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Fourier analysis of Bloch wave propagation
in photonic crystals
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The standard representation of an optical field propagating in a photonic crystal (PhC) is an electromagnetic
Bloch wave. We present a description of these waves based on their Fourier transform into a series of electro-
magnetic plane waves. The contribution of each plane wave to the global energy and group velocity is detailed,
and the valid domain of this decomposition is discussed. This description brings new insight to the fundamen-
tal properties of light propagation in PhCs. Most notably, it permits a continuous description of light propaga-
tion from the homogenous medium to the strongly modulated PhC case. It also provides an original physical
understanding of negative refraction in PhCs and resolves inconsistencies that result from band folding.
© 2005 Optical Society of America

OCIS codes: 130.2790, 260.2110.
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. INTRODUCTION
he propagation of an electromagnetic field in a periodic
ielectric structure can be strongly modified when the lat-
ice dimension is of the order of the light wavelength.
uch periodic structures are called photonic crystals1

PhCs) and allow the control of light at the wavelength
cale.2 In particular, PhCs can forbid light propagation at
ertain energies, thus creating the so-called photonic
andgap1,2 (PBG). Confining light in this way has created
ew means to tailor light–matter interaction3,4 and has
ade PhCs promising materials for integrated optics.5,6

In the late 1970’s, remarkable light dispersion proper-
ies of periodic media were demonstrated and studied.7–9

ecently these interesting effects have been studied in
hCs,10–12 paving the way for new concepts and applica-
ions. For example, phenomena such as negative
efraction,13–17 superprism,18–20 and self-collimation21–23

ave been predicted and observed experimentally. In par-
icular, several authors11,14 have suggested that the group
elocity and the wave vector of waves propagating in
hCs can be antiparallel for a certain frequency range. In
his respect, PhCs can behave as left-handed materials24

LHMs), and a negative refractive index can be defined.
owever, Notomi et al.11 have noticed that some defini-

ions of refractive index lead to inconsistencies. For ex-
mple, a homogenous medium regarded as a PhC with
anishing modulation retains an unphysical negative in-
ex value. Therefore, although negative refraction has
een simulated and observed experimentally in PhCs, its
hysical understanding and connection with LHM prop-
rties still requires further investigation.

Owing to the periodic nature of PhC structures, electro-
agnetic Bloch waves are generally used to represent the

ropagation of the optical field in PhCs.7 In this paper we
resent a description of these waves based on their Fou-
ier transform into a series of electromagnetic plane
aves. This description aims to give an intuitive under-

tanding of these interesting effects and to answer some
0740-3224/05/061179-12/$15.00 © 2
f the outstanding questions. In Section 2 we begin by de-
cribing the properties of Bloch waves in one-dimensional
hCs (1D-PhCs). After decomposing Bloch waves into se-
ies of plane waves, we then explain the contribution of
ach plane wave to the global energy and group velocity
nd discuss the valid domain of this decomposition. We
lso show how this approach resolves the inconsistencies
bserved for vanishing modulations. In Section 3 we gen-
ralize the results obtained in Section 2 to the two-
imensional (2D) case. Finally, in Section 4 we show that
his description provides a physical understanding of the
egative refraction that can occur at the interface be-
ween PhCs and homogenous media.

. BLOCH WAVES IN ONE-DIMENSIONAL
HOTONIC CRYSTALS
ere we consider the propagation of an electromagnetic
loch wave in a 1D-PhC. The alternating dielectric slabs
ave susceptibilities «1 and «2 and widths a1 and a2, re-
pectively. The lattice period is thus a=a1+a2. We con-
ider a wave propagating along the x direction perpen-
icular to the surface of the dielectric layers and linearly
olarized in the y direction (Fig. 1). According to the Bloch
heorem,25 the corresponding magnetic field Hk satisfies
he following relation:

Hksxd = Hksxdez = H0uksxdexpsikxdez, s1d

here H0 is the field amplitude, kP f−p /a ,p /af is the
ave number, and uk is a normalized periodic function
ith period a. By use of the periodicity of uk, Hk can be
xpanded in a series, i.e.,

Hksxd = o
n

hnskdH0 expFiSk + n
2p

a
DxG , s2d

here each hnskd is a dimensionless Fourier coefficient of
he function u . Note that the normalization of u re-
k k

005 Optical Society of America
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uires onuhnskdu2=1. In Eq. (2) the spatial Fourier trans-
orm of the magnetic field is characterized by amplitude
eaks hnskdH0 located at the wave vectors kn=k+nK,
here K=2p /a. With the same arguments, the electric
eld Eksxd=Eksxdey and the electric flux density Dksxd
Dksxdey can also be expanded as a Fourier series:

Eksxd = o
n

Enskd expsiknxd, s3d

Dksxd = o
n

Dnskd expsiknxd. s4d

To manipulate dimensionless quantities and thus sim-
lify the following calculations, one can express the Fou-
ier coefficients Enskd and Dnskd without loss of generality
s

Enskd = enskdm0cH0, s5d

Dnskd = dnskdH0/c, s6d

here c is the speed of light in a vacuum, m0 is the
acuum permeability, and enskd and dnskd are dimension-
ess coefficients. Maxwell’s equations ¹3H=−ivD and ¹

