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The standard representation of an optical field propagating in a photonic crystal (PhC) is an electromagnetic
Bloch wave. We present a description of these waves based on their Fourier transform into a series of electro-
magnetic plane waves. The contribution of each plane wave to the global energy and group velocity is detailed,
and the valid domain of this decomposition is discussed. This description brings new insight to the fundamen-
tal properties of light propagation in PhCs. Most notably, it permits a continuous description of light propaga-
tion from the homogenous medium to the strongly modulated PhC case. It also provides an original physical
understanding of negative refraction in PhCs and resolves inconsistencies that result from band folding.
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1. INTRODUCTION

The propagation of an electromagnetic field in a periodic
dielectric structure can be strongly modified when the lat-
tice dimension is of the order of the light wavelength.
Such periodic structures are called photonic crystals1
(PhCs) and allow the control of light at the wavelength
scale.? In particular, PhCs can forbid light propagation at
certain energies, thus creating the so-called photonic
bandgapLz (PBG). Confining light in this way has created
new means to tailor light—-matter interaction®* and has
made PhCs promising materials for integrated optics.>®

In the late 1970’s, remarkable light dispersion proper-
ties of periodic media were demonstrated and studied.”
Recently these interesting effects have been studied in
PhCs,'*'2 paving the way for new concepts and applica-
tions. For example, phenomena such as negative
refraction,'® 7 superprism,’®?° and self-collimation®"2?
have been predicted and observed experimentally. In par-
ticular, several authors'>!* have suggested that the group
velocity and the wave vector of waves propagating in
PhCs can be antiparallel for a certain frequency range. In
this respect, PhCs can behave as left-handed materials®*
(LHMs), and a negative refractive index can be defined.
However, Notomi et al. I have noticed that some defini-
tions of refractive index lead to inconsistencies. For ex-
ample, a homogenous medium regarded as a PhC with
vanishing modulation retains an unphysical negative in-
dex value. Therefore, although negative refraction has
been simulated and observed experimentally in PhCs, its
physical understanding and connection with LHM prop-
erties still requires further investigation.

Owing to the periodic nature of PhC structures, electro-
magnetic Bloch waves are generally used to represent the
propagation of the optical field in PhCs.” In this paper we
present a description of these waves based on their Fou-
rier transform into a series of electromagnetic plane
waves. This description aims to give an intuitive under-
standing of these interesting effects and to answer some

0740-3224/05/061179-12/$15.00

of the outstanding questions. In Section 2 we begin by de-
scribing the properties of Bloch waves in one-dimensional
PhCs (1D-PhCs). After decomposing Bloch waves into se-
ries of plane waves, we then explain the contribution of
each plane wave to the global energy and group velocity
and discuss the valid domain of this decomposition. We
also show how this approach resolves the inconsistencies
observed for vanishing modulations. In Section 3 we gen-
eralize the results obtained in Section 2 to the two-
dimensional (2D) case. Finally, in Section 4 we show that
this description provides a physical understanding of the
negative refraction that can occur at the interface be-
tween PhCs and homogenous media.

2. BLOCH WAVES IN ONE-DIMENSIONAL
PHOTONIC CRYSTALS

Here we consider the propagation of an electromagnetic
Bloch wave in a 1D-PhC. The alternating dielectric slabs
have susceptibilities £; and &5 and widths a; and as, re-
spectively. The lattice period is thus a=a;+ay. We con-
sider a wave propagating along the x direction perpen-
dicular to the surface of the dielectric layers and linearly
polarized in the y direction (Fig. 1). According to the Bloch
theorem,?® the corresponding magnetic field H,, satisfies
the following relation:

H,(x) = H)(x)e, = Houp(x)exp(ikx)e,, (1)

where H| is the field amplitude, & e[-7/a,n/a[ is the
wave number, and u; is a normalized periodic function
with period a. By use of the periodicity of u,, H, can be
expanded in a series, i.e.,

27
H(x) = > hyyHo exp{i(k+n—)x:|, (2)
N a

where each £, is a dimensionless Fourier coefficient of
the function u,. Note that the normalization of u, re-
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Fig. 1. Representation of the 1D PhC structure analyzed in this
paper. The alternating dielectric slabs have susceptibilities &;
and &, and widths a; and a,. The lattice period is a=a;+ay. We
consider electromagnetic Bloch waves propagating along the x di-
rection perpendicular to the surface of the dielectric layers and
linearly polarized in the y direction.

quires =,|h,[*=1. In Eq. (2) the spatial Fourier trans-
form of the magnetic field is characterized by amplitude
peaks h,H, located at the wave vectors k,=k+nkK,
where K=27/a. With the same arguments, the electric
field E;(x)=E,(x)ey, and the electric flux density D (x)
=D(x)ey can also be expanded as a Fourier series:

Ey(x) = 2, Ey explik,), (3)

Dy(x) = 2 D,y explike,). (4)

To manipulate dimensionless quantities and thus sim-
plify the following calculations, one can express the Fou-
rier coefficients E,, ;) and D, without loss of generality
as

E, ) =engmocHy, (5)

D,y =d,wHolc, (6)

where ¢ is the speed of light in a vacuum, yg is the
vacuum permeability, and e, and d, ) are dimension-
less coefficients. Maxwell’s equations VX H=-iwD and V
XE =iougH, together with the constitutive relation D
=goeE and the Fourier expansion 1/g()=2, «, exp(inKx),
yield the following relations between the coefficients £,,),
€n(k)» and dn(k):

k,c
Dy =My ™ (7)
w
k,c
Ry = €ney— (8)
w
en(k) = > Kn—n' @y (1) 9

Substituting Eqgs. (7) and (9) into Eq. (8), we obtain the
following relation for each integer n:

w 2
E Kn—n’knkn’hn’(k) = (;) hn(k)' (10)

