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We present a unified model of photonic-band-gap impurities and optical microcavities by using a one-
dimensional distributed Bragg reflector. A variable-width center layer creates impurity photon states
within the photonic band gap. We show that the best optical features (light localization, electric-field
strength, linewidth, and laser threshold gain) are obtained when the layer thickness is half-wave (or a
multiple), in which case the photon impurity state is located at the middle of the photonic band gap and
the structure is a A/2 (or higher-order) Fabry-Pérot microcavity.

PACS number(s): 42.50.—p

The optical properties of solids are characterized as
broad optical features that occur because there is a con-
tinuum of both electron states and photon modes allow-
ing transitions for a wide range of energies and direc-
tions. The primary way to obtain sharp optical features
is through control of the electronic states in solids by the
use of quantum-confined structures [1]. With this aim,
electronic band-gap engineering is moving towards the
“ultimate” quantized system of zero-dimensional (0D)
quantum boxes for which only discrete quantized states
exist. In this system the electrons have a single discrete
ground-state energy and their oscillator strength is con-
centrated at atomiclike transitions. Alternatively, sharp
optical features may be obtained through photon-mode
selection. In 1946, Purcell [2] showed that spontaneous
emission in a vacuum occurs into a continuum of photon
modes, and that by reducing the number of allowed pho-
ton modes the line shape, strength, and direction of spon-
taneous emission could be controlled. One method, sug-
gested by Yablonovitch [3,4] and John [5,6], is to use
three-dimensional periodic structures to create a photon-
ic band gap (PBG). In analogy to solid-state electronics,
the wave propagation in a periodic structure gives rise to
a PBG. Impurity states within the band gap can localize
light and radically alter the emission characteristics of
resonant luminescent centers. A second, complementary
approach championed by Yamamato [7,8], Yokoyama
[9,10] and their colleagues [11] concentrates on microcav-
ity structures, which quantize the photon modes by size
effects. When the dimensions of the cavity are similar to
the wavelength of light, some resonant modes are
enhanced, while most of the other vacuum modes are in-
hibited. Microcavities have been successful in atomic
physics in producing strong photon-atom—coupling phe-
nomena, such as one-atom masers [12], Rabi splitting
[13], and quantum nutation [14]. Recent observation of
vacuum Rabi splitting in a monolithic microcavity shows
that the strong-coupling regime is also achievable in
semiconductors [15].

~In this paper we intend to compare the two ap-
proaches: impurities in photonic band gaps and quantum

_microcavities. We use a well-known physical system, the

multilayer quarter-wave-stack distributed Bragg reflector
(DBR). By making one of the layers in the structure of
variable width, we can move continuously from a perfect
PBG material to one with an impurity that localizes
light, to a microcavity, and then back to a PBG in a cy-
clical fashion. This analogy between DBR’s and PBG
systems has already been mentioned by Yablonovitch [3].
We present here a systematic quantitative analysis of
such a system. By calculating numerically the local-field
intensity and the threshold gain for all cases, we directly

~ compare the potential efficiency of photon-mode control

of these classes of structures. From this analysis it will
become clear that the Fabry-Pérot (FP) microcavity is
not only a special case of an impurity mode, the midgap
one, but it is also the best impurity mode for producing
the maximum local-field intensity, the strongest localiza-
tion of light, and the lowest gain threshold.

The modeled structure is based on classic Bragg mirror
structures using alternating A/4 layers of GaAs and
AlAs, consisting of (20 pairs of GaAs-AlAs—a GaAs “im-
purity” layer)-(20 pairs of AlAs-GaAs) (Fig. 1). The
front and back surfaces are air. The refractive indices of
GaAs and AlAs are 3.56 and 2.95, respectively. We

_choose the dimensions of the layers such that hc/A=1

eV, except for the middle layer, which is varied. We use
the standard method of matrices to calculate the
transmission of the stack as well as the field intensity
throughout the structure [16]. The matrices are based on
a scalar plane-wave solution to Maxwell’s equations. It
should be noted that although the vector nature of light
leads to erroneous results for the scalar plane wave in
predicting three-dimensional photonic band gaps
[17-19], the solutions are completely separable in the
one-dimensional case and degenerate at normal in-
cidence.