E =ivm0H, together with the constitutive relation D
«0«E and the Fourier expansion 1/«sxd=onkn expsinKxd,
ield the following relations between the coefficients hnskd,
nskd, and dnskd:

dnskd = hnskd

knc

v
, s7d

hnskd = enskd

knc

v
, s8d

enskd = o
n8

kn−n8dn8skd. s9d

Substituting Eqs. (7) and (9) into Eq. (8), we obtain the
ollowing relation for each integer n:

o
n

kn−n8knkn8hn8skd = Sv

c
D2

hnskd. s10d

ig. 1. Representation of the 1D PhC structure analyzed in this
aper. The alternating dielectric slabs have susceptibilities «1
nd «2 and widths a1 and a2. The lattice period is a=a1+a2. We
onsider electromagnetic Bloch waves propagating along the x di-
ection perpendicular to the surface of the dielectric layers and
inearly polarized in the y direction.
8

For unuøN, Eq. (10) is the standard eigenvalue problem
sed in the plane-wave expansion (PWE) method for pho-
onic band calculations.26 For a given kP f−K /2 ,K /2f, the
2N+1d3 s2N+1d Hermitian matrix Mk

Nsp ,qd=kp−qsk
pKdsk+qKd has 2N+1 positive eigenvalues

svi /cd2gi=1. . .2N+1. The corresponding eigenvectors Hk,i sat-
sfy Mk

N ·Hk,i= svi /cd2Hk,i and give the Fourier coefficients
nsk,id. In that the computation of photonic band diagrams
equires only the eigenvalues, the corresponding eigen-
ectors are normally discarded. We will show that these
omponents contain information that is essential for a
omprehensive understanding of Bloch wave propagation.
o do this, we start by describing the field properties in
erms of the Fourier coefficients hnskd.

By use of Eqs. (7) and (8), the time–space average en-
rgy density kEklt,s of the Bloch wave can be developed as
unction of the hnskd coefficients:

kEklt,s =K1

2

B · H*

2
+

1

2

E · D*

2 L
s

= o
n

1

2
m0uhnskdu2H0

2.

s11d

Even though this expression could be simplified to
1
2m0H0

2, the above form highlights the importance of the
nskd coefficients. As it shows that kEklt,s can be decom-
osed into fractional energy densities Enskd=

1
2m0uhnskdu2H0

2

orresponding to the energy density of an electromagnetic
lane wave with the magnetic field amplitude hnskdH0.
imilarly, we develop the time–space average Poynting
ector kSklt,s:

kSklt,s =KReSE 3 H*

2
DL

s

= o
n

1

2
m0cuhnskdu2H0

2
v

knc
ex.

The partial Poynting vector kSnskdl
1
2m0cuhnskdu2H0

2sv /kncdex corresponds to the Poynting vec-
or of an electromagnetic plane wave with the wave vector
n and the magnetic field amplitude hnskdH0.
The results obtained above are summarized in Table 1,

nd the corresponding relations for an electromagnetic
lane wave are given for comparison. Using Maxwell’s
quations, we have obtained Ek, Dk, kEklt,s, and kSklt,s in
erms of the Fourier coefficients of Hk. For each of these,
hen the nth component is considered individually, it al-
ays corresponds to the case of an electromagnetic plane
ave with the wave vector kn and the magnetic field am-
litude hnskdH0. This shows that a one-dimensional (1D)
lectromagnetic Bloch wave can be decomposed into a se-
ies of electromagnetic plane waves. Although this may
eem obvious in the 1D case, in Section 2 we show that its
eneralization to the 2D case is not straightforward. The
th plane wave is characterized by the magnetic field am-
litude hnskdH0 and the wave vector kn. Its contribution to
he global field is given by uhnskdu2, which is the ratio be-
ween the energy carried by this plane wave and the total
nergy carried by the Bloch wave. In spite of these simi-
arities, the nth plane wave is not an electromagnetic
lane wave, as it does not individually satisfy Maxwell’s
quations unlike the global Bloch wave,7 i.e., is not an ei-
envector of Eq. (10) for the eigenvalue v. Therefore the
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th plane wave is not an eigenvalue of the field equations
nd exists only as part of the Bloch wave.
Finally, we develop the group velocity vg, which is

qual in periodic media27 to the energy velocity ve:

vg = ve =
kSklt,s

kEklt,s
= o

n

uhnskdu2
v

kn
ex. s12d

The group velocity is simply given by the sum of the
roup velocities vn=v /kn of the plane waves weighted by
heir energetic contribution uhnskdu2. The Fourier decompo-
ition of a Bloch wave is illustrated in Fig. 2. The nth
lane wave is represented by a disk located at the point
kn ,ud: The gray level of the disk indicates the energetic
ontribution of this plane wave sblack→1,white→0d. The
ontribution to the total group velocity vg is indicated by
n arrow whose length is proportional to uhnskdu2v /kn. The
ositive and negative parts of the jth Brillouin zone are
abeled j+BZ and j−BZ, respectively. In this example, k0
k, k−1=k−K, and k1=k+K are in the first, second, and

hird BZs, respectively.
Having established the basic description of Bloch

aves and their decomposed plane waves in a periodic
aterial, we now look at their propagation in three differ-

nt 1D-PhCs with varying index modulations: Dn=0, 1.2,
nd 2.3. The parameters of the 1D-PhCs are as follow: ho-
ogenous medium s«1=«2=4.67d, weakly modulated 1D-
hC («1=2.43 and «2=7.62), and strongly modulated 1D-
hC («1=1 and «2=11). To ensure we examine only the
ifference arising from the magnitude of the modulation,
ll other parameters remain identical, i.e., a1=a2=a /2
nd knl=2.16 (average refractive index). Using the PWE
ethod, we plot in Fig. 3 (seen on next page) the disper-

ion diagrams for the first three bands of the 1D-PhCs.
he two modulated 1D-PhCs exhibit two PBGs splitting
he energy range into three allowed photonic bands (I, II,
nd III). A Bloch wave with the wave vector k located in
and X=I, II, or III is labeled Xk.
The Bloch waves propagating in the positive x direction

f the three different 1D-PhCs are represented in Fig. 4
the representation is the same as in Fig. 2). The arrows
ndicating the contributions to the global group velocity
re drawn for waves I , I , II , and II .

