JPEG XR: A New Coding Standard for Digital Photography

Presented by Gary J. Sullivan Direct contact: garysull@microsoft.com

Deck co-authored with Sridhar Srinivasan, Chengjie Tu, and Shankar L. Regunathan Microsoft Corporation Group contact: hdphoto@microsoft.com

> 18 February 2009 JPEG XR Camera Raw AHG Meeting Tokyo, Japan

What is JPEG XR?

- JPEG XR is a new draft standard specifying a compressed format for images
 - Feature rich to support existing and emerging use scenarios
 - Achieves high quality compression with low complexity
 - Based on technology developed by Microsoft known as HD Photo and Windows Media Photo
 - Coding spec now at FDIS (Final Draft International Standard) status in JPEG committee as ISO/IEC 29199-2 and Draft ITU-T Rec. T.832
 - Compressed codestream & decoding process specified in main body
 TIFF-like file storage specified in Annex A
- JPEG XR supports the following features
 - Lossy and lossless compression in the same signal flow path
 - Up to 24 bits/sample lossless, 32 bits/sample lossy
 Unsigned int, Fixed-point signed, Half, Float and RGBE radiance image data formats
 - Bit-exact specification with 16/32 bit integer arithmetic
 Even to compress floating point data
 - JPEG XR presentation to JPEG Camera Raw AHG (Feb 2009

What is JPEG XR?

- ... Features
 - Low complexity, low memory footprint
 - Random access and large image sizes (gigapixels) supported
 - Progressive decoding
 - Embedded thumbnails
 - Spatially-dominant or frequency-dominant codestream layout
 - Alpha channel support
 - Planar or interleaved
 - Multiple color format & sampling choices
 - 4:2:0, 4:2:2, 4:4:4 CMYK
 - n-Component
 - Compressed-domain manipulation support
 - Rich metadata support (e.g. ICC profiles, Adobe XMP, JEITA EXIF)
 - JPEG XR presentation to JPEG Camera Raw AHG (Feb 2009)

Starting Points

- 1. Good compression alone is not a deal maker
 - But poor compression is a deal breaker
 Generally, codecs in the ±10-15% range of quality are considered equivalent
 - Complexity and feature set are also key to determining success
- 2. Block transforms are back in the game
 - Used in H.264 / MPEG-4 AVC and VC-1 for video compression
 Excellent compression ratios leading to widespread acceptance
 - Well understood and appreciated by both h/w and s/w designers
 Offers reduced complexity and memory benefits
- 3. Feature set should be chosen carefully
 - Rich features place a burden on algorithmic and runtime complexity
 Also complicate conformance and test processes
 - Approach: Limit the number of bitstream layouts and hierarchies
 Find simple and acceptable alternatives for addressing other required features

JPEG XR Design Choices

- 1. Multi-resolution representation (wavelet-like concept)
 - Only steps of 1:1, 1:4 and 1:16 in each dimension
 - 1:4 rather than Dyadic (1:2) is due to core 4x4 transform structure
 - 1:16 is usually sufficient for a large thumbnail for typical photographic images
 Additional steps would cause increased range expansion in transforms
 - Resolutions below 1:16 (i.e. 1:256 spatially) may be stored as independent images with little overhead
- 2. Sub-region decoding: Supported through use of "tiles"
 - Tiles are regular partitions of the image into rectangular regions
 - Tiles are independently decodable
 - Tile boundaries can be seamless visually ("soft") or can be "hard" boundaries
 Tile repartitioning for soft tiles is possible in compressed domain without introducing distortion
- 3. Quantization control
 - Multiple degrees of freedom with low overhead
 - Q values can be shared across color planes, tiles and/or frequency bands
 - Q values can be specified at the macroblock level by indexing
 - Lossless coding is achieved when Q=1

JPEG XR Design Choices

- 4. Bitstream truncation
 - Limited support through frequency partitioning and use of *flexbits* Flexbits are adaptive fixed length coded (FLC) values
 - Flexbits may form a large portion of the bitstream, especially at high bit rates and with high dynamic range content
 - Syntax allows flexbits to be degraded dynamically to support bitstream truncation
 - Flexbits provide a lower complexity than bitplane coding

5. Bitdepth support

- 1 bit through 32 bits per channel
 - 32 bit integer signal processing
 - Float, Half float and RGBE radiance are "cast" to 32/16/16 bit respectively
 - Loss may happen beyond 24 bit input in the lower bits (user controllable)

