
Chapter 3

Basis functions in quantum
chemistry

This chapter is adapted from Chapter 5 of Jensen’s book: F. Jensen, ’Intro-
duction to Computational Chemistry’, Wiley.

In the derivation in the previous chapter, we have introduced the concept

of basis function for the expansion of the one-electron molecular orbitals used

for the generation of the many-electrons wave functions (Slater determinants

or linear combination of Slater determinants).

There we derived the following expansion (eq. 2.17):

�m(r, s) =
X

n

Dmn�n(r) (3.1)

(where �n is an atom centered basis function and the spin dependent part of

the wavefunctions is left out).

In this chapter, we introduce the different basis functions,�n commonly used

in computational quantum chemistry.

Finiteness of Basis Sets: Approximations
One of the approximations inherent in essentially all ab initio methods is

the introduction of a finite basis set. Expanding an unknown function, such

as a molecular orbital, in a set of known functions is not an approximation,

if the basis is complete. However, a complete basis means that an infinite

number of functions must be used, which is impossible in actual calculations.

An unknown MO can be thought of as a function in the infinite coordinate

system spanned by the complete basis set. When a finite basis is used, only

the components of the MO along those coordinate axes corresponding to

the selected basis can be represented. The smaller the basis, the poorer the

representation. The type of basis functions used also influences the accuracy.

The better a single basis function is able to reproduce the unknown function,
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the fewer basis functions necessary for achieving a given level of accuracy.

Knowing that the computational effort of ab initio methods scales formally

at least as M4

, it is of course of prime importance to make the basis set as

small as possible without compromising the accuracy.

3.1 Slater and Gaussian Type Orbitals
There are two types of basis functions (also called Atomic Orbitals, AO, al-

though in general they are not solutions to an atomic Schrödinger equation)

commonly used in electronic structure calculations: Slater Type Orbitals

(STO) and Gaussian Type Orbitals (GTO).

A procedure that has come into wide use is to fit a Slater-type orbital (STO)

to a linear combination of n = 1, 2, 3, . . . primitive Gaussian functions. This

is the STO-nG procedure. In particular, STO-3G basis sets are often used

in polyatomic calculations, in preference to evaluating integrals with Slater

functions.

1

Figure 3.1: Comparison of Slater function with Gaussian function:
least squares fits of a 1s Slater function (⇣ = 1.0) by a n GTOs

1. Slater type orbitals have the functional form

�⇣,n,l,m(r, ✓,') = N Yl,m(✓,') r
n�1 e�⇣r

(3.2)

N is a normalization constant and Yl,m are the usual spherical harmonic

functions. The exponential dependence on the distance between the nucleus

and the electron mirrors the exact decay behavior of the orbitals for the

hydrogen atom. However, since STOs do not have any radial nodes, nodes in

the radial part are introduced by making linear combinations of STOs. The

exponential dependence ensures a fairly rapid convergence with increasing
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number of functions, however, the calculation of three- and four-centre two

electron integrals cannot be performed analytically. STOs are primarily used

for atomic and diatomic systems where high accuracy is required, and in semi-

empirical methods where all three- and four- center integrals are neglected.

2. Gaussian type orbitals can be written in terms of polar or cartesian

coordinates

�⇣,n,l,m(r, ✓,') = N Yl,m(✓,') r
2n�2�l e�⇣r2

(3.3)

�⇣,l
x

,l
y

,l
z

(x, y, z) = N xl
x yly ylz e�⇣r2

(3.4)

where the sum of lx, ly and lz determines the type of orbital (for example

lx + ly + lz = 1 is a p-orbital)

1
.

3. Comparison between STO and GTO

i. The r2 dependence in the exponent makes the GTOs inferior to the

STOs in two aspects. At the nucleus the GTO has zero slope, in con-

trast to the STO which has a "cusp" (discontinuous derivative), and

GTOs have problems representing the proper behavior near the nu-

cleus.

ii. The other problem is that the GTO falls off too rapidly far from the

nucleus compared with an STO, and the "tail" of the wave function is

consequently represented poorly.