Table 1. Comparison between the Charact
and the 1D Electr

ave Properties (1D) Electromagnetic Bloch Wave

agnetic field Hk=SnHnskd

lectric field Ek=SnEnskd

ime–space-averaged
nergy density kEklt,s=SnEnskd=

1
2m0H0

2

ime–space-averaged
oynting vector

kSklt,s=SnSnskd

roup velocity vg=Snuhnskdu2vn
0.25 0.5 −0.5 −0.25
In the homogenous medium [Fig. 4(a)], the solution to
axwell’s equations at energy v is an electromagnetic

lane wave with wave vector k=Î«v /c. This plane wave
an be regarded as a particular Bloch wave for which hnskd
s equal to 1 for a unique integer n* and 0 otherwise. The
orresponding representation is characterized by a single
lack disk shn*skd=1d located at the point skn* ,ud, where

n*=Î«v /c. When all the waves are represented on the
lobal diagram, their black disks overlap to draw the
tandard dispersion line of an homogeneous medium.
ence this representation of Bloch waves gives self-

onsistent results when the PWE method is applied to an
omogeneous medium, represented here as a 1D-PhC
ith zero index contrast. The Bloch wave decomposition
ere is totally dominated by the single plane-wave solu-

cs of the 1D Electromagnetic Bloch Wave
netic Plane Wave

nth Component Electromagnetic Plane Wave

skdsxd=hnskdH0 expsiknxdez Hksxd= expsikxdez

d=m0chnskdH0
v

knc
expsiknxdey Eksxd=m0cH0

v

kc
expsikxdey

Enskd=
1
2m0uhnskdu2H0

2 kEklt,s= 1
2m0H0

2

nskd=
1
2m0uhnskdu2H0

2 v

kn
ex kSklt,s=

1
2

m0H0
2v

k
ex

vn=
v

kn
ex vg=

v

k
ex

ig. 2. Graphical representation of a Bloch wave with energy
=0.14 and wave vector k=0.38 propagating in a 1D-PhC. The
and diagram (black curve) of the 1D-PhC is repeated in the dif-
erent Brillouin zones. The plane waves that collectively form
his Bloch wave are represented by disks located at the points
kn ,ud. The gray level of each disk indicates the energetic contri-
ution of the corresponding plane wave, i.e., the ratio between
he energy carried by this plane wave and the total energy car-
ied by the Bloch wave sblack→1,white→0d. The contribution of
he nth plane wave to the total group velocity vg of the Bloch
ave is indicated by an arrow whose length is proportional to

hnskdu2v /kn. The vectorial sum of all these arrows gives vg.
eristi
omag

Hn
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ion of Maxwell’s equations. The index of this component
s labeled n*: n*=1 for Bloch waves within the first band,
*=2 for Bloch waves within the second band, n*=3 for
loch waves within the third band, and so forth.
When a weak modulation is introduced into the PhC, as

s the case in the weakly modulated 1D-PhC [Fig. 4(b)],
nly the vicinity of the BZ boundaries is affected. Inside
he transmission bands, the Bloch wave remains similar
o the plane-wave n* solution of the homogeneous me-
ium. For example, more than 98% of the total energy of
loch wave I0.25 is carried by plane wave n*=1. When the
and edge is approached, some of the Bloch wave energy
s transmitted from plane wave n* to plane wave n*−1. At
he band edge, the energy is equally distributed between
hese two contrapropagating plane waves. The resulting
loch waves are the symmetric and antisymmetric stand-

ng waves I0.5 and II−0.5. Because kn*=−kn*−1s=K /2d, their
roup velocities are zero; see Eq. (12).

For the strongly modulated 1D-PhC [Fig. 4(c)], the
arge increase of the index contrast affects the whole
ransmission band. The energy is now distributed be-

ig. 3. Photonic band diagrams for three different 1D-PhCs
ith increasing index contrasts. The light gray, dark gray, and
lack curves denote the homogenous medium s«1=«2=4.67d, the
eakly modulated 1D-PhC («1=2.43 and «2=7.62), and the

trongly modulated 1D-PhC («1=1 and «2=11), respectively. The
BGs of the weakly and strongly modulated 1D-PhCs are indi-
ated, as are four characteristic Bloch waves: I0.25, II−0.25, I0.5, and
I−0.5. These waves located in the middle and at the edges of the
rst and the second bands are often used as examples in the text.

ig. 4. Graphical representation of the Bloch waves that propa
eakly modulated 1D-PhC, and (c) the strongly modulated 1D-P

ircles of adjacent Bloch waves overlap, and the arrows indicating
0.5, II−0.5, and II−0.25. We note that the dominant plane wave is lo
ween several plane waves even in the middle of the
ands, and the PBGs are larger. Yet plane wave n* still
ominates the decomposition inside the bands. For ex-
mple, plane wave n* carries 70% of the total energy of
loch wave II−0.25, whereas plane waves n*−1 and n*−2
orrespond just to 12% and 2%. Finally, it should be noted
hat the plane wave n* is not necessarily located in the
rst BZ. In fact, this wave lies within the second BZ for
loch waves of the second transmission band, within the

hird BZ for Bloch waves of the third transmission band,
tc. This intrinsic property is essential for a consistent de-
cription of Bloch waves in PhCs.