’
n
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For |n|<N, Eq. (10) is the standard eigenvalue problem
used in the plane-wave expansion (PWE) method for pho-
tonic band calculations.?® For a given k € [-K/2,K/2[, the
(2N+1)X(2N+1) Hermitian matrix ./\/lg(p ,q)=Kp_g(R
+pK)(k+qK) has 2N+1 positive  eigenvalues
[(w;/¢)®];=1.. 241 The corresponding eigenvectors H;, ; sat-
isfy /\/lg “Hy, ;=(w;/c)*H; ; and give the Fourier coefficients
Rk In that the computation of photonic band diagrams
requires only the eigenvalues, the corresponding eigen-
vectors are normally discarded. We will show that these
components contain information that is essential for a
comprehensive understanding of Bloch wave propagation.
To do this, we start by describing the field properties in
terms of the Fourier coefficients A, ).

By use of Eqgs. (7) and (8), the time—space average en-
ergy density (), s of the Bloch wave can be developed as
function of the A, coefficients:

1B-H 1E-D’
Ees=\ o5 *5 5

1
= D, — ol hnn|2HE.
2 9 2 9 . §2M0| (k)| 0

(11)

Even though this expression could be simplified to
%,u,OH%, the above form highlights the importance of the
hn) coefficients. As it shows that (&), ; can be decom-
posed into fractional energy densities En(k)=%,uo\hn(k)|2Hg
corresponding to the energy density of an electromagnetic
plane wave with the magnetic field amplitude A, \H,.
Similarly, we develop the time-space average Poynting
vector (Sy);

ExH

1 - 1)
(Sprs={ Re = > —poclh PH—ey.
s n 2 kc

The partial Poynting vector (Sniy)
= % 20| |?Ha(w/k,c)ey corresponds to the Poynting vec-
tor of an electromagnetic plane wave with the wave vector
k, and the magnetic field amplitude A, \,H,.

The results obtained above are summarized in Table 1,
and the corresponding relations for an electromagnetic
plane wave are given for comparison. Using Maxwell’s
equations, we have obtained Ej, Dy, (&), 5, and (Sp);  in
terms of the Fourier coefficients of H,. For each of these,
when the nth component is considered individually, it al-
ways corresponds to the case of an electromagnetic plane
wave with the wave vector %k, and the magnetic field am-
plitude A, H,. This shows that a one-dimensional (1D)
electromagnetic Bloch wave can be decomposed into a se-
ries of electromagnetic plane waves. Although this may
seem obvious in the 1D case, in Section 2 we show that its
generalization to the 2D case is not straightforward. The
nth plane wave is characterized by the magnetic field am-
plitude A, H, and the wave vector k,. Its contribution to
the global field is given by |h,)|?, which is the ratio be-
tween the energy carried by this plane wave and the total
energy carried by the Bloch wave. In spite of these simi-
larities, the nth plane wave is not an electromagnetic
plane wave, as it does not individually satisfy Maxwell’s
equations unlike the global Bloch wave,” i.e., is not an ei-
genvector of Eq. (10) for the eigenvalue w. Therefore the
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Table 1. Comparison between the Characteristics of the 1D Electromagnetic Bloch Wave
and the 1D Electromagnetic Plane Wave

Wave Properties (1D) Electromagnetic Bloch Wave

nth Component Electromagnetic Plane Wave

Magnetic field H,=3,H,4

Electric field E,=3,.E,p
Time-space-averaged 1 9
energy density (Eidts=ZnEniy =2 10Ho
Time-space-averaged _
Poynting vector (S1)s=2nSne)

Group velocity Vg= En‘hn(k)FVn

H, (%) =h, g H, exp(ik,x)e,

E, )= MoChn(k)Hok exp(ik,x)ey

H,(x)= exp(ikx)e,
w
E,(x)= ,uocHoﬁ exp(ikx)e,

1 2 1 2
Enty =5 Molhnaw*Hg (Eps =3 oM

) 1
Sutn= g ol PHE e (Sp)ys=uoHE e

nth plane wave is not an eigenvalue of the field equations
and exists only as part of the Bloch wave.

Finally, we develop the group velocity v,, which is
equal in periodic media®’ to the energy velocity v,:

k)t s

The group velocity is simply given by the sum of the
group velocities v,,=w/k,, of the plane waves weighted by
their energetic contribution |hn(k)|2. The Fourier decompo-
sition of a Bloch wave is illustrated in Fig. 2. The nth
plane wave is represented by a disk located at the point
(k,,u): The gray level of the disk indicates the energetic
contribution of this plane wave (black— 1,white— 0). The
contribution to the total group velocity v, is indicated by
an arrow whose length is proportional to |h,)|*w/k,. The
positive and negative parts of the jth Brillouin zone are
labeled j*BZ and j BZ, respectively. In this example, k&
=k, k_1=k-K, and k;=k+K are in the first, second, and
third BZs, respectively.

Having established the basic description of Bloch
waves and their decomposed plane waves in a periodic
material, we now look at their propagation in three differ-
ent 1D-PhCs with varying index modulations: An=0, 1.2,
and 2.3. The parameters of the 1D-PhCs are as follow: ho-
mogenous medium (g;=g9=4.67), weakly modulated 1D-
PhC (¢1=2.43 and &9=7.62), and strongly modulated 1D-
PhC (¢1=1 and &5=11). To ensure we examine only the
difference arising from the magnitude of the modulation,
all other parameters remain identical, i.e., a;=agy=a/2
and (n)=2.16 (average refractive index). Using the PWE
method, we plot in Fig. 3 (seen on next page) the disper-
sion diagrams for the first three bands of the 1D-PhCs.
The two modulated 1D-PhCs exhibit two PBGs splitting
the energy range into three allowed photonic bands (I, II,
and III). A Bloch wave with the wave vector & located in
band X=I, II, or III is labeled Xj.