6. Color format & channel support

- Grayscale, RGB, n-Channel
- YUV 4:2:0, YUV 4:2:2, YUV 4:4:4
 RGB internally converted to one of above
- Alpha channel support for many formats

IDEC XP procentation to IDEC Comoro Paur AUC /Enh

JPEG XR Transform Structure

• The basic transform consists of two building blocks

17

• • •

4x4 block

4x4 block

Transform Memory Issues

- Transform operations
 - Inverse transform steps

		-	Τ-	 -	
					T
					1
-					4
					÷
	6	-	-L-	 e p	

- 1 extra stored macroblock row is sufficient for all overlap modes
- Further cache reduction can actually be achieved
- No extra cache necessary for overlap Mode 0
- 2 sample row cache necessary for overlap Mode 1
- 10 sample row cache sufficient for overlap Mode 2
- Smaller caches can be used for Mode 2 with tricks

Transform Complexity (page 1 of 2)

- Trivial and non-trivial operations
 - Trivial operation: sum/difference; bit shift by 1 bit
 - Non-trivial operation: a = a ± (3 * b + r) >> k
 - e.g. a += (b>>1) counts as 2 trivial operations, whereas a += (3*b+4)>>3 counts as 1 non-trivial operation
- Non-trivial operations can always be decomposed as
 - A multiplier of exactly 3 (can implement as shift+add)
 - A small constant offset
 - A shift by a small amount
 - An add/subtract
 - Summary: 1 non-trivial operation <=5 trivial operations
- Core transform: 91 trivial + 11 non-trivial per 4x4 block (plus 2nd level transform at 1/16th resolution)
- Overlap: 156 trivial + 15 non-trivial per 4x4 block (applied or not applied at 1st and 2nd level)

Transform Complexity (page 2 of 2)

- Complexity analysis
 - Assuming nontrivial operation = 3 trivial operations
 - Overlap mode 0: 8.23 ops / image sample (124/16 * 17/16)
 - Overlap mode 1: 20.80 ops / image sample (8.23 + 201/16)
 - Overlap mode 2: **21.58** ops / image sample (8.23 + 201/16 * 17/16)
 - Observations
 - Core transform alone is very low complexity
 - Overlap operator is substantially more expensive than core transform
 - Second level costs are small (diminished by a factor of 16)
 - Low memory requirements
 - Needs only 1 extra macroblock row of data for encode or decode

Transform Design

- Implementation issues
 - Two-stage transform increases dynamic range by only 5 bits
 - Therefore, 8 bit input leads to 13 bit dynamic range of transform coefficients
 - Additional precision of 3 bits can be used to minimize rounding errors
 - 16 bit arithmetic is sufficient for 8 bit data
 - Parallelization
 - Most operations can be parallelized with SIMD
 - All operations can be parallelized with MIMD
 - SIMD
 - 16 bit word SIMD can be used for 8 bit data
 - Good mappings exist to exploit 2-way and 4-way SIMD for core transform and overlap operators (2 way mapping shown below)

JPEG XR Coefficient Scanning The process of converting the 2D transform into a linear encodable list

- Also referred to as zigzag scan
- Scan order is adaptive
 - Changes as data is traversed
 - Simple rule based on one step of bubble sort
 - Tracks incidence of coefficients
 - In the event of an inversion (current coefficient occurs more frequently than preceding coefficient in scan), swaps the scan orders of current and preceding coefficient for the future
 - Periodic and frequent resets of counters
 - Scan orders captured in tile context
- Around 3% savings in bits over fixed scan orders

JPEG XR Entropy Coding

- Adaptive coefficient normalization
 - Triggered when nonzero transform coefficients happen frequently
 - Often for lossless and high quality lossy compression
 - Happens more often when > 8 bit data is compressed
 - When triggered, additional bit stream layer "Flexbits" is generated
 Flexbits is sent "raw", i.e. uncoded
 - For lossless 8 bit compression, Flexbits may account for more than 50% of the total bits
 - Flexbits forms an enhancement layer which may be omitted or truncated