The previous description brings new insight for the un-
erstanding of light propagation in PhCs. In particular, it
learly describes the direction of the group velocity and
he transition from the homogeneous medium to the
trongly modulated 1D-PhC. There is one last aspect we
ish to consider before generalizing our results to the 2D

ase, that is, the definition of a phase refractive index for
Bloch wave. Dowling and Bowden28 first defined it by

sing the textbook formula np= ukuc /v, where k is taken
rom the first BZ. They obtained the anomalous behavior
ketched in Fig. 5(a), which predicts small refractive in-
ices for PhCs. Notomi11 noticed that this method leads to
bnormal results for a homogeneous medium and con-
luded that this definition has no physical meaning. Us-
ng the description developed in this paper, we can re-

ove this inconsistency. Having shown that a Bloch wave
s composed of plane waves propagating at their own
hase velocities vn=v /kn, we conclude that no global
hase-front velocities can be physically attributed to the
lobal Bloch wave. The main flaw in Dowling and
owden’s definition lies in attributing the phase velocity
0=v /k0 of the plane wave located in the first BZ. To il-

ustrate this, we consider the phase velocity of plane wave
I−0.25 in the homogeneous medium. Dowling and
owden’s definition assigns it the wave vector k=k0
−0.25, although this standard plane wave is entirely de-
cribed by the wave vector kn*=k1=0.75. Thus the small
alues of the phase refractive index observed in Fig. 5(a)
esults from the artificial band folding and are not physi-
al.

We conclude that no phase index can be physically as-
igned to Bloch waves as these waves possess many phase

the positive x direction of (a) the homogenous medium, (b) the
he Bloch waves have the same representation as in Fig. 2: The
ntributions to the group velocity are drawn for Bloch waves I0.25,
in the first BZ for the first band, in the second BZ for the second
gate in
hC. T
the co

cated
and, and forth on.
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elocities. Finally, it should be noted that one can obtain
elf-consistent results for the transition from a homoge-
eous medium to a PhC by considering the quantity

kn*uc /v instead of uk0uc /v [Fig. 5(b)]. However, this quan-
ity characterizes only the velocity of the dominant phase
ront of the Bloch wave and is not a useful value.

. PROPAGATION OF BLOCH WAVES IN
WO-DIMENSIONAL PHOTONIC
RYSTALS

n this section the preceding results are generalized to the
D case. The structure consists of a square lattice of di-
lectric rods with susceptibility «2 embedded in a dielec-
ric medium with susceptibility «1 (Fig. 6). The period is
, and the rod radius is r. The filling factor is f=pr2 /a2,
nd the average susceptibility k«l is given by k«l= f«1+ s1
fd«2. The z axis is parallel to the rods, and only Bloch
aves propagating in the xy plane are considered. A typi-

al dispersion diagram of such a structure is depicted in
ig. 7. In the following analysis, we will consider TM-
olarized waves sE iezd.
As in the 1D case, the different fields satisfy the Bloch’s

heorem and can be expanded as a Fourier series:

ig. 5. Phase index ukuc /v versus energy for the investigated
D-PhCs. The light gray, dark gray, and black curves denote, re-
pectively, the homogenous medium, the weakly modulated 1D-
hC, and the strongly modulated 1D-PhC. (a) The wave vector k
sed in the calculation corresponds to the wave vector k=k0 of
he plane wave located in the first BZ. From this definition,
eaningless values are observed for the phase index in PhCs27

nd the standard results for an homogenous medium11 are not
ecovered. (b) The wave vector k corresponds to the wave vector
n* of the plane wave that dominates the Fourier decomposition
f the Bloch wave.
Hksrd = o
n,m

hn,mskdH0 expfisk + Gn,md · rg, s13d

Eksrd = o
n,m

en,mskdm0cH0 expfisk + Gn,md · rg, s14d

Dksrd = o
n,m

dn,mskd

H0

c
expfisk + Gn,md · rg, s15d

here H0, c, m0, r, and k are defined as in the 1D case;
n,m are the reciprocal vectors; and hn,mskd, en,mskd, and
n,mskd are dimensionless vectors. Note that for TM polar-

zation, en,mskd=en,mskdez and dn,mskd=dn,mskdez. Maxwell’s
quation ¹3H=−ivD and ¹3E= ivm0H, together with
he constitutive relation D=«0«E and the Fourier expan-
ion 1/«srd=on,mkn,m expsiGn,mrd, lead to the following
ectorial relations:

ig. 6. Top view of the investigated 2D-PhC. A square lattice of
ielectric rods with susceptibility «2 is embedded in a dielectric
edium with susceptibility «1. The lattice period is a, and the rod

adius is r. We consider TM-polarized sE iezd Bloch waves propa-
ating in the xy plane perpendicular to the rods.

ig. 7. Photonic band diagrams of an homogenous medium («1
«2=4.67, dashed gray curve) and a strongly modulated 2D-PhC