iii. Both STOs and GTOs can be chosen to form a complete basis, but the

above considerations indicate that more GTOs are necessary for achiev-

ing a certain accuracy compared with STOs. A rough guideline says

that three times as many GTOs as STOs are required for reaching a

given level of accuracy. The increase in number of basis functions, how-

ever, is more than compensated for by the ease by which the required

1Although a GTO appears similar in the two sets of coordinates, there is a subtle dif-
ference. A d-type GTO written in terms of the spherical functions has five components
(Y2,2, Y2,1, Y2,0, Y2,�1, Y2,�2), but there appear to be six components in the Cartesian co-
ordinates (x2, y2, z2, xy, xz, yz). The latter six functions, however, may be transformed to
the five spherical d-functions and one additional s-function (x2+ y2+ z2). Similarly, there
are 10 Cartesian "f-functions" which may be transformed into seven spherical f-functions
and one set of spherical p-functions. Modern programs for evaluating two-electron inte-
grals are geared to Cartesian coordinates, and they generate pure spherical d-functions
by transforming the six Cartesian components to the five spherical functions. When only
one d-function is present per atom the saving by removing the extra s-function is small,
but if many d-functions and/or higher angular moment functions (f-, g-, h- etc. functions)
are present, the saving can be substantial. Furthermore, the use of only the spherical
components reduces the problems of linear dependence for large basis sets, as discussed
below.
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integrals can be calculated. In terms of computational efficiency, GTOs

are therefore preferred, and used almost universally as basis functions

in electronic structure calculations.

3.2 Classification of Basis Sets
Having decided on the type of basis function (STO/GTO) and their location

(nuclei), the most important factor is the number of functions to be used.

The smallest number of functions possible is a minimum basis set. Only

enough atomic orbital functions are employed to contain all the electrons of

the neutral atom(s).

3.2.1 Minimum basis sets. Examples
For hydrogen (and helium) this means a single s-function. For the first row

in the periodic table it means two s-functions (1s and 2s) and one set of

p-functions (2px, 2py and 2pz). Lithium and beryllium formally only require

two s-functions, but a set of p-functions is usually also added. For the second

row elements, three s-functions (1s, 2s and 3s) and two sets of p-functions

(2p and 3p) are used.

3.2.2 Improvements
1. The first improvement in the basis sets is a doubling of all basis func-

tions, producing a Double Zeta (DZ) type basis. The term zeta stems

from the fact that the exponent of STO basis functions is often denoted

by the greek letter ⇣.
A DZ basis thus employs two s-functions for hydrogen (1s and 1s’), four

s-functions (1s, 1s’, 2s and 2s’) and two p-functions (2p and 2p’) for first

row elements, and six s-functions and four p-functions for second row

elements. Doubling the number of basis functions allows for a much

better description of the fact that the electron distribution in molecules

can differ significantly from the one in the atoms and the chemical bond

may introduce directionalities which can not be described by a minimal

basis.

The chemical bonding occurs between valence orbitals. Doubling the

1s-functions in for example carbon allows for a better description of

the 1s-electrons. However, the 1s orbital is essentially independent of

the chemical environment, being very close to the atomic case. A vari-

ation of the DZ type basis only doubles the number of valence orbitals,

producing a split valence basis. 2
.

2In actual calculations a doubling of the core orbitals would rarely be considered, and
the term DZ basis is also used for split valence basis sets (or sometimes VDZ, for valence
double zeta)
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2. The next step up in basis set size is a Triple Zeta (TZ) basis. Such a

basis contains three times as many functions as the minimum basis, i.e.

six s-functions and three p-functions for the first row elements. Some

of the core orbitals may again be saved by only splitting the valence,

producing a triple zeta split valence basis set. The names Quadruple
Zeta (QZ) and Quintuple Zeta (5Z, not QZ) for the next levels of

basis sets are also used, but large sets are often given explicitly in terms

of the number of basis functions of each type.

3. In most cases higher angular momentum functions are also important,

these are denoted polarization functions. Consider for example a C-

H bond which is primarily described by the hydrogen s-orbital(s) and

the carbon s- and pz-orbitals. It is clear that the electron distribution

along the bond will be different than that perpendicular to the bond. If

only s-functions are present on the hydrogen, this cannot be described.

However, if a set of p-orbitals is added to the hydrogen, the p com-

ponent can be used for improving the description of the H-C bond.

