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Abstract: We investigate in the simplest compact D = 4 N = 1 Type IIB ori-

entifold models the sigma-model symmetry suggested by the proposed duality of

these models to heterotic orbifold vacua. This symmetry is known to be present at

the classical level, and is associated to a composite connection involving untwisted

moduli in the low-energy supergravity theory. In order to study possible anomalies

arising at the quantum level, we compute potentially anomalous one-loop amplitudes

involving gluons, gravitons and composite connections. We argue that the effective

vertex operator associated to the composite connection has the same form as that for

a geometric deformation of the orbifold. Assuming this, we are able to compute the

complete anomaly polynomial, and find that all the anomalies are canceled through

a Green-Schwarz mechanism mediated by twisted RR axions, as previously conjec-

tured. Some questions about the field theory interpretation of our results remain

open.
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1. Introduction

Recently, renewed interest has been devoted to orientifold vacua of Type IIB string

theory, constructed by projecting out a standard toroidal compactification by the

combined action of a discrete spacetime orbifold symmetry G and the world-sheet
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parity Ω [1, 2, 3, 4]. These unoriented string theories contain both open and closed

strings, and constitute the perhaps most important and concrete example of mod-

els in which gauge interactions are localized on D-branes [5]. They are therefore

the natural arena for the realization of the “brane-world” scenario. Furthermore,

this kind of models have proven to offer surprisingly attractive possibilities from a

phenomenological point of view (see for instance [6, 7]).

In the following, we will be concerned with compact D = 4 N = 1 Type IIB

orientifold models [8, 9, 10, 11, 12]. These vacua represent a simple and tractable pro-

totype of more general and possibly non-supersymmetric orientifold models. Some

of them are also phenomenologically appealing and constitute a viable alternative to

their more traditional heterotic analogues. In fact, a weak-weak Type IIB - heterotic

duality has been conjectured [8, 10, 12, 13] for several pairs of vacua1. In particular,

ZN orientifolds with N odd do contain D9-branes but no D5-branes, and could be

dual to the corresponding perturbative ZN heterotic orbifold. Models with N even do

instead contain both D9-branes and D5-branes, and could be dual to heterotic orb-

ifolds with a perturbative sector corresponding to D9-branes and a non-perturbative

instantonic sector corresponding to D5-branes [13].

At the classical level, evidence for the duality is suggested by the almost per-

fect matching of the low-energy spectra and the fact that the orientifold models

seem to possess the same classical symmetries as their heterotic companions [20]. In

particular, they both possess a so-called “sigma-model” symmetry2, naturally emerg-

ing from N = 1 supergravity. More precisely, this symmetry consists of SL(2, R)

transformations for the untwisted T i moduli and the other chiral superfields, im-

plemented as the combination of a Kähler transformation and a reparametrization

of the scalar Kähler manifold. On the heterotic side, a discrete SL(2, Z) subgroup

of these transformations is known to correspond to the well-known T-duality sym-

metry, valid to all orders of string perturbation theory, and is therefore expected

to be exact. On the orientifold side, instead, sigma-model transformations do not

seem to correspond to any known underlying string symmetry, and it is not clear

whether the symmetry is exact. At the quantum level, the comparison becomes

much more involved and several subtleties arise. In particular, it has been argued

in [21] that the one-loop corrected gauge couplings in orientifold models seem to

be incompatible with any duality map (see also [22] for further discussion). There

1Notice that, although Type IIB /Ω = Type I [1], this duality is not a trivial consequence of

Type I - heterotic duality in D = 10 [14], because in general Ω and G do not commute (see [15] for

a discussion in the D = 6 models of [16, 17, 18, 19]), and therefore Type IIB /{Ω, G} 6= Type I /G.
2In the following, we shall often use the abbreviation “sigma” for “sigma-model”.
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is however an important issue which can be addressed even without knowing the

detailed duality map: whether or not the classical sigma-model symmetry is anoma-

lous at the quantum level. The latter continuous symmetry is indeed associated to

a composite connection in the low-energy effective supergravity theory, and acts as

chiral rotations on all the fermions. There are therefore anomalous triangular dia-

grams involving gluons, gravitons and composite connections, leading in general to

a non-vanishing one-loop anomaly. On the heterotic side, this one-loop anomaly is

canceled by a universal tree-level Green-Schwarz (GS) mechanism mediated by the

dilaton [23, 24], and the appearance of the appropriate GS term has been explicitly

checked through a string theory computation [25]. On the orientifold side, it was

proposed in [20] that a similar GS mechanism involving both the dilaton and twisted

RR axions could cancel the anomalies. This observation was motivated by the fac-

torizability of mixed sigma-gauge anomalies computed from the low-energy spectra.

However, it was subsequently argued in [22] that requiring a similar mechanism also

for mixed sigma-gravitational anomalies would lead to an apparent contradiction with

the known results for gauge-gravitational anomaly cancellation [27]. The question

of whether the sigma-model symmetry is anomalous or not in orientifold models is

therefore still unclear and of extreme relevance for their duality to heterotic theories.

Note however that even if the presence of anomalies would pose serious problems

to the duality, it would not be fatal for the consistency of the orientifold models in

themselves3.

The aim of this paper is to study the cancellation of all possible (pure or mixed)

sigma-gauge-gravitational anomalies in orientifold models through a string theory

computation. Such an analysis is interesting by itself even beyond the context of

Type IIB - heterotic duality, since it can provide useful informations about the low-

energy effective action. For instance, the GS couplings that will be derived are

related by supersymmetry to other couplings in the Lagrangian and determine under

suitable assumptions the gauge kinetic functions and the Fayet-Iliopoulos terms. For

simplicity, the analysis will be restricted to the models with N odd. These are indeed

simpler than models with N even for a variety of reasons; in particular, they do not

present threshold corrections [21]. The only consistent models with N odd are the

3Even in the worse case in which all types of mixed anomalies arise, it is always possible to

redefine the conserved currents and energy-momentum tensor in such a way to eliminate mixed

gauge or gravitational anomalies, and push all the anomaly in the sigma-model symmetry only.

The latter is not fatal, since the emerging longitudinal states are composite and not elementary,

and so cannot violate unitarity in higher-loop diagrams as would do longitudinal gluons or gravitons

resulting from gauge or gravitational anomalies.
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Z3 and the Z7 models.

We follow the strategy developed in [26, 27] for standard gauge-gravitational

anomalies, and compute both the quantum anomaly and the classical inflow in all

possible channels. By factorization, it is then possible to extract all the anomalous

couplings for D-branes and fixed-points present in each model, and the GS term given

by their sum. A major ingredient of our computation is an effective vertex operator

for the composite sigma-model connection, which results from a pair of untwisted

Kähler moduli. We provide arguments that such a vertex is in fact the same as that

of an “internal graviton” associated to a deformation of the Kähler structure of the

orbifold respecting its rigid complex-structure. This suggests that there is a close

relation between sigma-model symmetry and invariance under reparametrizations of

the internal part of the spacetime manifold. In particular, potential anomalies in

these symmetries seem to coincide. Assuming the relation above to be valid and

using this common vertex, we are able to compute the complete anomaly polynomial

as a function of the gauge, gravitational and sigma-model curvatures. We find that

all the anomalies are canceled through a GS mechanism mediated by twisted RR

axions only, extending the results of [27] for gauge-gravitational anomalies. The

dilaton does not play any role in the anomaly cancellation mechanism, contrarily to

what proposed in [20] and in agreement with [22].

The results of our string computation disagree with the field theory analysis of

[22] on a crucial sign in the contribution of the twisted modulini to the one-loop

sigma-gravitational anomaly. Contrary to what assumed in [22], it seems that these

twisted closed string states must have a non-vanishing “effective” modular weight,

that is responsible for the full cancellation of all the anomalies. Although we do not

have yet a complete understanding of the field theory interpretation of our results

and their implications on the low-energy effective action, we believe that they rise

some questions about the actual form of the Kähler potential for twisted fields. As

far as we know, this potential has not yet been unambiguously determined. The

only available proposal about its form is that of [28], and it was indeed assumed

in [22]. However, this potential implies vanishing modular weight for twisted fields,

in apparent contradiction with our results, at least if one does not include possible

tree-level corrections to it induced by the GS mechanism. Whether our string results

might be explained by taking into account the GS terms in the potential proposed

in [28], or they imply a different form for the Kähler potential of twisted fields, has

still to be understood [29].

Independently of their actual field theory explanation, we think that our results

provide strong evidence for the occurrence of this cancellation mechanism, generaliz-
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ing it moreover to all the other types of anomalies, like in particular pure sigma-model

anomalies. Unfortunately, although we provide several convincing arguments on the

correctness of the effective vertex operator for the composite sigma-model connec-

tion, a rigorous proof is missing. Therefore, the only safe statement that we are in

position to make is that the associated symmetry is preserved at the one-loop level

thanks to a generalized GS mechanism. Whether or not this is really the sigma-model

symmetry remains strictly speaking to be proven, although we believe that it is quite

unlikely that this is not the case since all the anomalies we compute have precisely the

structure expected for sigma-gauge-gravitational anomalies. Notice also that thanks

to the alternative interpretation of this vertex as an internal graviton, these canceled

anomalies can be inequivocably interpreted as relative to internal reparametrizations.

As such, they admit a topological interpretation in terms of equivariant indices of

the spin and signature complexes, and it is possible to verify the results obtained

through the direct string computation by applying suitable index theorems, as we

will see.

The structure of the paper is the following. In Section 2, we briefly review

the notion of sigma-model symmetry. In Section 3, we set up the general strategy

of the string computation and propose a possible path-integral derivation of the

effective vertex for the composite connection. In Section 4 we perform the string

computation on the four surfaces appearing at the one-loop order. In Section 5, we

reproduce the same results from a mathematical point of view as topological indices.

In Section 6, we discuss in more detail the obtained quantum anomalies and perform

the factorization of the classical inflow to get all the RR anomalous couplings and

the total GS term. In Section 7, we discuss possible field-theory interpretations of

our results and their implications. Finally, we give conclusions in Section 8. In

Appendix A, we report useful conventions about ϑ-functions. In Appendix B, we

discuss the cancellation of anomalies in Type IIB string theory (this completes the

analysis in [26]). Finally, Appendix C contains some useful details about the string

computation.