«1=1 and «2=11, black curve). For comparison, both of them
ave the same filling factor f=50% and the same average refrac-
ive index knl=2.16. The three highly symmetric points G, M, and

of the square lattice are indicated.
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dn,mskd = −
kn,mc

v
3 hn,mskd, s16d

hn,mskd =
kn,mc

v
3 en,mskd, s17d

en,mskd = o
n8,m8

kn−n8,m−m8dn8,m8skd, s18d

here kn,m=k+Gn,m. Substituting Eqs. (16) and (17) into
q. (18) gives the equation for the coefficients en,mskd:

o
n8,m8

kn−n8,m−m8ukn,muukn8,m8u
en8,m8skd

ukn,mu
= Sv

c
D2en,mskd

ukn,mu
.

s19d

or unu, umuøN, Eq. (19) is the standard eigenvalue equa-
ion used in the PWE method to compute the dispersion
elations of TM-polarized waves in 2D-PhCs.26 The eigen-
ectors give the coefficients en,mskd / ukn,mu from which the
ectors en,mskd can be easily deduced. The vectors hn,mskd
nd dn,mskd can then be calculated29 from Eqs. (17) and
16).

To generalize the 1D-PhC results, we must describe the
eld properties in terms of the vectors hn,mskd. A simple
alculation leads to the expressions reported in Table 2.
s in the 1D case, these results show that a TM-polarized
loch wave can be decomposed into a Fourier series of
M-polarized plane waves. Note, however, that the gener-
lization of this result for TE-polarized waves is not
traightforward.30 The sn ,mdth plane wave is character-
zed by the magnetic field amplitude hn,mskdH0 and the
ave vector kn,m. Its contribution to the global field is
iven by the quantity uhn,mskdu2, which is the ratio between
he energy carried by this plane wave and the total en-
rgy carried by the Bloch wave. As in the 1D case, this
seudoelectromagnetic plane wave does not necessarily
atisfy Maxwell’s equations. Therefore the sn ,mdth plane
ave is not an eigenvalue of the field equations and exists

nly in the PhC as part of the Bloch wave. We illustrate
he decomposition with an example in Fig. 8. In Fig. 8(a)
he sn ,mdth plane wave is represented by a disk located
t k : The gray level of the disk indicates the energetic

Table 2. Comparison between the Charact
and the 2D Electr

ave Properties (2D) Electromagnetic Bloch Wave

agnetic field Hk=Sn,mHn,mskd H

lectric field Ek=Sn,mEn,mskd En,msk

ime-space-averaged
nergy density kEklt,s=Sn,mEn,mskd=

1
2m0H0

2

ime-space-averaged
oynting vector

kSklt,s=Sn,mSn,mskd

roup velocity vg=Sn,muhn,mskdu2vn,m
n,m
ontribution uhn,mskdu2 of this plane wave sblack
1,white→0d. The group velocity is given by the vecto-

ial sum of the phase velocities vkn,m /kn,m
2 , weighted by

he energetic contributions uhn,mskdu2 of the corresponding
lane waves. Because each term can be physically inter-
reted, this approach provides an intuitive understanding
f the direction of the group velocity as illustrated in Fig.
(b). From the center of the disk, the vector

hn,mskdu2vkn,m /kn,m
2 shows the contribution of the

n ,mdth plane wave to the global group velocity. The
igher-order BZs are indicated with dashed lines. In this
xample, k0,0, k−1,0, k0,−1, and k0,1 are in the first, second,
hird, and fourth BZs, respectively.

To illustrate this description, we consider the propaga-
ion of Bloch waves in 2D-PhCs with different index con-
rasts: a homogenous medium, a weakly modulated 2D-
hC, and a strongly modulated 2D-PhC. Their respective
usceptibilities are the same as in the 1D case, and they
ll have the same filling factor f=50% and average index
nl=2.16. Generalizing Fig. 4, we study in Fig. 9 the ef-
ects of the modulation by looking at the energetic compo-
ition of the Bloch waves located in the first three bands
f these 2D-PhCs. Each Bloch wave is represented as de-
cribed in Fig. 8. Here the disks of adjacent Bloch waves
verlap, and the contributions to the group velocity are
ot indicated.
In an homogeneous medium, which is represented by a

D-PhC with zero index contrast [Fig. 9(a)], the plane-
ave solution of Maxwell’s equation is artificially distrib-
ted in bands according to the position of the wave vector
. When k is located in the first, second, or third BZ, the
ave is assigned to the first, second, or third band, re-

pectively. As in the 1D case, each of these particular
loch waves is represented by a single black dot located
t k. Therefore the global graphical representations of the
rst, second, and third bands are simply the first, second,
nd third BZs filled in black.
The introduction of a weak modulation [Fig. 9(b)] does

ot strongly influence the solutions except at the BZ
oundaries, i.e., the Fourier decomposition is still largely
ominated by the plane-wave sn* ,m*d solution in the ho-
ogenous medium case. At the vicinity of the BZ bound-

ries, the decomposition is dominated by the two plane
aves located in the neighboring BZs. For example, Bloch

cs of the 2D Electromagnetic Bloch Wave
netic Plane Wave

n ,mdth Component Electromagnetic Plane Wave

srd=hn,mskdH0 expsikn,m ·rd Hksrd=H0 expsik·rd

0uhn,mskduH0
v

ukn,mu
expsikn,m ·rdez Eksrd=m0H0

v

uku
expsik·rdez

,mskd=
1
2m0uhn,mskdu2H0

2 kEklt,s= 1
2m0H0

2

=
1
2

m0uhn,mskdu2H0
2 v
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1
2
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2 v

k2k

vn,m=
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ave I0.47,0 lies in the first band with its dominant plane
ave fkn*,m*= s0.47,0dg located in the first BZ; see Fig.
(b). Because this Bloch wave lies in the vicinity of the
econd BZ border, part of its energy is carried by the
lane wave located in the second BZ fkn*−1,m*= s
0.53,0dg. At the border the energy of the global Bloch
ave is equally distributed between the two dominant
lane waves.

