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Abstract This paper is concerned with the (p1, pa, p3)-generation of finite
groups of Lie type, where we say a group is (p1,p2, ps3)-generated if it is gen-
erated by two elements of orders p;, ps having product of order ps. Given a
triple (p1, p2,p3) of primes, we say that (p1, pa, ps3) is rigid for a simple algebraic
group G, if the sum of the dimensions of the subvarieties of elements of orders
dividing p1, p2, p3 in G is equal to 2dim G. We conjecture that if (p1, pe, p3) is
a rigid triple for G then given a prime p, there are only finitely many positive
integers r such that the finite group G(p") is a (p1,p2,p3)-group. We prove
that the conjecture holds in many cases. Finally, we classify the rigid triples for
simple algebraic groups. The conjecture together with this classification puts
into context many results on Hurwitz (2, 3, 7)-generation in the literature, and
motivates a new study of the (p1, ps, p3)-generation problem for certain finite
groups of Lie type of low rank.

1 Introduction

Let (p1,p2,ps) be a triple of primes. We say that a group is a (p1, p2, ps)-group
if it is generated by two elements of respective orders p;, ps whose product
has order p3. In other words a noncyclic group is a (p1,pa, p3)-group if it is a
homomorphic image of the triangle group 7" where

T =Ty pops = (@Y, 213" =yP =27 =ayz=1).

Recall that a finite (2,3, 7)-group is also called a Hurwitz group (see [4]).

In this paper we are concerned with the (p1,p2, p3)-generation problem for
finite groups of Lie type. Let G be a simple algebraic group of classical or
exceptional type defined over an algebraically closed field of prime character-
istic p and let Go = G(p") be a finite group of Lie type arising from G. If
1/p1+1/pa+1/ps > 1 then the only possible finite nonabelian simple image of
T is the alternating group Alts (see [4, p. 361]). We therefore assume hereafter
that 1/p1 + 1/p2 + 1/ps < 1 so that T is a hyperbolic triangle group. We then
call (p1,p2,p3) a hyperbolic triple of primes. Without loss of generality, we also
suppose p1 < p2 < p3.

There are many results in the literature about Hurwitz generation in fi-
nite groups of Lie type. The first is due to Macbeath who proved in [11] that



PSLy(p") is a Hurwitz group if and only if n = 1 and p = 0,£1 mod 7, or
n =3 and p = £2,+3 mod 7. Cohen showed in [3] that PSUs(g) is never
a Hurwitz group and PSL3(q) is a Hurwitz group if and only if ¢ = 2. It is
known, see [21], that there are no Hurwitz groups amongst the groups PSU4(q)
and PSL4(q), and by [20], given a prime p there is at most one positive integer
r such that PSU5(p") (respectively, PSL5(p")) is a Hurwitz group. The next
known dimension n for which PSL,,(q) is Hurwitz is n = 49 and in fact PSL4g(q)
is (2,3, 7)-generated for any ¢ (see [22]). Hurwitz generation for some classical
groups of large rank is proved in [9, 10]. In [16], a large sample of quasisimple
classical groups of low rank are shown to fail to be (2,3, 7)-generated. For ex-
ample, none of the quasisimple groups SU,(q), SL,(¢) with n = 4,5,6,10 are
Hurwitz.

The Hurwitz groups amongst the exceptional groups of Lie types 2Ga, Ga, 3Dy
and 2F; have been determined (see [12] and [13]). Except in characteristic 3 for
the Steinberg triality groups or possibly when the size of the underlying field is
small, these groups are Hurwitz provided that they contain elements of order 7.

Turning to general hyperbolic triples (p1,p2,ps) of primes, there are fewer
results in the literature. It is proved in [14, Corollary 1] that given a prime p
there is a unique positive integer r such that PSLa(p") is a (p1, pe, p3)-group.
In fact, 7 is the smallest integer such that lem(pq, pa, p3) divides |PSLa(p")|.
For PSU3(q) and PSL3(q), it is shown in [15] that there is a dichotomy between
the triples (p1,p2,ps) for which p; = 2 and those for which p; # 2, in the
following sense. For a given prime p and a fixed triple (2, ps,ps), there are at
most two (respectively, four) positive integers r such that PSUs(p") (respec-
tively, PSL3(p")) is a (2, p2, p3)-group. This contrasts with the situation when
p1 # 2, where for a given prime p and a fixed triple (p1,ps2,ps) of odd primes,
there are infinitely many positive integers r such that PSU3(p”) (respectively,
PSL3(p")) is a (p1, p2, p3)-group. (Indeed if Gy = PSU;(q) or PSL3(q), p1 > 2
and lem(py, p2, p3) divides |Gyl, then the probability that a randomly chosen ho-
momorphism in Hom(T}, p, p,, Go) is an epimorphism tends to 1 as |G| — 00.)

We formulate a conjecture below which places these results into a more con-
ceptual framework, and also motivates a further specific study of the (p1, p2, p3)-
generation problem for finite groups of Lie type.

To set up the conjecture we need the following result. In the statement, given
a hyperbolic triple (p1,p2,ps) of primes, we let 55*; be the maximal dimension
in G of a conjugacy class of G of elements of order p;. Furthermore, throughout
the paper, given a prime p, we let F denote an algebraically closed field of char-
acteristic p. Recall that a quasisimple group is a perfect group whose quotient
by its centre is simple.

Proposition 1. Let Go = G(p") be a finite quasisimple group of Lie type, and
let G be the corresponding algebraic group over F. If

G G G .
Opy 0, + 0, <2dimG
then Gg is not a (p1,p2, ps)-group.

Most of the above proposition follows from [19]. We give a full proof for



completeness in §2. Proposition 1 motivates the following definition.

Definition We say that the hyperbolic triple (p1,p2,ps3) is rigid for a simple
algebraic group G if
G G G _ o
Op + 6y + 0, =2dimG.

We are now ready to formulate the conjecture.