2. Sigma-model symmetry

In this section, we briefly review some well-known facts about the sigma-model sym-

metry, and discuss its potential anomalies in D = 4, N = 1 supergravity models.

These general concepts are useful for the considerations that will follow, in particular

in Section 7.
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The scalar manifold M of any generic D = 4 N = 1 supergravity model is

known to be a Kähler manifold, described by a Kähler potential K. At the classical

level the Lagrangian presents two distinct symmetries (beside possible local gauge

symmetries):

• Kähler symmetry, under which the Kähler potential transforms as4

κ2K(ΦM , Φ̄M) → κ2K(ΦM , Φ̄M) + F (ΦM) + F̄ (Φ̄M ) . (2.1)

• Global isometries of M, under which

φM → φ′M(φN) . (2.2)

Here ΦM and φM denote all the chiral multiplets in the model and their lowest

components, F (Φ) is a generic chiral superfield, and κ2 is Newton’s gravitational

constant. The fermions ψM in the chiral multiplet ΦM transform also under (2.1)

and (2.2). Correspondingly, the fermionic kinetic terms contain a covariant derivative

involving the following “Kähler” and “isometry” connections [30]:

A(K)
µ = − i

2
κ2 (KM ∂µφ

M −KM̄ ∂µφ
M̄ ) , (2.3)

A
(I) M
µ N = i (ΓM

KN ∂µφ
K − ΓM̄

K̄N̄ ∂µφ
K̄) . (2.4)

Here φM̄ ≡ φ̄M , KM and KM̄ denote the derivative of K with respect to the corre-

sponding fields and Γ is the usual Christoffel connection on the Kähler manifold M.

Notice that the above connections are not new fundamental states, but composites

of the scalar fields.

At the quantum level, the symmetries associated to (2.1) and (2.2) might be

spoiled by triangular one-loop graphs involving as external states the connections

(2.3) and (2.4), as well as gluons or gravitons. A direct evaluation of these mixed

anomalies is not an easy issue, because of the compositeness of the connections.

One can however use indirect arguments that rely on the similarity of the structure

of the associated anomalous one-loop amplitudes with that of standard U(1)-gauge

and U(1)-gravitational anomalies [23, 24]. We shall briefly review this analogy in

the following, focusing on the case in which a single composite connection enters as

external state in the anomalous diagram.

The considerations made so far are quite general and apply to any D = 4 N = 1

model. We specialize now to the low-energy Lagrangians arising from the Type IIB

4The Lagrangian is invariant under (2.1) if also the superpotential W transforms as W → e−F W .

Since W is irrelevant in the considerations that will follow, we will neglect it.
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orientifolds we want to analyze, i.e. the Z3 and the Z7 model (see [8, 9, 10] for

more details on these string vacua). The massless closed string spectrum of these

models contain the gravitational multiplet, a universal chiral multiplet S, three chiral

multiplets T i corresponding to the (complexified) Kähler deformations of the three

internal two-tori5, and a given number of chiral multiplets Mα arising from the

twisted sectors of the orbifold. The open string spectrum (from D9 branes only in

these models) contains vector multiplets and three groups of charged chiral multiplets

Ca. In order to distinguish the different coordinates of M, we use the index M =

(i, a, α) for T i, Ca and Mα respectively. As we will see in next sections, the dilaton

field S does not participate at all to the GS mechanism canceling the anomalies, and

is inert under any gauge, diffeomorphism or sigma-model transformations.

Up to quadratic order in the charged fields, the total Kähler potential of these

orientifolds is believed to be [20]6:

κ2Ktot(Φ
M , Φ̄M) = − ln(S + S̄) −

3∑

i=1

ln(T i + T̄ i) +
3∑

i=1

δa
i

C̄aCa

T i + T̄ i

+ κ2K(M)(Mα, M̄α, T i, T̄ i) , (2.5)

where K(M) is an unknown potential for the twisted fields Mα. As mentioned in

the introduction, the sigma-model symmetry we want to study in these orientifold

models is the dual of heterotic T-duality. It acts on the fields T i, Ca and Mα through

the following SL(2, R)i transformations (no sum over i, ad− bc = 1):

T i → aiT
i − ibi

iciT i + di
, (2.6)

Ca → δa
i

(iciT i + di)
Ca , (2.7)

Mα →M ′α(Mβ, T i) , (2.8)

and similarly for the complex conjugate fields. The transformation (2.7) leaves the

corresponding (third) term of the Kähler potential (2.5) invariant and (2.8) is chosen

in such way to preserve the last contribution K(M). On the other hand, (2.6) pro-

duces a non-trivial transformation of the second term. In total, the complete Kähler

potential (2.5) undergoes the following Kähler transformation under (2.6), (2.7) and

(2.8):

κ2Ktot(Φ
M , Φ̄M ) → κ2 Ktot(Φ

M , Φ̄M) + λi(T i) + λ̄i(T̄ i) , (2.9)

5Actually, additional “off-diagonal” untwisted moduli survive the orientifold projection in the

special Z3 model. We do not consider them here for simplicity, and all the considerations that

follow are independent of the presence of these fields.
6See also [31] for further considerations on the Kähler potential of D = 4 orientifold models.
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with

λi(T i) = ln(iciT
i + di) . (2.10)

The sigma-model symmetry in question is therefore the combination of an isometry

and a Kähler transformation, and potential anomalies will therefore involve both

connections (2.3) and (2.4).

In order to be able to derive an explicit formula at least for mixed sigma-

gauge/gravitational anomalies, we need to make some extra assumptions on the

potential K(M) and the transformations (2.8). We take here the one usually consid-

ered in the literature, that indeed holds generically for heterotic models [32]:

κ2K(M)(Mα, M̄α, T i, T̄ i) =
∑

α

3∏

i=1

(T i + T̄ i)nα
i M̄αMα + ... ,

Mα → (iciT
i + di)

nα
i Mα , (2.11)

where the dots stand for possible higher order terms in Mα, M̄α. The numbers nα
i

are the so-called “modular weights” [33] of the fields Mα. It is straightforward to see

that for the reparametrizations (2.6), (2.7) and (2.8), and the Kähler transformation

(2.9) and (2.10) (F = λi), the total connection ZM
µ ≡ A(K)

µ +A
(I) M
µ M transforms as a

U(1) connection7:

ZM
µ → ZM

µ + (1 + 2nM
i ) ∂µ Imλi , (2.12)

where nα
i are the coefficients defined in (2.11), na

i = −δa
i , and nj

i = −2 δj
i . The

sigma-model symmetry can therefore be viewed as a U(1)i symmetry with “modular

charge” QM
i = (1+2nM

i ). The explicit form of ZM and its field-strength GM = dZM

can be easily evaluated. It is actually convenient to disentangle the modular charges

QM
i from the connection and define the three connections Zµ,i and their field-strength

Gµ,i so that ZM
µ =

∑
iQ

M
i Zi,µ and GM

µν =
∑

iQ
M
i Gi,µν . One finds:

Zi,µ =
i

2

∂µ(ti − t̄i)

ti + t̄i
, (2.13)

Gi,µν = 2i
∂[µt

i∂ν]t̄
i

(ti + t̄i)2
. (2.14)

Sigma-gauge/gravitational anomalies can then be computed by treating them as

U(1)i-gauge/gravitational anomalies (in the following denoted briefly by FFGi and

RRGi anomalies respectively). Explicit formulae for the anomaly coefficients can be

found for example in eqs.(2.8) and (2.12) of [20].

7In deriving (2.12) we assumed that the orbifold limit corresponds to 〈Ca〉 = 〈Mα〉 = 0. The

orbifold limit, however, is generically assumed to be given by 〈mα〉 = 0, where the scalars mα

belong to the linear multiplets Lα, dual of the chiral multiplets Mα [21]. So we are assuming that

at leading order 〈mα〉 = 0 corresponds to 〈Mα〉 = 0.
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3. Anomalies in orientifold models

In this section, we will set up the general strategy for studying all types of anoma-

lies in chiral orientifold models, and investigate their cancellation. We will begin by

reviewing the main aspects of the approach developed in [26, 27] for standard anoma-

lies (see also [34] for a similar analysis in non-geometric models), and generalize it

to sigma-gauge-gravitational anomalies.

To begin, we shall briefly recall some basic but important facts about anomalies

for the convenience of the reader. Anomalies in a quantum field theory effective action

have to satisfy the Wess-Zumino (WZ) consistency condition. These in turn imply

that any anomaly in D dimensions is uniquely characterized by a gauge-invariant and

closed (D + 2)-form I. Using the standard WZ-descent notation8: A = 2πi
∫
I(1).

The anomaly polynomial I is a characteristic class of the gauge and tangent bundles,

of degree (D + 2)/2 in the curvature two-forms.

3.1 The strategy

The cancellation of anomalies in string theory is achieved in a very natural and

elegant way, and is intimately related to more general consistency requirements, like

modular invariance and tadpole cancellation. Possible anomalies arise exclusively

from boundaries of the moduli space of one-loop string world-sheets. Moreover,

direct computations have shown [35] that the whole tower of massive string states

contribute in general to anomalies in such a way that these vanish for consistent

models, even if the massless spectrum is generically anomalous on its own. From a

low-energy effective field theory point of view, where massive states are integrated out

and only the resulting effective dynamics of the light modes is considered, the total

one-loop anomaly is canceled by an exactly opposite anomaly arising in tree-level

processes involving the magnetic exchange of tensor fields [36]. This is the celebrated

Green-Schwarz (GS) mechanism [36], and is an absolutely crucial ingredient for the

existence of consistent supersymmetric chiral gauge theories in higher dimensions.

In the following, we will focus on the CP -odd part of the one-loop effective

action, where anomalies arise. For consistent models, the exact string theory compu-

tation is expected to yield a vanishing anomaly. However, as discussed above, this is

interpreted as a non-trivial GS mechanism of anomaly cancellation in a low-energy

effective theory valid at energies E ≪ 1/
√
α′. In order to get directly this low-energy

approximation, one can take the limit α′ → 0 from the beginning, before integrating

8The invariant closed (D +2)-form I defines locally a non-invariant Chern-Simons (D +1)-form

I(0) such that I = dI(0), whose gauge variation then defines a (D)-form I(1) through δI(0) = dI(1).
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over the world-sheet moduli. The motivation to pursue this strategy, instead of the

more direct full string theory computation, is threefold. First, the required computa-

tions simplify dramatically. Furthermore, one gets an improved understanding of the

low-energy mechanism of anomaly cancellation. Finally, one can extract important

WZ couplings appearing in the effective action by factorization [26, 27].