The p-orbital introduces a polarization of the s-orbital(s). Similarly,

d-orbitals can be used for polarizing p-orbitals, f-orbitals for polarizing

d-orbitals etc. Once a p-orbital has been added to a hydrogen s-orbital,

it may be argued that the p-orbital now should be polarized by adding a

d-orbital, which should be polarized by an f-orbital, etc. For single de-

terminant wave functions, where electron correlation is not considered,

the first set of polarization functions (i.e. p-functions for hydrogen and

d-functions for heavy atoms) is by far the most important, and will in

general describe all the important charge polarization effects.

Adding a single set of polarization functions (p-functions on hydrogens

and d-functions on heavy atoms) to the DZ basis forms a Double Zeta

plus Polarization (DZP) type basis

3
. Similarly to the sp-basis sets,

multiple sets of polarization functions with different exponents may be

added. If two sets of polarization functions are added to a TZ sp-basis,

a Triple Zeta plus Double Polarization (TZ2P) type basis is obtained.

For larger basis sets with many polarization functions the explicit com-

position in terms of number and types of functions is usually given.

At the HF level there is usually little gained by expanding the basis

set beyond TZ2P, and even a DZP type basis set usually gives "good"

results (compared to the HF limit).

3There is a variation where polarization functions are only added to non-hydrogen
atoms. This does not mean that polarization functions are not important on hydrogens.
However, hydrogens often have a "passive" role, sitting at the end of bonds which does
not take an active part in the property of interest. The errors introduced by not including
hydrogen polarization functions are often rather constant and, as the interest is usually in
energy differences, they tend to cancel out. As hydrogens often account for a large number
of atoms in the system, a saving of three basis functions for each hydrogen is significant.
If hydrogens play an important role in the property of interest, it is of course not a good
idea to neglect polarization functions on hydrogens.
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3.3 Basis set balance
In principle many sets of polarization functions may be added to a small

sp-basis. This is not a good idea. If an insufficient number of sp-functions

bas been chosen for describing the fundamental electron distribution, the

optimization procedure used in obtaining the wave function (and possibly

also the geometry) may try to compensate for inadequacies in the sp-basis

by using higher angular momentum functions, producing artefacts. A rule of

thumb says that the number of functions of a given type should at most be

one less than the type with one lower angular momentum. A 3s2p1d basis is

balanced, but a 3s2p2d2f1g basis is too heavily polarized.

Another aspect of basis set balance is the occasional use of mixed basis
sets, for example a DZP quality on the atoms in the "interesting" part of the

molecule and a minimum basis for the "spectator" atoms. Another example

would be addition of polarization functions for only a few hydrogens which

are located "near" the reactive part of the system. For a large molecule this

may lead to a substantial saving in the number of basis functions. It should

be noted that this may bias the results and can create artefacts. For example,

a calculation on the H

2

molecule with a minimum basis at one end and a DZ

basis at the other end will predict that H

2

has a dipole moment, since the

variational principle will preferentially place the electrons near the center

with the most basis functions. The majority of calculations are therefore

performed with basis sets of the same quality (minimum, DZP, TZ2P, . . .)

on all atoms, possibly cutting polarization and/or diffuse (small exponent)

functions on hydrogens.

Except for very small systems it is impractical to saturate the basis set so

that the absolute error in the energy is reduced below chemical accuracy, for

example 1 kcal/ mol. The important point in choosing a balanced basis set is

to keep the error as constant as possible. The use of mixed basis sets should

therefore only be done after careful consideration. Furthermore, the use of

small basis sets for systems containing elements with substantially different

numbers of valence electrons (like LiF) may produce artefacts.

3.4 How do we choose the exponents in the ba-
sis functions?

The values for s- and p-functions are typically determined by performing

variational HF calculations for atoms, using the exponents as variational pa-

rameters. The exponent values which give the lowest energy are the "best",

at least for the atom. In some cases the optimum exponents are chosen on

the basis of minimizing the energy of a wave function which includes electron

correlation. The HF procedure cannot be used for determining exponents of

polarization functions for atoms. By definition these functions are unoccu-

pied in atoms, and therefore make no contribution to the energy. Suitable

polarization exponents may be chosen by performing variational calculations

on molecular systems (where the HF energy does depend on polarization

functions) or on atoms with correlated wave functions. Since the main func-
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tion of higher angular momentum functions is to recover electron correlation,

the latter approach is usually preferred. Often only the optimum exponent

is determined for a single polarization function, and multiple polarization

functions are generated by splitting the exponents symmetrically around the

optimum value for a single function. The splitting factor is typically taken in

the range 2-4. For example if a single d-function for carbon has an exponent

value of 0.8, two polarization functions may be assigned with exponents of

0.4 and 1.6 (splitting factor of 4).

