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“ Wer dies Wasser und seine Geheimnisse verstünde,
so schien ihm,

 der würde auch viel anderes verstehen,
 viele Geheimnisse, alle Geheimnisse.”
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Summary

The sustainable development of rivers requires a knowledge on the three-dimensional
mean flow field and the turbulence in complex morphologies. In a future, the
computational capacity will be sufficient to simulate numerically the fine details of the
flow. Our physical knowledge, however, is at present insufficient: the overwhelming
majority of experimental research concerns straight-uniform flow and even complex
numerical models are based on straight-uniform-flow knowledge. A sound understanding
of the relevant physical processes will always be essential in complicated problems such
as the river management, which concern a variety of different fields, and this irrespective
of the available computational capacity.

This PhD investigates, mainly experimentally, the mean-flow field and the turbulence in
open-channel bends; this situation is considered as a generic case for complex highly
three-dimensional flow. The experimental investigation is rendered feasible by the
availability of a powerful Acoustic Doppler Velocity Profiler (ADVP), developed in our
laboratory. The principal objectives of this PhD are:

- To provide a high-quality data base on three-dimensional open-channel flow, including
all three mean velocity components and all six Reynolds stresses on a fine grid.

-  To document interesting features of the flow field and the turbulence, such as the
multi-cellular pattern of secondary circulation, the curvature influence on the
turbulence, etc.

- To gain insight in the relevant physical mechanisms and processes underlying these
features.

-  To apply the acquired knowledge in an engineering sense, mainly by evaluating,
improving and developing numerical simulation techniques.

First, a limited series of experiments was conducted in a small laboratory flume, with the
aim of testing the feasibility of the project. Subsequently, extended series of experiments
have been designed in a large and optimized laboratory flume. The small-flume
experiments yielded results beyond all expectations and form the core of this dissertation.
The large-flume experiment are intended to confirm those results and to investigate newly
emerged questions. Only few large-flume results are included in this dissertation; more
large-flume results will be reported in literature in the future.

The structure of this dissertation follows the above-mentioned objectives.

In PART I “Instrumentation and experimental set-up”, the experimental set-up, the
ADVP and the measuring strategy are presented. Furthermore, a method is proposed to
improve acoustic turbulence measurements.
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PART II “Experimental observations” provides high-quality data on the mean flow and
the turbulence and documents the most interesting features:

(i) The downstream velocity increases in outward direction and its vertical profiles are
flatter (increased/decreased velocities in the lower/upper part of the flow depth)
than in straight flow.

(ii) A relatively small and weak outer-bank cell of secondary circulation exists besides
the classical center-region cell (helical motion).

(iii) The turbulence activity is reduced in the outer half of the cross-section in the
investigated bend, as compared to a straight-uniform flow.

(iv) Linear models that are commonly used to account for the effect of the secondary
circulation in depth-integrated flow models are inaccurate for moderately to
strongly curved flows.

PART III “Fundamental research” investigates the physical mechanisms and processes
underlying these observations, mainly by making term-by-term evaluations of the
relevant flow equations (momentum, vorticity, turbulent kinetic energy) and by
considering the instantaneous flow behavior.

The distribution of the downstream velocity is dominated by both cells of secondary
circulation, whereby the outer-bank cell has a protective effect on the stability of the outer
bank by keeping the core of maximum velocity at distance.

The center-region cell is mainly generated by the vertical gradient of the centrifugal
force, (∂/∂z)(vs

2/R): the non-uniform outward centrifugal force and the nearly-uniform
inward pressure gradient, due to the super-elevation of the water surface, are on the
average in equilibrium; their local non-equilibrium, however, gives rise to the center-
region cell. There exists a strong negative feedback between the vertical profile of the
downstream velocity, vs, and the center-region cell: the center-region cell flattens the vs-
profiles, which on its turn leads to a reduction of (∂/∂z)(vs

2/R) and a weakening of the
center-region cell. Linear models that are commonly used to account for the effect of the
secondary circulation in depth-integrated flow models perform poorly because they
neglect this feedback.

Similar outer-bank cells exist in straight turbulent flow as well as in curved laminar flow.
In straight turbulent flow, they are induced by the anisotropy of turbulence whereas they
come into existence in curved laminar flow when the curvature exceeds a critical value:
the vs-profiles flatten to such an extent that the gradient of the centrifugal force changes
sign near the water surface, (∂/∂z)(vs

2/R)<0, provocating the generation of the outer-bank
cell. In curved turbulent flow, both mechanisms have a comparable contribution to the
generation of the outer-bank cell and strengthen each other, whence the outer-bank cell is
stronger in a curved turbulent flow than in a curved laminar or a straight turbulent flow.
The restitution of kinetic energy from the turbulence to the mean flow plays an important
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role in the generation of the outer-bank cell, and the deficiency of standard k-ε turbulence
closures to accurately simulate them is due to their inherent incapability to account for
such kinetic-energy restitution.

The turbulence structure is fundamentally different than in a straight-uniform flow: for
the same amount of turbulent kinetic energy, there is less shear in a curved flow. This
change in turbulence structure is responsible for the observed reduced turbulence activity.
An analysis of the instantaneous flow behavior suggests that the turbulence fluctuations
can be decomposed into two fundamentally different parts: a wave-like oscillation of the
pattern of circulation cells embedded in background turbulence.

PART IV “Applied research” tries to apply the acquired knowledge in an engineering
sense. It proposes a non-linear model to account for the effect of the secondary circulation
in depth-integrated flow models, that simulates the negative feedback between the
downstream velocity profile and the center-region cell. Contrary to the commonly used
linear models, this non-linear model agrees well with experimental data for strongly
curved flow from both the small and the large-flume experiments. The model depends on
the curvature ratio, the friction factor and the spanwise distribution of the downstream
velocity, which can all be incorporated in a newly defined bend parameter, that allows an
objective definition of weak, moderate and strong curvature. The linear model is found as
the asymptotic solution for vanishing curvature. An evaluation for natural rivers has
shown that differences between the linear model and the non-linear model are relevant.

Moreover, outer-bank cells have been successfully simulated by means of a non-linear k-ε
turbulence closure.

As mentioned before, the small-flume experiments yielded results beyond all
expectations. As a side-effect, the analysis of the large-flume experiments could not be
accomplished within this dissertation and the work that is presently in progress is briefly
described in PART V “Work in progress”.

Finally, PART VI summarizes the main conclusions of this dissertation.
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Résumé

Le développement durable des rivières nécessite des connaissances sur l’écoulement
moyen tridimensionnel ainsi que sur la turbulence dans des morphologies complexes.
Tout laisse prévoir que la capacité des ordinateurs permettra dans un avenir de simuler
numériquement même les fins détails de l’écoulement. A présent, cependant, des
importantes lacunes existent dans la compréhension des écoulements complexes. La
grande majorité des recherches portent sur les écoulements droits et uniformes, et la
plupart des modèles numériques se fondent sur des connaissances acquises dans celles-ci.
Une compréhension des processus physiques pertinents constituera toujours un élément
essentiel dans des problèmes aussi complexes que la gestion des rivières, qui couvrent
une multitude de disciplines, et ceci indépendamment de la capacité de calcul disponible.