Consider now orientifold models. The relevant anomalous string diagrams are

the annulus (A), the Möbius strip (M) and the Klein bottle (K). These world-sheet

surfaces lead to potential divergences due to possible tadpoles for massless particles

propagating in the transverse channel. Consequently, they also lead to potential

anomalies. In addition, also the torus (T ) surface can be anomalous, in the limit

under consideration. We will see that there are contributions to the anomaly from

this diagram, but they turn out to always cancel among themselves.

The most general situation which is allowed by the property that anomalous

amplitudes are boundary terms in moduli space is the following. The A, M and K

surfaces are parametrized by a real modulus t ∈ [0,∞]. The contribution from the

boundary at t → ∞ is interpreted as the standard quantum anomaly, whereas the

contributions from the other boundary at t → 0 is interpreted as classical inflow of

anomaly. The T amplitude is instead parametrized by a complex modulus τ ∈ F ,

where F is the fundamental domain. Again, the contribution from the component

∂F∞ = [−1/2 + i∞, 1/2 + i∞] of the boundary ∂F at infinity is interpreted as the

standard quantum anomaly, whereas the contribution from the remaining component

∂F0 should be associated to the classical inflow of anomaly. Summing up, one would

therefore get a quantum anomaly A = (A + M + K + T )|∞ and a classical inflow

I = (A+M+K+T )|0. It should be however mentioned that the above interpretation

for the T surface involves some conceptual subtleties related to modular invariance,

that might mix different contributions. Luckily, we will see that the T amplitude gives

a vanishing contribution anyhow: the pieces in the ∂F0 component cancel pairwise

thanks to modular invariance [37], that still holds in the α′ → 0 limit, whereas the

∂F∞ component vanishes by itself. Moreover, the A, M and K contributions are

topological and independent of the modulus. Correspondingly, A and I are identical

to each other and cancel.

As last important remark, notice that in four dimensions even in non-planar

diagrams the closed string state exchanged in the transverse channel is always on-

shell, due to the conservation of momentum. Strictly speacking, this means that the

usual argument for the cancellation of anomalies at the string level [35] does not

apply in this case, giving further motivation for a detailed analysis.
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3.2 Set-up of the computation

The computation of the A, M , K and T amplitudes proceeds along the lines of [26,

27], that we shall briefly review and extend. For the time being, we shall assume that

the composite connections (2.13) are described by suitable effective vertex operators,

postponing a detailed discussion of this issue to next subsection.

An anomaly of the type discussed above, in the CP -odd part of the effective

action, is encoded in a one-loop correlation function in the odd spin-structure on the

A, M and K surfaces, and in the odd-even and even-odd spin-structures on the T

surface, involving gluons, gravitons and composite connections. Denoting by ρ the

modulus of the surface and by F its integration domain, one has on a given surface

and spin-structure

A1...n =
∫

F
dρ 〈V1

′V2...Vn J〉 . (3.1)

The insertion of the supercurrent J is due to the existence of a world-sheet gravitino

zero-mode; more precisely, J = TF +T̃F in the odd spin-structure on the A, M and K

surfaces, and J = TF , T̃F in the odd-even and even-odd spin-structures respectively

on T . The vertex V ′ is taken in the −1-picture in the odd sector and represents

an unphysical particle. Taking the latter to be a longitudinally polarized gluon,

graviton or composite connection, one computes the variation of the one-loop effective

action under gauge, diffeomorphisms or sigma-model transformations. The remaining

vertices V are taken in the 0-picture and represent physical background gluons,

gravitons or composite connections. Thanks to world-sheet supersymmetry and the

limit α′ → 0, one can use effective vertex operators which are simpler to handle.

After some formal manipulations, the correlation function above can be rewritten

as boundary terms in moduli space [38, 37]

A1...n =
∮

∂F
dρ 〈W1V2...Vn〉 , (3.2)

where W is an auxiliary vertex defined out of V ′ for the unphysical particle. Impor-

tantly, the vertices V ’s contain two tangent fermionic zero-modes, whereas W does

not contain any of them. The insertion of W , rather than V , for the unphysical par-

ticle representing the gauge variation of the one-loop effective action corresponds to

the fact that the anomaly A is given by the WZ descent of the anomaly polynomial

I: A = 2πi
∫
I(1). More precisely, one can show [26, 27] that the latter is obtained

simply by substituting back V instead of W , that is

I1...n =
∮

∂F
dρ 〈V1V2...Vn〉 , (3.3)

with the convention of working in two more dimensions and omitting the integration

over bosonic zero-modes. Finally, it is possible to define the generating functional of
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all the possible anomalies by exponentiating one representative vertex for each type

of particle and compute the resulting deformed partition function Z ′. Finally, the

total anomaly polynomial is given just by

I =
∮

∂F
dρZ ′ . (3.4)

3.3 Effective vertices

The fact that one can use effective vertices in the computation of the partition func-

tion yielding the anomaly polynomial is due to the α′ → 0 limit and to certain special

properties of correlation functions in supersymmetric spin-structures like those of rel-

evance here. One way to understand this is to notice that the partition functions

to be computed are related to topological indices which are almost insensitive to

any continuous parameter deformation. From a more technical point of view, there

is always a fermionic zero-mode for each spacetime direction. The corresponding

Berezin integral in the partition function yields a vanishing result unless the inter-

action vertices provide one of each fermionic zero-mode. Infact, products of these

fermionic zero modes provide a basis of forms of all degrees in the target spacetime,

the Berezin integral selecting the appropriate total degree.

On general grounds, it is expected that the effective vertices depend only on the

corresponding curvature. Since these behave as two-forms, they must be contracted

with two tangent fermionic zero-modes. Moreover, the vertices must be world-sheet

supersymmetric. Finally, thanks to the α′ → 0 limit, they cannot contain additional

momenta, beside from those defining the curvature. These three basic requirements,

together with the index structure of the curvatures and conformal invariance, turn

out to severely constrain the effective vertices in each case. For gluons and gravi-

tons, they can be derived in a straightforward way as in [26], but for the composite

connections (2.13), the analysis is much more involved since the latter are not funda-

mental fields but composite of the scalar fields of the theory, and there are therefore

no vertex operators directly associated to them. Our main observation is that the

field-strengths (2.14) have a quadratic dependence on the untwisted ti and t̄i moduli

fluctuations. Correspondingly, suitable amplitudes with the insertion of the vertex

operators associated to these scalars should reproduce the insertion of the composite

connections (2.13). The untwisted ti moduli are defined as [10]

ti = e−φ10 gīi + iθi , (3.5)

where φ10 is the ten-dimensional dilaton, gīi is the metric component along the T 2
i

torus and θi is a RR axion. The real part of these moduli is therefore represented by

12



a NSNS vertex operator, whereas the imaginary part is described by a RR vertex,

involving spin-fields and particularly unpleasant to deal with. Notice for the moment

that these vertex operators can provide at most one spacetime fermionic zero-mode.

Since physical gluons and gravitons bring each two fermionic zero-modes, correlations

with an odd number of moduli vanish, as expected from the fact these should come

in pairs reconstructing composite connections. Moreover, in the limit of interest,

the correlation functions under analysis factorize into an internal correlation among

moduli fields and a spacetime correlation among gluons and gravitons.

We now propose an approach to the derivation of the effective vertex for the

composite connection, which is not exhaustive but will allow us to emphasize a few

important points. Focus for simplicity on a single internal torus only, for which the

composite curvature (2.14) becomes (no sum over the indices) Gi,µν = 2iKīi ∂[µt
i∂ν] t̄

i,

with Kīi = (ti + t̄i)−2. On general grounds, one expects the moduli to pair and

reconstruct only composite curvatures of this form. At leading order in the momenta,

the structure of the internal correlation between two moduli must therefore be as

follows:

〈Vti(p1)Vt̄i(p2)〉 = αiKīi p1µt
i p2ν t̄

i ψµ
0 ψ

ν
0 , (3.6)

〈VtiVti〉 = 〈Vt̄iVt̄i〉 = 0 , (3.7)

where αi are some coefficients and Vti and Vt̄i are the vertex operators for the scalars

ti and t̄i. As already mentioned, correlations such as (3.6) are potentially difficult

to compute in orientifold models, because the moduli vertices have a simple NSNS

real part, but a complicated RR imaginary part. More precisely, the sigma-model

curvature can be rewritten as Giµν = iKīi ∂[µ(ti − t̄i)∂ν](t
i + t̄i), and one has in

principle to use one RR vertex Vti − Vt̄i and one NSNS vertex Vti + Vt̄i. One could

then proceed by contracting the NSNS and RR vertex, take the α′ → 0 limit and try

to figure out which is the effective vertex that, inserted in the correlation function,

gives the same result. This procedure is however complicated, so we prefer to use

a trick that will allow us to deduce the effective vertex in a quicker (although not

rigorous) way.

The point is that correlations involving only pairs of Vti +Vt̄i vertices are formally

proportional to the corresponding correlations involving pairs of Vti +Vt̄i and Vti −Vt̄i

vertices. Indeed, using (3.6) and (3.7), one gets:

〈(Vti ± Vt̄i)(p1)(Vti + Vt̄i)(p2)〉 = αiKīi

(
p1µt

i p2ν t̄
i ± (1 ↔ 2)

)
ψµ

0ψ
ν
0 . (3.8)

Due to the symmetrization in 1 ↔ 2, one gets a vanishing result for two NSNS vertices

(upper sign), but a non vanishing one for one RR and one NSNS vertices (lower sign).
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Nevertheless, both of them encode the same non-vanishing coupling αi, and by careful

inspection it is possible to extract the latter also from the vanishing correlation

involving only NSNS vertices, after having recognized the zero corresponding to the

unavoidable symmetrization. A convenient way to properly remove the zero is to flip

the crucial sign by hand in the final result, reconstructing the sigma-model curvature.

A similar analysis goes through for correlations involving more than two moduli.

Indeed, as will now become clear, the moduli vertices do indeed always contract in

pairs associated to composite curvatures, and all of them can be represented by the

NSNS real part, keeping track of the zeroes arising by symmetrization.

