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Exercises 1 & 2

Note that Hurewicz fibrations are precisely the class

IdX x0

RLP({X—>Xx1|XeTop}).

and that Hurewicz cofibrations are precisely the class
LLP ({PY Y |Ye Top}) :

Hence these exercises are special cases of Exercises 5(a) & 5(b) in Exercise Set 3 (and
the proofs in the general case are easy generalizations of the proofs in these special
cases), so we refer to the upcoming solution sketches for these exercises.

Exercise 3

Note that since A € X is closed, A x Z < X x Z is also closed, so we can use
the retraction criterion discussed in the lecture. Now, given a retraction r: X x [ —
(A xI)u (X x {0}) witnessing the fact that j: A — X is a Hurewicz cofibration, we
define

XxZxI—(AxZxI)u (X xZ x{0})
(‘TVZ?t) = (pl"l(?“(:L‘,t>),Z,pI‘2(T(:E7t))

which can be checked to be well-defined, continuous and a retraction of

(AxZxI)u (X xZx{0})cXxZxI.



Exercise 4

Let X :=J;_, Ay Leti: Ag — X be the inclusion. Since i is the inclusion of a closed
subspace, it is enough to show that (Ag x I) U (X x{0}) < X x I admits a retraction. We
want to define such a map by defining continuous maps r,,: A, x [ — AgxIuX x{0} and
then “gluing” them, for which we need the following statements whose proofs crucially
use the special property of the topology on X:!

Lemma 1. A map f: X — Y is continuous iff f|, is continuous for alln e N.

Proof. Note that

f: X — Y is continuous
< For all closed Z € Y, f1(Z) € X is closed.
< Forallclosed Z Y, forallne N, f1(Z) n A, < A, is closed.

< Forallne NN, forall closed Z €Y, fH(2)n A, = f|£i (Z) < A, is closed.

< For all n e IN, f|A11L (Z): A, — Y is continuous.

]

Corollary 2. Let Y be a topological space. A map g: X x I — Y is continuous iff
9|An><1 is continuous for all n € IN.

Proof. Note that

g: X x I - Y is continuous
< g: X - PY, g(x) = g(x,—) is continuous.
< ForallneN, g, :=g[, : A, — PY is continuous.
< ForallnelN, g,: Ay x I =Y, g, (2,t) = gu(z)(t) = gl ; (2,1), is continuous.

< Forallne NN, g, ., is continuous.
]
Now since each inclusion A,,_; € A, is a Hurewicz cofibration, we have retractions
shi Ay x T — (A, xI)u (A, x {0}).

Using the gluing lemma and the fact that s/, is a retraction, one can show that this
extends to a map

sm (A x 1) U (X x {0}) S50 (4 1) x (X % {0)).

1Since this is coming out so late, I may as well use the language of category theory to explain these
statements: Lemma 1 is saying that Uf:o A, is the colimit of the diagram (4g — A; — ... —
A, — ...) in Top and Corollary 2 is a special case of the fact that (—) x I commutes with colimits
because it is left adjoint to P(—).



Next, for n € IN we define the continuous map
Tn= (510 08,)|4 1 A x T — (Ag x I) U (X x {0}),

which is basically “applying s;’s until one lands in (Ay x I) U (X x {0})”. Using the
retraction properties of the s}’s one can check that r,| A,y x1 = Tn—1, 80 by Corollary 2,
these glue to a map 7: X x I — (Ap x I) u (X x {0}), which can, by observing that
ro = Id(a,x1u(xx{0}), be shown to have the desired property.

Exercise 5

Remark 3. In the following, we omit the discussion of the continuity of the maps defined
which follows from the “usual tricks” such as
e composing continuous maps,
e defining a map into a product space by defining continuous components,
e showing the continuity of the corresponding map Z x I — W instead of a map
Z — PW,

e the gluing lemma.

Given a map f: X — Y, following the hint, we consider the factorization?

fi X Idx XC(—) Pf evy 0 pry Y.

It is not hard to show that the first map is a homotopy equivalence and the second
map is a Hurewicz fibration, but unfortunately, showing that j := Idx x¢_y: X — P
is a Hurewicz cofibration doesn’t quite work. We need to “thicken up P;” and factor j
further® as
Idx xc/_yx{0 T
ji X O Gy < {0)) o (P x (0, 1]) P
where we consider £ = (j(X) x {0}) u (P x (0,1]) as a subspace of Py x I.
Now we will show that the map
i: X Idx XC(,)X{O}

x> (x,¢4,0)

E

is an acyclic Hurewicz cofibration and that the map

ev] o pry

q: E Phy

(z, A\ t) — A(1)

is a Hurewicz fibration which will yield the desired result since f = q o .