Cette thèse de doctorat traite de l’écoulement moyen et de la turbulence dans les courbes
des rivières, qui sont considérées comme cas génériques pour des écoulements complexes
tridimensionnels. La majeure partie de cette thèse concerne une étude expérimentale,
rendue possible grâce au Profileur Vélocimétrique Acoustique Doppler (PVAD), conçu et
développé au sein de notre laboratoire. Les principaux objectifs de cette recherche
doctorale sont de:

- fournir une base de données de haute qualité sur un écoulement tridimensionnel à
surface libre, comprenant les trois composantes du vecteur de vitesse moyenne ainsi
que les six composantes du tenseur de Reynolds sur un maillage fin.

-  documenter des caractéristiques intéressantes de l’écoulement moyen et de la
turbulence, telles que la configuration bi-cellulaire des courants secondaires,
l’influence de la courbure sur la turbulence, etc.

- éclairer les mécanismes et processus physiques dirigeant ces observations.

- appliquer les résultats en ingénierie hydraulique, notamment en évaluant, améliorant
et développant des techniques de simulation numériques.

D’abord, une série limitée d’expériences a été conçue dans un petit canal en laboratoire,
avec le but d’évaluer la plausibilité des objectifs. Ensuite, une série étendue d’expériences
a été faite dans un grand canal en laboratoire, optimisé pour cette recherche. Les résultats
provenant du petit canal étaient au-delà de nos attentes, et forment le noyau de ce
mémoire. Les expériences en grand canal ont pour but de confirmer ces résultats ainsi que
d’examiner les nouvelles questions apparues. Ce mémoire comprend peu de résultats du
grand canal; ils seront communiqués dans la littérature postérieurement.

La structure de ce mémoire suit les objectifs déclarés ci-dessus.

PARTIE I “Instrumentation et installations expérimentales” présente les installations
expérimentales, le PVAD, ainsi que la stratégie de mesure. En outre, une méthode
permettant d’améliorer les mesures de la turbulence à l’aide de systèmes acoustiques,
comme le PVAD, est exposée.
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PARTIE II “Observations expérimentales” fournit une base de données de haute qualité
comprenant les champs de vitesses moyennes ainsi que turbulentes et documente les
caractéristiques principales:

(i) La vitesse longitudinale augmente vers la rive extérieure et ses profils verticaux
sont aplatis (vitesses augmentées/réduites dans la partie inférieure/supérieure de la
profondeur) comparé a l’écoulement droit uniforme.

(ii) En plus de l’écoulement hélicoïdal classique, appelé cellule-de-centre, une autre
cellule de circulation secondaire, plus faible et plus petite, avoisine la rive
extérieure; elle est appelée cellule-de-rive.

(iii) L’activité turbulente est réduite dans la partie extérieure de la courbe examinée,
comparé au cas d’écoulement droit uniforme.

(iv) Les modèles linéaires, couramment utilisés pour inclure les effets de la circulation
secondaire dans les équations d’écoulement moyennées sur la profondeur, sont
imprécis pour des courbures modérées ou fortes.

PARTIE III “Recherche fondamentale” essaie d’éclairer les mécanismes et processus
physiques dirigeant ces observations, notamment en évaluant les termes individuels dans
les équations pertinentes – quantité de mouvement, vorticité et énergie cinétique
turbulente – ainsi qu’en examinant le comportement instantané de l’écoulement.

La répartition de la vitesse longitudinale est dominée par les cellules de circulation
secondaire; la cellule-de-rive ayant un effet protecteur sur la stabilité de la rive en gardant
le noyau de vitesses maximales à distance.

La cellule-de-centre est principalement due au gradient vertical de la force centrifuge,
(∂/∂z)(vs

2/R): la force centrifuge à une répartition verticale, tandis que le gradient de
pression, dû à la surélévation de la surface libre, est quasiment uniforme sur la
profondeur. En moyenne, les deux s’équilibrent; cependant, leur déséquilibre local génère
la cellule-de-centre. Une forte interaction non-linéaire existe entre le profil vertical de la
vitesse longitudinale et la cellule-de-centre: la cellule-de-centre aplatit les profils de vs,
entraînant une réduction de (∂/∂z)(vs

2/R) et un affaiblissement de la cellude-de-centre.
L’imprécision des modèles linéaires, couramment utilisés pour inclure les effets de la
circulation secondaire dans les équations d’écoulement moyennées sur la profondeur, est
due au fait que cette interaction non-linéaire est négligée.

Des cellules-de-rives semblables existent dans l’écoulement turbulent droit ainsi que dans
l’écoulement laminaire courbe. Dans l’écoulement turbulent droit, elles sont générées par
l’anisotropie de la turbulence, tandis qu’elles se manifestent soudainement dans
l’écoulement laminaire courbe lorsque la courbure dépasse un seuil critique:
l’aplatissement des profils de vs devient tel que le signe du gradient de la force centrifuge
est inversé près de la surface, (∂/∂z)(vs

2/R)<0, ce qui provoque la cellule-de-rive. Dans
l’écoulement turbulent courbe, les deux mécanismes contribuent également à la
génération de la cellule-de-rive. Puisqu’ils se soutiennent mutuellement, la cellule-de-rive
est plus forte en écoulement turbulent courbe qu’en écoulement laminaire courbe ou
turbulent droit. La restitution d’énergie cinétique de la turbulence vers l’écoulement
moyen joue un rôle principal dans la génération de la cellule-de-rive. Le modèle de
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turbulence k-ε standard est intrinsèquement incapable de tenir compte d’une telle
restitution d’énergie cinétique, ce qui explique son insuffisance pour simuler les cellules-
de-rive.

Des différences fondamentales existent entre la structure de la turbulence en écoulement
courbe et droit: pour une même quantité d’énergie cinétique turbulente, il y a moins de
contraintes turbulentes de cisaillement en courbe. Cette différence peut expliquer la
réduction observée de l’activité turbulente. Une analyse du comportement instantané de
l’écoulement suggère que les fluctuations turbulentes de vitesses se décomposent en deux
parties fondamentalement différentes: une oscillation des cellules de circulation
secondaires à caractère d’ondes, noyée dans une turbulence de fond.

PARTIE IV “Recherche appliquée” essaie d’appliquer les résultats obtenus en ingénierie
hydraulique. Un modèle non-linéaire est proposé pour inclure les effets de la circulation
secondaire dans les équations d’écoulement moyennées sur la profondeur, qui tient
compte de l’interaction entre le profil de vs et la cellule-de-centre. Contrairement aux
modèles linéaires couramment utilisés, le modèle non-linéaire simule bien les mesures
faites pour des fortes courbures dans le petit et le grand canal. Il dépend du rapport entre
la profondeur de l’écoulement et le rayon de courbure, du coefficient de frottement et de
la répartition transversale de vs. Ces trois paramètres peuvent être combinés dans un
nouveau paramètre, nommé paramètre-de-courbe, qui permet de différentier
objectivement entre des courbures faibles, modérées et fortes. Les modèles linéaires
couramment utilisés correspondent à la solution asymptotique pour courbure tendant vers
zéro. Une évaluation pour des rivières naturelles démontre que les différences entre les
modèles linéaires et non-linéaires sont significatives.

En outre, les cellules-de-rives ont été simulées numériquement moyennant un modèle de
turbulence k-ε non-linéaire.

Comme mentionné auparavant, les résultats des expériences dans le petit canal étaient au-
delà de nos attentes. Comme effet secondaire, l’analyse des expériences dans le grand
canal n’a pas pu être accomplie dans le cadre de ce mémoire. La recherche en cours est
brièvement exposée dans la PARTIE V “Recherche en cours”.