The Bloch waves propagating in the positive x direction
of the three different 1D-PhCs are represented in Fig. 4
(the representation is the same as in Fig. 2). The arrows
indicating the contributions to the global group velocity
are drawn for waves I 5, Iy 5, II_g5, and II_ 5.

Vg=Ve=

Ok
w w
Vnp= k—nex Vg=%ex
a5 k,= :(0-471/6 K, =:k0-2n/a k0=: 038 k= k:0+2n/a
| 4BZ|3BZ | 2BZ | 1BZ | 1'BZ|2'BZ | 3'BZ [4'BZ |
< : : : :
¢ o2or s | 1
i || ok | Motk |
D> 015r .
[0}
&
-§ 0.10} ]
-]
g oost :
o
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Wave vector (ka/2n)
Fig. 2. Graphical representation of a Bloch wave with energy

u=0.14 and wave vector £=0.38 propagating in a 1D-PhC. The
band diagram (black curve) of the 1D-PhC is repeated in the dif-
ferent Brillouin zones. The plane waves that collectively form
this Bloch wave are represented by disks located at the points
(k,,u). The gray level of each disk indicates the energetic contri-
bution of the corresponding plane wave, i.e., the ratio between
the energy carried by this plane wave and the total energy car-
ried by the Bloch wave (black — 1,white — 0). The contribution of
the nth plane wave to the total group velocity v, of the Bloch
wave is indicated by an arrow whose length is proportional to
||/ k,,. The vectorial sum of all these arrows gives v,.

In the homogenous medium [Fig. 4(a)], the solution to
Maxwell’s equations at energy w is an electromagnetic
plane wave with wave vector k= Vew/c. This plane wave
can be regarded as a particular Bloch wave for which 4,
is equal to 1 for a unique integer n”* and 0 otherwise. The
corresponding representation is characterized by a single
black disk (h,*z)=1) located at the point (k,*,u), where
k,s=Vew/c. When all the waves are represented on the
global diagram, their black disks overlap to draw the
standard dispersion line of an homogeneous medium.
Hence this representation of Bloch waves gives self-
consistent results when the PWE method is applied to an
homogeneous medium, represented here as a 1D-PhC
with zero index contrast. The Bloch wave decomposition
here is totally dominated by the single plane-wave solu-
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tion of Maxwell’s equations. The index of this component
is labeled n™: n"=1 for Bloch waves within the first band,
n*=2 for Bloch waves within the second band, n*=3 for
Bloch waves within the third band, and so forth.

When a weak modulation is introduced into the PhC, as
is the case in the weakly modulated 1D-PhC [Fig. 4(b)],
only the vicinity of the BZ boundaries is affected. Inside
the transmission bands, the Bloch wave remains similar
to the plane-wave n” solution of the homogeneous me-
dium. For example, more than 98% of the total energy of
Bloch wave I o5 is carried by plane wave n"=1. When the
band edge is approached, some of the Bloch wave energy
is transmitted from plane wave n” to plane wave n* - 1. At
the band edge, the energy is equally distributed between
these two contrapropagating plane waves. The resulting
Bloch waves are the symmetric and antisymmetric stand-
ing waves Iy 5 and II_j 5. Because k,»=-k,,*_1(=K/2), their
group velocities are zero; see Eq. (12).

For the strongly modulated 1D-PhC [Fig. 4(c)], the
large increase of the index contrast affects the whole
transmission band. The energy is now distributed be-

0.7
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0.0
-0.50

Reduced energy (u=a/))

I0.25

025 0.00 0.25
Wave vector (ka/2n)

Fig. 3. Photonic band diagrams for three different 1D-PhCs
with increasing index contrasts. The light gray, dark gray, and
black curves denote the homogenous medium (g;=g5,=4.67), the
weakly modulated 1D-PhC (£,=2.43 and &,=7.62), and the
strongly modulated 1D-PhC (e;=1 and &,=11), respectively. The
PBGs of the weakly and strongly modulated 1D-PhCs are indi-
cated, as are four characteristic Bloch waves: 1 o5, II_¢ o5, Iy 5, and
II_y 5. These waves located in the middle and at the edges of the
first and the second bands are often used as examples in the text.
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tween several plane waves even in the middle of the
bands, and the PBGs are larger. Yet plane wave n” still
dominates the decomposition inside the bands. For ex-
ample, plane wave n” carries 70% of the total energy of
Bloch wave II_j o5, whereas plane waves n" -1 and n" -2
correspond just to 12% and 2%. Finally, it should be noted
that the plane wave n” is not necessarily located in the
first BZ. In fact, this wave lies within the second BZ for
Bloch waves of the second transmission band, within the
third BZ for Bloch waves of the third transmission band,
etc. This intrinsic property is essential for a consistent de-
scription of Bloch waves in PhCs.