Conjecture Let p be a prime and let Gy = G(p") denote a finite quasisimple
group of Lie type with corresponding algebraic group G defined over F. Suppose
that (p1,p2,p3) is a rigid hyperbolic triple of primes for G. Then there are only
finitely many positive integers v such that G(p") is a (p1, D2, ps)-group.

We will classify all rigid triples of primes in Theorem 3 below. For example
in PSLo(F) all triples are rigid; and in PSL3(F) the triple (p1,p2,ps) is rigid if
and only if p; = 2. Hence the conjecture holds for PSLa(q), PSU3(q), PSL3(q)
by results in [14, 15] discussed above. As another illustration, by Theorem 3
below the only rigid triple for SL1o(F) is (2,3,7), and so the conjecture also holds
for SU10(q),SL1o(g). Also, since by Theorem 3 a rigid triple for SL,(F) with
n € {2, 3} remains rigid for PSL,, (F) it follows that the conjecture also holds for
SLa(q),SUs(q) and SL3(gq). More generally, using Theorem 3 and the concept
of linear rigidity defined in [19] (originally introduced in [5]) we prove that the
conjecture holds in almost all cases.

Theorem 1. The conjecture holds for all finite groups Go of Lie type except
possibly when Gg is one of the following:

SpZm(Q) with m S 137 PSp4(q)a GZ(Q)'
We also derive the following result.

Theorem 2. The conjecture holds for Go = PSp,(q) and (p1,p2) = (2, 3).

It is natural to refine the triples which are not rigid for a simple alge-
braic group G into reducible and nonrigid triples, as follows. We say that
the triple (p1,pe,ps) is reducible if 651 + (5sz + 553 < 2dim G, and nonrigid if
85 + 05, 465 > 2dimG.

Below is the classification of the reducible, rigid and nonrigid triples of primes
for simple algebraic groups G defined over an algebraically closed field F of prime
characteristic p. Recall that if G is not of simply connected or adjoint type then
either G is abstractly isomorphic to SL,, (F)/C where C' < Z(SL,,(F)), or G is
of type D,,, p # 2 and G is abstractly isomorphic to SOs,,(F) or a half-spin
group HSpin,,, (F) where m is even in the latter case.

Theorem 3. The following hold:

(i) A complete list of reducible hyperbolic triples (p1,p2,ps) of primes, with
p1 < p2 < p3, for simple algebraic groups of simply connected or adjoint
type is given in Table 1.



(i) A complete list of rigid hyperbolic triples (p1,p2,ps) of primes, with p; <
p2 < p3, for simple algebraic groups of simply connected or adjoint type is
given in Table 2.

(#ii) The classification of triples of primes for SO, (F) is the same as for PSO,,(F).

(iv) The classification of triples of primes for HSpin,,, (F) is the same as for
Spin,,, (F).

(v) If C < Z(SL,(F)) contains an involution then the classification of triples
of primes for SL,,(F)/C is the same as for PSL,,(F). Otherwise, the clas-
sification of triples of primes for SL,(F)/C is the same as for SL, (F).

Table 1: Reducible triples

G p (p17p27p3)
SLs(F) p#£2 pp=2
SP4(F) pP#F2 p1=2,p2=3
Spe (F) P#2 p1=2,p2=3
or p1 =2,p2 =p3 =95
Spo, (F), m € {4,5,6,7,8,9,11} p#2 p1=2,p2=3,p3=7

Table 2: Rigid triples

G ) (p1,p2,p3)
SLa(FF) p=2 any

P#2 p1>2
SLs(F) any p1 =2
SL4(TF) any  p1=2,p2=3
SLs(IF) any P1=2,p2=3
SLe(F) p#2 p1=2,p=3
SLlo(F) p#Q P1 :2, p2:3, Ps3 =7
PSL2(F) any any
PSL3(F) any p1 =2
PSL4(TF) any p1=2,p2=3
PSL5(F) any pr=2,p2=3

Sp4(F) b= 2 (pl,p2) € {(273)7 (37 3)}
pP#£2 pi=p2=3
orpr =2,p2 >3

Spe (F) p#2 p1=2,p2=5p3>7
Spg (F) pP#2 p1=2,p2=3,p3>7
orpy=2,p2=p3=>5
Sp1o(F) PF#2 p1=2,pp=3,p3>7
Spom (F), m € {10,12,13} p#2 p1=2,p2=3,p3 =7
PSp, (F) any (p1,p2) €{(2,3),(3,3)}
Spin,; (F) P#2 p1=2,p2=3,p3=7
Spiny, (F) PF#2 p1=2,pp=3,p3="7
G2(F) any p1=2,p2=p3=5

Using Proposition 1, Table 1 gives us a list of examples of finite quasisimple
groups of Lie type that are not (p1, p2, ps)-generated. If ¢ is odd then it is not a



surprise that SLa(g) is not a (2, pa, ps)-group, as the only involution in SLo(q)
is central. As another example if ¢ is odd and p3 > 7 is a prime then Sp,(q) and
Spe(q) are never (2,3, p3)-groups. Also if ¢ is odd then Spg(g) is never a (2,5, 5)-
group. With a single exception, the non-Hurwitz finite symplectic groups that
are derived from Table 1 are already listed in [16]. As a new contribution, if g
is odd then by Table 1, Spy,(g) is not a Hurwitz group.

We now turn to the rigid triples given in Table 2. In view of Theorems 1-3,
the conjecture remains open for simple groups Go = G(p”) only in the following
cases:

G = PSp, (F) with (p1,ps) = (3,3)

G = G2(F) with (p1,p2,p3) = (2,5,5).

Concerning quasisimple groups with nontrivial centre the conjecture remains
open only for the symplectic groups given in Table 2, and in particular it mo-
tivates, in its own right, a further study of Hurwitz generation of various sym-

plectic groups, namely Spyg (), Sp24(q), Spas(g) for ¢ odd.