2More precisely, Idx xc(~y and eviopry are maps to resp. from X x PY and we consider their
(co)restriction to Pj.
3See also https://math.stackexchange.com/a/1179143 for a discussion of this.


https://math.stackexchange.com/a/1179143

We start by showing that ¢ is a Hurewicz fibration. Let a lifting problem

A—2% L F

? //>(
Id4 x0 s q

AxI/TY

be given. Let ¢g1: A - X, go: A — PY, g3: A — I be the components of g (after
composing it with the inclusion £ € X x PY x I). We will define a lift H:AxI—>E
componentwise by analyzing the conditions the desired lifting properties enforce on it.

We set Hi(a,s) = gi1(a) for (a,s) € A x I which ensures that the upper triangle in
the resulting diagram will commute in the first coordinate.

Next, we want to define Hy: A x I — PY which is equivalent to defining a map
U: Ax [ xI—Y. The commutativity of the upper triangle in the second coordinate
will enforce that Hy(a,0)(t) = ¥(a,0,t) = go(a)(t) for all a € A and t € I, whereas the
commutativity of the lower triangle will mean that Hs(a, s)(1) = ¥(a,s,1) = H(a, s)
must hold for all a € A and s € I. Moreover, the condition that the image of H must lie
in £ < X x PY x I will require that Hs(a,s)(0) = ¥(a,s,0) = f(Hi(a,s)) = f(g1(a))
for all (a,s) € A x I. Since we have go(a)(1) = ¢(g(a)) = H(a,0) and go(a)(0) =
f(g1(a)) for all a € A, these conditions can be encoded in a map ¥': A x (({0} x
I)u (I x{0})u (Ix{1})) — Y given by V'(a,0,t) := go(a)(t), ¥ (a,s,1) := H(a,s)
and U'(a,s,0) = f(g1(a)). Now, like in Exercise 3 of the previous set, one can find a
retraction r: A x I x I — A x (({0} x I) u (I x {0}) u (I x {1})) and define ¥ to be
Uor.

Finally, we set Hy(a,s) = s+ (1 —s) - gs(a) for (a,s) € A x I which ensures that the
upper triangle will commute in the third coordinate and that the image of H will land
in F< X x PY x[I.

Now, using the properties indicated in the above paragraphs, it is a straightforward
verification to check that H is indeed a lift with the desired properties.

Next, we show that i: X — FE is a homotopy equivalence. Consider h: E — X given
by h(xz, A, t) == z. Then we have hoi = Idy. Moreover, i o h is homotopic to Idg via
the homotopy H: E x [ — H given by H(x,\,s,t) = (x,\(t- (—)),t - s).

To show that ¢ is a cofibration, we will use an alternative description of closed Hurewicz
cofibrations? which is given by the following

Fact 4 ([Bre93, Theorem VII.1.5]). Let A < Z be a closed subspace. Then the inclusion
A — 7 is a Hurewicz cofibration if and only if there exists a neighborhood U of A and
maps ¢: 4 — I, H: U x [ — Z such that

o A=07Y0),

* p(Z\U) = {1},

4One could check the retraction criterion for i by hand, but that would include some tedious continuity
checks which are “blackboxed” in the proof of Fact 4 in our approach. Moreover, i is in a sense
“engineered” to make this new criterion apply to it, so this approach also explains how one could
come up with it.



e H(a,t) = a forall (a,t)e Ax I,
e H(u,0) =u and H(u,1) € A for allueU.

We omit the proof which can be found in the reference. See also [Str] (and related
notes) for a more “modern” approach with a similar criterion.

Now i is a homeomorphism into its image (whose inverse is given by h| i X)). Moreover,
UcCFE,¢: E—Tand H: U x I — FE satisfying the conditions of Fact 4 for Z = E and
A = i(X) can be defined as follows:

o U:={((z,\,s)e E|s <1},

o O(x,\ s) =sforall (z,\s)€eFE,

o H(x, A\ s,t) = (x,\((L=1t)-(—)),(1—1)-s) forall (z,\,s,t)eU xI.
Thus 7 is indeed a cofibration.
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