3.5 Contracted Basis functions
One disadvantage of all energy optimized basis sets is the fact that they

primarily depend on the wave function in the region of the inner shell elec-

trons. The 1s-electrons account for a large part of the total energy, and

minimizing the energy will tend to make the basis set optimal for the core

electrons, and less than optimal for the valence electrons. However, chemistry

is mainly dependent on the valence electrons. Furthermore, many proper-

ties (for example polarizability) depend mainly on the wave function "tail"

(far from the nucleus), which energetically is unimportant. An energy opti-

mized basis set which gives a good description of the outer part of the wave

function needs therefore to be very large, with the majority of the functions

being used to describe the 1s-electrons with an accuracy comparable to that

for the outer electrons in an energetic sense. This is not the most efficient

way of designing basis sets for describing the outer part of the wave function.

Instead energy optimized basis sets are usually augmented explicitly with

diffuse functions (basis functions with small exponents). Diffuse functions

are needed whenever loosely bound electrons are present (for example in an-

ions or excited states) or when the property of interest is dependent on the

wave function tail (for example polarizability).

The fact that many basis functions go into describing the energetically im-

portant, but chemically unimportant, core electrons is the foundation for

contracted basis sets.
1

An example. The carbon atom Consider for example a basis set consist-
ing of 10 s-functions (and some p-functions) for carbon. Having optimized these
10 exponents by variational calculations on the carbon atom, maybe six of the 10
functions are found primarily to be used for describing the 1s orbital, and two of the
four remaining describe the "inner" part of the 2s-orbital. The important chemical
region is the outer valence. Out of the 10 functions, only two are actually used
for describing the chemically interesting phenomena. Considering that the com-
putational cost increases as the fourth power (or higher) of the number of basis
functions, this is very inefficient. As the core orbitals change very little depending
on the chemical bonding situation, the MO expansion coefficients in front of these
inner basis functions also change very little. The majority of the computational
effort is therefore spent describing the chemically uninteresting part of the wave
function, which furthermore is almost constant. Consider now making the varia-
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tional coefficients in front of the inner basis functions constant, i.e. they are no
longer parameters to be determined by the variational principle. The 1s-orbital is
thus described by a fixed linear combination of say six basis functions. Similarly
the remaining four basis functions may be contracted into only two functions, for
example by fixing the coefficient in front of the inner three functions. In doing this
the number of basis functions to be handled by the variational procedure has been
reduced from 10 to three.

Combining the full set of basis functions, known as the primitive GTOs
(PGTOs), into a smaller set of functions by forming fixed linear combina-

tions is known as basis set contraction, and the resulting functions are

called contracted GTOs (CGTOs)

�(CGTO) =

kX

i

ai �i(PGTO) (3.5)

The previously introduced acronyms DZP, TZ2P etc., refer to the number

of contracted basis functions. Contraction is especially useful for orbitals

describing the inner (core) electrons, since they require a relatively large

number of functions for representing the wave function cusp near the nucleus,

and furthermore are largely independent of the environment. Contracting

a basis set will always increase the energy, since it is a restriction of the

number of variational parameters, and makes the basis set less flexible, but

will also reduce the computational cost significantly. The decision is thus how

much loss in accuracy is acceptable compared to the gain in computational

efficiency.

3.5.1 The degree of contraction
The degree of contraction is the number of PGTOs entering the CGTO,

typically varying between 1 and 10. The specification of a basis set in terms

of primitive and contracted functions is given by the notation

(10s4p1d/4s1p) �! [3s2p1d/2s1p] . (3.6)

The basis in parentheses is the number of primitives with heavy atoms (first

row elements) before the slash and hydrogen after. The basis in the square

brackets is the number of contracted functions. Note that this does not tell

how the contraction is done, it only indicates the size of the final basis (and

thereby the size of the variational problem in HF calculations).

3.6 Example of Contracted Basis Sets; Pople
Style Basis Sets

There are many different contracted basis sets available in the literature or

built into programs, and the average user usually only needs to select a suit-

able quality basis for the calculation. For short description of some basis
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sets which often are used in routine calculations (see for instance the book of

Frank Jensen, Introduction to Computational Chemistry, Wiley, 2002. Chap-

ter 5).