PARTIE VI résume les principales conclusions de ce mémoire.
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Samenvatting

De duurzame ontwikkeling van rivieren vereist een kennis van de driedimensionele
gemiddelde stroming en de turbulentie in complexe morfologiën. Alles laat
veronderstellen dat de rekencapaciteit van computers in een nabije toekomst zal volstaan
om zelfs de fijne details van de stroming te berekenen. Onze fysische kennis is
momenteel echter ontoereikend: de overgrote meerderheid experimenteel onderzoek
betreft rechte uniforme stroming en zelfs de meest complexe numerieke modellen zijn
gebaseerd op kennis vergaard voor rechte uniforme stroming. Inzicht in de relevante
fysische processen zal altijd van primordiaal belang zijn in complexe multidisciplinaire
problemen zoals rivierbeheer, en dit ongeacht de beschikbare rekencapaciteit.

Dit doctoraat onderzoekt, voornamelijk experimenteel, de gemiddelde stroming en de
turbulentie in rivierbochten, deze situatie beschouwend als generiek geval voor complexe
driedimensionele stroming. Dit experimenteel onderzoek was mogelijk dank zij de
beschikbaarheid van een revolutionaire snelheidsmeter, de “Acoustic Doppler Velocity
Profiler” (ADVP), die in ons laboratorium ontwikkeld werd. De hoofddoelen van dit
doctoraat zijn:

-  Het beschikbaar maken van hoogkwalitatieve meetgegevens betreffende een
driedimensionele stroming met vrij oppervlak, inclusief de drie gemiddelde
snelheidscomponenten en de zes turbulente spanningen, op een fijn rooster.

- Het documenteren van interessante eigenschappen van de gemiddelde stroming en de
turbulentie, zoals de verschillende cellen van secondaire stroming en de invloed van
kromming op de turbulentie, enz.

-  Het verwerven van inzicht in de relevante fysische mechanismen and processen
verantwoordelijk voor deze eigenschappen.

- Het toepassen van de verworven kennis in de ingenieurspraktijk, hoofdzakelijk d.m.v
het beoordelen, verbeteren en ontwikkelen van methodes voor de numerieke
berekening van stromingen.

Aanvankelijk werd een beperkte reeks experimenten uitgevoerd in een kleine
laboratoriumgoot, met als doel de haalbaarheid van de doelstellingen te bevestigen.
Vervolgens werd een uitgebreide reeks experimenten uitgevoerd in een grote
geoptimaliseerde laboratoriumgoot. De resultaten in de kleine goot overtroffen alle
verwachtingen en vormen de hoofdmoot van deze dissertatie. De experimenten in de
grote goot hebben tot doel het bevestigen van de resultaten uit de kleine goot en het
onderzoeken van nieuw opgedoken vragen. Deze dissertatie bevat maar enkele resultaten
uit de grote goot; meer resultaten zullen te zijner tijd via de vakliteratuur verspreid
worden.

De inhoud van deze dissertatie volgt in grote lijnen de bovenvermelde doelstellingen.

DEEL I “Instrumentatie en proefopstelling” presenteert de proefopstelling, de ADVP-
snelheidsmeter alsook de meetstrategie. Daarnaast wordt een methode voorgesteld om
acoustische turbulentiemetingen te verbeteren.
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DEEL II “Experimentele waarnemingen” bevat een hoogkwalitatieve dataset betreffende
de gemiddelde stroming en de turbulentie en documenteert daarnaast de meest
interessante eigenschappen:
(v) De stroomwaartse snelheidscomponent neemt naar de buitenoever toe en zijn

snelheidsverdeling over de diepte is vlakker dan in rechte uniforme stroming
(verlaagde/verhoogde snelheden in de bovenste/onderste helft van de waterdiepte).

(vi) De secondaire stroming wordt gekenmerkt door een relatief kleine en zwakke
buitenoever-cel naast de klassieke centrum-cel (de welbekende helicoïdale
stroming).

(vii) De turbulente activiteit is beduidend lager in de bestudeerde buitenbocht dan in
rechte uniforme stroming.

(viii) Lineaire modellen, die algemeen aangewend worden om rekening te houden met de
invloed van secondaire stromingen in de dieptegemiddelde stromingsvergelijkingen,
zijn onnauwkeuring voor gematigd tot sterk gekromde stroming.

DEEL III “Fundamenteel onderzoek” onderzoekt de fysische mechanismen en processen
verantwoordelijk voor bovenvermelde waarnemingen, en dit voornamelijk door middel
van termsgewijze evaluaties van de relevante stromingsvergelijkingen – impulsie,
vorticitiet en turbulente kinetische energie – alsook door het bestuderen van het
ogenblikkelijk stromingsgedrag.

De verdeling van de stroomwaartse snelheidscomponent wordt gedomineerd door beide
cellen van secondaire stroming, waarbij de buitenoever-cel een beschermende invloed
uitoefent op de stabiliteit van de buitenoever door het op afstand houden van de zone met
de hoogste snelheden.

De centrum-cel wordt hoofdzakelijk veroorzaakt door de verticale gradient van de
centrifugaalkracht, (∂/∂z)(vs

2/R): dieptegemiddeld zijn de niet-constante uitwaartse
centrifugaalkracht en de quasi-constante inwaartse drukgradient, tengevolge van het
dwarsverhang van het wateroppervlak, in evenwicht; hun lokale verschil leidt tot het
ontstaan van de centrum-cel. Er bestaat een belangrijke niet-lineaire interactie tussen de
verticale verdeling van de stroomwaartse snelheidscomponent vs en de centrum-cel: de
centrum-cel vervlakt de verticale verdeling van vs, hetgeen leidt tot een vermindering van
(∂/∂z)(vs

2/R) en een verzwakking van de centrum-cel. Lineaire modellen, die algemeen
aangewend worden om rekening te houden met de invloed van secondaire stromingen in
de dieptegemiddelde stromingsvergelijkingen, zijn onnauwkeuring omdat ze deze niet-
lineaire interactie verwaarlozen.

Gelijkaardige buitenoever-cellen bestaan in rechte turbulente stroming alsook in
gekromde laminaire stroming. In rechte turbulente stroming worden ze veroorzaakt door
de anisotropie van de turbulentie, terwijl ze onstaan wanneer de kromming een bepaalde
grenswaarde overschrijdt in gekromde laminaire stroming: de verticale vs-verdeling
vervlakt dusdanig dat het teken van de gradient van de centrifugaalkracht omslaat nabij
het wateroppervlak, (∂/∂z)(vs

2/R)<0, waardoor de buitenoever-cel ontstaat. In gekromde
turbulente stroming dragen beide mechanismen in gelijkaardige mate bij tot het ontstaan
van de buitenoever-cel. Bovendien versterken ze mekaar waardoor de buitenoever-cel in
gekromde turbulente stroming sterker is dan in rechte turbulente en gekromde laminaire
stroming. De teruggave van kinetische energie van de turbulentie aan de gemiddelde
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stroming speelt een belangrijke rol in het ontstaan van de buitenoever-cel. Omdat het
standaard k-ε turbulentiemodel intrinsiek niet in staat is om deze in aanmerking te nemen,
is het ongeschikt voor het berekenen van buitenoever-cellen.