ig. 8. Graphical representation of a Bloch wave propagating in
2D-PhC. This wave with wave vector k= s0.3,0.1d and energy
=0.123 is located in the first band. The BZ boundaries are rep-
esented by dashed lines. The black circles indicate the equifre-
uency surfaces for the energy u=0.123. (a) The plane waves
hat collectively form the Bloch wave are represented by disks lo-
ated at their respective wave vectors kn,m. The gray level of each
isk indicates the energetic contribution of the corresponding
lane wave, i.e., the ratio between the energy carried by this
lane wave and the total energy carried by the Bloch wave
black→1,white→0d. (b) The contribution of the sn ,mdth plane
ave to the total group velocity vg of the Bloch wave is indicated
y a black arrow whose length is proportional to

hn,mskdu2kn,mv /kn,m
2 . The vectorial sum of all these arrows gives

.
g
Finally, the strongly modulated 2D-PhC [Fig. 9(c)] con-
rms the importance of the dominant plane wave sn* ,m*d

n the 2D case. Inside the bands, this wave still dominates
he Fourier decomposition and carries the largest part of
he Bloch wave energy; this characteristic is essential to
nderstand the physics of Bloch wave propagation in 2D-
hCs.
The analysis in terms of the equifrequency surfaces

EFSs) is a common way to investigate the propagation
irection of Bloch waves in 2D-PhCs; their group veloci-
ies are given by the gradient vectors of these curves.10

ormally, the EFSs are calculated for each band and
rawn inside the first BZ, thus characterizing each wave
ith the wave vector k=k0,0. As an example, the EFSs of

he first and second bands of the homogenous medium are
epresented in Figs. 10(a) and 10(b), respectively. In the
rst band, this diagram shows the expected concentric
ircles of the homogeneous medium. However, nonintui-
ive curves pointing inward are obtained for the second
and. This is a consequence of characterizing Bloch
aves according to the wave vector of the first BZ (band

olding).
As an illustration, we consider the plane wave with

nergy u=0.3 that propagates in the negative x direction
n the homogeneous medium. In the folded diagram, this
articular Bloch wave is identified by the wave vector k
k0,0= s0.352,0d. However, as shown above, this vector
as no physical meaning in that the unique (and there-

ore dominant) Fourier component of this wave is charac-
erized by the wave vector kn*,m*= s−0.648,0d and is lo-
ated in the second BZ. When this more physical
pproach of characterizing Bloch waves through their
ominant wave vector kn*,m* is adopted, the EFS of the
econd band is represented in the second BZ. With this
epresentation, we obtain the projection in the second BZ
f the concentric circles of the homogeneous medium [Fig.
0(c)] pointing outward as in the first BZ.
Thus, by our drawing the EFSs of the various bands in

heir respective BZs, the global diagram exhibits the ex-
ected EFS of an homogenous medium [Fig. 11(a)]. The
ame method can be applied to construct the global EFS
iagrams of the weakly and strongly modulated 2D-PhCs
Figs. 11(b) and 11(c)]. With this pictorial representation,
he three cases can be compared easily. The modulation
ransforms continuously the disks of the homogeneous
edium to the segmental disks of the modulated PhC
ith no abrupt modification of the EFS. In particular, all

he EFSs point outward, contrary to the common belief
hat in the second band of PhCs they point inward.11,18,31

his unusual property resulted from the enforced repre-
entation of the EFS in the first BZ and erroneously
howed the EFS of the second band of the homogenous
edium pointing inward; see Fig. 10(b). Therefore the
egative curvature of the EFS is a result of the artificial
and folding and has no physical meaning. Thus it should
ot be invoked to explain the left-handed behavior of
hCs.
Left-handed materials (LHMs) are generally character-

zed by the negative sign of the scalar product k ·vg,
here k is the wave vector and vg is the group velocity. To

alculate this scalar product, we must assign a single
ave vector k to the wave. Unfortunately, Bloch waves
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re composed of many plane waves whose wave vectors
re all necessary to describe the global Bloch wave. Al-
hough there is no a priori reason to favor one of them,
he wave vector k=k0,0 located in the first BZ is generally
dopted to characterize Bloch waves in PhCs. Let us illus-
rate the consequences of this choice with the example of
loch wave II0.352,0. In the homogenous medium, this
ave represents the electromagnetic plane wave with the
ave vector kn*,m*= s−0.648,0d. Yet it is described by the
ave vector k= s0.352,0d after the band folding. Conse-
uently, the scalar product k ·vg is found to be negative,
lthough this wave propagates in a usual homogenous
edium. This contradiction results from the artificial

ig. 9. Graphical representation of the TM-polarized Bloch wave
ated 2D-PhC, and (c) the strongly modulated 2D-PhC. We conside
he BZ boundaries are represented by dashed lines. Each Bloch w
aves overlap, and the contributions to vg are not indicated. We
rst band, in the second BZ for the second band, and so forth. No
odulation is increased.
and folding, which assigns an unjustified importance to
he wave vector of the first BZ. The correct choice for k is
n*,m* for which the scalar product k ·vg is naturally posi-

ive.
When the same approach is applied to PhCs, Bloch

aves of the second band must be characterized by the
ave vector kn*,m* located in the second BZ. With this