It is important to notice that the converse to the conjecture does not hold
in general, in the sense that we can have a simple algebraic group G defined
over F, and a nonrigid hyperbolic triple (p1,p2,p3) of primes for G for which
there are only finitely many positive integers r such that G(p") is a (p1, p2, p3)-
group. For example by [16] SL;(p") is never a Hurwitz group, although the
triple (2,3,7) is nonrigid for SL7(F). Other similar classical examples can be
given using [16]. As a final illustration, 3D4(3") is never a Hurwitz group (see
[13]), but the triple (2,3, 7) is nonrigid for the simple adjoint group of type Dy
over an algebraically closed field of characteristic 3. It would be interesting to
investigate a possible converse to the conjecture. Ideally such a result would
give necessary and sufficient conditions for G(p") to be a (p1, pa2, p3)-group only
for finitely many r. We leave this task for a future paper.

The layout of the paper is as follows. In §2 we prove Proposition 1. In §3 we
prove Theorems 1 and 2. Finally we derive Theorem 3 for exceptional groups
in §4 and for classical groups in §5.
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2 Proof of Proposition 1

Let G be a simple algebraic group over an algebraically closed field F of prime
characteristic p. The main ingredient in the proof of Proposition 1 is the follow-
ing result, combined with the classification of triples of primes given in Theorem
3 if p is a bad prime or G is of exceptional type. Recall that p is a bad prime
if G is of type By, Ci, D; and p = 2, or of type Ga, Fy, Eg, E7 and p € {2,3}, or
of type FEg and p € {2,3,5}. A prime p is said to be good if it is not bad. Also
in the statement below, by an irreducible subgroup of a classical group G, we
mean a subgroup acting irreducibly on the natural module for G.



Proposition 2.1. Suppose that G is of classical type and that p is a good prime
for G. If g1, 92,93 are elements of G such that gi1g2gs = 1 and (g1, g2) is an
irreducible subgroup of G then

dim ¢¢ + dim g5 + dimgg >2dimG.

The proof of Proposition 2.1 is based on the following three lemmas. The
first lemma is Scott’s formula.

Lemma 2.1. (Scott [17]). Let H be a group acting linearly on a finite-dimensional
vector space V. For X a subgroup or element of H, let v(X) = v(X,V) de-
note the codimension of the fized-point space of X in V. Also, write v(X™*)
for v(X,V*), where V* is the dual of V. Suppose H is generated by elements
T1,...,Ts withxy---x5 =1. Then

S

Zv(:z:z) >v(H) 4+ v(H").

i=1
In the next lemma, we apply Scott’s formula to the adjoint module L(G).

Lemma 2.2. Let L(G) denote the Lie algebra of G. Let g1, 92,93 be elements
of G such that g1g293 = 1. Put H = {g1,g2). Suppose that for i = 1,2,3 we
have

dim Cg(g:) = dim Crq)(9:)-

Assume also that Cpq)(H) = 0. Then
dim g@ + dim g§ + dim g§ > 2dim G.

Proof. We apply Scott’s formula to the module L(G) for H. Since Cp(g)(H) =

0, we get
3

Z codim Cp(g)(g:) > 2dim L(G).

i=1
The result follows from the equality dim L(G) = dim G and the assumption that
for i = 1,2,3 we have dim C(g)(g:) = dim Ca(g:). O

The next lemma ensures that the hypotheses of Lemma 2.2 hold when G is
of symplectic or orthogonal type, and p # 2.

Lemma 2.3. Let G be of symplectic or orthogonal type over an algebraically
closed field of characteristic p > 2. Then

(i) For all g in G we have dim Cg(g) = dim Cp((g)-
(i) If H is an irreducible subgroup of G then Crqy(H) = 0.
Proof. Part (i) is shown in [18, p. 38].

Let us now consider part (ii). We write V for the natural module for G.
Suppose first that G is of symplectic type. Since p # 2, H fixes a non-degenerate
alternating bilinear form f on V. As H is irreducible, using Schur’s lemma, f is
in fact (up to scalars) the unique nonzero bilinear form on V fixed by H. Because
p # 2, we have L(G) = S?(V) as a G-module. Also S%(V) is isomorphic to the



space of symmetric bilinear forms. It follows that Cpq)(H) = 0.

Finally suppose that G is of orthogonal type. As p # 2, we have L(G) & /\2 V),
the space of alternating forms on V. But H fixes up to scalars a unique (non-

degenerate) bilinear form on V' which is symmetric. It follows that C(q)(H) =
0.

Proof of Proposition 2.1. Let H = (g1,92). Suppose first that G is of linear
type in dimension n. Then H acts by conjugation on the algebra V = M, (F)
consisting of n x n matrices over F. Since H is an irreducible subgroup of G, we
have v(H,V) = v(H,V*) = n? — 1 by Schur’s lemma. The result now follows
from Scott’s formula.

If G is not of linear type, then the result follows from Lemmas 2.2 and 2.3. This
completes the proof of Proposition 2.1.

Proof of Proposition 1. If G is of classical type and p is a good prime for G then
the result follows from Proposition 2.1.

The remaining cases follow from Theorem 3 which shows that there are no
reducible triples of primes if G is of symplectic or orthogonal type and p = 2,
or if G is of exceptional type. This completes the proof of Proposition 1.

3 Proof of Theorems 1 and 2

For the proof of Theorem 1, we prove the following two propositions.

Proposition 3.1. The conjecture holds for Go = SUy(q)/C or SL,(q)/C,
where C' is any central subgroup.

Proposition 3.2. Let n € {11,12}. If p # 2 then Spin,, (p") and HSpin, (p")
are never Hurwitz groups.

Let G be a simple algebraic group of classical or exceptional type defined
over an algebraically closed field F of prime characteristic p. By Theorem 3,
if G is not of linear or unitary type then there are rigid triples (pi,p2,p3) of
primes for G only if G is of type ), and m < 13, or GG is a spin or half-spin
group in dimension 11 or 12, p # 2 and (p1,p2,p3) = (2,3,7), or G is of type
G2 and (p1,p2,p3) = (2,5,5). Also if G is of type By and p = 2 then (p1, p2,p3)
is rigid for G only if p; = 3. Hence Theorem 1 follows from Propositions 3.1
and 3.2 together with the fact that the Suzuki groups 2B;(2%"1) are never
(2,3)-generated or (3,3)-generated and the Ree groups of type 2Go are never
(2,5)-generated (as they respectively do not contain elements of orders 3 and 5).