JPEG XR Entropy Coding

- Coding of normalized transform coefficients in HD Photo
 - Uses Huffman codes and other variable length codes (VLCs)
 - Symbols are remapped to a reduced alphabet set (which may have between 2 and 12 symbols)
 Very small set of code tables
 - Very small set of code tables
- Small number of contexts are defined for level-run coding
 - Runs and zeros are binned
 - Joint coding signals "nonzero run" and "non-one level" events
 - Run > 0 and |level| > 1 are sent independently
- 3¹/₂D-2¹/₂D coding
 - Subsequent symbols jointly code level with run of subsequent zeros <u>or</u> whether coefficient is last nonzero in block (2¹/₂D symbols)
 - First symbol codes in addition first run (3½D symbol)
 More code table choices for first symbol
- Code tables are switched adaptively
 - Choice of 2 to 5 statically defined tables
 - Switch is based on discriminant counting incidences (state machine)
 - All-zero blocks are signaled through Coded Block Pattern symbols

JPEG XR presentation to JPEG Camera Raw AHG (Feb 20

JP	'EG 🏾	XR E	Intro	py C	Codir	ng					
SYMBOL	Code 0	Code 1	Code 2	Code 3	Code 4	SYMBOL	Code 0	Code 1	Code 2	Code 3	
0	0000 1	0010	11	001	010	0	1	01	0000	0 0000	
1	00 0001	0 0010	001	11	1	1	0 0000	0000	0001	0 0001	
2	000 0000	00 0000	000 0000	000 0000	000 0001	2	001	10	01	01	
3	000 0001	00 0001	000 0001	0 0001	0001	3	0 0001	0001	10	1	
4	0 0100	0011	0 0001	0 0010	000 0010	4	01	11	11	0001	
5	010	010	010	010	011	5	0001	001	001	001	
6	0 0101	0 0011	000 0010	000 0001	0000 0000						
7	1	11	011	011	0010			SYMBOL	Code 0		
8	0 0110	011	100	0 0011	000 0011	All 66	de teblee	0	1		
9	0001	100	101	100	0011		de tables	1.1	01		
10	0 0111	0 0001	000 0011	00 0001	0000 0001	JPEG	XR for co	2	001		
11	011	101	0001	101	0 0001	an	a coaea b	3	000		
SYMBOL	Code 0	Code 1	enumerated in binary								
0	010	1							SYMBOL	Code 0	
1	0 0000	001	SYMBOL	Code 0	Code 1	0 10					
2	0010	010	0	01	1			1	001		
3	0 0001	0001	1	10	01	SYMBOL	Code 0	Code 1	2	0 0001	
4	0 0010	00 0001	2	11	001	0	1	1	3	0001	
5	1	011	3	001	0001	1	01	000	4	11	
6	011	0 0001	4	0001	0 0001	2	001	001	5	010	
7	0 0011	000 0000	5	0 0000	00 0000	3	0000	010	6	0 0000	
8	0011	000 0001	6	0 0001	00 0001	4	0001	011	7	011	
2/24/0			JPEG XR pre	sentation to JF	PEG Camera R	aw AHG (Feb	2009)				

Other Features

- Color conversion uses YCoCg color space
 - Concept as proposed by Malvar & Sullivan to H.264 / MPEG-4 AVC (adopted there in 2004)
 - Extended to CMYK (and Bayer pattern camera Raw)
- Interleaved alpha channel supported
 - Restricted to have same tiling structure as main image
- Floating point support
 - Normal/denormal casting for smooth mapping across zero for float
 - User specified base allows discarding of redundant mantissa bits
- Compressed domain operations supported include
 - Mirror flips, 90 degree rotates (all combinations)
 - Fully reversible without loss, i.e. flip of flip is exactly same as original
 - Actual rotation, not merely flipping a flag in header
 - Region extraction
 - No need for macroblock alignment of extracted region
 - Arbitrary restructuring of tile boundary locations

Design Enhancements Included

- A few recent design improvements were included during the JPEG XR standardization process:
- [WG 1 N 4660] Enhanced overlap operators
- [WG 1 N 4792] Hard tiles and related signal processing
 - Hard tile boundary support
 - Improved image edge handling with DC gain matching
 - Enhanced overlap operators for 4:2:0 and 4:2:2 chroma
- [WG 1 N 4680] Small feature capability enhancements
- Greater flexibility of file-level metadata support
- YCC and CMYK support with bypass of internal color transform
- Simplified color indicator support (e.g., for video)

Planned & Probable Further Work

- Reference software finalization
- Conformance testing suite finalization
- Motion format for sequences of images
- Technical report on general usage and integration in systems
- "Box" file storage format
- Camera Raw support
- JPIP interactive protocol support
- JPSec security use support