De eigenschappen van de turbulentie in gekromde stroming verschillen fundamenteel van
deze in rechte stroming: een zelfde hoeveelheid turbulente kinetische energie leidt tot
minder turbulente schuifspanningen in gekromde stroming. Dit verschil verklaart waarom
de turbulente activiteit in de bestudeerde bocht lager is dan in rechte stroming. Het
ogenblikkelijk stromingsgedrag wijst erop dat de turbulente snelheidsfluctuaties kunnen
opgesplitst worden in twee fundamenteel verschillende delen: een oscillatie van beide
cellen van secondaire stroming met de eigenschappen van een golfbeweging ingebed in
een ontwikkelde achtergrondturbulentie.

DEEL IV “Toegepast onderzoek” tracht de verworven kennis praktisch toe te passen. Het
presenteert een niet-lineair model voor de invloed van secondaire stromingen in de
dieptegemiddelde stromingsvergelijkingen dat rekening houdt met de interactie tussen de
verticale vs-verdeling en de centrum-cel. In tegenstelling tot de algemeen aangewende
lineaire modellen geeft dit niet-lineaire model goede overeenstemming met de
meetresultaten voor sterk gekromde stroming uit de kleine en de grote goot. Het niet-
lineaire model hangt af van de verhouding waterdiepte/krommingsstraal, de
wrijvingsfactor en de breedteverdeling van vs, die allen kunnen gecombineerd worden in
een nieuw gedefinieerde bochtparameter; deze laat toe een objectief onderscheid te
maken tussen zwak, gematigd en sterk gekromde stroming. De lineaire modellen komen
overeen met de asymptotische oplossing voor verwaarloosbare kromming. Een evaluatie
voor natuurlijke rivieren toont aan dat de verschillen tussen lineaire en niet-lineaire
modellen relevant zijn.

Bovendien zijn de buitenoever-cellen met succes numeriek berekend aan de hand van een
niet-lineair k-ε turbulentiemodel.

Zoals reeds vermeld overtroffen de resultaten uit de kleine goot alle verwachtingen. Dit
had tot gevolg dat de analyse van de experimenten uit de grote goot niet kon afgewerkt
worden binnen het kader van dit doctoraat. DEEL V “Onderzoek in uitvoering” beschrijft
bondig het nog aan de gang zijnde onderzoek.

DEEL VI vat de belangrijkste conclusies van dit doctoraat samen.
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Zusammenfassung

Die nachhaltige Entwicklung der Flüsse erfordert Kenntnis der drei-dimensionalen
mittleren Strömung und der Turbulenz in komplexer Morphologie. In Zukunft wird die
Rechenkapazität der Computer ausreichen um selbst die feinsten Details der Strömung
simulieren zu können. Zur Zeit jedoch ist unser physikalisches Verständnis noch
unzulänglich. Die überwältigende Mehrheit der experimentellen Forschung befasst sich
mit der geraden uniformer Strömung, und die meist komplexen numerischen Modelle
stützen sich auf das Wissen über diese Strömung. Das Verständnis der relevanten
physikalischen Prozesse wird in komplexen interdisziplinären Problemen, als auch des
Flussmanagements, stets unerlässlich bleiben. Dies ist unabhängig von der verfügbaren
Rechenkapazität.

Diese Dissertation untersucht hauptsächlich experimentell die mittlere Strömung und die
Turbulenz in Flusskrümmungen. Diese Situation wird als ein generischer Fall für
komplexe drei-dimensionale Strömungen betrachtet. Die experimentelle Untersuchung
war vor allem durch die Verfügbarkeit eines akustischen Doppler-
Geschwindigkeitsmessinstrumentes (ADVP), welches an unserem Institut entwickelt
wurde, durchführbar.
Die Hauptziele dieser Dissertation sind:

-  Die Bereitstellung eines hochwertigen Datenbestandes über drei-dimensionale
Freispiegelströmungen einschliesslich der drei Komponenten der mittleren
Geschwindigkeit und der sechs Reynoldsschen Spannungen auf einem feinem Gitter.

-  Die Dokumentation interessanter Merkmale der mittleren Strömung und der
Turbulenz, wie zum Beispiel mehrere sekundäre Strömungszellen, der Einfluss der
Krümmung auf die Turbulenz, usw.

-  Das Verständnis relevanter physikalischer Mechanismen und Prozessen in solchen
Strömungen.

- Die Anwendung dieser neuen Erkenntnisse im Ingenieursalltag, hauptsächlich durch
Auswerten, Verbessern und Entwickeln der numerischen Simulationstechniken.

Gestartet wurde mit einer begrenzten Anzahl von Experimenten in einer kleinen
Laborrinne mit dem Ziel die Durchführbarkeit dieses Projektes zu testen. Anschliessend
wurde eine ausgedehnte Serie an Experimenten in einer grossen optimierten Laborrinne
durchgeführt. Die Resultate der kleine Laborrinne übertrafen alle Erwartungen und
formen den Kern dieser Dissertation. Die Experimente mit der grossen Laborrinne waren
zur Bestätigung dieser Ergebnisse und zur Klärung von neu auftauchenden Fragen
gedacht. Nur eine kleine Anzahl der Resultate mit der grossen Laborrinne sind dieser
Dissertation beigefügt; neue Ergebnisse werden in der Fachliteratur erscheinen.

Der Aufbau dieser Dissertation verfolgt die oben genannten Ziele.

In Teil 1, “Instrumentation und der Versuchsaufbau”, werden der Versuchsaufbau, das
ADVP und die Messmethoden vorgestellt. Ferner wird eine Methode zur Verbesserung
akustischer Turbulenzmessungen vorgeschlagen.
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Teil 2, “Experimentelle Beobachtungen”, stellt hochwertigen Daten über die mittlere
Strömung und die Turbulenz zur Verfügung und dokumentiert somit die interessantesten
Merkmale:
(i) Die Längsgeschwindigkeit nimmt nach aussen hin zu und die vertikale

Geschwindigkeitsverteilung wird flacher als in der geraden Strömung (erhöhte/
verringerte Geschwindigkeiten im unteren/höheren Teil der Wassertiefe);

(ii) Die Sekundärströmung wird durch eine relativ kleine und schwache
Aussenuferzelle neben der klassischen Zentrumzelle (Helikoïdalströmung)
gekennzeichnet.

(iii) Die Turbulenzaktivität ist, im Vergleich zu geraden uniformen Strömung, geringer
in der Aussenbucht der untersuchten gekrümmten Strömung.

(iv) Lineare Modelle, die häufig angewendet werden um den Effekt der
Sekundärströmung in tiefenintegrierten Strömungsmodellen zu berücksichtigen,
sind ungenau für mässig bis stark gekrümmte Strömung.

Teil 3, “Grundlagenforschung”, untersucht die physikalischen Mechanismen und
Prozesse in solchen Strömungen durch Auswertung der Terme in den relevanten
Strömungsgleichungen - Impuls, Wirbelstärke, turbulente kinetische Energie - und durch
Betrachtung des unmittelbaren Strömungsverhaltens.

Die Verteilung der Längsgeschwindigkeit wird durch die beiden Zellen der
Sekundärströmung dominiert, wobei die Aussenuferzelle, durch das Fernhalten des Kerns
der maximalen Geschwindigkeit, eine schützende Wirkung auf die Stabilität des
Aussenufers hat.

