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General Setting MATHEMATICAL TOOLBOX

The following “tools” from algebraic

Let p be an odd prime. There is a p-local splitting of XCP™ as a wedge of p — 1 topological spaces, topology have been used:

described by C.A. McGibbon [1]. Namely, there is a homotopy equivalence

- P - Co-H-Spaces
w 2.CP () = \/ K j - Homology and Cohomology
j=1 of Spaces
where each space K; is built as a mapping telescope of a sequence {f;}i>o - Loop Sp.aces and SUSPGHSiOHS
of well-chosen self-maps of XCP™. It's only a model, but one could .m M; M; | - Topological Localizations
imagine that the K;’s look as drawn on the right. Furthermore their - Hopt Algebras
integral homology is given by the formula LCpe - The Steenrod Algebra
LCP
, ICPY  ppope - LS-Category
~ Zy ifg=2n+landn(>1)=; (modp-1) - Serre Spectral Sequences
Hﬁ](Kj/ Z) = 9 .
\O otherwise.
THE HOMOLOGY OF K
B The homology of the spaces K| is
Common Name Aim Of The Project distributed according to the follow-

Ing pattern:
Studying possible co-H-structures on the topological spaces K;. In particular, the question we inves- 5P

Suspension of the Infinite tigate is to know whether or not the spaces K; to K,_» can bear a coassociative coproduct.

Complexe Projective Space

Co-H-Structures

Every space K;, j = 1,...p—1has a co-H-space structure inherited from the suspension co-H-stucture
Pointed Topological Spaces on LCP®, say 0. Concretely, using the canonical inclusions (; and retractions g;, we obtain the
CW-Complexes following coproduct on the spaces K;:

Lj o 00 SEAL
K]-C y ZCP(p) X ZCP(p) V ZCP(p) 3 K] V K]

Category

The space K,_1 has one of the nicest co-H-structure one can imagine, in the sense that it has the
homotopy type of a suspension. Unfortunately, one (african) swallow does not make a summer and
the other spaces Kj, ..., K,_» do not have the homotopy type of a suspension. In fact, the main result
below says that these spaces can’t even be endowed with a coproduct having as nice co-H-structures [/} )40 552111
properties as coassociativity or co-H-group structrure.

CW-Decomposition

connected with one zero-cell
(the base point) and a single

cell in each odd dimension > 3: It is a fact, K,_1 has a nicer co-

H-structure than the other p — 2
spaces. Nonetheless, this appar-
ently farcical behaviour of its can
entirely be explained by the de-
grees in witch* its homology (and
thus cohomology) is concentrated.

To sum up: >~ _ _
Aduedueeueu... P 2CP £<1V VKPEVKpl

(r)
—_—— N——

Do not possess any coas- Has the homotopy type of a suspension,
sociative coproduct! thus 1s a co-H-group.

Why is it a suspension?

. This follows from work of D. Sul-
The Main Result livan [2] and which provides, for
N dividing p — 1, the homotopy
equivalence

ON-1  \ /(p—1/N ,
ZBS(p) —\/Z.:1 Ky .

: Thus taking N = p — 1 yields the
Main Steps Ot The Proot result. But there are other bridges

to cross to prove it.

THEOREM. Let j € IN,_», then the space K; does not possess any coassociative coproduct.

— Assume that K; possesses a coassociative coproduct and hope to find a contradiction!

— Use the Bott-Samelson Theorem to see that H.(Q2K;; IF,) is a primitively generated Hopf algebra. COPRODUCT

— Deduce that its dual Hopf algebra H*(QK;; IF,) has only trivial p™* powers. A coproduct is a pointed continu-
ous map 0 : X — X V X which

— Use the fact that H*(CP™;F,) = IF,[x] with [x| = 2 and use the commutativity of the Steen- makes the diagram

rod reduced powers £ with the suspension isomorphism X and the cohomology suspension .

monomorphism ¢ X » XV X
— Then letting a generator k; € HY*(K;;F,) going round the following diagram provides a " gon%
contradiction to the previous observation concerning the p™ powers in H*(QK;; IF,). X %
]Fp<xj>g sz(CPoo;]Fp) 2 >H2j+1(ZCPoo; ]Fp) ~ H27+1(K]-; ]FP)C o' >H2]'(QK].,- ]Fp) commufce .up .to homotopy. It is
coassociative if
Pi O P O P (IdvO)0 = (6 v1d)O.

F, <xP>= HZfV(CPOO;IFP) s H2PHY(ZCP*; F,) = H27V+1(K]-; IF,)¢ = >H2f(QKj; F,) .

p-LOCALIZATION

D1 | 1R

112

o < ki) s 0" (k;) p-lqcahzatmn is a process that as-
T T T sociates to a topological space X
another topological space X, such
Retferences pi Pi i . pologicalsp ()
that its homology is:
[1] C.A. McGibbon. Stable properties of rank 1 loop - | = . o | NPEY7sY % o * —~ —~
structures. Topology, 20(2):109-118, 1981. xPl # 01 ? P](k]') # 01 r O P](kj) =Plo (k]') = (o (k].))p =0 é H*(X(p)) ~ H.(X)® Z(p)
[2] D. P. Sullivan. Genetics of homotopy theory and the T
Adams conjecture. Ann. of Math. (2), 100:1-79, 1974. O
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