The main ingredient in the proof of Proposition 3.1 is the use of linear rigid-
ity, a notion introduced in [19]. In the statement below, K denotes any field.

Definition Let ¢1,...,9s € GL,(K) with g1---g9s = 1. We say (g1,...,9s) is
a linearly rigid tuple if the following holds: for any hq,...,hs € GL,(K) with
hi---hs =1 such that h; is conjugate to g; for each i, there exists g € GL,,(K)
with g; = gh;g~! for all .

We need the following lemma which follows from [19, Theorem 2.3].



Lemma 3.1. Let G = SL,(F) and let g1,92,93 be elements of G such that
919295 = 1 and (g1, g2) acts irreducibly on the natural module for G. If

dimglG + dimgQG + dimg3G =2dim G
then the triple (g1, ge, g3) is linearly rigid.
Proposition 3.1 is a direct consequence of the following lemma.

Lemma 3.2. (i) If (p1,p2,ps) is a rigid triple of primes for SL,(F) then up
to conjugacy in GL, (), there are only finitely many irreducible subgroups
of SL,,(F) that are (p1,p2,ps)-generated.

(i) Let C < Z(SL,(F)). If (p1,p2,p3) is a rigid triple of primes for SL,(F)/C
then up to isomorphism, there are only finitely many irreducible subgroups
of SL,(F)/C that are (p1,p2, ps3)-generated.

Proof. (i) We denote by |g| the order of an element g € SL,,(F). Let

T = {(91,92,93) € SLn(F)? : 919295 = 1, |g:| = pi, (g1, g2) irreducible}

and for a fixed triple (C1,Cs,C3) of conjugacy classes of SL, (F) consisting
respectively of elements of orders p1, pa, p3, let

TCI7C2703 = {(91792793> S gi € Cz}

Since (p1,p2,ps3) is a rigid triple of primes, it follows from Proposition 2.1 and
Lemma 3.1 that every element of 7 is linearly rigid. Hence if T¢y,0p,05 # 0
then GL,, (F) is transitive on T¢,,c,,05- Since the number of conjugacy classes
C; of elements of order p; in SL,, (F) is finite, it follows that GL,,(IF) has finitely
many orbits on 7. Therefore up to conjugacy in GL,, (F), there are only finitely
many irreducible subgroups of SL,, (F) that are (p1,p2, p3)-generated.

(ii) Suppose now that (p1,p2,ps) is a rigid triple of primes for SL, (F)/C.
Suppose that g1, go, g3 are elements of SL,,(F) such that g1g295 = ¢ for some
c € O, g;C has order p;, and (g1, ge) is irreducible. Replacing g3 by gsc™! we

then have g1g2g3 = 1, the order |g;| divides np;, (g1, 92) is irreducible, and
> dim g} = 2 dim SL,(F).

(The latter assertion follows from the rigidity of (p1,p2,p3) for SL,(F)/C to-
gether with Proposition 2.1 applied to SL,(F)/C.)
Set

T = {(91,92,93) € SLn(F)® : g1gags = 1, |gi| divides np;, (g1, gs) irreducible,
3" dim P = 2dim SL,, (F)}.

By Lemma 3.1 every element of T is linearly rigid, and a similar argument
to that given in (i) above shows that GL, (F) has finitely many orbits on 7.
Therefore up to isomorphism there are only finitely many irreducible subgroups
of SL, (F)/C that are (p1,p2, ps)-generated. O



Proof of Proposition 3.2. Let G = Spin,(F) or HSpin, (F). We describe in
the two tables below the elements g in G of order u € {2,3,7} for which the
conjugacy class in G has maximal dimension. In the tables below, J; denotes a
unipotent Jordan block of size ¢, and w is an element of IF of order u. Also if
G = Spin,, (F) we let g be the image of g under the canonical map G — SO, (F);
and if G = HSpin,,(F) we let g be the image of ¢g in PSO,,(F), and let g be a
preimage of ¢ in SO, (F).

u g € SO11(F) dim ¢%Pr®  dim gL ®

2 (— 11, I) 28 56

3=p Ji@J? 36 78

3 751) (ng,wil.[g,Ig,) 36 78
(wI4,w_1I4,I3) 36 80

T=p JrdJ3dJ; 46 100

T#p (wh,w ' w? w2 w w3 I3) 46 100
(why,w 'y, w2, w2, w? w3 1) 46 102

u g € SO15(F) dim ¢ dimg°r2®

3=p J2 44 96

3 75 p (wI4,w_1I4,I4) 44 96

T=p Jr®Js 56 122

T#p (wh,w h,w?lh,w ?h,w3 w3 1) 56 122

Rules for calculating dim C(g) are given in the proof of Lemma 5.1.4. Note
also that an involution (—Is;, I),—2;) in SO, (F) corresponds to an involution in
G if and only if ¢ is even.

Let Go = G(p") and suppose for a contradiction that Gy is a (2,3, 7)-group.
Then there is a triple (g1, g, g3) of elements of Gy of respective orders 2,3,7
such that g1g293 = 1 and Gy = (g1, g2). Since (2,3,7) is a rigid triple of primes
for G, by Proposition 2.1 giG has maximal dimension. Now by the above tables

> " dimg;*® < 2 dim SL,, (F).

Hence by Proposition 2.1, the group (g1, g2) maps onto a reducible subgroup of
SL,,(F) or PSL,,(IF), a contradiction.

Proof of Theorem 2. Let G = PSp,(FF). In [7, Proposition 6.2] it is shown that
PSp,(27) and PSp,(3") are never (2,3)-generated. We can therefore assume
that p > 3. An easy check reveals that if p3 > 7 then the rigid triple (2,3, p3)
for G remains rigid for PSL4(FF). The result now follows from Lemma 3.2.

