puts a limit on how large the parameter λ can be at fixed jF , or viceversa how

large jF can be at fixed λ, without spoiling the simple idea that the Yukawa texture is

fixed by the leading terms with powers of λ fixed by the charges. Notice for instance

that in the extreme limit in which jF is much larger than all of the charges, one finds

that the leading term (84) goes like jF/(lJ − qI)!λ
lJ−qI if lJ 6= qI and 1 if lJ = qI ,

whereas the relative subleading correction (85) goes like j2
F/(lJ −qI +1)λ2. Requiring

that the latter be much smaller than 1 then implies that jF ≪ √
lJ − qI + 1/λ. For

λ ∼ 10−1 and reasonable charges, one must then take jF ≪ 10. For jF ∼ 3 − 4,

as in the examples that we shall study below, the subleading corrections represent

therefore a significant error of about 10%.

The physical quark Yukawa couplings are obtained by redefining the quark fields

to reabsorb the wave-function corrections Z l
L,R. The physical mass matrices are then

found to be (see eq. (57)):

ml ≃
√
nl

W xle
−xl sinαl

L Ỹ
l sinαl

RmW . (86)

xl ≪ 1

In the limit of xl ≪ 1, the masses in eq. (63) generalize as

Ml ≃
√
nl

W

1

x2
l

ǫlL
†ǫlR mW . (87)

The physical quark masses emerging after canonical normalization are then found to

be

ml ≃
√
nl

W sinαl
L sinαl

R mW . (88)
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5 Model building

In this section, we apply the general construction developed so far to build viable

flavour models. We present two illustrative examples that emphasize some important

phenomenological aspects.

5.1 Mixing angles and mass ratios

The model presented in sec. 3 produces the correct structure of powers of λ for Yukawa

couplings, but suffers from large group-theoretical coefficients that spoil the success

of the chosen texture. The simplest way to solve this problem is to assign charges

in such a way as no O(λ0) term is present. Then, all entries will have comparable

numerical coefficients, and the power expansion will be consistent. We can start for

instance from

Y d ∼




λ6 λ5 λ4

λ5 λ4 λ3

λ3 λ2 λ


 , Y u ∼




λ7 λ6 λ4

λ6 λ5 λ3

λ4 λ3 λ


 . (89)

The simplest flavour charge assignment for the brane fermions that is compatible with

these textures is given by

qI =
{
−7

2
,−5

2
,−1

2

}
, dI =

{5

2
,
3

2
,
1

2

}
, uI =

{7

2
,
5

2
,
1

2

}
. (90)

Since the maximal absolute value of the charge is now 7/2, the smallest allowed

representation for the bulk fermions has now spin jF = 7/2.

Assuming as before xl ≫ 1 to simplify the analysis of the effects on order one

coefficients due to wave-function corrections, the induced mass matrices Mu and Md

are given by eqs. (50) and (51) with:

Ỹ d = 4 λ×




√
7

4
λ5 −

√
21
4
λ4 −

√
35
4
λ3

−3
2
λ4 5

√
3

4
λ3

√
5λ2

√
5λ2 −

√
15
2
λ −1


 , (91)

Ỹ u = 4 λ×




1
4
λ6

√
7

4
λ5 −

√
35
4
λ3

−
√

7
4
λ5 −3

2
λ4

√
5 λ2

√
35
4
λ3

√
5 λ2 −1


 , (92)

The mass matrices that are obtained in this case still have the problem of a too low

overall scale, but it is now possible to reproduce mass ratios and mixing angles with

reasonable values of the parameters (except for the down quark mass which is too

low).

32



5.2 Example with improved overall scale

The problem of the small overall scale can be solved by introducing, in addition

to a pair of bulk fermions that are flavour-charged and induce general hierarchical

mass matrices, an extra pair of bulk fermions that are flavour-neutral and contribute

therefore only to the mass of flavour-neutral states. Assigning third-generation quarks

a vanishing charge, neutral bulk fermions will only contribute to the (3, 3) entries of

quark masses. If charged bulk fermions are heavier, all the other entries will be

additionally suppressed by a factor e−πR(MC
l
−MN

l
), where MC

l and MN
l stand for the

masses of charged and neutral bulk fermions respectively. It is clear that in this case

the mass ratio between the third and the first two generations is not a prediction

of the flavour model any more, but stems from the exponential factor e−πR(MC
l
−MN

l
).

Taking into account this extra suppression, we can choose for example

Y d ∼




λ5 λ4 λ3

λ4 λ3 λ2

λ2 λ 1


 , Y u ∼




λ6 λ4 λ3

λ5 λ3 λ2

λ3 λ 1


 . (93)

The simplest flavour charge assignment for the brane fermions that realize these is

qI = {−3,−2, 0} , dI = {2, 1, 0} , uI = {3, 1, 0} . (94)

The smallest allowed representation for the charged bulk fermions has in this case

spin jF = 3.

These charged states give a contribution to the mass matrices Mu and Md given

by eqs. (51) and (50) with

Ỹ d ≃




−
√

6λ5
√

15λ4 2
√

5 λ3

−5 λ4 2
√

10λ3
√

30λ2

−2
√

3λ
√

30λ −1


 , (95)

Ỹ u =




−λ6
√

15λ4 2
√

5λ3

−
√

6λ5 2
√

10λ3
√

30λ2

2
√

5λ3 −2
√

3 λ −1


 . (96)

For the corresponding flavour-neutral states, if we stick to the SU(3)W representations

used in ref. [6], we still have a problem with the top mass, which remains too low.

As an illustrative example, one can choose a rank 6 symmetric representation for the

flavour-neutral fermion coupling to the top quark, even though one should check that

the cutoff is not lowered too much by the presence of fermions in large representations

of SU(3)W . With this caveat, the situation improves, and we can reproduce all masses

and mixing angles with reasonable values of the parameters, except again for the down

quark which tends to be too light.
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5.3 FCNC processes and CP violation

Since there is a mixing between brane and bulk fermions, tree-level FCNC couplings

to the Z boson are expected to arise. On general grounds, they will be suppressed by

α2 and by the appropriate power of β. It remains to be seen whether in any specific

model this suppression is sufficient to guarantee a successful description of FCNC phe-

nomena: to this aim, we are presently carrying out a full one-loop phenomenological

analysis.

In all the above discussions, for simplicity, we have taken the ǫ couplings to be

real. In general, they are complex numbers and their phases enter the effective mass

matrices and the CKM matrix. The strength of CP violation then depends on the

size and phases of ǫ parameters, and can be estimated in any specific model.

6 Conclusion

We have proposed a mechanism to implement flavour symmetries in gauge-Higgs unifi-

cation models. In five-dimensional orbifold constructions the only possibility consists

in a flavour SU(2)F symmetry broken to U(1)F by the orbifold projection and then

to nothing via a compactification twist. Assuming that the problems connected to

electroweak symmetry breaking in gauge-Higgs unification were solved, our proposal

can successfully predict the orders of magnitude of all mass ratios and mixing angles.

Quantitative agreement can be obtained with reasonable values of all relevant param-

eters. We stress that this class of models is much more constrained than ordinary

FN abelian flavour models because of the higher-dimensional non-Abelian nature of

the flavour symmetry. We are presently investigating the phenomenology of FCNC

processes in this kind of construction, both at the tree and the one-loop levels.

An interesting possibility would be to implement our idea in the framework of

warped five-dimensional models or in six-dimensional orbifolds, in which electroweak

symmetry breaking seems more successful (see for instance [26, 27] and [7, 8]).
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