The previous description brings new insight for the un-
derstanding of light propagation in PhCs. In particular, it
clearly describes the direction of the group velocity and
the transition from the homogeneous medium to the
strongly modulated 1D-PhC. There is one last aspect we
wish to consider before generalizing our results to the 2D
case, that is, the definition of a phase refractive index for
a Bloch wave. Dowling and Bowden® first defined it by
using the textbook formula n,=|k|c/w, where k is taken
from the first BZ. They obtained the anomalous behavior
sketched in Fig. 5(a), which predicts small refractive in-
dices for PhCs. Notomi'! noticed that this method leads to
abnormal results for a homogeneous medium and con-
cluded that this definition has no physical meaning. Us-
ing the description developed in this paper, we can re-
move this inconsistency. Having shown that a Bloch wave
is composed of plane waves propagating at their own
phase velocities v,=w/k,, we conclude that no global
phase-front velocities can be physically attributed to the
global Bloch wave. The main flaw in Dowling and
Bowden’s definition lies in attributing the phase velocity
vo=w/k( of the plane wave located in the first BZ. To il-
lustrate this, we consider the phase velocity of plane wave
II_g95 in the homogeneous medium. Dowling and
Bowden’s definition assigns it the wave vector k=kg
=-0.25, although this standard plane wave is entirely de-
scribed by the wave vector k,*=k1=0.75. Thus the small
values of the phase refractive index observed in Fig. 5(a)
results from the artificial band folding and are not physi-
cal.

We conclude that no phase index can be physically as-
signed to Bloch waves as these waves possess many phase

_ 3BZ|2BZ|1'BZ 1'BZ|2'BZ3 B4 3BZ|2BZ|1BZ:1'BZ|2'BZ|3'BZ 3BZ[2BZ|1BZ1'BZ|2'BZ3'BZ
< 07¢ r F E
ki
5L osf - L /
> 05} - L -
8 ' /
04} , L - L -
R e e Sy AN | ¥ PY* SN NN S - 11, 4 | I
- T T I A : {Ilé,,5 - VAN | > 40 i v AT e
an * 0.
3 02} 1 L a
8 ol gl S 4 (IR, g o o O o s ]
@ ' (b) ' © :
0'91 5 10 -05 00 05 10 15 15 -10 -05 00 05 10 15 15 10 05 00 05 10 15

Wave vector (ka/2n)

Wave vector (ka/2n)

Wave vector (ka/2m)

Fig. 4. Graphical representation of the Bloch waves that propagate in the positive x direction of (a) the homogenous medium, (b) the
weakly modulated 1D-PhC, and (c) the strongly modulated 1D-PhC. The Bloch waves have the same representation as in Fig. 2: The
circles of adjacent Bloch waves overlap, and the arrows indicating the contributions to the group velocity are drawn for Bloch waves I o5,
Iy 5, I 5, and II_j95. We note that the dominant plane wave is located in the first BZ for the first band, in the second BZ for the second

band, and forth on.
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Fig. 5. Phase index |k|c/w versus energy for the investigated
1D-PhCs. The light gray, dark gray, and black curves denote, re-
spectively, the homogenous medium, the weakly modulated 1D-
PhC, and the strongly modulated 1D-PhC. (a) The wave vector %
used in the calculation corresponds to the wave vector k=%, of
the plane wave located in the first BZ. From this definition
meaningless values are observed for the phase index in Pthzi
and the standard results for an homogenous medium® are not
recovered. (b) The wave vector %2 corresponds to the wave vector
k,+ of the plane wave that dominates the Fourier decomposition
of the Bloch wave.

velocities. Finally, it should be noted that one can obtain
self-consistent results for the transition from a homoge-
neous medium to a PhC by considering the quantity
|k,*|c/ w instead of |kg|c/w [Fig. 5(b)]. However, this quan-
tity characterizes only the velocity of the dominant phase
front of the Bloch wave and is not a useful value.

3. PROPAGATION OF BLOCH WAVES IN
TWO-DIMENSIONAL PHOTONIC
CRYSTALS

In this section the preceding results are generalized to the
2D case. The structure consists of a square lattice of di-
electric rods with susceptibility e, embedded in a dielec-
tric medium with susceptibility ¢; (Fig. 6). The period is
a, and the rod radius is r. The filling factor is f=nr2/a?,
and the average susceptibility () is given by (e)=fe;+(1
—f)es. The z axis is parallel to the rods, and only Bloch
waves propagating in the xy plane are considered. A typi-
cal dispersion diagram of such a structure is depicted in
Fig. 7. In the following analysis, we will consider TM-
polarized waves (Ele,).

As in the 1D case, the different fields satisfy the Bloch’s
theorem and can be expanded as a Fourier series:

Vol. 22, No. 6/June 2005/J. Opt. Soc. Am. B 1183

Hy(r) = 2 h, a0Ho explik + G, ) -],  (13)

n,m

Ey(r) = ) e, magrocHo explitk + G, ) - r], (14)

H,
Dy(r)= >, i explitk + G ) ¥l (15)

where Hy, ¢, ug, r, and k are defined as in the 1D case;
G, ,, are the reciprocal vectors; and h,, ), €, ), and
d,, @) are dimensionless vectors. Note that for TM polar-
ization, €, mk)=€n,mk)€z and dn,m(k)=dn,m(k)ez. Maxwell’s
equation VXH=-iwD and VXE=iwuH, together with
the constitutive relation D=¢3eE and the Fourier expan-
sion 1/gy)=2, &y m €Xp(iG,, ), lead to the following
vectorial relations:

D00C

€9
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k
y Yo o o Soft
ED © @
Z Nl
‘ o] © \G/v
H
X

Fig. 6. Top view of the investigated 2D-PhC. A square lattice of
dielectric rods with susceptibility &5 is embedded in a dielectric
medium with susceptibility ¢;. The lattice period is a, and the rod
radius is r. We consider TM-polarized (Ele,) Bloch waves propa-
gating in the xy plane perpendicular to the rods.