Die Zentrumzelle wird hauptsächlich durch den vertikalen Gradienten der
Zentrifugalkraft erzeugt, (∂/∂z)(vs

2/R): Die nicht gleichförmige nach Aussen gerichtete
Zentrifugalkraft und der fast gleichförmige nach Innen gerichtete Druckgradient,
beruhend auf der Querneigung des Wasserspiegels, sind im Durschnitt im Gleichgewicht.
Ihr lokales Ungleichgewicht führt zur Entstehung der Zentrumzelle. Es besteht eine starke
negative Rückkoppelung zwischen dem vertikalen Profil der Längsgeschwindigkeit vs

und der Zentrumzelle: Die Zentrumzelle verflacht die vs-Profile, welches zu einer
Verminderung des Terms (∂/∂z)(vs

2/R) führt und damit zu einer Schwächung der
Zentrumzelle. Lineare Modelle, die häufig benutzt werden um den Effekt der
Sekundärströmung in tiefenintegrierten Strömungsmodellen zu berücksichtigen, sind
ungenau wegen der Vernachlässigung dieser Rückkoppelung.

Ähnliche Aussenuferzellen gibt es in der geraden turbulenten wie auch in der
gekrümmten laminaren Strömung. In der geraden turbulenten Strömung werden sie
verursacht durch die Anisotropie der Turbulenz. In gekrümmten laminaren Strömungen
entstehen sie, wenn die Krümmung einen kritischen Wert übersteigt: Die vertikale vs-
Profile verflachen derartig, dass das Vorzeichen des Gradienten der Zentrifugalkraft nahe
der Wasseroberfläche umschlägt, (∂/∂z)(vs

2/R)<0, wodurch die Aussenuferzelle entsteht.
In der gekrümmten turbulenten Strömung, tragen beide Mechanismen in vergleichbarem
Maße zur Generation der Aussenuferzelle bei und verstärken sich gegenseitig. Dadurch
ist die Aussenuferzelle stärker in einer gekrümmten turbulenten Strömung als in einer
gekrümmten laminaren oder geraden turbulenten Strömung. Die Umformung von
kinetischer turbulenter Energie in Energie der mittleren Strömung spielt eine wichtige
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Rolle bei der Erzeugung der Aussenuferzelle. Da das standard k-ε Turbulenzmodell nicht
in der Lage ist diese Umformung zu berücksichtigen, ist es ungeeignet für die Simulation
von Aussenuferzellen.

Die Struktur der Turbulenz in der gekrümmten Strömung ist wesentlich anders als in der
geraden uniformen Strömung: Bei gleicher turbulenter kinetischer Energie existiert
weniger Schubspannung in der gekrümmten Strömung. Dieser Unterschied erklärt die
beobachtete verminderte Turbulenzaktivität in der untersuchten Strömung. Eine Analyse
des unmittelbaren Strömungsverhaltens weist darauf hin, dass die
Turbulenzschwankungen in zwei wesentliche, verschiedene Teile zerlegt werden können:
Eine wellenähnliche Schwankung beider sekundären Strömungszellen, eingebettet in
ausgebildete Hintergrundsturbulenz.

Teil IV, “Angewandte Forschung”, versucht das erlangte Wissen im Ingenieursalltag
anzuwenden. Es präsentiert ein nicht-lineares Modell für den Effekt der
Sekundärströmung in tiefenintegrierten Strömungsmodellen, dass die negative
Rückkoppelung zwischen der Längsgeschwindigkeit und der Zentrumzelle
berücksichtigt. Im Gegensatz zu den häufig benutzten linearen Modellen ergibt dieses
nicht-lineare Modell eine gute Übereinstimmung mit den Messresultaten für stark
gekrümmte Strömung aus der kleinen und grossen Rinne. Das Modell hängt vom
Verhältnis Wassertiefe/Krümmungsradius, dem Reibungskoeffizienten, und der
Breiteverteilung vs ab, welche alle in einem neu definiertem Krümmungsparameter
vereint werden können. Dies erlaubt eine objektive Definition von schwach, moderat und
stark gekrümmter Strömung. Das lineare Modell entspricht dem asymptotischem
Verhalten für infinitesimale Krümmung. Eine Untersuchung von  natürlichen
Flussströmungen hat gezeigt, dass Unterschiede zwischen linearen und nicht-linearen
Modellen relevant sind.

Ausserdem sind die Aussenuferzellen erfolgreich mit einem nicht-linearen k-ε
Turbulenzmodel simuliert worden.

Wie vorher erwähnt, haben die Experimente in der kleinen Rinne alle Erwartungen
übertroffen. Dies hatte zur Folge, dass eine Analyse der Experimente mit der grossen
Rinne nicht im Rahmen dieser Dissertation diskutiert werden konnte. Teil V, “Laufende
Forschung”, beschreibt die noch laufende Forschung.

Teil VI fasst die Hauptfolgerungen dieser Dissertation zusammen.



xiii

TABLE OF CONTENS

Acknowledgements
Summary i
Résumé iv
Samenvatting vii
Zusammenfassung x

PART 0 INTRODUCTION

0.1 Motivation and objectives 0.1
0.2 Outline of dissertation 0.4

PART I INSTRUMENTATION AND EXPERIMENTAL SET-UP

I.0 Introduction
I.1 Acoustic Doppler Velocity Profiler (ADVP) and Experimental Set-up I.1

1 Acoustic Doppler Velocity Profiler (ADVP) I.1
2 Small-flume experiments I.4
3 Large-flume experiments I.5

I.2 Improving Acoustic Turbulence Measurements I.11
1 Introduction I.11
2 Principle of Acoustic Doppler Velocimetry (ADV) I.12
3 Noise reduction by optimizing the ADV configuration I.15

3.1 Principle of ADV optimization I.15
3.2 ADVP instrument and experimental set-up I.21
3.3 Experimental verification I.22

4 Noise reduction by increasing the signal-to-noise ratio (SNR) I.28
5 Conclusions I.31

PART II EXPERIMENTAL OBSERVATIONS

II.0 Introduction

II.1 Mean Flow and Turbulence in Open-Channel Bend II.1
1 Introduction II.1
2 Experimental installation II.1
3 Experimental results II.6

3.1 Time-averaged velocities II.6
3.2 Turbulent normal stresses II.8
3.3 Turbulent shear stresses II.9
3.4 Mean-flow and turbulent kinetic energy II.9

4 Discussion II.10
5 Summary and Conclusions II.11



xiv

II.2 Bend-Flow Simulation Using 2D Depth-Averaged Model II.15

II.3 Experiments on Flow in a Strongly Curved Channel Bend II.19
1 Introduction II.19
2 Theoretical considerations II.19
3 The experiments II.21
4 Experimental results II.23

4.1 Velocity distribution II.23
4.2 Secondary circulation and velocity redistribution II.23

5 Conclusions II.24

II.4 Secondary Currents Measured in Sharp Open-Channel Bends II.27
1 Introduction II.27
2 The experiments II.29
3 Experimental results and analysis II.29

3.1 Centerline evolution of secondary circulation II.29
3.2 Three-dimensional flow patterns II.30

4 Conclusions II.34

II.5 Conclusions II.37

PART III FUNDAMENTAL RESEARCH

III.0 Introduction

III.1 Momentum Transport in Sharp Open-Channel Bends III.1
1 Introduction III.2
2 Analysis of experimental data III.3