We are now in position to attempt a derivation of the effective vertex operator

for the composite connections (2.13), by considering a correlation involving an even

number of moduli real parts and using the trick discussed above. The corresponding

NSNS vertex operator can be easily deduced from (3.5), and is given by

Vti + Vt̄i = (ti + t̄i)
∫
d2z (∂X i + ip · ψψi) (∂̄X̄ i + ip · ψ̃ ¯̃

ψi) eip·X + c.c. , (3.9)

where c.c. stands for complex conjugate9. This vertex can be further simplified case

by case thanks to the limit α′ → 0, and to the presence of fermionic zero-modes. But

contrarily to the simpler case of gluons and gravitons, it might happen that pieces of

the vertex which are apparently subleading for small momenta, give nevertheless a

leading contribution when contracted. We proceed separately for the A, M , K and

the T surfaces.

A, M and K surfaces

In this case, one can start with the following effective vertex:

Vt̄i + Vti = ip · ψ0 (ti + t̄i)
∫
d2z

[
ψi∂̄X̄ i + ψ̃i∂X̄ i + ψ̄i∂̄X i + ¯̃ψi∂X i + ...

]
, (3.10)

where the dots represent possibly important fermionic terms, that are difficult to fix

unambiguously in the present approach. By exponentiating two of these vertices with

momentum pi
1,2, and performing a shift on the internal fermions, one gets an effective

interaction for the internal bosons. Rescaling then (X i, X̄ i) → g
−1/2
īi (X i, X̄ i) so that

the bosonic kinetic terms are normalized, one finds

Sint = Kīi

(
p1µt

i p2ν t̄
i + (1 ↔ 2)

)
ψµ

0ψ
ν
0

∫
d2z

[
X̄ i(∂ + ∂̄)X i + ...

]
. (3.11)

9Notice that the vertex (3.9) is actually the right one for gīi, that differs from ti + t̄i for a factor

gS = e−φ10 . This difference, possibly important for a careful understanding and comparison of string

and field theory results (see e.g. footnote 12), is however irrelevant for most of the considerations

that will follow. Correspondingly, we effectively identify gīi with ti + t̄i.
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As expected, the factor in front of the effective vertex (3.11) has precisely the same

form as (3.8) with the + sign, and this interaction term vanishes due to the 1 ↔ 2

symmetrization. According to the previous discussion, by flipping the sign of the

second term in the brackets, one generates a non-vanishing interaction which can be

interpreted as an effective vertex operator for the composite connection. Notice that

one would expect such an effective vertex to be world-sheet supersymmetric, whereas

the expression obtained above is not. We conclude from this that the expression

(3.11) is incomplete, and that additional purely fermionic terms must indeed be

present in (3.10) and (3.11). By requiring a world-sheet supersymmetric vertex, it is

then easy to deduce the right form for these fermionic terms, and one finds finally

V eff.
G =

1

2
Gi,µνψ

µ
0ψ

ν
0

∫
d2z

[
X̄ i(∂ + ∂̄)X i + (ψ̄ − ¯̃

ψ)i(ψ − ψ̃)i
]
. (3.12)

T surface

In this case, on can effectively take:

Vt̄i + Vti = ip · ψ0 (ti + t̄i)
∫
d2z

[
ψi∂X̄ i + ψ̄i∂X i + ...

]
. (3.13)

The dots represent again possible fermionic terms. By exponentiating and performing

a shift on the left-moving internal fermions, one gets an effective interaction for the

bosons given by

Sint = Kīi

(
p1µt

i p2ν t̄
i + (1 ↔ 2)

)
ψµ

0ψ
ν
0

∫
d2z

[
X̄ i∂̄X i + ...

]
. (3.14)

As before, this interaction term vanishes and one has to perform the discussed sign

flip to obtain a non-vanishing interaction to be interpreted as an effective vertex

operator for the composite connection. Again, since such effective vertex should be

world-sheet supersymmetric, we conclude that (3.14) is indeed incomplete, and fix

again the missing fermionic terms thanks to world-sheet supersymmetry. Finally,

one gets

V eff.
G =

1

2
Gi,µνψ

µ
0ψ

ν
0

∫
d2z

[
X̄ i∂̄X i +

¯̃
ψiψ̃i

]
. (3.15)

There is an alternative way to deduce the form of the effective vertices above.

Since the NSNS Re ti scalar is related to the metric of the corresponding internal

two-torus, the exponentiation of its vertex induces a geometric deformation of the

orbifold along the i-th internal torus. This can be analyzed directly from a σ-model

point of view. By doing that, with standard techniques, it is easy to see that the

metric deformation associated to the internal T 2
i torus is represented by (3.12) and

(3.15) on the corresponding surfaces, where Gi is now replaced by the geometric
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curvature of T 2
i . By exploiting the tensorial structure of this curvature, one easily

realizes that the components whose derivatives are all along the spacetime directions,

like in (3.11), vanish due to a symmetrization, exactly like before. As expected, one

is therefore led to use the same trick as above to get a non-vanishing composite

field-strength. However, in this way one gets automatically the fermionic terms in

(3.12) and (3.15) and also a first clue of the close relation between the field-strength

G and the curvature of the internal space. We postpone to Section 5 a more precise

analysis of this relationship.

Notice also that in heterotic models, where the untwisted moduli consist of NSNS

fields only, the correspondence between Kähler deformations of the orbifold and

sigma-model symmetry can be unambiguously established. The net result is again

that the effective vertex for the composite connection has the same form as that of

an internal graviton, like in (3.15). We think that this gives some extra evidence

for the relation between sigma-model symmetry and orbifold Kähler deformations

also in Type IIB orientifolds. Indeed, although in the latter case the pseudo-scalars

Im ti are RR fields, from a purely geometrical point of view there is no difference

with respect to heterotic models, since in both theories Im ti simply complexifies the

geometric Kähler structure of the orbifold/orientifold.

4. String computation

The computation of the partition functions entering the anomaly polynomial closely

follow [26, 27]. We proceed separately for the various surfaces. The A, M and K

amplitudes are generalizations of the results of [26, 27] to a non-trivial “compos-

ite” background. The T amplitude was instead irrelevant in [26, 27], as shown in

Appendix B for the six-dimensional case, and has therefore to be computed in detail.

As already said, we restrict to the simplest Z3 and Z7 models, which do not

contain D5-branes neither N = 2 sub-sectors. In these models, the k-th element of

ZN is gk = (θk, γk), where θk is a rotation of angles 2πkvi in the internal two-tori

i = 1, 2, 3, and γk is a non-trivial twist matrix, acting on the Chan-Paton bundle. The

Chan-Paton representation of the twist is fixed by the tadpole cancellation condition.

For future convenience, and in order to get contact with the notation used in the

literature, we define

Ck =
3∏

i=1

(2 sin πkvi) . (4.1)

and its sign ǫk = signCk. For N odd, the tadpole cancellation condition can then be
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written as
1

4
tr(γ2k) =

C2k

Ck
=

Ck

C2k
(4.2)

and holds because actually all the quantities in the equality are equal to a sign,

namely ǫ2k/ǫk which is equal to −1 for Z3 and +1 for Z7.

Let us define the characteristic classes which will appear in the polynomial as-

sociated to generic sigma-gauge-gravitational anomalies. For the gauge bundle, one

has the natural ZN Chern character, function of the gauge curvature F , defined as

a trace over the Chan-Paton representation:

chk(F ) = tr [γk e
iF/2π] . (4.3)

This factor appears in the anomaly from charged chiral spinors. For the tangent

bundle, the relevant characteristic classes are the Roof-genus, G-polynomial and

Hirzebruch polynomial, functions of the gravitational curvature R and defined in

terms of the skew eigenvalues λa of R as:

Â(R) =
D/2∏

a=1

λa/4π

sinh λa/4π
, (4.4)

Ĝ(R) =
D/2∏

a=1

λa/4π

sinhλa/4π

(
2

D/2∑

b=1

cosh λb/2π − 1
)
, (4.5)

L̂(R) =
D/2∏

a=1

λa/2π

tanhλa/2π
. (4.6)

These factors appear respectively in the anomaly from chiral spinors, chiral Rarita-

Schwinger fields, and self-dual tensor fields. We also introduce three new character-

istic classes depending on the composite curvature G = dZ, defined in terms of the

curvatures Gi in the three internal tori as

Âk(G) =
3∏

i=1

sin(πkvi)

sin(πkvi +Gi/2π)
, (4.7)

Ĝk(G) =
3∏

i=1

sin(πkvi)

sin(πkvi +Gi/2π)

(
2

3∑

j=1

cos(2πkvj +Gj/π) − 1
)
, (4.8)

L̂k(G) =
3∏

i=1

tan(πkvi)

tan(πkvi +Gi/π)
. (4.9)

These characteristic classes will appear in the anomaly from states transforming as

chiral spinors, Rarita-Schwinger fields and self-dual tensors with respect to sigma-

model transformations.

A last preliminary comment relevant to all the surfaces is the following. Due to

the universal six bosonic zero-modes in the four non-compact spacetime directions
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and the two extra auxiliary dimensions introduced to deal with the WZ descent, the

partition functions will always contain a free-particle contribution proportional to

ρ−3. Moreover, the curvatures will always appear multiplied by ρ as twists in the

partition function. An important simplification occurs using the fact that only the

6-form component of the partition function is relevant for our purposes: one can

scale out the above explicit dependences on the modulus ρ. This will be important

also for the modular invariance of the string amplitudes yielding the anomaly in the

torus surface, as we shall see.

4.1 A, M and K surfaces

On theA,M andK surfaces, the boundary of moduli space is given by the component

t → ∞ encoding the quantum anomaly, minus the component t → 0 encoding the

classical GS inflow. The contribution of each surface to the total anomaly polynomial

is given by

IΣ =
(

lim
t→∞

− lim
t→0

)
ZΣ(t) . (4.10)

The partition functions ZΣ(t) are in the RR odd spin-structure, and their operatorial

representation is

ZA(t) =
1

4N

N−1∑

k=0

TrR [gk (−1)F e−tH ] ,

ZM(t) =
1

4N

N−1∑

k=0

TrR [Ω gk (−1)F e−tH ] ,

ZK(t) =
1

8N

N−1∑

k=0

TrRR [Ω gk (−1)F+F̃ e−tH ] . (4.11)

Here H = H(R,F,G) is the Hamiltonian associated to the two-dimensional super-

symmetric non-linear σ-model in a gauge, gravitational and composite background

defined by the effective vertex operators below, with Neumann boundary conditions.