4 Proof of Theorem 3 for exceptional groups

In the rest of the paper, we prove Theorem 3. Let us fix some notation. We
let G be a simple algebraic group defined over an algebraically closed field F of
prime characteristic p.

Given an element g in G we let

dg =dimCg(g) and (55 = dim g% = codim Cg(g).



Finally, given a prime number u, we denote the maximal dimension of a conju-
gacy class of G of elements of order u by d, or 6. We denote by d,, or dS the
dimension of the corresponding centralizer.

Lemma 4.1. Theorem 3 holds if G is of exceptional type.

Proof. We first suppose that G is of adjoint type. Given a prime number u,
Lawther gives in [6] the maximal dimension §, of a conjugacy class of G of
elements of order u. In particular, we have the following table.

G | dimG | prime u Ou G | dimG | prime u | d,
Gso | 14 u=2 8 E; | 133 u=2 70
ue {3,5} | 10 u=3 90
u>"7 12 u=>5 106
Fy | 52 u=2 28 u>"7 > 114
u=3 36 Eg | 248 u=2 128
u=>5 40 u = 168
u>"7 > 44 u=>5 200
Eg | 78 u=2 40 u>7 > 212
u=3 54
U=29 62
u>"7 > 66

The result follows from the table.

Suppose now that G is of simply connected type. Without loss of general-
ity, we can assume that G is of type Eg or E7 and p # 3 or 2 respectively, as
these are the only cases where the simply connected and the adjoint groups are
not abstractly isomorphic. We denote by H the corresponding simple algebraic
group of adjoint type.

Suppose first that G is of type Fg. If u # 3 then clearly 6& = 2. If u = 3 then
by the above table, we have 631 = 54. Also by [2, Table 2], we have §§ = 54.
Hence the result follows as above.

Suppose finally that G is of type E7. If u # 2 then clearly 6 = 2. If u = 2
then by [1, Table 6], we have 6§ = 64. Hence we get the following table.

dimG [ 6§ [ 6§ [ 65 |68 (u>17)
133 64 | 90 | 106 | > 114
It follows that every hyperbolic triple of primes is nonrigid for G. O

5 Proof of Theorem 3 for classical groups

We now classify hyperbolic triples of primes for classical simple algebraic groups
G defined over an algebraically closed field F of prime characteristic p. For clar-
ity we give below a table describing the classical simple algebraic groups of
simply connected type and adjoint type arising from the types A;, By, Cj, D;.
We denote by n the dimension of the natural module for G.

10



Lie Type | Simply connected Adjoint Dimension
group group of G

An SL,,(F) PSL,(F) | n?—1

m>2 (n =2m)

D,, SO2m(F) ifp=2 | PSO2,(F) | n?/2—n/2

m >4 Spin,,, (F) if p # 2 (n =2m)

B p 72 | Spbigy,; 1 (F) SO2m11(F) | 7272 — /2

m >3 (n=2m+1)

To prove Theorem 3 for classical groups, given a prime u, we find 6¢ - or
when this is awkward, a class of large (possibly not maximal) dimension of
elements of G of order u - where G is of simply connected type. When the
corresponding natural module is of small dimension, this data is recorded in
Tables 3-9 in §5.5.

5.1 Elements of prime order

Let G be a classical algebraic group of simply connected type with natural
module of dimension n.

Lemma 5.1.1. The values of 0§ and §$ are as in the table below.

G 6¢ 6§
[n?/2] ifp=2orn#2 mod4 5
SLin (F) ”72— ifp#2andn=2 mod4 [2n°/3]
Sp,, (F) m?+m ifp=2 2
n=2m m2—e ifp#2 [2(2m® +m)/3]

SOom(F), p=2 m? — e |2(2m? —m)/3]
n=2m

Spin,, (F), p # 2 m?—e€ ifm#2 mod4 9
n=2m m?2—4 ifm=2 mod4 [2(2m® —m)/3]
Spin,, (F), p # 2 m? +m ifm=#1,2 mod 4 9
n=2m+1 m2+m—2 ifm=1,2 mod 4 [2(2m® +m)/3]

In the table € € {0,1} is such that m = ¢ mod 2.

Proof. The statement concerning elements of order 3, or elements of order 2
when char(F) = 2 follows from the proof of [7, Proposition 4.1].

We now assume p # 2. For G = SL,(F), one checks that the minimal
dimension of the centralizer of an involution is achieved by

(_I(nf‘r)/QaI('rH»‘r)/Q) ifn=7 modd4,7 € {il}
(—Ins2, 15 2) ifn=0 mod 4
(—I%+1,I%_1) ifn=2 mod 4.

g1 =

For G = Sp,,(IF), one checks that the minimal dimension of the centralizer of an
involution is achieved by
g1 = (_Imfeajm+e)~

Finally, an involution g = (—Is;,I,—9;) in SO, (F) lifts to an involution in
Spin,, (F) if and only if ¢ is even. One can therefore check that the minimal
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dimension of the centralizer of an involution in Spin, (F) is achieved by

(- Im, Iir) ifm=0 mod4
) (=1, m+1+7) ifm=1 mod4
g1 = (- m+2, m—2+r) fm=2 mod4
(=Im+1, Im—14+) ifm=3 mod4
where 7 € {0,1} is such that n = 2m + 7. (Note that here we describe the
element g; by its image in SO, (F).) O

We now describe some general elements of G of prime order v > 5. In the
statement below, J; denotes a unipotent Jordan block of size ¢, and we let w be
an element of F of order u.

Definition Say n = ¢ mod 5 and n = v mod 7 where 0 < ( < 5 and
0 < v < 7. We define the elements gq,3v, gc; 9d, ge, gf of G of prime order
u > 5 as follows.