2.1 The experiment III.3
2.2 Theoretical considerations III.6
2.3 Downstream momentum equation III.9
2.4 Depth-integrated downstream momentum equation III.13

3 Theoretical model and mathematical analysis III.14
3.1 Linear model III.16
3.2 Non-linear model III.17

4 Relevance to engineering practice III.20
5 Conclusions III.20

III.2 Secondary Flow in Sharp Open-Channel Bends III.27
1 Introduction III.28
2 Theoretical basis and previous work III.30

2.1 Cross-stream motion and downstream vorticity III.30
2.2 Current state of knowledge III.32
2.3 Kinetic energy transfer between mean flow and turbulence III.38



xv

3 Present objectives III.40

4 Analysis of experimental data III.41

4.1 The experiment III.41

4.2 Experimental results III.43

4.3 Analysis of the centre-region cell III.46

4.4 Analysis of the outer-bank cell III.48

4.5 Kinetic energy transfer III.52

5 Conclusions III.54

III.3 Turbulence Characteristics in Sharp Open-Channel Bends III.61

1 Introduction III.61

2 The experiment III.63

3 Experimental results III.65

4 Analysis III.68

4.1 Transport equation for k III.68

4.2 Turbulence structure III.73

4.3 Discussion III.77

5 Influence of streamline curvature on turbulence structure III.78

5.1 Theoretical considerations III.78

5.2 Experimental observations III.79

5.3 Discussion III.81

6 The curvature Richardson number III.83

7 Conclusions III.84

III.4 Turbulence Structure in Sharp Open-Channel Bends III.91

1 Introduction III.91

2 The experiment III.92

3 Experimental results III.94

4 Analysis of velocity fluctuations and of turbulence structure III.97

4.1 Width-coherent velocity fluctuations III.97

4.2 Decomposition of the velocity fluctuations III.98

4.3 Bulk-oscillation of the pattern of circulation cells III.99

4.4 Decomposition of the turbulent stresses III.100

4.5 Spectral analysis of the structure of turbulence III.102

5 The influence of streamline curvature III.106

6 Discussion and conclusions III.109

III.5 Conclusions III.113



xvi

PART IV APPLIED RESEARCH

IV.0 Introduction
IV.1 Non-Linear Modeling of Secondary Flow and Vertical Flow Structure

in Open-Channel Bends IV.1
1 Introduction IV.1
2 Mathematical framework IV.3
3 Approaches of model closure IV.6
4 The experiments IV.7
5 Linear approach of closure IV.10
6 Non-linear approach of closure IV.13

6.1 Existing non-linear models IV.13
6.2 Non-linear-model equations IV.13
6.3 Validation IV.15
6.4 Parameter reduction IV.17

7 Linear vs. non-linear model IV.20
8 Relevance of non-linear model and practical application IV.22

8.1 Theoretical background IV.23
8.2 Practical application IV.24

9 Conclusions IV.26
Annex 1 Derivation of linear and non-linear-model equations IV.30
Annex 2 Transversal gradients in non-linear model IV.32
Annex 3 Solution procedure of the non-linear closure submodel IV.34

IV.2 Simulation of Secondary Flow in Curved Channels IV.35
1 Introduction IV.35
2 The mathematical model IV.36
3 Physical model data IV.38
4 Comparison of measured with computed flow field IV.39
5 Conclusions IV.41

IV.3 Conclusions IV.43

PART V WORK IN PROGRESS

V.1 Experimental observations and fundamental research V.1
V.2 Applied research V.2

PART VI CONCLUSIONS

VI.1 Introduction and objectives VI.1
VI.2 Conclusions VI.1

Curriculum Vitae



PART 0

INTRODUCTION

0.1 Motivation and objectives 0.1
0.2 Outline of dissertation 0.4





0.1

0.1 Motivation and objectives

Rivers are the arteries of our planet: they shape our landscapes, irrigate our lands, supply
us with drinking water and food and constitute important connecting links. But rivers also
frequently cause devastation: they erode fertile land and endanger property, inundate vast
areas of land and spread disease.

Mankind has always tempted to tame its rivers by exploiting its resources and seeking
protection against its threats. In his book “L’Hydrauliques dans les Civilisations
Anciennes”, P.L. Viollet1 (2000) gives examples of human interventions in the river
network that date back 5000 years. Although tempting for so long, mankind is still far
from mastering its rivers, as is all-too-often tragically illustrated in all parts of the world.
In his plenary lecture “Flood disasters: lessons from the past – worries for the future” at
the 28th IAHR-congress in Graz (Austria), Berz2 (1999) states: “Flood disasters account
for about a third of all natural catastrophes throughout the world (by number and
economic losses) and are responsible for more than half of the fatalities. Trend analyses
reveal that major flood disasters and the losses generated by them have increased
drastically in recent years”.

In a perpetual dynamic process, mankind has always tempted to adapt the river network
to its requirements: with every intervention, mankind not only enhanced its understanding
of the river system, but inadvertently also discovered new unresolved problems and
additional requirements, leading to an ever-extending list of concerned disciplines: fluid
dynamics, hydraulics, hydrology, erosion and sedimentation, geomorphology, geology,
biology, chemistry, mathematics, etc. Recent nominations such as computational fluid
dynamics, morpho-dynamics, eco-hydraulics, fluvial geomorphology, etc., readily
indicate that these different disciplines, which cover a wide range of time and length-
scales, are strongly interrelated. Due to their complexity, a sound understanding of the
relevant physical mechanisms and processes will always be essential in river projects, and
this irrespective of the available computational capacity.

This PhD can be situated in the discipline of fluid dynamics applied to river flow, i.e. it
investigates the dynamics of the mean-flow field and the turbulence in the river
environment, thereby always keeping in mind the interactions with other disciplines. For
example: some details of the three-dimensional flow field are relevant for the
geomorphologic development of the river, some characteristics of the turbulence are
relevant for the water quality and the spreading and mixing of pollutants, or some flow
and turbulence characteristics are relevant in mathematical simulation techniques.
Moreover, there are mutual interactions with other related fields of fluid dynamics such as
meteorology, aeronautics, turbo-machinery, etc.

                                                  
1 Viollet, P.-L. (2000). “L'hydraulique dans les civilisations anciennes : 5000 ans d'histoire”. Presses de

l'Ecole Nationale des Ponts et Chaussées, Paris.
2 Berz, G. (1999). “Flood disasters: lessons from the past – worries for the future”. 28th IAHR-congress,

Post Congr. Vol.: General & Special Lectures, Graz Univ. Techn., Austria, 9-16.
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Some recent evolutions in the river management are illustrative of this growing
complexity. After WWII, river interventions mainly intended to improve navigation and
flood control, to generate hydropower and to reclaim fertile soil on the river, which
required knowledge on the mean-flow field and the river morphology. Huge experimental
and mathematical research efforts were undertaken that led to a good understanding of the
river behavior in simplified geometries. Numerous river canalization works were
undertaken that imposed such a simplified geometry upon the river whereby the
reclaimed land was used for urban development or industry, leading to a variety of new
unresolved problems, such as devastating inundations of the reclaimed land, degradation
of the chemical and biological river quality due to the imposed un-natural geometry and
the over-drainage of waste water by the industry. These problems evoked the definition of
new ecologically-related requirements and the present tendency to renaturalize rivers by
letting them more freely shape their course in their alluvial plane, which is recognized as
a rich biotope and as an important factor in flood defense systems by providing buffer
capacity. The simultaneous satisfaction of the traditional technical requirements and the
recent ecological requirements is often designated with the in-vogue term “sustainable
development”. The design of river renaturalization works, flood protection schemes or
navigation improvement works now require an understanding of the three-dimensional
flow field and the river morphology in complicated geometries, whereas insight in the
role of turbulence is essential in problems related to the chemical and biological quality
of the river.