The transmission of the structure with a A /4 “impuri-

2246



=3 Air
% Gaas A
" -
! -
© AlAs 5 g
. 2
. e
. 2
. ]
g GaAs Ly g
N
o AlAs . ‘[ .
g GaAs - ‘% E
| EES
§ AlAs Ly |
g GaAs L N
. 3
. >
. >
Y 123
PN AAs . %
(32}
& GaAs [Ty
- Air
[=]
(=}

FIG. 1. Schematic of Bragg stack used in this paper. The
middle layer has a variable width and acts as an impurity. The
refractive index of each layer is shown.

ty” layer, for which the complete structure acts as a
Bragg mirror, is shown in Fig. 2(a) (curve labeled A/4).
The transmission has a broad minimum or stop band
from 0.93 to 1.07 eV. On either side of the stop band,
there is a series of sidelobes, with maxima reaching unity
transmission. At these energies light can propagate
unimpeded through the structure. We call the two
transmission peaks nearest the stop band band-edge
modes. These represent the lowest- (highest-) energy
photons that can propagate freely outside the stop band.
For a A /2 “impurity” layer we satisfy the FP condition
and a transmission maximum occurs in the center of the
stop band [Fig. 2(b), curve labeled 2(A/4)]. This struc-
ture is a A/2 cavity between two DBR mirrors. For in-
termediate “impurity”-layer widths, the structure is nei-
ther a perfect DBR nor a perfect Fabry-Pérot microcavi-
ty. Instead, the first high-energy transmission peak (edge
mode) of the perfect mirror moves into the stop band and
becomes a “FP-like” maximum [20]. The position of the
transmission maxima as a function of layer width and en-
ergy is shown in Fig. 2(b). This plot shows that with in-
creasing layer width the high-energy band-edge transmis-
sion peak splits away from the others and moves into the
stop band. The peak moves across the stop band and
merges with the band of transmission maxima at low en-
ergies. This pattern repeats itself as a function of layer
width every A/2. The dashed lines in Fig. 2(a) show the
position of the FP maxima for a Fabry-Pérot étalon with
the same width as the impurity layer. For impurity-layer
widths of N(A/2), the positions of the transmission maxi-
ma are the same for both a FP étalon and the DBR struc-
ture. The reason for this structure behaving unlike a FP
étalon for intermediate widths is that, in a FP étalon a

standing wave is set up between only two reflecting sur-
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FIG. 2. (a) The position of transmission maxima as a func-
tion of “impurity”-layer width for a DBR structure (solid lines)
and a FP étalon of the same dimensions as the “impurity” layer
(dashed lines). (b) Transmission of a A/4 DBR stack as a func-
tion of photon energy. The transmission peak on the high-
energy side of the stop band moves into the stop band as shown
for 1.5(A/4) and 2(A/4) “impurity”-layer widths. The horizon-
tal scale (photon energy) is the same for both (a) and (b).
Hatched areas denote the allowed bands.

faces, while in a DBR structure there are 2N interfaces
on each side for N mirror pairs. It is only for a A /2 layer
that a standing wave between the first two interfaces will
simultaneously satisfy the boundary conditions for all in-
terfaces.

The similarity between this picture and that of elec-
trons propagating in a one-dimensional solid is striking
[21-23]. (Compare our Fig. 2(a) and Fig. A2-6 of Ref.
[23].) For a solid with N unit cells, there are bands of N
eigenstates. These correspond to Bloch waves that can
propagate through the crystal. If a localized defect is in-
troduced, the energy eigenstates are perturbed, producing
a small shift of all the band states except for one of the
states at the band edge, which moves into the forbidden
region and becomes an impurity state. Whether this state
splits off the top or bottom band edge depends on the sign
of the impurity potential. Once in the forbidden region,
the electron has an evanescent envelope function and be-
comes localized at the impurity site. Within the band
there are symmetric and antisymmetric electron states,
and these show a crossing behavior with increasing per-
turbation energy. In the Bragg mirror, there are also N
transmission maxima, which correspond to optical Bloch

waves that can travel through the mirror. The introduc-
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tion of a wider layer causes a defect in the structure. One
of the band-edge transmission peaks moves into the stop
band to become an impurity mode, while other transmis-
sion maxima outside of the stop band move slightly in en-
ergy and display an anticrossing behavior.