—s -
~ 05}
<
! >
5 0.4-’/ "
S
o 0.3:\ |
ol T
g "
3 o1l 4 -
[n'e L

00p X M r

Wave vector (ka/2n)

Fig. 7. Photonic band diagrams of an homogenous medium (g;
=g,=4.67, dashed gray curve) and a strongly modulated 2D-PhC
(e;=1 and &y=11, black curve). For comparison, both of them
have the same filling factor f=50% and the same average refrac-
tive index (n)=2.16. The three highly symmetric points I', M, and
X of the square lattice are indicated.
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Table 2. Comparison between the Characteristics of the 2D Electromagnetic Bloch Wave
and the 2D Electromagnetic Plane Wave

Wave Properties (2D) Electromagnetic Bloch Wave

(n,m)th Component

Electromagnetic Plane Wave

Magnetic field szzn,mHn,m(k) Hn’m(k)(r)=hn’m(k)H0 exp(ikn,m-r) Hk(r)=H0 exp(ik-r)
Electric field =2 B i En,mk)(r)wolhn,m(k)\Hoﬁ exp(ik, ,,'T)e, Ek<r>=uoHoﬁ exp(ik-r)e,

Time-space-averaged 1 9
energy density <gk>t,s = En,m‘cf‘n,m(k) = EMOHO
Time-space-averaged
Poynting vector Ss=Zn,mSnma0

Group velocity Ve=3, B, 0|V m

1 2
Enm(e)=3 0N mao|*H

1 5 ©
Sn,m(k)=5#0|hn,m(k)|2H0k2 kn,m
n,m

<gk>t,s = %MOHg

1 0}
(S5 =5 ol 5Kk

w w

_k2 k, . Vg= Fk

Vam=

k, .c
dy o = - " X By ) (16)
C
n,m
hn,m(k) = X €, m(k)» (17)
€, mk) = E Kn—n’,m—m’dn’,m’(k)’ (18)
n',m’

where k, ,,=k+G, ,,. Substituting Eqgs. (16) and (17) into
Eq. (18) gives the equation for the coefficients e, ;)

2
€n’ m' (k) W7y m(k)

K,k k., . ={— —.

E n-n',m-m | n,m” n',m | |kn)m| (C) |kn,m|

n',m’
(19)

For |n|, |m|<N, Eq. (19) is the standard eigenvalue equa-
tion used in the PWE method to compute the dispersion
relations of TM-polarized waves in 2D-PhCs.? The eigen-
vectors give the coefficients e, ,,aq/|Ky | from which the
vectors e, ,, ) can be easily deduced. The vectors h,, )
and d,, ,,4) can then be calculated® from Egs. (17) and
(16).

To generalize the 1D-PhC results, we must describe the
field properties in terms of the vectors h,, ,, ). A simple
calculation leads to the expressions reported in Table 2.
As in the 1D case, these results show that a TM-polarized
Bloch wave can be decomposed into a Fourier series of
TM-polarized plane waves. Note, however, that the gener-
alization of this result for TE-polarized waves is not
straightforward.30 The (n,m)th plane wave is character-
ized by the magnetic field amplitude h,, ,,4H, and the
wave vector Kk, ,,,. Its contribution to the global field is
given by the quantity |h,, /% which is the ratio between
the energy carried by this plane wave and the total en-
ergy carried by the Bloch wave. As in the 1D case, this
pseudoelectromagnetic plane wave does not necessarily
satisfy Maxwell’s equations. Therefore the (n,m)th plane
wave is not an eigenvalue of the field equations and exists
only in the PhC as part of the Bloch wave. We illustrate
the decomposition with an example in Fig. 8. In Fig. 8(a)
the (n,m)th plane wave is represented by a disk located
at k, ,,,: The gray level of the disk indicates the energetic

contribution |h, ,4)|?> of this plane wave (black
—1,white— 0). The group velocity is given by the vecto-
rial sum of the phase velocities wkn,m/ki’m, weighted by
the energetic contributions |h,, ,,q|? of the corresponding
plane waves. Because each term can be physically inter-
preted, this approach provides an intuitive understanding
of the direction of the group velocity as illustrated in Fig.
8(b). From the center of the disk, the vector
hy, a0 20Ky i/ kim shows the contribution of the
(n,m)th plane wave to the global group velocity. The
higher-order BZs are indicated with dashed lines. In this
example, kg o, k_1 o, k¢ _1, and k ; are in the first, second,
third, and fourth BZs, respectively.

To illustrate this description, we consider the propaga-
tion of Bloch waves in 2D-PhCs with different index con-
trasts: a homogenous medium, a weakly modulated 2D-
PhC, and a strongly modulated 2D-PhC. Their respective
susceptibilities are the same as in the 1D case, and they
all have the same filling factor f/=50% and average index
(n)=2.16. Generalizing Fig. 4, we study in Fig. 9 the ef-
fects of the modulation by looking at the energetic compo-
sition of the Bloch waves located in the first three bands
of these 2D-PhCs. Each Bloch wave is represented as de-
scribed in Fig. 8. Here the disks of adjacent Bloch waves
overlap, and the contributions to the group velocity are
not indicated.

In an homogeneous medium, which is represented by a
2D-PhC with zero index contrast [Fig. 9(a)l, the plane-
wave solution of Maxwell’s equation is artificially distrib-
uted in bands according to the position of the wave vector
k. When k is located in the first, second, or third BZ, the
wave is assigned to the first, second, or third band, re-
spectively. As in the 1D case, each of these particular
Bloch waves is represented by a single black dot located
at k. Therefore the global graphical representations of the
first, second, and third bands are simply the first, second,
and third BZs filled in black.