During the same time-span, also research methods have evolved: both the available
computational capacity and the cost of experimental research have exploded, leading to a
predominance of the former. At present, simulations of the three-dimensional flow field
in complicated geometries are already feasible for flow domains of moderate size and
within a prescribed morphology, and it is beyond doubt that simulating large flow
domains and morphological interactions will become feasible in a future. The increased
computational capacity and developments in fields like electronics, acoustics and optics
enable to investigate experimentally the fine details of the flow field as well as the
characteristics of turbulence. However, due to the enormous cost of high-tech
experimental research, the overwhelming majority of investigations are limited to straight
uniform flows and hardly any experimental data exist on the three-dimensional flow
field and the turbulence in complicated geometries.

Contradictory, the recent explosion of computational capacity has often impoverished
research: there is a tendency to credit blindly the results of numerical simulations, not in
the least due to their colorful presentation including spectacular animations. It is all-too-
often forgotten that due to the lack of research on turbulence in three-dimensional open-
channel flows, mostly straightforward extensions of straight-uniform-flow turbulence
models are adopted without sufficient validation, and that due to the lack of experimental
data on the three-dimensional flow field in complicated geometries, numerical models are
insufficiently validated to be a reliable tool for river development predictions. As
mentioned before, a sound understanding of the relevant physical mechanisms and
processes will always be essential in river projects, and this irrespective of the available
computational capacity.
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These critical remarks are at the basis of this PhD that, starting from detailed
experimental measurements in a three-dimensional flow, investigates the mean-flow field
and the turbulence as well as the underlying physical mechanisms and processes. Such an
experimental investigation is rendered feasible by the availability of a powerful Acoustic
Doppler Velocity Profiler (ADVP), developed in our laboratory (see chapters I.1-2). We
have chosen to investigate the flow in an open-channel bend as a generic case of three-
dimensional flow, because it contains all the complexities of a three-dimensional flow in
a simple geometry. A definition sketch of a reach of an open-channel bend is given in Fig.
0.1; it indicates a multi-cellular pattern of secondary circulation (also called helical
motion), which will play an important role in this dissertation.

s

z

n

Downstream velocity: vs

Outer-bank cell

Center-region cell

Transversal velocity: vn

Secondary circulation:

Vertical velocity: vz

Fig. 0.1: Definition sketch of curved open-channel flow

The principal aims of this PhD are:

- To provide a high-quality data base on three-dimensional open-channel flow, including
all three mean velocity components and all six Reynolds stresses on a fine grid.

-  To document interesting features of the flow field and the turbulence, such as the
multi-cellular pattern of secondary circulation, the curvature influence on the
turbulence, etc.

- To gain insight in the relevant physical mechanisms and processes underlying these
features.

-  To apply the acquired knowledge in an engineering sense, mainly by evaluating,
improving and developing numerical simulation techniques.

Accordingly, the core of this dissertation is structured into three parts, i.e. experimental
observations, fundamental research and applied research, as illustrated by Fig. 0.2.
Experimental observations on the mean flow field and the turbulence were first made in a
small low-budget laboratory flume (see chapter I.1) , which was mainly intended to test
the feasibility of the project. These small-flume experiments yielded a wealth of high-
quality data and documented some interesting flow features. Subsequently, fundamental
research was done on the physical mechanisms and processes underlying these
observations, mainly by making term-by-term evaluations of the flow equations based on
the experimental data and by investigating the instantaneous flow behavior. With applied
research is meant the evaluation, improvement and development of engineering methods,
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mainly numerical simulation techniques. From this fundamental and applied research on
the small-flume experiments, new questions emerged, that lead to the design of extended
series of experiments in a new, larger and better equipped laboratory flume (chapter I.1).
Obviously, the three parts are not independent but profit from mutual interactions. The
contents of this dissertation are outlined more in detail in the following.

II.   EXPERIMENTAL OBSERVATIONS 

III.   FUNDAMENTAL RESEARCH  IV.   APPLIED RESEARCH 

Small-flume experiments (ch. II.1-II.2) 
 
Large-flume experiments (ch. II.3 -II.4) 

Experimental data on mean flow and turbulence in three- 
dimensional flow, with unprecedented detail, rendered  
feasible by Acoustic Doppler Velocity Profiler (ADVP) 

Understanding of fluid dynamics underlying  
experimental observations: 
-  Term-by-term evaluation of flow equations  

 based on experimental data  (ch. III.1-III.3) 
-  Analysis of instantaneous flow behavior  

 (ch. III.4) 
-  Extension of experimentally investigated  

 parameter range by means of numerical  
 simulations (not included in dissertation) 

Evaluate, improve and develop engineering  
methods, especially numerical simulation  
techniques. 
-  Closure submodel for vertical flow structure, and  

 especially secondary circulation, in depth-  
 integrated flow models (ch. IV.1) 

-  Turbulence closure submodel in three-  
 dimensional flow models required to simulate  
 certain phenomena (ch. IV.2) 

-  Confirmation of results with new experiments
-  Extension of research (include downstream  

 variation, various hydraulic conditions, etc.) 

I.   INSTRUMENTATION AND EXPERIMENTAL SET-UP

V.   WORK IN PROGRESS

VI.   CONCLUSIONS

see Fig. 0.3

0.   INTRODUCTION

-  Presentation of Acoustic Doppler Velocity Profiler (ADVP), 
 as well as small and large-flume experiments (ch. I.1)

-  Improving acoustic turbulence measurements (ch. I.2)

Fig. 0.2: Outline of dissertation

0.2 Outline of dissertation

As mentioned above and shown in Fig. 0.2, this INTRODUCTION will be followed by
PART I “Instrumentation and experimental set-up” in which the Acoustic Doppler
Velocity Profiler (ADVP) and the small and large-flume experiments, are presented
(chapter I.1). Furthermore, some efficient ways to improve turbulence measurements by
means of Acoustic Doppler Velocimetry (ADV) are proposed (chapter I.2).

Part I is followed by the core of this dissertation, structured into three parts: experimental
observations, fundamental research and applied research, whose outline is schematized in
the “organigramme”, Fig. 0.3, and described below.
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PART II “Experimental observations” presents experimental data and highlights some
interesting observations. This dissertation, however, only presents data that will
subsequently be analyzed in Parts III and IV. Chapter II.1 presents the working principle
of the ADVP, the data analysis techniques, and the principal data of the small-flume
experiments, being the downstream velocity distribution, the pattern of secondary
circulation cells, the distributions of the Reynolds stresses and the distributions of the
mean flow as well as the turbulent kinetic energy. In chapter II.2 the linear models that
are commonly used to account for the influence of the secondary circulation in the depth-
integrated flow equations are compared to these experimental data and shown to be
inaccurate. Chapter II.3 presents some data of the large-flume experiments, that confirm
the inaccuracy of these linear models and that are subsequently used in chapter IV.1 to
validate a proposed non-linear model. Chapter II.4 presents multi-cellular patterns of
secondary circulation measured in the large-flume experiments for different degrees of
curvature. Chapter II.5 summarizes the main conclusions of part II.