hoice, the scalar product kn*,m* ·vg is always positive.
his result indicates that there is no fundamental differ-
nce between the physical properties of the first and sec-
nd bands. In particular, the negative sign of the product
·vg reported in previous papers is a consequence of the
and folding and has limited physical meaning. Thus

propagate in (a) the homogenous medium, (b) the weakly modu-
the waves located in the first (I), second (II), and third (III) band.
represented as described in Fig. 8: The circles of adjacent Bloch

e that the dominant plane wave is located in the first BZ for the
the contributions of the other plane waves become larger as the
s that
r only
ave is

observ
te that
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hCs cannot be considered LHMs at the energies corre-
ponding to the second band. To generalize this result, the
ign of kn*,m* ·vg has been calculated for the first bands of
any types of PhC and has never been found to be nega-

ive. In conclusion, PhCs do not generally satisfy the stan-
ard definition of LHMs.

. REFRACTION PROPERTIES OF
WO-DIMENSIONAL PHOTONIC CRYSTALS
lthough negative refraction has been experimentally ob-
erved in PhCs,15,16 the Fourier analysis performed above
learly demonstrates that PhCs are not LHMs. In this
ection we illustrate our Fourier analysis with the ex-
mple of light refraction at the interface between an ho-
ogenous medium and a 2D-PhC. In particular, we show

hat negative refraction effects observed in PhCs result
rom the specific nature of Bloch waves.

Let us consider first the well-known case of a plane
ave launched from air into a dielectric material. The re-

raction is described by the Snell–Descartes law,
1 sinsu1d=n2 sinsu2d, where n1 ,u1 and n2 ,u2 are the re-

ractive index and direction of the incident and refracted
eams, respectively. A graphical solution to this problem
an be provided by EFS analysis. In homogenous media
he EFSs consist of circles whose radii are proportional to
oth the refractive index of the material and the wave fre-
uency suku=nv /cd. The EFSs corresponding to the energy
f the incident plane wave are represented for the air and
he dielectric in Figs. 12(a) and 12(b), respectively. The
ave vector kt of the refracted plane wave is defined by

he continuity of the tangential component of the incident
ave vector ki across the interface (ki conservation) be-

ause of the translational invariance of the system. The

ig. 10. EFS plots of a homogenous medium. (a) The EFS of the fi
f the second band folded in the first BZ suP f0.327,0.463gd. Bloch
ncreases outward (inward) in the first (second) band. Note that
esting left-handed material (LHM) behavior. (c) EFS of the seco
ave vector kn*,m* of their dominant Fourier component (located i
g and kn*,m* point in the same direction, thus indicating the exp

ig. 11. Global EFS plots of the first four bands of (a) the homog
odulated 2D-PhC. Bloch waves are represented by the wave ve

ression from a homogenous material to a strongly modulated m
roup velocity vt is then given by the gradient vector of
he EFS. In this case the EFS is a circle, so the propaga-
ion direction is always parallel to the wave vector. Note
hat the ki-conservation line crosses the EFS at point B:
his plane wave is not excited in the dielectric with this
eometry as it is backward propagating with respect to
he interface.

A convenient way to extend the EFS analysis to light
efraction into PhCs is to consider which plane waves im-
inging on a PhC are able to excite a given Bloch wave.
et us consider, for example, the Bloch wave II−0.42,−0.24
ropagating in the strongly modulated 2D-PhC discussed
n Section 3. Its graphical representation is depicted in
ig. 13(b). To excite this Bloch wave, the incident beam
ust satisfy two conditions. First, its energy must be con-

erved, so the incident plane wave must belong to the cor-
esponding EFS in the homogenous medium, i.e., the
ircle in Fig. 13(a). Second, the parallel component of the
ave vector must be conserved along the interface (x
xis). Projecting the wave vectors kn,m of Bloch wave
I−0.42,−0.24 on this axis, we obtain the following series of
arallel components:

kin,m = kn,m · ex = k · ex + m2p/a. s20d

To generalize the ki-conservation rule, all these parallel
omponents must be conserved along the interface, and
he ki-conservation line in Fig. 12 must be replaced by a
i-conservation comb in Fig. 13. In particular, the incident
lane wave must have a wave vector whose projection cor-
esponds to one of the kin,m components. The conservation
f the other components is provided by the backward-
iffracted waves. The components that cross the circle in
ig. 13(a) are conserved with reflected plane waves (kr1
nd kr2), and the others are conserved with evanescent

nd suP f0,0.327gd and (b) the standard representation of the EFS
s are characterized by the wave vector k=k0,0, and the frequency
k point in opposite directions in case (b), thus erroneously sug-
d in the second BZ. Here Bloch waves are characterized by the

econd BZ). We see that the frequency increases outward and that
right-handed behavior.