JPEG XR Summary

- In summary, JPEG XR is a format for compressed image data that
 - Is feature rich
 - Offers low complexity
- Provides high compression performance
- JPEG XR is based on sound technology
 - Several years of R&D have been invested in developing the technology
 - It is derived from a long line of academic and industry research
 - The feature set is based on extensive feedback from a wide range of customers and partners
 - It has been built and tested rigorously as a mass market product
- Standardizing JPEG XR has facilitated and encouraged broad, compatible use within the marketplace

References (page 1 of 3)

- ISO/IEC FDIS 29199-2 | Draft ITU-T Rec. T.832, "Information technology JPEG XR image coding system – Image coding specification", JPEG document WG 1 N 4918, Feb. 2009.
- S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan, "HD Photo: A new image coding technology for digital photography", SPIE Appl. of Dig. Image Proc. XXX, vol. 6696, Aug., 2007.
- C. Tu, S. Srinivasan, G. J. Sullivan, S. L. Regunathan, and H. S. Malvar, "Lowcomplexity hierarchical lapped transform for lossy-to-lossless image coding in JPEG XR / HD Photo, SPIE Appl. of Dig. Image Proc. XXXI, vol. 7073, paper 7073-12, Aug., 2008.
- H. S. Malvar, G. J. Sullivan, and S. Srinivasan, "Lifting-based reversible color transformations for image compression", SPIE Appl. of Dig. Image Proc. XXXI, vol. 7073, paper 7073-07, Aug., 2008.
- Microsoft Corp., HD Photo Specification and HD Photo Device Porting Kit 1.0, available on-line at http://www.microsoft.com/windows/windowsmedia/forpros/ wmphoto/, Dec. 2006.
- S. Srinivasan, Z. Zhou, G. J. Sullivan, R. Rossi, S. L. Regunathan, C. Tu, and A. Roy, "Coding of High Dynamic Range Images in JPEG XR / HD Photo", SPIE Appl. of Dig. Image Proc. XXXI, vol. 7073, paper 7073-42, Aug. 2008.

References (page 2 of 3)

- G. J. Sullivan, S. Sun, S. L. Regunathan, D. Schonberg, C. Tu, and S. Srinivasan, "Image coding design considerations for cascaded encoding-decoding cycles and image editing: analysis of JPEG 1, JPEG 2000, and JPEG XR / HD Photo", SPIE Appl. of Dig. Image Proc. XXXI, vol. 7073, paper 7073-39, Aug. 2008.
- D. Schonberg, S. Sun, G. J. Sullivan, S. L. Regunathan, Z. Zhou, and S. Srinivasan, "Techniques for enhancing JPEG XR / HD Photo rate-distortion performance for particular fidelity metrics", SPIE Appl. of Dig. Image Proc. XXXI, vol. 7073, paper 7073-41, Aug. 2008.
- S. L. Regunathan, D. Schonberg, S. Srinivasan, G. J. Sullivan, S. Sun, C. Tu, Z. Zhou, "Improved Overlap Filter for JPEG XR", JPEG contribution WG 1 N 4660, July 2008.
- G. J. Sullivan, S. Sun, R. Rossi, S. L. Regunathan, and Zhi Zhou, "Image Format Support and Color Handling Aspects for JPEG XR", JPEG contribution WG 1 N 4680, July 2008.
- D. Schonberg, S. L. Regunathan, G. Sullivan, S. Sun, and Z. Zhou, "Enhanced Tiling and Related Signal Processing Aspects for JPEG XR", JPEG contribution WG 1 N 4792, October 2008.
- H. S. Malvar and D. H. Staelin, "The LOT: transform coding without blocking effects," *IEEE Trans. on Acoustics, Speech, and Signal Processing*, vol. 37, pp. 553–559, Apr. 1989.

JPEG XR presentation to JPEG Camera Raw AHG (Feb 2009

References (page 3 of 3)

- H. S. Malvar and D. H. Staelin, "Reduction of blocking effects in image coding with a lapped orthogonal transform," *IEEE International Conference on Acoustics*, *Speech, and Signal Processing*, New York, NY, pp. 781–784, Apr. 1988.
- H. S. Malvar, "Biorthogonal and nonuniform lapped transforms for transform coding with reduced blocking and ringing artifacts," *IEEE Trans. Signal Processing*, pp. 1043–1053, Apr. 1998.
- T. D. Tran, J. Liang, and C. Tu, "Lapped transform via time-domain pre- and postfiltering", IEEE Trans. on Signal Processing, pp. 1557-1571, June 2003.
- 16. A. K. Jain, *Fundamentals of Digital Image Processing*, Chapter 5, Prentice Hall, 1989.