J, 7 GBJ7+7 if v odd

G u uU=p uF£Dp
SL,, (F) u>n go = JIn gy = by,
u<n,u>>5 gc—Jg, @Jg 9gd = du 1
u<nu>T7 —J7 @J 9f = fw
Sp,, (F) _ —
" — 9m u>n Ja = Jn gp = by
J GBJ if ¢ even
u<nu>5 g.= Siegms © . ¢ 9a = du 2
.]5 ° EBJHJ if ¢ odd
J @ Jy if v even
U< nu>7 ge= 777 ! 9f = fw

J: 7 @ J2 if yeven
2

gb:bw

SO, (F) (p = 2) S 1f n odd
Spin,, (F) uzn Ja = Jn 1 ®J1 if neven
J @ Jo if ¢ odd
U< nu>d ge= 57 N ¢ ga = dy,
Js 5 @ J2 if ¢ even
J,7 @J, ifyodd
U<TL,UZ7 ge = 7niw®'y I7vyo gf:fw

Here the following hold:

b= (w,w™ . w2 wT3) if n even
v { (w,w_l,...,wnT_l,wlg ,1) if nodd
dw71 = (wInT_c,wflfnT_g,u)ZIL_c,w’ZInT_g,I#)
(WInT%,w_llanél,wfInTﬂ,w_2Ian4,I4) if n=0 mod 4
_ (w_[nT—l,wilInT—l,wz_[nT—l,wizInT—l,l) ifn=1 mod 4
c (wl%,w’lf%z,wzl%z,wiQIanz,Ig) ifn=2 mod 4
(wl%,w_ll%,uﬂ[%,w”]%,13) if n =3 mod 4
fo = (wIL;w,w_llL;Y,w2l¥,w_2fn%l,w3ln%l,w_3l$,IL;‘,AL).
Also we slightly abuse notation by describing elements of Spin,, (F) by their im-
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ages in SO, (F).

Note that up to conjugation the elements gq, g», gc, 9d, ge, g5 are uniquely de-
fined (see [8, Theorem 3]). In the following three lemmas, we give the dimensions
of their conjugacy classes.

Lemma 5.1.2. Suppose G = SL,,(F). Then

(i) 65 =065 =n*—n.

(it) 6§ = (4n® +¢(¢—5))/5 and 65 =4(n® —(?)/5.
(iii) 65 = (6n° +~(y—17))/7 and &, =6(n* —~%)/7.
Lemma 5.1.3. Suppose G = Sp,,(F). Then

(i) 65 =05 =n?/2.

(4n? +4n+¢(¢ —4))/10 if ¢ is even
(i) 6¢ =< (4n? +4n — 28)/10 if¢=1
(4n? + 4n — 8)/10 if ¢ =3.
[ (3n*+12n—96)/8 ifn=0 mod 4
(iii) 3, = { (3n2 +8n—28)/8 ifn=2 mod 4.
(6n% +6n+y(y—6))/14 if v is even
(iv) 6G = (6n2 + 6n — 40)/14 ify=1
9¢ ) (6n* +6n —44)/14 ify=3
(6n2 + 6n — 12)/14 if y = 5.

(v) 65, =3(n* +n—~(y+1))/7.
Lemma 5.1.4. Suppose G = Spin,, (F) or SO, (F) (p =2). Then
(i) 65 =05 = (n* —2n+<)/2 where ¢ € {0,1} is such that n =¢ mod 2.

2 _4n+C¢(C—6)+5)/10 if C is odd
o ) (4n2—4n)/10 ifC=0
(ii) 3. = 2_ 4n —8)/10 if =2
2 —4n —28)/10 if ¢ = 4.

(
(
(
(
(3n? +4n —64)/8 if n =0 mod 4
(3n? —2n—1)/8 ifn=1 mod 4
(i) b5, = (3n2 —12)/8 ifn=2 mod 4
(3n% +2n —33)/8 if n =3 mod 4.
(
(
(
(
(

6n? —6n+y(y—8)+7)/14 if vy is odd
6n2 —6n)/14 ify=0
6n% — 6n — 12)/14 ify =2
6n% — 6n — 44)/14 ify =4
6n% — 6n — 40)/14 if v = 6.

(iv) 65 =

(v) 6% =3(n%—n—~v(y-1)/7.
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Proof of Lemmas 5.1.2-5.1.4. This follows from the calculation of d? = dim Cs(g)
for g € {ga,...,9¢}. Suppose first that g is a unipotent element. As the order
u of g is greater than 5, we have p > 5. Hence by [8, Theorem 3] g = &;J;"
where r; is even for each odd i if G = Sp,,(IF), and r; is even for each even ¢ if
G = Spin,, (F), and

dopird +235, iy —1 if G = SL,,(F)
df = %Zz iry + ZK]' irir; + % >iodaTi if G =5p,(F)
At + Dicj vy — £ oaaTi if G = Spin, (F).

Suppose now that g is a semisimple element. It is straightforward to derive
the structure of Cg(g) and to calculate d?. For example suppose G = Sp,,(F)
and g = (wllil,wflfil,wQIsz,w;lIiQ,...,wink,wglfik,In,gk) where wi,wfl
are distinct u!® roots of 1. Then Cg(g) = GL;, (F) x GL;, (F) x - -+ x GL;, (F) x
Sp,,_ox (F) and so

k
d$ = %((n —2k)% + (n = 2k)) + Y _i7.

Jj=1

5.2 Proof of Theorem 3 for simply connected groups

We prove Theorem 3 for the simply connected classical groups in a series of
lemmas. Recall that p = char(F).

Lemma 5.2.1. Suppose (p,p1) # (2,2). Assume G = SL,(F) with n < 14, or
G = Sp,,(F) with n < 12. Then Theorem 3 holds.

Proof. The result follows from Tables 3 and 5 in §5.5 which list for a given prime
u the maximal dimension of a conjugacy class of G of elements of order u. [

Lemma 5.2.2. Suppose p > 2 and (p1,p2) = (2,3). Assume G = SL,,(F) with
n > 15, or G = Sp,,(F) with n > 14, or G = Spin,, (F). Then Theorem 3 holds.