Due to supersymmetry, (4.11) are generalized Witten indices in which only mass-

less modes can contribute [39]. Indeed, it can be verified explicitly that massive

world-sheet fermionic and bosonic modes exactly cancel. As a consequence, the par-

tition functions (4.11) are independent of t, and (4.10) vanishes, reflecting anomaly

cancellation through the GS mechanism.

The background dependence of the action is encoded in the effective vertices

for external particles. In the odd spin-structure on the A, M and K surfaces, the

sum Q+ Q̃ of the left and right world-sheet supersymmetries is preserved, and there

are space-time fermionic zero-modes ψµ
0 = ψ̃µ

0 . In the limit α′ → 0, we use the
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following effective vertex operators for gluons, gravitons and composite sigma-model

connections:

V eff.
F = F a

∮
dτλa , (4.12)

V eff.
R = Rµν

∫
d2z

[
Xµ(∂ + ∂̄)Xν + (ψ − ψ̃)µ(ψ − ψ̃)ν

]
, (4.13)

V eff.
G = Gi

∫
d2z

[
X̄ i(∂ + ∂̄)X i + (ψ̄ − ¯̃ψ)i(ψ − ψ̃)i

]
, (4.14)

in terms of the curvature two-forms

F a =
1

2
F a

µν ψ
µ
0ψ

ν
0 , Rµν =

1

2
Rµνρσ ψ

ρ
0ψ

σ
0 , Gi =

1

2
Gi,µνψ

µ
0ψ

ν
0 . (4.15)

It is now straightforward to compute the partition functions (4.11) on the A, M and

K surfaces. The composite background modifies only the internal partition functions,

whereas the spacetime contribution has only the standard dependence on the gauge

and gravitational backgrounds. The spacetime part can be computed exactly as in

[40, 41], and one finds the same results as in [26, 27]. The computation of the internal

part is also similar to that in [26, 27], the curvature G entering as a twist. Using

ζ-function regularization, one finds

ZA =
i

4N

N−1∑

k=1

Ck Âk(G) ch2
k(F ) Â(R) ,

ZM = − i

4N

N−1∑

k=1

Ck Âk(G) ch2k(2F ) Â(R) ,

ZK =
i

16N

N−1∑

k=1

C2k L̂k(G) L̂(R) , (4.16)

in terms of the characteristic classes defined before. As anticipated, the partition

functions (4.16) are independent of the modulus t. Consequently, the quantum

anomaly encoded in the t → ∞ boundary, and the classical inflow associated to

t → 0 boundary, are precisely opposite to each other and cancel on each of the A,

M and T surfaces.

4.2 T surface

On the T surface, the boundary ∂F of moduli space splits into the component at

infinity, ∂F∞ = [−1/2 + i∞, 1/2 + i∞], minus the remaining component, ∂F0, and

the contribution to the total anomaly polynomial is given by

IT =
1

2

[(∮

∂F∞

−
∮

∂F0

)
dτ ZT (τ) +

(∮

∂F∞

−
∮

∂F0

)
dτ̄ ZT (τ̄)

]
. (4.17)
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The quantities

ZT (τ) =
∑

α

(−1)αZSα

T (τ) , ZT (τ̄ ) =
∑

α̃

(−1)α̃ZSα̃

T (τ̄ ) . (4.18)

are the total partition functions in the odd-even and even-odd sector respectively.

More precisely, α = 2, 3, 4 represent the RR, RNS+ and RNS− odd-even spin-

structures, and similarly α̃ = 2, 3, 4 represent the RR, RNS+ and RNS− even-odd

spin-structures. Their operatorial representation is

ZRR
T (τ) =

1

8N

N−1∑

k,l=0

Tr
(l)
RR [gk (−1)F g̃k e−τH e−τ̄ H̃ ] ,

Z
RNS+

T (τ) =
1

8N

N−1∑

k,l=0

Tr
(l)
RNS [gk (−1)F g̃k e−τH e−τ̄ H̃ ] ,

Z
RNS−

T (τ) =
1

8N

N−1∑

k,l=0

Tr
(l)
RNS [gk (−1)F g̃k (−1)F̃ e−τH e−τ̄ H̃ ] . (4.19)

The expression for the even-odd spin-structures is perfectly similar, with left and

right movers exchanged. In this case, H and H̃ = H̃(R,F,G) are the left and

right-moving Hamiltonians associated to the two-dimensional supersymmetric non-

linear σ-model in a gauge, gravitational and composite background defined by the

effective vertex operators below. Notice that whereas the even part of the partition

functions is influenced by the backgrounds, the odd part remains trivial. This will

lead to holomorphic and anti-holomorphic results in the odd-even and even-odd spin

structures. Furthermore, only the odd parts of (4.19) are supersymmetric indices,

whereas the even parts receive contributions from all the tower of string states and

will therefore depend on τ .

Again, the background dependence of the action is encoded in the effective ver-

tices for external particles. In the odd-even spin-structure on the T surface, the

left-moving world-sheet supersymmetry Q is preserved, and there are space-time

fermionic zero-modes ψµ
0 . In the limit α′ → 0, we use the following effective vertex

operators for gravitons and composite connections:

V eff.
R = Rµν

∫
d2z

[
Xµ∂̄Xν + ψ̃µψ̃ν

]
, (4.20)

V eff.
G = Gi

∫
d2z

[
X̄ i∂̄X i + ¯̃ψiψ̃i

]
, (4.21)

in terms of the curvature two-forms defined in (4.15). It is then easy to evaluate

the partition function on the T surface. The gravitational background influences

bosons and left-moving fermions, in a similar way to the cases discussed in Appendix
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B. The composite background influences instead only the internal bosons and left-

moving fermions. The evaluation of the internal partition functions is very similar

to that reported in Appendix B for the six-dimensional case of Type IIB on T 4/ZN ,

the curvature G being responsible for a twist. In total, one gets:

ZT (R,G, τ) =
i

8N

4∑

α=2

(−1)α
N−1∑

k,l=0

Nk,l

3∏

i=1

θα

[
lvi

kvi

]
(−Gi/π

2|τ)
θ1

[
lvi

kvi

]
(−Gi/π2|τ)

×
2∏

a=1

[
(ixa)

θ1(ixa/π|τ)
θα(ixa/π|τ)

]
η3(τ)

θα(0|τ) , (4.22)

where xa = λa/2π and Nk,l is the number of fixed-points that are at the same time

k and l-fixed (N0,0 = 0). The result for the odd-even spin-structures is the complex

conjugate of (4.22).

It is a lengthy but straightforward exercise to show that the partition function

(4.22) is modular invariant. Indeed, one gets

ZT (R,G, τ + 1) = ZT (R,G, τ)

ZT (R,G,−1/τ) =
1

τ
ZT (Rτ,Gτ, τ) = τ 2ZT (R,G, τ) , (4.23)

where the last step in the second equation is valid for the relevant 6-form component

of ZT . Thanks to the modular invariance of ZT (τ) and ZT (τ̄ ), their integral on

various components of ∂F are related to each other. In fact, only the component ∂F∞

at infinity can give a non-vanishing contributions, the remaining four pieces of the

remaining component ∂F0 canceling pairwise, as in [37]. The potential contribution

from ∂F∞ is interpreted as a quantum sigma-gravitational anomaly.

In order to evaluate the contribution from ∂F∞, one has to take the limit τ2 → ∞
of the partition function. This is easy to take in untwisted sectors, but in twisted

sectors one has to pay attention to the range of the twists. For l 6= 0, one gets for

instance:

3∏

i=1

θ2
[

lvi

kvi

]
(−Gi/π

2|τ)
θ1

[
lvi

kvi

]
(−Gi/π2|τ)

→ − i ǫl ,

3∏

i=1

θ3,4

[
lvi

kvi

]
(−Gi/π

2|τ)
θ1

[
lvi

kvi

]
(−Gi/π2|τ)

→ ∓ i ǫl q
1/8

3∏

i=1

exp(− i ǫlGi/π) .

where the quantity ǫk was defined as the sign of Ck in (4.1)10. The above expres-

sions already show that the anomaly from RR twisted states does not depend on

10It arises here as ǫl = (−1)
∑

i
θi(lvi) and ǫl = 2

∑
i θi(lvi) − 3 in terms of the representative

θi(lvi) = lvi − int(lvi) of the twist lvi in the interval [0, 1].
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the composite curvature, and therefore trivially vanishes in D = 4. On the con-

trary, the anomaly from RNS twisted states does depend on the curvature G, and is

non-vanishing. The corresponding apparently complex internal contribution to the

partition function (4.22) turns out to be actually real, and using the fact that only

odd powers of Gi are relevant in D = 4, one gets:

∓ i ǫl q
1/8

3∏

i=1

exp(− i ǫlGi/π) = ∓ q1/8 (−i) ch (2G) .

Finally, the total odd-even and even-odd spin structure partition functions (4.18)

are found to behave both in the same way in the limit τ2 → ∞, giving:

ZT → − i

16N

N−1∑

k=1

C2k L̂k(G) L̂(R)

+
i

2N

N−1∑

k=1

Ck

[
Âk(G) Ĝ(R) + Ĝk(G) Â(R)

]

+
i

2N

N−1∑

k=0

N−1∑

l=1

Nk,l (−i) ch (G) Â(R) . (4.24)

Since this expression is independent of τ , the remaining integral over τ1 in ∂F∞ is

trivial, and according to (4.17), this is also the final result for the T contribution

to the anomaly. The first line of (4.24) corresponds to the RR untwisted sector,

whose contribution precisely cancels that of the Klein bottle in (4.16). The second

line corresponds to the RNS/NSR untwisted sectors and encodes the contributions

of the gravitino, dilatino and untwisted modulini. Finally, the last line encodes those

of twisted RNS/NSR moduli; notice that all the twisted sectors l = 1, ..., N − 1 give

the same contribution, since Nk,l takes the same value for all {k, l} 6= {0, 0} for N

odd. Actually, one can check that the relevant 6-form component of the result (4.24)

vanishes identically. Some useful details in this respect are reported in Appendix C.