The introduction of a weak modulation [Fig. 9(b)] does
not strongly influence the solutions except at the BZ
boundaries, i.e., the Fourier decomposition is still largely
dominated by the plane-wave (n",m”") solution in the ho-
mogenous medium case. At the vicinity of the BZ bound-
aries, the decomposition is dominated by the two plane
waves located in the neighboring BZs. For example, Bloch
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wave I 47 ¢ lies in the first band with its dominant plane
wave [k, ,,*=(0.47,0)] located in the first BZ; see Fig.
9(b). Because this Bloch wave lies in the vicinity of the
second BZ border, part of its energy is carried by the
plane wave located in the second BZ [k, _q,, =(
-0.53,0)]. At the border the energy of the global Bloch
wave is equally distributed between the two dominant
plane waves.

1.0

o
o1

o
=)

k.10=Koo-2/a €,

\ N

Wave vector (k a/2m)
=)
(@)

N
o

05 00 05 10
Wave vector (k. a/2n)

Wave vector (k a/2m)

05 00 05 10
Wave vector (k a/2n)

Fig. 8. Graphical representation of a Bloch wave propagating in
a 2D-PhC. This wave with wave vector k=(0.3,0.1) and energy
©=0.123 is located in the first band. The BZ boundaries are rep-
resented by dashed lines. The black circles indicate the equifre-
quency surfaces for the energy u=0.123. (a) The plane waves
that collectively form the Bloch wave are represented by disks lo-
cated at their respective wave vectors k,, ,,. The gray level of each
disk indicates the energetic contribution of the corresponding
plane wave, i.e., the ratio between the energy carried by this
plane wave and the total energy carried by the Bloch wave
(black — 1,white—0). (b) The contribution of the (n,m)th plane
wave to the total group velocity v, of the Bloch wave is indicated
by a black arrow whose length is proportional to
lh,, 0|k, /K. . The vectorial sum of all these arrows gives

Vg.
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Finally, the strongly modulated 2D-PhC [Fig. 9(c)] con-
firms the importance of the dominant plane wave (n",m")
in the 2D case. Inside the bands, this wave still dominates
the Fourier decomposition and carries the largest part of
the Bloch wave energy; this characteristic is essential to
understand the physics of Bloch wave propagation in 2D-
PhCs.

The analysis in terms of the equifrequency surfaces
(EFSs) is a common way to investigate the propagation
direction of Bloch waves in 2D-PhCs; their group veloci-
ties are given by the gradient vectors of these curves.!”
Normally, the EFSs are calculated for each band and
drawn inside the first BZ, thus characterizing each wave
with the wave vector k=k; (. As an example, the EFSs of
the first and second bands of the homogenous medium are
represented in Figs. 10(a) and 10(b), respectively. In the
first band, this diagram shows the expected concentric
circles of the homogeneous medium. However, nonintui-
tive curves pointing inward are obtained for the second
band. This is a consequence of characterizing Bloch
waves according to the wave vector of the first BZ (band
folding).

As an illustration, we consider the plane wave with
energy u=0.3 that propagates in the negative x direction
in the homogeneous medium. In the folded diagram, this
particular Bloch wave is identified by the wave vector k
=k (=(0.352,0). However, as shown above, this vector
has no physical meaning in that the unique (and there-
fore dominant) Fourier component of this wave is charac-
terized by the wave vector k,,,*=(-0.648,0) and is lo-
cated in the second BZ. When this more physical
approach of characterizing Bloch waves through their
dominant wave vector k,+ ,,+ is adopted, the EFS of the
second band is represented in the second BZ. With this
representation, we obtain the projection in the second BZ
of the concentric circles of the homogeneous medium [Fig.
10(c)] pointing outward as in the first BZ.

Thus, by our drawing the EFSs of the various bands in
their respective BZs, the global diagram exhibits the ex-
pected EFS of an homogenous medium [Fig. 11(a)l. The
same method can be applied to construct the global EFS
diagrams of the weakly and strongly modulated 2D-PhCs
[Figs. 11(b) and 11(c)]. With this pictorial representation,
the three cases can be compared easily. The modulation
transforms continuously the disks of the homogeneous
medium to the segmental disks of the modulated PhC
with no abrupt modification of the EFS. In particular, all
the EFSs point outward, contrary to the common belief
that in the second band of PhCs they point inward.'183!
This unusual property resulted from the enforced repre-
sentation of the EFS in the first BZ and erroneously
showed the EFS of the second band of the homogenous
medium pointing inward; see Fig. 10(b). Therefore the
negative curvature of the EFS is a result of the artificial
band folding and has no physical meaning. Thus it should
not be invoked to explain the left-handed behavior of
PhCs.

Left-handed materials (LHMs) are generally character-
ized by the negative sign of the scalar product k-vg,
where k is the wave vector and vy is the group velocity. To
calculate this scalar product, we must assign a single
wave vector k to the wave. Unfortunately, Bloch waves
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Fig. 9. Graphical representation of the TM-polarized Bloch waves that propagate in (a) the homogenous medium, (b) the weakly modu-
lated 2D-PhC, and (c) the strongly modulated 2D-PhC. We consider only the waves located in the first (I), second (II), and third (III) band.
The BZ boundaries are represented by dashed lines. Each Bloch wave is represented as described in Fig. 8: The circles of adjacent Bloch
waves overlap, and the contributions to v, are not indicated. We observe that the dominant plane wave is located in the first BZ for the
first band, in the second BZ for the second band, and so forth. Note that the contributions of the other plane waves become larger as the

modulation is increased.

are composed of many plane waves whose wave vectors
are all necessary to describe the global Bloch wave. Al-
though there is no a priori reason to favor one of them,
the wave vector k=k ; located in the first BZ is generally
adopted to characterize Bloch waves in PhCs. Let us illus-
trate the consequences of this choice with the example of
Bloch wave IIj3590. In the homogenous medium, this
wave represents the electromagnetic plane wave with the
wave vector K+ ,,+=(-0.648,0). Yet it is described by the
wave vector k=(0.352,0) after the band folding. Conse-
quently, the scalar product k-v, is found to be negative,
although this wave propagates in a usual homogenous
medium. This contradiction results from the artificial

band folding, which assigns an unjustified importance to
the wave vector of the first BZ. The correct choice for k is
Kk, ,,* for which the scalar product k- v, is naturally posi-
tive.