From the analogy with solid-state electronics we use
the terms band-edge modes, unbound modes, and impuri-
ty modes to denote the transmission maxima at the stop
band, outside the stop band, and inside the stop band, re-
spectively. In this terminology the perfect FP structure
corresponds to a deep-center midgap impurity state. The

exact behavior of these photonic band-gap states [Fig.

2(b)] is identical to the band structure of impurities
shown in classic texts on solids [21-23], except for the
anticrossing behavior. The impurity used to model elec-
tronic states is usually represented by a 8 function in
space. Antisymmetric states are unperturbed in such a
model as they have a node at the impurity site. The finite
spatial extent of the impurity in our model results in
mixed symmetric and antisymmetric photon modes,
which results in anticrossing behavior. .-

Clearly, the allowed photon modes in a one-
dimensional band-gap structure are very different from
the vacuum, and this alters the spontaneous emission
properties of fluorescent centers embedded in such a
structure. The degree to which the spontaneous emission
is altered depends on the distribution and the strength of
the photon modes. In particular, we are interested in the
field intensity at the luminescent and/or gain region of
our structure, which, in practice, can be one or more
quantum wells placed in or near the “impurity” layer.
To evaluate different impurity modes, it is important to
know the maximum field intensity inside the structure
and how the field is distributed spatially.

Figure 3(a) shows the envelope of the field intensity
across the length of the test structure for various condi-
tions. The field intensity oscillates in a standing-wave
pattern across the length of the structure [inset of Fig.
3(a)] and the envelope of the field intensity changes for
various conditions. A A/4 “impurity”’-layer width gen-
erates a DBR with edge modes. The envelope field inten-
sity for the high-energy edge mode is just visible in Fig.
3(a). Increasing the layer width to A/2 produces a per-
fect FP structure for which the maximum field intensity
is two orders of magnitude larger than for a band-edge
mode. The strong peak of the field at the “impurity” lay-
er and the exponential decay of the field away from the
impurity illustrates the localization of light at an impuri-
ty center. ) o

As the width of the “impurity” layer is changed, the
impurity mode changes energy and the maximum field in-
tensity also changes. By varying the “impurity”-layer
thickness, we can examine the variation of maximum
field intensity of the impurity mode as it traverses the
PBG. This is shown in Fig. 3(b), where hatched areas
denote the allowed bands. The largest field occurs when
the impurity mode is exactly at the midgap energy, and it
decays rapidly when it shifts towards the band edges
where the localization of light is also weak. It should be
noted that for the unbound modes there is little enhance-
ment of the field intensity, so that these do not show up
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FIG. 3. (a) The envelope field intensity inside the DBR stack
for different “impurity”-layer widths. Inset shows the oscillat-
ing electric field for the 2(A/4) case. (b) The variation of the
maximum field intensity as a function of impurity-mode energy
(right-hand axis). Dashed line shows the spectral width (full
width at half maximum) in meV (left-hand axis). Also shown is
the dimensionless gain threshold k as a function of impurity-

~mode energy (left-hand axis).

on the plot. The enhancement of the impurity modes as
deep centers in the midgap or FP region can be seen. In
addition to the decrease in the spatial extent of the field
intensity of the impurity mode, there is also a decrease in
its spectral width. These two effects combine to give the
large resonant enhancement of the electric field at the im-
purity mode. The variation in linewidth is shown as a
dashed line in Fig. 3(b). The decrease of the spectral
width follows the increase of the effective FP finesse.
This decrease in spectral width is an important property
for future device prospects and, again, the midgap impur-
ity mode shows the best features with the narrowest spec-
tral width or highest finesse.