In conclusion, the total anomaly from the T surface exactly cancels:

ZT → 0 . (4.25)

Note that whereas the vanishing of the T amplitude is expected from modular

invariance in a full string context, it has to be explicitly checked in the particular

α′ → 0 limit we consider. Because of the importance of this result and since we are

not aware of any similar computation in the literature, we report in Appendix B a

similar computation of gravitational anomalies on the T surface for Type IIB string

theory in D = 10 and D = 6 on an orbifold.
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5. Topological interpretation

Probably it is interesting to point out that all the anomalies considered so far,

eqs.(4.16), have a nice topological interpretation in terms of the G-index of the Dirac

operator (A and M) and the G-index of the signature complex [42, 43] (K), with

G = ZN for a ZN orbifold (see [44] for a nice introduction and more details on the

G-index)11.

The ZN group can be thought to act on the whole ten dimensional spacetime

X = R1,3 ×T 6, as well as on the gauge bundle. As before, we denote by gk = (θk, γk)

the k-th element of the complete ZN group. Among other things, this will twist the

Chern classes appearing in index theorems. The subspace Xk left invariant by the

geometric θk is Xk = ⊕Nk

i=1R
1,3, that is Nk copies of spacetime. When restricted to

Xk, the tangent bundle of X decomposes into the tangent and normal bundles Tk

and Nk of Xk in X. Moreover, the normal bundle Nk further decomposes naturally

into three components N i
k, in which θ acts as 2πvi rotations. The cotangent and spin

bundles, which will be relevant for spinor and self-dual tensor fields, have a similar

decomposition.

The Dirac-G index theorem is then given by (see e.g. [44])

index(Dgk) =
∫

XG

ch(S+
Tk

− S−
Tk

) chk(S
+
Nk

− S−
Nk

) chk(F )

chk(Ñk) e(Tk)
Td(T C

k ) (5.1)

where S±
Tk

and S±
Nk

are the positive and negative chirality spin bundles lifted from

the tangent and normal bundles, and Ñk = ⊕i(−)i ∧i N ∗
k in terms of the conormal

bundle N ∗
k . e(Tk) and Td(T C

k ) are the usual Euler and (complexified) Todd classes:

Td(T C
k ) =

2∏

a=1

xa

1 − e−xa

(−xa)

1 − exa
, e(Tk) =

2∏

a=1

xa .

By expliciting the other terms appearing in (5.1), one gets

ch(S+
Tk

− S−
Tk

) =
2∏

a=1

(exa/2 − e−xa/2) ,

chk(S
+
Nk

− S−
Nk

) =
3∏

i=1

(exi/2eiπkvi − e−xi/2e−iπkvi) ,

chk(Ñk) =
3∏

i=1

(1 − exie2iπkvi) (1 − e−xie−2iπkvi) , (5.2)

where xa and xi are the eigenvalues of the curvature two-form on Tk and Nk. chk(F )

is precisely the twisted Chern character defined in (4.3), in terms of the twist matrix

11A relation between anomalous couplings and the Z2 signature complex was already exploited

in [41] in the case of smooth manifolds.
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γk. The trace is in the bifundamental or fundamental representation of the gauge

group, for the A and M surfaces respectively. As previously discussed, the composite

field-strength G is closely associated to the curvature two-form of the normal bundle

Nk. More precisely, xi = i Gi/π, and by plugging in the relations (5.2) above, one

gets after some simple algebra

index(Dgk) = −i
∫

R3,1
Ck Âk(G) chk(F ) Â(R) , (5.3)

which corresponds to the k-th term in the partition functions (4.16) on A and M .

The case of the G-index of the signature complex can be treated similarly. The

G-signature index theorem is

index(D+
gk) =

∫

XG

ch(T +
k − T −

k ) chk(N+
k −N−

k )

chk(Ñk) e(Tk)
Td(T C

k ) (5.4)

where T ±
k = ±∧ T ∗

k , N±
k = ±∧ N ∗

k , in terms of the cotangent and conormal bundles

T ∗
k and N ∗

k . More explicitly, we have

ch(T +
k − T −

k ) =
2∏

a=1

(exa − e−xa) ,

chk(N+
k −N−

k ) =
3∏

i=1

(e−xie−2iπkvi − exie2iπkvi) . (5.5)

Similarly to the previous case, the index can then be written as

index(D+
gk) = −i

∫

R3,1
C2k L̂k(G) L̂(R) , (5.6)

which corresponds to the k-th term in the partition functions (4.16) on K.

6. Factorization

Having computed all the four amplitudes contributing to the anomaly, we are now in

the position of facing the interpretation in terms of quantum anomalies and classical

inflows, and understand the mechanism allowing their cancellation. We will also

extract all the anomalous couplings to twisted RR fields by factorization.

6.1 Quantum anomalies

The anomaly arising from open string states is given by the A and M partition

functions: Aopen = AA + AM . In total, one has:

Aopen =
i

4N

N−1∑

k=1

Ck Ak(G)
[
ch2

k(F ) − ch2k(2F )
]
Â(R) . (6.1)
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The anomaly from closed string states comes instead from the K and T partition

functions: Aclosed = AK + AT , where AT denotes all the contributions in (4.24). It

turns out that the AK precisely cancels against the untwisted RR part of AT . This

reflects the fact that all the descendants of the anti-self-dual 4-form of the original

Type IIB theory are projected out by the Ω-projection. One is then left with:

Aclosed =
i

2N

N−1∑

k=1

Ck

[
Âk(G) Ĝ(R) + Ĝk(G) Â(R)

]

+
1

2N

N−1∑

k=0

N−1∑

l=1

Nk,l ch (G) Â(R) . (6.2)

The quantum anomalies (6.1) and (6.2) can be qualitatively understood in their

alternative interpretation as anomalies involving internal reparametrizations. Indeed,

in that context it is easy to discuss the representation of each state under all the

symmetries. In particular, all the open string states and the untwisted closed string

states transforms under tangent and internal reparametrizations in a way which

is dictated essentially by dimensional reduction. This is easily made precise after

recalling that the characteristic classes (4.4), (4.5) and (4.6) signal spinor, gravitino

and self-dual representations under tangent reparametrizations, and similarly (4.7),

(4.8) and (4.9) correspond to spinor, gravitino and self-dual representations under

internal reparametrizations. The open string contribution (6.1) comes clearly from

a chiral spinor in D = 10, which once dimensionally reduced to D = 4 gives rise

to a multiplet of chiral spinors transforming as an internal spinor. Similarly, the

untwisted part (first two terms) of the closed string contribution (6.2) come from a

chiral gravitino in D = 10, which when dimensionally reduced to D = 4 gives rise to

a multiplet of chiral gravitinos transforming as an internal spinor (first term), plus a

multiplet of chiral spinors transforming as an internal gravitino (second term). Even

the canceled contribution of the states projected out by the orientifold projection

in summing the K and T surfaces can be understood. They come, as anticipated,

from a self-dual form in D = 10, which is eventually projected out, but would give

rise in D = 4 to a multiplet of self-dual forms transforming as an internal self-dual

from. The only contribution which cannot be understood in this way is the twisted

part (third term) of (6.2). It is clear that the correponding states must be chiral

spinors, and one can argue intuitively that they should transform in a simpler way

than untwisted fields under internal reparametrizations (not as tensors), since they

arise at given fixed-points in the internal space. Indeed, it is clear from the Chern

character in their contribution that they transform with a common U(1) charge.

The interpretation and analysis of (6.1) and (6.2) as sigma-model anomalies is

postponed to Section 7.

25



6.2 Classical inflows

The GS inflow, which cancels the anomalies computed in previous section, is given

by the t → 0 limit of the A, M and K partition functions (4.16). By factorization,

it is then possible to obtain the anomalous couplings responsible for the inflows.

As in the case without composite background [26, 27], the A, M and K partition

functions have to factorize exactly. This is made possible by the following non-trivial

identities among the characteristic classes defined in Section 4:
√
Â(R)

√
L̂(R/4) = Â(R/2) , (6.3)

√
Â2k(G)

√
L̂k(G/4) = Âk(G/2) . (6.4)

Indeed, by performing suitable rescalings (allowed by the fact that only the 6-form

component of all the polynomials is relevant) and summing the k-th and the N−k-th
terms in the sums since they correspond to the same closed string twisted sector, the

partition functions (4.16) can be rewritten in the factorized form

ZA =
i

2

(N−1)/2∑

k=1

Nk Y(k) ∧ Y(k) ,

ZM = i
(N−1)/2∑

k=1

Nk Y(2k) ∧ Z(2k) ,

ZK =
i

2

(N−1)/2∑

k=1

Nk Z(2k) ∧ Z(2k) , (6.5)

where Nk = C2
k is the number of fixed-points and

Y(k) =
ǫk√
N

√∣∣∣∣
1

Ck

∣∣∣∣ chk(ǫkF )
√
Âk(ǫkG)

√
Â(R) ,

Z(2k) = − 4 ǫk√
N

√√√√
∣∣∣∣∣
C2k

C2
k

∣∣∣∣∣

√
L̂k(ǫ2kG/4)

√
L̂(R/4) . (6.6)

This implies the following anomalous couplings [27]:

SD =
√

2π
(N−1)/2∑

k=1

Nk∑

ik=1

∫
Cik

(k) ∧ Y(k) , (6.7)

SF =
√

2π
(N−1)/2∑

k=1

Nk∑

ik=1

∫
Cik

(2k) ∧ Z(2k) . (6.8)

In these couplings, Cik
(k) denotes the sum of all the RR forms in the k-twisted sector

and at the fixed-point ik; it contains a 4-form plus a 2-form χ̃ik
(k) and its dual 0-form

χik
(k). The relevant components of the charges (6.6) are therefore the 0, 2 and 4-forms.
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Thanks to the tadpole condition (4.2), all irreducible terms in the inflow (6.5) vanish,

and no unphysical negative RR forms propagate in the transverse channel.