When the same approach is applied to PhCs, Bloch
waves of the second band must be characterized by the
wave vector Kk, ,+ located in the second BZ. With this
choice, the scalar product k,: vy is always positive.
This result indicates that there is no fundamental differ-
ence between the physical properties of the first and sec-
ond bands. In particular, the negative sign of the product
k-v, reported in previous papers is a consequence of the
band folding and has limited physical meaning. Thus
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PhCs cannot be considered LHMs at the energies corre-
sponding to the second band. To generalize this result, the
sign of k, ,,+- v has been calculated for the first bands of
many types of PhC and has never been found to be nega-
tive. In conclusion, PhCs do not generally satisfy the stan-
dard definition of LHMs.

4. REFRACTION PROPERTIES OF
TWO-DIMENSIONAL PHOTONIC CRYSTALS

Although negative refraction has been experimentally ob-
served in Pth,15’16 the Fourier analysis performed above
clearly demonstrates that PhCs are not LHMs. In this
section we illustrate our Fourier analysis with the ex-
ample of light refraction at the interface between an ho-
mogenous medium and a 2D-PhC. In particular, we show
that negative refraction effects observed in PhCs result
from the specific nature of Bloch waves.

Let us consider first the well-known case of a plane
wave launched from air into a dielectric material. The re-
fraction is described by the Snell-Descartes law,
nqsin(6;)=ngq sin(6y), where n,6; and nq, 6, are the re-
fractive index and direction of the incident and refracted
beams, respectively. A graphical solution to this problem
can be provided by EFS analysis. In homogenous media
the EFSs consist of circles whose radii are proportional to
both the refractive index of the material and the wave fre-
quency (|k|=nw/c). The EFSs corresponding to the energy
of the incident plane wave are represented for the air and
the dielectric in Figs. 12(a) and 12(b), respectively. The
wave vector k; of the refracted plane wave is defined by
the continuity of the tangential component of the incident
wave vector k; across the interface (%, conservation) be-
cause of the translational invariance of the system. The
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group velocity v; is then given by the gradient vector of
the EFS. In this case the EFS is a circle, so the propaga-
tion direction is always parallel to the wave vector. Note
that the % -conservation line crosses the EFS at point B:
This plane wave is not excited in the dielectric with this
geometry as it is backward propagating with respect to
the interface.

A convenient way to extend the EFS analysis to light
refraction into PhCs is to consider which plane waves im-
pinging on a PhC are able to excite a given Bloch wave.
Let us consider, for example, the Bloch wave II_g 49 .24
propagating in the strongly modulated 2D-PhC discussed
in Section 3. Its graphical representation is depicted in
Fig. 13(b). To excite this Bloch wave, the incident beam
must satisfy two conditions. First, its energy must be con-
served, so the incident plane wave must belong to the cor-
responding EFS in the homogenous medium, i.e., the
circle in Fig. 13(a). Second, the parallel component of the
wave vector must be conserved along the interface (x
axis). Projecting the wave vectors k, ,, of Bloch wave
II_g.49,-0.24 on this axis, we obtain the following series of
parallel components:

Rinm=Knm - ex=k-ex+m2mnla. (20)

To generalize the k-conservation rule, all these parallel
components must be conserved along the interface, and
the kj-conservation line in Fig. 12 must be replaced by a
k-conservation comb in Fig. 13. In particular, the incident
plane wave must have a wave vector whose projection cor-
responds to one of the &, ,, components. The conservation
of the other components is provided by the backward-
diffracted waves. The components that cross the circle in
Fig. 13(a) are conserved with reflected plane waves (k.
and k,,), and the others are conserved with evanescent
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Fig. 10. EFS plots of a homogenous medium. (a) The EF'S of the first band (z € [0,0.327]) and (b) the standard representation of the EF'S
of the second band folded in the first BZ (u €[0.327,0.463]). Bloch waves are characterized by the wave vector k=K, and the frequency
increases outward (inward) in the first (second) band. Note that v, and k point in opposite directions in case (b), thus erroneously sug-
gesting left-handed material (LHM) behavior. (c) EFS of the second band in the second BZ. Here Bloch waves are characterized by the
wave vector k, ,,* of their dominant Fourier component (located in the second BZ). We see that the frequency increases outward and that
vg and Kk, ,* point in the same direction, thus indicating the expected right-handed behavior.
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Fig. 11.