The ultimate criterion for evaluating PBG structures
and microcavities as laser resonators is not maximum
local-field intensity but rather threshold gain, g,;,. In or-
der to calculate g, we first have to select the most favor-
able position for the gain medium. By examining the
field intensity inside the structure, the position of max-
imum field intensity is known. From symmetry, this is
found to be either in the middle of the “impurity” layer
or at the first antinode to either side. Thus, to simulate a



gain medium we use two layers similar in thickness to a
quantum well (50 A) and place them at the positions of
maximum field intensity. For simplicity, the gain medi-
um is made dispersionless and the wavelength of the las-
ing mode is determined by the length of the “impurity”
layer. The threshold gain can be calculated using the ma-
trix method by noting the quantum-well gain at which
the transmission of the structure diverges to infinity.

The variation of g,;, as a function of “impurity”’-layer
width is shown in Fig. 4. We have used the imaginary
part of the refractive index, k, as a dimensionless gain pa-
rameter. (Using g =4k /Ay, where A, is the lasing wave-
length, k =0.1 corresponds to g, =10* cm™!, the sa-
turated gain value for a quantum well, while K =0.0l is a
more realistic gain level.) The threshold gain g, de-
creases as the “impurity”-layer width increases from a
A/4 DBR to a A/2 FP structure. A further increase in
layer width leads to an increase in g, until at 3(A/4) the
structure behaves like a DBR again. The change in layer
width causes a continuous change in lasing energy. For
layers just thicker than 3(A/4) the lasing position jumps
to higher energies and gy, starts to drop once more. The
pattern repeats itself every A /2, except that the regions of
minimum g, become broader. This is connected to the
nonuniform change in energy with layer width. As with
the field intensity, the value of g,; is the same for a given
lasing energy regardless of layer width. The variation of
g, With energy is shown in Fig. 3(b). There is a drop in
g by two orders of magnitude between edge modes, the
impurity mode, and midgap FP modes. This improve-
ment is due to both the spatial localization of field inten-
sity and its reduced spectral width. Figures 3(b) and 4
show that structures operating on edge modes make un-
realistic laser resonators, although strong nonlinearities
have been associated with such modes [24]. Only deep
impurities, i.e., cavities close to N(A/2) in length, make
efficient laser structures. The threshold gain is found to
be the same for both A /2 and A “impurity”-layer (cavity)
widths. However, in this model there are no losses due to
absorption or diffraction, as a one-dimensional plane
wave is used. In a real structure losses favor the use of
smaller structures so that the light spends more time in
the gain region rather than in loss regions.

The extension of these calculations to three dimensions
is not trivial, and although the treatment here is for a
one-dimensional PBG material, 3D considerations would
lead to similar results. Some interesting questions do
arise by extending the qualitative results to 3 dimensions.
While it has been shown here that the midgap FP impuri-
ty shows the strongest localization of light, the maximum
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FIG. 4. The variation of dimensionless gain threshold k as a
function of “impurity”-layer width. The discontinuity at
3(A/4) is due to a change in the lasing wavelength with
minimum gain from one band edge to the other.

field intensity, and the lowest lasing threshold, what is
the three-dimensional equivalent of a perfect FP struc-
ture? It is quite simple to generate an impurity which
“sits” at midgap energy in one part of the Brillouin zone,
but this may be far from midgap at other symmetry posi-
tions, as would be the case for suggested band-gap struc-
tures. On the other hand, this may be advantageous for a
directional emitter. PBG structures with very wide band
gaps would make this variation unimportant. Alterna-
tively, using the microcavity approach, a distributed
Bragg ‘“onion,” starting with a A/2 sphere encapsulated
by alternating (A/4) thick shells, would have a perfect
FP mode in all directions.

In conclusion, in this paper we have brought together
the PBG and microcavity approaches to photon-mode
control. In one dimension, edge modes, impurity modes,
and FP microcavities are general features of PBG’s. The
perfect FP microcavity is identical to a midgap impurity
mode, and this mode is the best for localizing light, for
maximizing the field intensity, and for producing the
lowest-gain threshold in a laser resonator. While we have
shown that the best impurity mode in a PBG is the A/2
midgap impurity, it will be a matter of fabrication
difficulty to decide which implementation to choose: ei-
ther a 3D standard PBG material or any other physical
realization of a 3D microcavity.
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