The total GS couplings can be obtained by summing the D-brane and fixed point

contributions (6.7) and (6.8), after sending k into 2k in (6.7). This is allowed for

N odd, and also in agreement with the fact that in the transverse channel one finds

k-twisted states on A, and 2k twisted states on M and K for the k-th term in the

partition function; in order to add the two consistently one is therefore led to the

above substitution. Defining the quantities X(2k) = Y(2k) + Z(2k), one has

SGS =
√

2π
(N−1)/2∑

k=1

Nk∑

ik=1

∫
Cik

(2k) ∧X(2k) . (6.9)

Using the explicit form (6.6) of the charges and the tadpole cancellation condition

(4.2), one can check that the total charges X
(0)
(2k) with respect to the RR 4-forms are

zero, and the following results for the total charges X
(2)
(2k) and X

(4)
(2k) with respect to

the RR 2-forms χ̃ik
(2k) and the RR 0-forms χik

(2k) are found:

X
(2)
(2k) =

N
−1/4
k√
N(2π)

{

i tr(γ2kF ) +
1

2
tr(γ2k)

3∑

i=1

tan(πkvi)Gi

}

, (6.10)

X
(4)
(2k) = − ǫ2k N

−1/4
k

2
√
N(2π)2

{

tr(γ2kF
2) − 1

32
tr(γ2k) trR2 + i tr(γ2kF )

3∑

i=1

cot(2πkvi)Gi

−1

4
tr(γ2k)

[
3∑

i=1

tan2(πkvi) (Gi)
2 (6.11)

+ 2
3∑

i6=j=1

cos(2πkvi) cos(2πkvj) − 1

sin(2πkvi) sin(2πkvj)
GiGj

]}

.

Finally, one arrives at a very simple factorized expression for the 6-form encoding

the complete sigma-gauge-gravitational anomaly and its opposite inflow:

A(6) = I(6) = i
(N−1)/2∑

k=1

Nk X
(2)
(2k) ∧X

(4)
(2k) . (6.12)

7. Field theory outlook

In this section, we shall address the interpretation of the results found through the

string computation within the low-energy supergravity. The 2-form couplings (6.10)

will be responsible for a modification of the kinetic terms of the twisted RR axions,

and will force the latter to transform non-homogeneously under gauge and modular

transformations. The 4-form couplings will then become anomalous and generate

the GS inflow required to cancel all the anomalies.
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In the following, we focus on FFGi and RRGi anomalies, since these can be

compared to field theory expectations.

FFGi anomalies

This kind of anomalies arise only from open string states. To get an explicit ex-

pression from the expansion of (6.1), it is convenient to transform k into 2k in the

annulus contribution. Using (4.2), one finds for the non-Abelian part:

AFFGi = − i

2N(2π)3

N−1∑

k=1

Ck tan(πkvi) tr(γ2kF
2)Gi . (7.1)

As we have seen in Section 2, FFGi anomalies are encoded in some coefficients bia
defined through

AFFGi =
i

2(2π)3
bia tr(F 2

a )Gi , (7.2)

where the index a label the various factors of the gauge group. The coefficients

bia are found to be in agreement with those computed in [20] for any a, i and for

both the Z3 and Z7 models. This confirms the conjectured anomaly cancellation of

mixed FFGi anomalies through a GS mechanism involving RR axions, as proposed

in [20]. Indeed, the same anomaly polynomial is reproduced and by factorization

the expected couplings are obtained, i.e. the second term in (6.10). The one-forms

(X
(2)
(2k))

(0) modify the kinetic terms for the axions χik
(2k). Strictly speaking it is only

the combination

χ2k =
1√
Nk

Nk∑

ik=1

χik
(2k) (7.3)

that gets modified, since all the axions enter in a completely symmetric way in the

GS mechanism [27]. Whereas the first term in (6.10) induces a non-homogeneous

U(1) transformation for χ2k that eventually leads to a Higgs mechanism through

which χ2k itself is eaten by the U(1) field, the second term in (6.10) leads to a non-

homogeneous modular transformation for χ2k. Note that the WZ descent for Gi is

G
(1)
i = −i/2[λi(ti)− λ̄i(t̄i)], with λi(ti) the lowest component of (2.10). Correspond-

ingly, the (normalized) kinetic term for χ2k will be invariant under sigma-model

transformations if the associated superfields M2k transforms, under SL(2, R)i, in the

following non-homogeneous way:

M2k →M2k −
1

8π2
αi

2k λ
i(T i) , (7.4)

with

αi
2k =

(2π)3/2

√
N

N
1/4
k tr(γ2k) tan(πkvi) . (7.5)
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RRGi anomalies

This kind of anomalies gets contribution both from open and closed string states.

Performing the same manipulation as before in the sum over k for the annulus contri-

bution, and summing the contributions (6.1) and (6.2) from open and closed strings,

one finds

ARRGi =
i

96N(2π)3

{
N−1∑

k=1

Ck

[
tan(πkvi) −

1

2
cot(πkvi)

]
tr(γ2k)

+
N−1∑

k=1

Ck cot(πkvi)
[
21 + 1 − 2

(
4 sin2(πkvi) +

3∑

j=1

cos(2πkvj)
)]

+
N−1∑

k=0

N−1∑

l=1

Nk,l

}

trR2Gi . (7.6)

The first line comes from the open strings, and the second and third line from un-

twisted and twisted closed strings. As expected the untwisted RNS contribution in

the first line encodes the anomaly of the gravitino (21), the dilatino (1), and the

fermionic partners of the three untwisted moduli (−2(4 sin2(πkvi)+
∑

j cos(2πkvj))).

The RNS twisted sector contribution in the second line corresponds instead to the

anomaly of the neutralini. By explicit evaluation one finds finally:

ARRGi = − i

48(2π)3

[
− 10 + 21 + 1 − 3 − 27

− 6 + 21 + 1 − 1 − 21

]

trR2Gi . (7.7)

The coefficient in the square brackets has to be compared with bigrav. = biopen + biclosed

of [22], the upper and lower raws corresponding to the Z3 and Z7 models respectively.

In the notation of [20], the explicit form of these coefficients is:

biclosed = 21 + 1 + δi
T +

∑

α

(1 + 2nα
i ) ,

biopen = − dimG +
3∑

a=1

(1 + 2na
i ) ηa . (7.8)

In biclosed, δ
i
T is the total contribution of the untwisted moduli (nine for the Z3 model

and three for the Z7 model) and α runs over all the twisted massless states. These

are assumed to have modular weight nα
i as defined in Section 2, and in [22] it was

assumed that nα
i = 0. In biopen, the first term is the contribution of the gaugini, where

G is the total gauge group of the model, ni
a = −δi

a are the modular weights of the

charged fields Ca and ηa simply counts the number of charged states belonging to

the group a. Comparing the string result (7.7) with the field theory expectations

given by (7.8), one finds agreement for biopen (first number in (7.7)) and for the

untwisted contribution in biclosed (next three numbers), but opposite signs for the
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twisted contribution (last number). Assuming the validity of (7.8), agreement with

the string results would predict twisted modular weights nα
i = −1, ∀i, α. This is in

apparent contradiction with the non-homogeneous transformation (7.4) required for

the cancellation of sigma-gauge anomalies.

The sign that we find for the contribution of twisted modulini is crucial for the

realization of the GS anomaly cancellation mechanism, since it directly influences

the factorizability of the quantum anomaly. We do not have a full understanding

of this discrepancy; rather, we would like to revisit the assumptions at the origin of

the above field theory analysis and point out a few delicate points. A first point to

observe, in comparing string results with field theory expectations in D = 4 N = 1

models, is that the first are believed to be expressed in terms of linear multiplets,

whereas the latter are often given in terms of the usual chiral multiplets, as is the

case for (7.8). The two multiplets are related by the so called linear multiplet -

chiral multiplet duality, that is basically the extension to superfields of the duality

between a two-form and a scalar in four dimensions. It is also known that the GS

terms modify the above duality [21]. Correspondingly, particular attention has to

be paid in comparing the results (7.7) with field theory formulae obtained using the

chiral multiplet basis as (7.8) (see for instance footnote 7). A second very important

point is that the expression (7.8) for the anomaly coefficients are valid only under

the assumption that the Kähler potential K(M) for twisted fields and their modular

transformations have the form (2.11). Unfortunately, the potential K(M) has not

been computed yet in Type IIB orientifold models, and therefore it is not possible

to verify directly these assumptions.

We propose that the Kähler potential for twisted fields does in fact not satisfy

the assumptions at the origin of (7.8), so that the whole field-theory derivation of

sigma-model anomalies, as reviewed in Section 2 and expressed in (7.8), has to be

revisited [29]. A first possibility is that K(M) ∼ (M + M̄)2, as proposed in [28]. This

potential satisfies the assumptions behind (7.8) (and leads to nα
i = 0 as assumed

in [22]), but only if one neglects the correction induced by the GS couplings (6.10)

and (6.11). These are indeed present, as described in [45], and it might be that

they must be considered on equal footing with the rest of the potential12. A second

possibility is that K(M) is a different function of the twisted moduli, invariant under

sigma-model transformations and the shift (7.4), whose form does not satisfy the

assumptions leading to (7.8).

12This seems quite strange from a string theory point of view, but we believe it might be reasonable

in light of the string coupling dependence of the definition (3.5) for the T i moduli.
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An explicit string computation of K(M) would therefore be extremely interesting

and could give a definite answer to the problems raised above. Unfortunately, such

a computation appears to be quite complicated.

8. Conclusions

In this paper, we have studied along the lines of [26, 27] the pattern of sigma-

gauge-gravitational anomaly cancellation in compact Type IIB D = 4 N = 1 ZN

orientifolds with N odd. Our main result is that all the anomalies are cancelled

through a generalized GS mechanism.

The starting point of our analysis is the definition of the effective vertex op-

erator corresponding to the sigma-model connection. We provided several general

arguments for identifying it with the vertex encoding Kähler deformations of the

orbifold, but we were able to give only a not completely rigorous derivation which

cannot be taken as a proof. A posteriori, this identification is strongly supported also

by the results obtained for the anomalies using this vertex. Under the assumption

that the effective vertex is indeed correct, we generalize the known results [46, 27] for

gauge-gravitational anomalies and show that all possible sigma-gauge-gravitational

anomalies are cancelled through a GS mechanism. This is essentially what was pro-

posed in [20] for sigma-gauge anomalies, and seems to evade the arguments of [22]

against a field theory mechanism for the cancellation of sigma-gravitational anoma-

lies. We interpret this discrepancy as evidence that the comparison of the string

results with the field theory expectations is probably more subtle than expected. In

particular, we propose that the actual Kähler potential for twisted fields does not

satisfy the usual assumptions made in the literature, so that the interpretation of

our string results remains actually open.