Proof. Let

34 if G =SL,(F)
a=4 48 if G =Sp,(F)
27 if G = Spin,, (F).
Suppose first that n < . We use Tables 4, 6, 7, 8 and 9 in §5.5 which list
the maximal dimension of a conjugacy class of an element of order u € {2,3,7}.

They also give a representative g in G of prime order v > 11 whose conjugacy
class has large dimension. The result follows from the tables.

Suppose now that n > a. If n < p3 then there is a regular element g in G
of order ps. Hence 55’; = dim G — rank G and by applying Lemma 5.1.1 we get
6§ + 05 + 55’; > 2dim G. Hence the triple (2, 3, p3) is nonrigid. Assume finally
that n > ps. Consider an element g in G of order p3 of the form g, if p3 = p, and
of the form g; if ps # p. Then Lemmas 5.1.1-5.1.4 yield 8¢ 46§ +(5§ > 2dim G,
and so the triple (2, 3,p3) is nonrigid. O

Lemma 5.2.3. Suppose p > 2, p1 = 2 and py > 5. Assume G = SL,,(F) with
n > 15, or G = Sp,,(F) with n > 14, or G = Spin,,(F). Then Theorem 3 holds.
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Proof. We prove that the triple (2,ps2,p2) is nonrigid. It is then clear that in
general the triple (2, pa, p3) is nonrigid.

If G = Spin,,(F) with n < 9 then the result follows at once from Tables 8
and 9. We therefore suppose that n > 10 if G = Spin,, (F). If n < p, then there
exists a regular element g in G of order py, and by applying Lemma 5.1.1 we
get 65 +2 552 > 2dim G. Hence the triple (2, pa, p2) is nonrigid. Assume finally
that n > ps. Consider an element g in G of order ps of the form g, if po = p, and
of the form g4 if p» # p. Then Lemmas 5.1.1-5.1.4 yield 6§ + 2(5? > 2dim G,
and so the triple (2, pa, p2) is nonrigid. O

Lemma 5.2.4. Suppose p = p1 = 2. Then Theorem 8 holds for simply con-
nected classical groups G.

Proof. By Lemma 5.1.1 the maximal dimension of an involution class in G is at
least equal to the maximal dimension of an involution class in a simply connected
group H of the same type as G but defined over an algebraically closed field of
odd characteristic. The result now follows from the proofs of Lemmas 5.2.1-5.2.3
where we classify the triple (2, p2,p3) for H. Indeed, if (2, po, p3) is nonrigid for
H then it is also nonrigid for G, and if it is rigid for H then it remains rigid
for G if and only if 6§ = 6. Finally if (2, ps,ps) is reducible for H then the
difference 6§ — 647 is positive and depending on its value the triple (2, ps,ps)
becomes either rigid or nonrigid for G. O

Lemma 5.2.5. Suppose p; > 3. Assume G = SL,(F) with n > 15, or G =
Sp,,(F) with n > 14, or G = Spin,, (F), or G = SO, (F) with n = 2m and p = 2.
Then Theorem 3 holds.

Proof. We prove that the triple (p1,pe,ps) is nonrigid. Suppose first that
(p1,p2,p3) # (3,3,5). Assume G is not of symplectic type or n ¢ {14, 16, 18,22}
or (p1,p2,ps3) # (3,3,7). Since 651 > 6¢, the result follows from the fact that
the triple (2, p2,p3) is not reducible for G by previous lemmas. If G = Sp,,(F)
where n € {14,16, 18,22} and (p1,p2,ps) = (3,3,7) then the result follows at
once from Table 6.

Suppose finally that (p1,p2,p3) = (3,3,5). If G is of type D4 then the result
follows from Table 8. For the other cases, one can choose an element g of G of
order 5 of the form g, or g4 and simply apply Lemmas 5.1.1-5.1.4 to show that
26§ + 65 > 2dimG. O

This completes the proof of Theorem 3 for simply connected groups.

5.3 Proof of Theorem 3 for adjoint groups

Let H be the simply connected group corresponding to the adjoint group G.
We have 6§ > 0% and for a prime u > 3, 69 is equal to 6. More precisely,
by [7, Proposition 4.1] we have 6§SL"(F) = |[n?/2], (5§Sp2"‘(F) = 5502’”“@7) =

m? + m and finally 5§Sozm(F) = m? — ¢ where € € {0,1} is such that m = ¢

mod 2. The result now follows from the classification of triples of primes for the
corresponding simply connected group H, established in §5.2.
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5.4 Proof of Theorem 3 for other groups

Suppose first that G = SL,,(F)/C where C < Z(SL,,(F)). For a prime u > 3 we

have 6¢ = Sarm (F), and if C' does not contain an involution then 6§ = (5§L"(F),

otherwise 6§ = (55 Lo () The result now follows from the classification of triples
of primes for SL,,(F) and PSL, (F) established in §§5.2 and 5.3.

Suppose finally that G is of type D,, and not of simply connected or adjoint
type. If G = SO,,,(F) then the result follows from the fact that 6§ = §§Sozm(F),

and if G is a half-spin group the result then follows from the fact that 6§ =
5§pin27n (F) .

5.5 Tables of conjugacy classes in groups of low rank

We list in Tables 3-9 some representatives g of prime order u in simply connected
classical groups G of low rank defined over F. We let n denote the dimension of
the natural module for G. For each g we give the dimension (55 of its conjugacy
class. We assume that p = char(F) > 2 if u = 2. The elements described
have conjugacy classes of maximal dimension provided that they are of order
u € {2,3,5,7}, or G is of linear type and n < 14, or G is of symplectic type
and n < 12. If u > 7 the classes given are of sufficiently large dimension for us
to check in the above proofs that every hyperbolic triple (p1,p2,ps) of primes
with ps > 7 is nonrigid for G, unless G is of linear type and n < 6 or G is of
symplectic type and n < 10.
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Table 4: Possible dimension for a conjugacy class of an element of prime order
u#5in G = SL,(F), char(F) >0, 15 <n < 34