Global EFS plots of the first four bands of (a) the homogenous medium, (b) the weakly modulated 2D-PhC, and (c) the strongly

modulated 2D-PhC. Bloch waves are represented by the wave vector k,+ ,,* of their dominant Fourier component. The continuous pro-
gression from a homogenous material to a strongly modulated material can be seen without any evidence of left-handed behavior.
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Fig. 12. Description of light refraction from air into a dielectric
material by use of EFS analysis. (a) EFS in air. The wave vector
k;(k,) and the group velocity v;(v,) of the incident (reflected)
plane wave are indicated on the EFS by the thin and thick ar-
rows, respectively. (b) EFS in the dielectric. The intersection of
the kj-conservation line with the EFS (point A) gives the wave
vector k; of the transmitted plane wave. The other intersection
(point B) corresponds to a backward-propagating wave that is not
excited in this case. Point C gives the wave vector k, of the re-
flected plane wave. (¢) Summary of the propagation directions of
the incident, transmitted, and reflected waves.

waves having an imaginary ., component. According to
diffraction theory, each incident plane wave whose wave
vector’s projection is equal to one of the &, ,, is scattered
by the periodic PhC structure into the Bloch wave
II_o.42.-024- In this example, two possible incident plane
waves fulfill this condition. The first corresponds to the
plane wave with the wave vector k;; and excites the Bloch
wave through the parallel component k-ey; see Fig. 13(a).
However, by use of the parallel component k-e,+27/a,
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Fig. 13. Description of light refraction from a dielectric material
into a 2D-PhC with EFS analysis. Here the k-conservation line
used in Fig. 12 must be replaced by a k-conservation comb. We
search for the incident plane waves that can excite a Bloch wave
in the second band, e.g., II_g 49 _¢ 24 represented in (b). The stan-
dard solution is obtained by the conservation of the &, component
k-e, and corresponds to the plane wave with the wave vector k;;
in (a). By use of the &, component k-e,+27/a, the incident plane
wave with the wave vector k;, can also excite the Bloch wave
1Ly 5 0.45- In both cases there are back-reflected plane waves char-
acterized by the wave vectors k,; and k,,. The other %, compo-
nents, e.g., k-e,—27/a, are conserved by evanescent waves with
imaginary &, components, e.g., k,3. The EFS for such waves are
indicated in (a) by dashed curves for which the y axis has imagi-
nary units. (¢c) A summary of the propagation directions of the in-
cident, transmitted, and reflected waves. We observe that the in-
cident plane wave Kk;; is negatively refracted, unlike Kk;,.
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the plane wave with the wave vector k;, can also be trans-
mitted into the Bloch wave II_¢ 49 _¢ 24. Note that this sec-
ond solution would be discarded with an EFS analysis re-
stricted to the first BZ. In this case, only the conservation
of the parallel component k-e, is considered, and the
ability to excite the Bloch wave through other parallel
components is neglected. This result once again high-
lights the limits of an approach that focuses on the first
BZ.

We can now qualitatively describe the refraction pro-
cess at the interface between an homogenous medium and
a PhC. When the incident plane wave impinges on the in-
terface, the periodic lattice of holes acts as a diffraction
grating, scattering the incident light forward (refraction)
and backward (reflection). As shown by Foteinopoulou et
al.** after a transient time, the diffraction process
reaches a steady state, which is the excited Bloch wave.
Hence the Bloch wave is composed of the various waves
resulting from the diffraction of the incident plane wave
in the PhC, and therefore light refraction into PhCs
should be considered a diffraction process.

Having established the physics of light transmission
between an homogenous medium and a PhC, we can now
consider the negative refraction effect observed in PhCs.
In the example depicted in Fig. 13, the Bloch wave
IT_y.49,-0.24 can be excited independently by either plane
wave Kk;; or K;s. This Bloch wave lies in the second disper-
sion band, and its dominant wave vector k,,+ ,,* is located
in the second BZ. The direction of its group velocity is dic-
tated by the direction of k,*,,* as shown in Section 3.
When the solution k;, is considered, the projections of v;o
and v, point in the same direction, and positive (stan-
dard) refraction is obtained. Whereas the plane wave k;;
gives rise to the negative refraction because the projec-
tions on the interface of v;; and v, point is opposite direc-
tions. This demonstrates that whether positive or nega-
tive refraction occurs depends on the direction of the
incident plane wave, and, equally, either can be observed
for the same Bloch wave. It is important to note that an
EFS analysis restricted to the first BZ would not point
this out.

Finally, when one considers the solution k;;, the physi-
cal origin of the negative refraction can be considered.
Once the Bloch wave II_j49_024 has been excited, its
propagation direction is dictated by its dominant wave
vector k,+,*. Nevertheless, although the wave vectors
k, o have negligible energetic contributions, they create
the parallel component k-e, used by k;; to excite the
Bloch wave. In conclusion, at the interface between a PhC
and an homogenous material, a Bloch wave possess sev-
eral k; components that provide different excitation chan-
nels. Negative refraction occurs when the &, component
used for coupling and the %, component of the dominant
wave vector k,+,,+ are different and point in opposite di-
rections. This situation can be compared with a blaze ef-
fect in a standard grating diffraction process.

5. CONCLUSION

We have shown that Fourier analysis of Bloch waves can
provide a simple and intuitive method for understanding
the propagative and refractive properties of light in PhCs.
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In previous studies the chosen wave-vector component to
describe Bloch wave propagation has been taken from the
first BZ. Although this is adequate for the first band, it
can yield erroneous conclusions for higher-order bands.
Unlike plane waves, Bloch wave propagation is not gov-
erned by a single wave vector because these waves pos-
sess multiple translational internal symmetries. A more
appropriate choice is the wave vector of the plane wave
that dominates the Fourier decomposition of the Bloch
wave. Such a choice provides a common and consistent
description of both the homogenous medium and the PhC.
This approach always yields a positive sign for the scalar
product k- v, and points to the fact that PhCs are not in-
trinsically left handed. The negative refraction phenom-
enon observed in 2D-PhC originates from the specific
properties of electromagnetic Bloch waves: The internal
wave vector responsible for the propagation direction can
differ from those responsible for the coupling with the in-
cident plane wave. The excited Bloch wave results from
the scattering of the incident radiation at the PhC inter-
face, and therefore negative refraction must be under-
stood as a diffraction phenomenon.
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