STO-nG basis sets n PGTOs fitted to a 1 STO. This is a minimum

type basis where the exponents of the PGTO are determined by fitting to

the STO, rather than optimizing them by a variational procedure. Although

basis sets with n = 2 � 6 have been derived, it has been found that using

more than three PGTOs to represent the STO gives little improvement, and

the STO-3G basis is a widely used minimum basis. This type of basis set has

been determined for many elements of the periodic table. The designation

of the carbon/hydrogen STO-3G basis is (6s3p/3s) �! [2s1p/1s].

k-nlmG basis sets These basis sets have been designed by Pople and co-

workers, and are of the split valence type, with the k in front of the dash

indicating how many PGTOs are used for representing the core orbitals. The

nlm after the dash indicate both how many functions the valence orbitals

are split into, and how many PGTOs are used for their representation. Two

values (e.g. nl) indicate a split valence, while three values (e.g. nlm) indicate

a triple split valence. The values before the G (for Gaussian) indicate the s-

and p-functions in the basis; the polarization functions are placed after the

G. This type of basis sets has the further restriction that the same exponent

is used for both the s- and p-functions in the valence. This increases the com-

putational efficiency, but of course decreases the flexibility of the basis set.

The exponents in the PGTO have been optimized by variational procedures.

3-21G This is a split valence basis, where the core orbitals are a contraction

of three PGTOs, the inner part of the valence orbitals is a contraction of two

PGTOs and the outer part of the valence is represented by one PGTO. The

designation of the carbon/hydrogen 3-21G basis is (6s3p/3s) �! [3s2p/2s].
Note that the 3-21G basis contains the same number of primitive GTOs as

the STO-3G, however, it is much more flexible as there are twice as many

valence functions which can combine freely to make MOs.

6-31G This is also a split valence basis, where the core orbitals are a con-

traction of six PGTOs, the inner part of the valence orbitals is a contraction

of three PGTOs and the outer part of the valence represented by one PGTO.

The designation of the carbon/hydrogen 6-31G basis is (10s4p/4s) �! [3s2p/2s].
In terms of contracted basis functions it contains the same number as 3-21G,

but the representation of each functions is better since more PGTOs are

used.

6-311G This is a triple zeta split valence basis, where the core orbitals

are a contraction of six PGTOs and the valence split into three functions,

represented by three, one, and one PGTOs, respectively.
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To each of these basis sets one can add diffuse and/or polarization
functions.

• Diffuse functions are normally s- and p-functions and consequently go

before the G. They are denoted by + or ++, with the first + indicating

one set of diffuse s- and p-functions on heavy atoms, and the second +

indicating that a diffuse s-function is also added to hydrogens. The ar-

guments for adding only diffuse functions on non-hydrogen atoms is the

same as that for adding only polarization functions on non-hydrogens.

• Polarization functions are indicated after the G, with a separate

designation for heavy atoms and hydrogens. The 6-31+G(d) is a split

valence basis with one set of diffuse sp-functions on heavy atoms only

and a single d-type polarization function on heavy atoms.

A 6-311++G(2df,2pd) is similarly a triple zeta split valence with ad-

ditional diffuse sp-functions, and two d- and one f-functions on heavy

atoms and diffuse s- and two p- and one d-functions on hydrogens. The

largest standard Pople style basis set is 6-311 ++G(3df, 3pd). These

types of basis sets have been derived for hydrogen and the first row

elements, and same of the basis sets have also been derived for second

and higher row elements.

If only one set of polarization functions is used, an alternative notation

in terms of * is also widely used. The 6-31G* basis is identical to 6-
31G(d), and 6-31G** is identical to 6-31G(d,p). A special note should

be made for the 3-21G* basis. The 3-21G basis is basicly too small to

support polarization functions (it becomes unbalanced). However, the

3-21G basis by itself performs poorly for hypervalent molecules, such as

sulfoxides and sulfones. This can be substantially improved by adding

a set of d-functions. The 3-21G* basis has only d-functions on second

row elements (it is sometimes denoted 3-21G(*) to indicate this), and

should not be considered a polarized basis. Rather, the addition of a

set of d-functions should be considered an ad hoc repair of a known

flaw.
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