n dim G u = 2 u = 3 u > 7
I, w 1y, w2ly, w 21y, w3y, w31y, I if

(wlg, w 2, wily, w 2, w Iz, w 2,13) ifpFu

BERIE ifp=u
5§ =192

(wizg,w I3, w?lg,w 21y, w3y, w 31y, 1I5) ifp#u

2 @ Jo ifp=u
§G =218

(wiz, w13, w2y, w215, 0505, w 315,13) ifp#£u

J3®J3 ifp=mu
§G =246

(wIz,w TI3,w%I3,w 213, w3, w 31y, 1I3) ifp#u

BN ifp=u
§G =276

15 g =

224 §G =112 | 6% =150

16 9=

255 6G =128 | §G =170

17 g =

288 6C =144 | §G =102

18 g =

323 §G =160 | 6C =216

(wiz,w I3, wl3,w 213, w3y, w Sy, I3) ifp#u
2@ Js ifp=u
5G =308
(213,u*113,w213,w*213,w313,w*313,12) ifp#u
J2 @ J ifp=mu
7 6
5¢ =342
(ué[s,w_1I3,w213,w_zls,w31'3,w_3]3,13) ifp#u
J ifp=mu
7
5§ =378
(wlz,w I3, w?l3, w213, w3I3,w 3I3,14) ifp#u
2@ gy ifp=mu
5§ =414
(wig, w Ty, w2l5, 0w 213, wi 5, w 313,13) ifp#u
I3 @ Uy ifp=mu
5G =452
(wig, w Ty, w?l5, 0w 213, w35, w 313,14) ifp#u

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

19 g =

360 §G =180 | 6C =240

20 g =

399 §G =200 | 6C = 266

21 g =

440 6C =220 | §G =204

22 g =

483 6G =240 | §G =322

23 g =

528 G =264 | 6C =352

575 §G =288 | 65 =384 5G =492
25 _f (wlg, e Iy, 0?0y, w20y, w303, w 803, 13) ifp#u
g BENAN ifp=u

624 §¢ =312 | 6§ =416 5G =534
26 9= (wlig,w 14, wly, w214, w33, 0w 3I3,1y) ifp#u
BEN Y ifp=u

675 5G =336 | 6§ =450 5¢ =578
27 o= (wlg, w1y, 021,07 214,031, 07 314,13) ifp#u
2@ Jg ifp=mu

728 5G =364 | 65 =486 5§ =624
28 _ iy o g 0%, 0720y, w03y, w30y, 1) it £ u
9T g ifp—=u

783 §G =392 | 6§ =522 5 =672
20 _ Wl wm g 0%, 0720y, w03y, w0y, I5) it # u
97 vten ifp=u

840 5¢ =420 | §G =560 §¢ =120
30 _ ] (wIs o Ig, 0%y, 0721, 0BTy, w30y, Iy)  ifp £ u
9= e ifp=u

899 5¢ =448 | 5¢ =600 5 =170
21 [ (wIs, e TI5, 020y, w 214,050y, w 51y, I5) ifp#u
g %@ 3 ifp=u

960 5G =480 | 6§ =640 5G =822
. 5= (wIz, w15, 0215, 0™ 215,030, 0™ 314,1y) ifp#u
BN ifp=u

1023 §G =512 | 6 =682 5¢ =876
33 .= (wIs,w M5, w?l5, w215, w3l w 514,15) ifp#u
%@ J5 ifp=mu

1088 5G =544 | 65 =726 5§ =932
34 g = (w5, w15, w25, 0 215, 0505, w315, 14) ifp#£u
I7® Jg ifp=mu

1155 §G =576 | §G =770 5§ =990

p = char(F) > 2 if u = 2.
w € F denotes an element of order wu.

The dimension given is maximal if u = 2,3, 7.
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Table 7: Possible dimension for a conjugacy class of an element of prime order
u#5in G = Sp, (F), char(F) > 0, 28 <n <48

n dimG | u=2 u =3 u>7
28 g= { (uil4,w_1l4,w214,w_214,w314,w_3I4,14) ifp#u
J ifp=u
406 69 =196 | 65 =270 ! 67 =348
30 g= { (0215’0-’_115,0-)214,w_214,w314,w_314,14) ifp#u
J; @ J2 ifp=u
465 6 =224 | 69 =310 ! 59 =398
39 g= { (Uifs,w_lls,uJQIs,w_215,w3147w_314,14) ifp#u
Jie J, ifp=mu
528 6 =256 | 6% =352 ’ 68 =452
34 g= { ((‘2157“}71[57“}2]53w72—[5yw3157w7315)14) ifp#u
J: ® Js ifp=u
595 65 =288 | 65 =396 ! 5 =510
36 9= (wls,w Is,w’Is,w °I5,w’Is,w °I5,1) ifp#u
J2 @ Js @ J2 ifp=u
666 68 =324 | 68 =444 66 =570
38 = (wls,w™ Mg, w?Is,w " I5,w Is,w °I5,16) ifp#u
J3® Je ® Ja ifp=u
741 68 =360 | 65 =494 68 =634
10 9= { (cils,wgllsywzfe,w’zls,wBIsnw’BIs,Is) if p#u
Jo ® J, ifp=u
820 68 =400 | 6% =546 T 68 =702
12 9= { (uéls,wlzs,uzfa,w*QIG,w?’IG,w*”IG,Is) ifp#u
J ifp=u
903 69 =440 | 69 =602 ’ 6 =114
44 9= { (uélv,wllw"’fa,w*le,wBIe,w*”Ie,16) ifp#u
Jr @ J2 ifp=u
990 69 =484 | 69 =660 69 = 848
46 g= { (%17’w7117’w217,w7217,w316,w7316,16) ifp#u
J7 @ Ja ifp=u
1081 | 69 =528 | 65 =720 59 =026
48 9= (wl7,w’117,w217,w7217,w317,w73I7,Ie) ifp#Au
JS @ Js ifp=u
1176 66 =576 | 6¢ =184 59 = 1008

g

p = char(F) > 2 if u = 2.

w € F denotes an element of order w.

The dimension given is maximal if v = 2,3,7.
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