We would like to stress that the present results imply a full cancellation of

anomalies in all possible channels. The torus contribution presents a surprising

cancellation and yields vanishing anomalies and inflows. This implies in particular

that the dilaton field does not play any role in the GS mechanism. The annulus,

Möbius strip and Klein bottle contributions are instead topological, guaranteeing

an exact cancellation between quantum anomalies and classical inflows mediated by

twisted RR axions.
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A. ϑ-functions

For convenience, we introduce here a convenient notation for the twisted θ-functions

appearing in orbifold and orientifold partition functions. In particular, in order to

keep manifest the origin of each of these, we shall define

θ1

[
α

β

]

(z|τ) = θ

[
1
2

+ α
1
2

+ β

]

(z|τ) , (A.1)

θ2

[
α

β

]

(z|τ) = θ

[
1
2

+ α

0 + β

]

(z|τ) , (A.2)

θ3

[
α

β

]

(z|τ) = θ

[
0 + α

0 + β

]

(z|τ) , (A.3)

θ4

[
α

β

]

(z|τ) = θ

[
0 + α
1
2

+ β

]

(z|τ) , (A.4)

in terms of the usual twisted θ-functions

θ

[
α

β

]

(z|τ) =
∑

n

q
1
2
(n−α)2e2πi(z−β)(n−α) . (A.5)

All the properties and identities relevant to the usual θ-functions (A.5) easily trans-

late into analogous properties of (A.1)-(A.4).

B. Anomalies in Type IIB string theory

The cancellation of gravitational anomalies in Type IIB supergravity theories requires

non-trivial identities involving the anomalies of dilatinos, gravitinos and self-dual

forms. These are given by

I1/2 = Â(R) , I3/2 = Ĝ(R) , IA = −1

8
L̂(R) , (B.1)

in terms of the characteristic classes (4.4)-(4.6). From a Type IIB string theory point

of view, anomaly freedom is more manifest since the corresponding torus amplitude

is perfectly finite. However, it is clear that in the low-energy field theory limit one has

to reproduce in string theory the same non-trivial identity. This can be regarded as
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a technique to compute anomalous Feynman diagrams using a string regularization.

Due to the relevance of the torus amplitude in the mixed sigma-gauge-gravitational

anomalies considered in this paper, we find useful to report here some details on how

to reproduce in Type IIB string theory the aforementioned identity.

As explained in Section 3 and 4, the only potentially anomalous contributions

on the torus come from the three odd-even and the three even-odd spin-structures,

and the total anomaly is given by the expression (4.17), in terms of the partition

functions (4.18) defined through the deformation vertices (4.20) and (4.21). It turns

out that the two partition functions (4.18) will always be modular invariant, so that

the ∂F0 component of the boundary gives a vanishing contribution. Moreover, on

the other component ∂F∞ of the boundary, the odd-even and even-odd partition

functions become equal and sum. In the following, we will therefore restrict to the

odd-even spin-structures.

D = 10

In the ten dimensional case, the partition functions (4.18) are particularly easy to

compute. One gets

ZSα

T =
1

4

5∏

a=1

[
ixa

θ1(ixa/π|τ)
θα(ixa/π|τ)

]
η3(τ)

θα(0|τ) . (B.2)

Here α = 2, 3, 4 represent respectively the RR, RNS+ and RNS− spin-structures,

the factor of 1/4 is due to the left and right GSO projections and xa = λa/2π, in

terms of the skew eigenvalues λa of the gravitational curvature R. The first fraction

is the contribution of the bosonic and fermionic fields, whereas the last fraction is

due to ghosts and superghosts. Taking the limit τ2 → ∞, one obtains in the RR

spin-structure

ZRR
T → 1

8

5∏

a=1

xa

tanh xa

. (B.3)

In the RNS± spin-structures, similarly

ZRNS
T = Z

RNS+

T − Z
RNS−

T →
5∏

a=1

xa/2

sinh xa/2

(
2

5∑

b=1

cosh xb − 2
)
, (B.4)

where we rescaled by a factor of 2 the xa’s, exploiting the fact that only the 12-form

of (B.4) is relevant. Notice that the leading “tachyonic” terms in Z
RNS±

T cancel in

the combination Z
RNS+

T − Z
RNS−

T . By summing the three contributions one finds as

expected the anomaly of an anti-chiral gravitino and of a chiral dilatino from the

RNS/NSR sector and that of an (anti)self-dual tensor from the RR sector. In total,

one gets

IT = −I3/2 + I1/2 − IA = 0 , (B.5)

33



ensuring the absence of pure gravitational anomalies inD = 10 Type IIB supergravity

and superstring theory [47].

D = 6 on T 4/ZN

As usual in orbifold theories, the partition functions (4.18) contain a sum over orbifold

twisted sectors l, as well as a projection on ZN -invariant states; see (4.19). In the fol-

lowing, we will further distinguish between the contributions coming from untwisted

and twisted sectors. The twist vector is vi = (1/N,−1/N), Ck =
∏

i(2 sin(πkvi)),

and Nk,l are the number of points that are at the same time k and l-fixed. The total

partition function is

ZT =
∑

α

(−)α
N−1∑

l=0

Z
Sα (l)
T , (B.6)

where

Z
Sα (l)
T =

1

4N

N−1∑

k=0

Nk,l

2∏

i=1

θα

[
lvi

kvi

]
(0|τ)

θ1
[

lvi

kvi

]
(0|τ)

3∏

a=1

[
ixa

θ1(ixa/π|τ)
θα(ixa/π|τ)

]
η3(τ)

θα(0|τ) . (B.7)

In the τ2 → ∞ limit, one finds in the RR spin-structures:

Z
RR(0)
T → 1

8N

N−1∑

k=0

C2k

3∏

a=1

xa

tanh xa

,

Z
RR(l 6=0)
T → 1

8N

N−1∑

k=0

Nk,l

3∏

a=1

xa

tanhxa
. (B.8)

One can easily check that for any N = 2, 3, 4, 6, the total is given by

ZRR
T → 2

3∏

a=1

xa

tanhxa
. (B.9)

In the RNS± spin-structures one has to pay particular attention in taking the limit,

because when l = N/2, the fields in the internal directions have zero modes. One

finds the following results:

Z
RNS±(0)
T → ± 1

2N

N−1∑

k=0

Ck

3∏

a=1

xa/2

sinh xa/2

(
2

3∑

b=1

cosh xb − 2 +
2∑

i=1

(2 cos 2πkvi)
)
,

Z
RNS±(l 6=0,N/2)
T → ± 1

N

N−1∑

k=0

Nk,l

3∏

a=1

xa/2

sinh xa/2
,

Z
RNS+(N/2)
T → 1

2N

N−1∑

k=0

Nk,N/2

3∏

a=1

xa/2

sinh xa/2

∏

i=1,2

(2 cosπkvi)
2

Z
RNS−(N/2)
T → − 1

2N

N−1∑

k=0

Nk,N/2

3∏

a=1

xa/2

sinh xa/2

∏

i=1,2

(2 sin πkvi)
2 . (B.10)
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We omitted the leading “tachyonic” term that, as in the previous case, will cancel

in taking the sum Z
RNS+

T −Z
RNS−

T . One can easily verify that the total result in the

RNS sectors, obtained by summing over the two RNS± contributions and over all

twisted and untwisted sectors, is the same for any N = 2, 3, 4, 6 and given by

ZRNS
T = − 2

3∏

a=1

xa/2

sinh xa/2

(
2

3∑

b=1

cosh xb − 22
)

(B.11)

Putting all together, one gets finally

IT = 2 (I3/2 − 21I1/2 − 8IA) = 0 (B.12)

ensuring the absence of purely gravitational anomalies in Type IIB theory on T 4/ZN .

C. Vanishing of the torus amplitude

We show here that the whole 6-form component of the torus amplitude, including

G3 anomalies, vanishes. For the RRGi terms, one gets

ZR2G
T =

i

96N(2π)3

3∑

i=1

{

− 4
N−1∑

k=1

C2k sin−1(2πkvi)

+
N−1∑

k=1

Ck cot(πkvi)
[
21 + 1 − 2

(
4 sin2(πkvi) +

3∑

j=1

cos(2πkvj)
)]

+
N−1∑

k=0

N−1∑

l=1

Nk,l

}

trR2 Gi

= − i

48(2π)3

[
8 + 21 + 1 − 3 − 27

0 + 21 + 1 − 1 − 21

]

trR2
( 3∑

i=1

Gi

)

= 0 , (C.1)

where we reported in square bracket the explicit values for both the Z3 (up) and Z7

(down) orientifolds.

Consider next the GiGjGp terms. The RR twisted contributions vanish as before,

whereas the RNS twisted ones are present and can be easily read from the last line

of (4.24). On the contrary, the untwisted RR and RNS contributions requires more

work. However, one can now put to zero the gravitational curvature. By doing so,

the contribution of the superghosts cancels that of one of the two complex spacetime

fermions in (4.22) and one can therefore use the Riemann identity to simplify the

result. In the τ2 → ∞ limit, one has then:

8
∏

i cos(πkvi +Gi/2π) − 2
∑

i cos 2(πkvi +Gi/2π) − 2

8
∏

i sin(πkvi +Gi/2π)

= −2 sin
( 3∑

p=1

Gp/4π
) 3∏

i=1

sin
[
(πkvi +Gi/2π) − (

∑
pGp/4π)

]

sin(πkvi +Gi/2π)
.
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The relevant cubic term of the partition function are now easily computed, and one

finds:

ZG3

T =
i

24N(2π)3

{
N−1∑

k=1

Nk

[(
3

3∑

i=1

3∏

j 6=i=1

cot(πkvi) − 5
)( 3∑

p=1

Gp

)3

+ 6
3∑

i=1

sin−2(πkvi)Gi

( 3∑

p=1

Gp

)2
]

− 2
N−1∑

k=0

N−1∑

l=1

Nk,l

( 3∑

p=1

Gp

)3
}

=
i

4N(2π)3

[
9 − 15 + 24 − 18

3 − 5 + 16 − 14

] ( 3∑

p=1

Gp

)3

= 0 . (C.2)
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