medium, (b) the weakly modulated 2D-PhC, and (c) the strongly
n*,m* of their dominant Fourier component. The continuous pro-
l can be seen without any evidence of left-handed behavior.
rst ba
wave

vg and
nd ban
n the s
enous
ctor k
ateria
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aves having an imaginary k' component. According to
iffraction theory, each incident plane wave whose wave
ector’s projection is equal to one of the kin,m is scattered
y the periodic PhC structure into the Bloch wave
I−0.42,−0.24. In this example, two possible incident plane
aves fulfill this condition. The first corresponds to the
lane wave with the wave vector ki1 and excites the Bloch
ave through the parallel component k ·ex; see Fig. 13(a).
owever, by use of the parallel component k ·e +2p /a,

ig. 12. Description of light refraction from air into a dielectric
aterial by use of EFS analysis. (a) EFS in air. The wave vector

iskrd and the group velocity visvrd of the incident (reflected)
lane wave are indicated on the EFS by the thin and thick ar-
ows, respectively. (b) EFS in the dielectric. The intersection of
he ki-conservation line with the EFS (point A) gives the wave
ector kt of the transmitted plane wave. The other intersection
point B) corresponds to a backward-propagating wave that is not
xcited in this case. Point C gives the wave vector kr of the re-
ected plane wave. (c) Summary of the propagation directions of
he incident, transmitted, and reflected waves.
x

ig. 13. Description of light refraction from a dielectric material
nto a 2D-PhC with EFS analysis. Here the ki-conservation line
sed in Fig. 12 must be replaced by a ki-conservation comb. We
earch for the incident plane waves that can excite a Bloch wave
n the second band, e.g., II−0.42,−0.24 represented in (b). The stan-
ard solution is obtained by the conservation of the ki component
·ex and corresponds to the plane wave with the wave vector ki1

n (a). By use of the ki component k ·ex+2p /a, the incident plane
ave with the wave vector ki2 can also excite the Bloch wave

I0.3,−0.45. In both cases there are back-reflected plane waves char-
cterized by the wave vectors kr1 and kr2. The other ki compo-
ents, e.g., k ·ex−2p /a, are conserved by evanescent waves with

maginary k' components, e.g., kr3. The EFS for such waves are
ndicated in (a) by dashed curves for which the y axis has imagi-
ary units. (c) A summary of the propagation directions of the in-
ident, transmitted, and reflected waves. We observe that the in-
i1 i2
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he plane wave with the wave vector ki2 can also be trans-
itted into the Bloch wave II−0.42,−0.24. Note that this sec-

nd solution would be discarded with an EFS analysis re-
tricted to the first BZ. In this case, only the conservation
f the parallel component k ·ex is considered, and the
bility to excite the Bloch wave through other parallel
omponents is neglected. This result once again high-
ights the limits of an approach that focuses on the first
Z.
We can now qualitatively describe the refraction pro-

ess at the interface between an homogenous medium and
PhC. When the incident plane wave impinges on the in-

erface, the periodic lattice of holes acts as a diffraction
rating, scattering the incident light forward (refraction)
nd backward (reflection). As shown by Foteinopoulou et
l.,14 after a transient time, the diffraction process
eaches a steady state, which is the excited Bloch wave.
ence the Bloch wave is composed of the various waves

esulting from the diffraction of the incident plane wave
n the PhC, and therefore light refraction into PhCs
hould be considered a diffraction process.

Having established the physics of light transmission
etween an homogenous medium and a PhC, we can now
onsider the negative refraction effect observed in PhCs.
n the example depicted in Fig. 13, the Bloch wave
I−0.42,−0.24 can be excited independently by either plane
ave ki1 or ki2. This Bloch wave lies in the second disper-

ion band, and its dominant wave vector kn*,m* is located
n the second BZ. The direction of its group velocity is dic-
ated by the direction of kn*,m* as shown in Section 3.

hen the solution ki2 is considered, the projections of vi2
nd vg point in the same direction, and positive (stan-
ard) refraction is obtained. Whereas the plane wave ki1
ives rise to the negative refraction because the projec-
ions on the interface of vi1 and vg point is opposite direc-
ions. This demonstrates that whether positive or nega-
ive refraction occurs depends on the direction of the
ncident plane wave, and, equally, either can be observed
or the same Bloch wave. It is important to note that an
FS analysis restricted to the first BZ would not point

his out.
Finally, when one considers the solution ki1, the physi-

al origin of the negative refraction can be considered.
nce the Bloch wave II−0.42,−0.24 has been excited, its
ropagation direction is dictated by its dominant wave
ector kn*,m*. Nevertheless, although the wave vectors
n,0 have negligible energetic contributions, they create

he parallel component k ·ex used by ki1 to excite the
loch wave. In conclusion, at the interface between a PhC
nd an homogenous material, a Bloch wave possess sev-
ral ki components that provide different excitation chan-
els. Negative refraction occurs when the ki component
sed for coupling and the ki component of the dominant
ave vector kn*,m* are different and point in opposite di-

ections. This situation can be compared with a blaze ef-
ect in a standard grating diffraction process.

. CONCLUSION
e have shown that Fourier analysis of Bloch waves can

rovide a simple and intuitive method for understanding
he propagative and refractive properties of light in PhCs.
n previous studies the chosen wave-vector component to
escribe Bloch wave propagation has been taken from the
rst BZ. Although this is adequate for the first band, it
an yield erroneous conclusions for higher-order bands.
nlike plane waves, Bloch wave propagation is not gov-

rned by a single wave vector because these waves pos-
ess multiple translational internal symmetries. A more
ppropriate choice is the wave vector of the plane wave
hat dominates the Fourier decomposition of the Bloch
ave. Such a choice provides a common and consistent
escription of both the homogenous medium and the PhC.
his approach always yields a positive sign for the scalar
roduct k ·vg and points to the fact that PhCs are not in-
rinsically left handed. The negative refraction phenom-
non observed in 2D-PhC originates from the specific
roperties of electromagnetic Bloch waves: The internal
ave vector responsible for the propagation direction can
iffer from those responsible for the coupling with the in-
ident plane wave. The excited Bloch wave results from
he scattering of the incident radiation at the PhC inter-
ace, and therefore negative refraction must be under-
tood as a diffraction phenomenon.
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