PART III “Fundamental research” analyzes the mechanisms and physical processes
underlying the observations made in the small-flume experiments, chapters II.1-II.2 (see
Fig. 0.3), mainly by making term-by-term evaluations of the relevant flow equations as
well as by investigating the instantaneous behavior of the flow. The distribution of the
downstream velocity, analyzed in chapter III.1, highlights the important role played by
the secondary circulation. The analysis of the bi-cellular pattern of secondary circulation
in chapter III.2 points to the important dynamical role of the turbulence. Finally, some
observations on the turbulence, such as the reduced turbulence activity and the
instantaneous behavior of the pattern of circulation cells are analyzed in chapters III.3 and
III.4. Chapter III.5 summarizes the main conclusions.

PART IV “Applied research” aims to apply the acquired knowledge by evaluating,
improving and developing engineering methods, and especially numerical simulation
techniques. Chapter IV.1 proposes a non-linear-model to account for the influence of the
secondary circulation in the depth-integrated flow equations that compares well with
experimental data from the small and the large-flume experiments. Based on the results of
chapter III.2, chapter IV.2 reports successful numerical simulations of the observed multi-
cellular patterns of secondary circulation with a non-linear k-ε turbulence closure.

This dissertation almost exclusively concerns the small-flume experiments, despite the
fact that the overwhelming majority of data were gathered in the large-flume experiments.
As mentioned in chapter I.1, the small-flume experiments were intended as a feasibility
test of the project and measurements were only made in the outer half of one cross-
section under one set of hydraulic conditions, whereas entire cross-sections all around the
flume were measured under different hydraulic conditions and over different bottom
configurations in the large-flume experiments. However, the small-flume experiments
yielded results beyond all expectations that form the core of this dissertation. As a side
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effect, the detailed analysis of the large-flume experiments has not yet been accomplished
and a lot of work is still in progress, as indicated in the PART V “Work in progress”. The
final PART VI of this dissertation summarized the principal CONCLUSIONS.

Note: This dissertation is mainly a compilation of published and submitted journal and
congress papers as well as papers that are being prepared for submission. By making each
one of them auto-consistent and intelligible, repetition of some parts (such as the
presentation of the experimental setup) could not be avoided. A literature review of the
various investigated topics is given in the relevant papers.
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PART I

INSTRUMENTATION AND EXPERIMENTAL SET-UP

I.0 Introduction
I.1 Acoustic Doppler Velocity Profiler (ADVP) and Experimental Set-up I.1
I.2 Improving Acoustic Turbulence Measurements I.11
________________________________________________________________________

I.0 Introduction

This PhD relies on a high-tech velocity meter, the Acoustic Doppler Velocity Profiler
(ADVP), developed in our laboratory. This instrument as well as its different
configurations adopted are briefly presented in chapter I.1(1).

Experiments were made in two experimental infrastructures. First, a limited series of
experiments was conducted in a small-flume, with the aim of testing the feasibility of the
project. Subsequently, extended series of experiments were done in a large and optimized
laboratory flume. Both experimental flumes, the hydraulic conditions, the measuring
strategies and the measuring grids are presented in chapter I.1(2-3).

In the framework of this PhD, some methods were developed that improve acoustic
turbulence measurements. They are presented and illustrated in chapter I.2.
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I.1 Acoustic Doppler Velocity Profiler (ADVP)
 and Experimental Set-up

1 Acoustic Doppler Velocity Profiler (ADVP)

This PhD relies on the availability of a high-tech velocity meter, the Acoustic Doppler
Velocity Profiler (ADVP), developed in our laboratory. The ADVP consists of a central
emitter surrounded by four receivers (Fig. I.1), each of them simultaneously measuring a
quasi-instantaneous velocity component along an entire water column. This gives
sufficient information to obtain the mean velocity vector rv v v vs n z( , , ) , the fluctuating
velocity vector r′ ′ ′ ′v v v v( , , )s n z , all Reynolds stresses ′ ′v vj k , and all higher-order turbulent

correlations ′ ′v va b
j k  (j,k=s,n,z ; a,b integer ; the overbar denotes time-averaged values). The

ADVP has important advantages over most commercially available velocity meters:

- It does not measure point-by-point, but it measures simultaneously profiles along an
entire water column, which enables to do measurements much faster and on much
denser grids than with point-by-point instruments. This characteristic allowed to
investigate extensively the flow field and the turbulence in open-channel bends under
different hydraulic conditions (see sections 2 and 3).

-  Its profiling capacity furthermore enables to investigate the bulk behavior of large
flow structures, such as cells of secondary circulation (see chapter III.4), or to
investigate coherent flow structures (ejections, sweeps, etc.).

-  It measures simultaneously four quasi-instantaneous velocity components, whereas
three would be sufficient to derive the three-dimensional velocity field. However, the
fourth component gives a redundant information that can be used to improve the
quality of the velocity measurements and especially the resolution of the turbulence
(see chapter I.2).

The ADVP is being developed in our laboratory and it is amply reported in literature
(Lhermitte and Lemmin, 1994; Shen and Lemmin, 1996 and 1997; Lemmin and Rolland,
1997; Rolland and Lemmin, 1997; Hurther and Lemmin, 1998 and 2001)1. Therefore, its
working principle is only briefly explained in chapters I.2 and II.1.

                                                  
1 Lhermitte, R., & Lemmin, U. (1994). “Open-channel flow and turbulence measurement by high-resolution

Doppler sonar.” J. Atm. Oc. Techn., AMS, 11(5), 1295-1308.
   Shen, C., & Lemmin, U. (1996). “A tristatic Doppler velocity profiler and its application to turbulent

open-channel flow.” Advances in Turbulence VI, P. A. Monkewitz and S. Gavrilakis, eds., Kluwer
Academic Publications, Lausanne, 483-486.

   Shen, C., & Lemmin, U. (1997). “Ultrasonic scattering in highly turbulent clear water flow.” Ultrasonics,
35, 57-64.

   Lemmin, U., & Rolland, T. (1997). “Acoustic velocity profiler for laboratory and field studies.” J. Hydr.
Engng, ASCE, 123(12), 1089-1098.

   Rolland, T., & Lemmin, U. (1997). “A two-component acoustic velocity profiler for use in turbulent
open-channel flow.” J. Hydr. Res., IAHR, 35(4), 545-561.

   Hurther, D., & Lemmin, U. (1998). “A constant beamwidth transducer for three-dimensional Doppler
profile measurements in open channel flow.” Meas. Sciences Techn., 9(10), 1706-1714.

   Hurther, D., & Lemmin, U. (2001). “A correction method for turbulence measurements with a 3-D
acoustic Doppler velocity profiler.” J. Atm. Oc. Techn., AMS, Vol.18, 446-458.
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Within the framework of this PhD, the measuring technique has been improved, mainly
by optimizing the geometrical configuration of the ADVP.

Previously, measurements were made along vertical water columns with the ADVP
mounted in a water-filled housing that touches the water surface, whereby the four
receivers were aligned in longitudinal and transversal direction in a symmetrical
configuration, as indicated in Fig. I.1. Although it might seem like a trivial difference, a
considerable improvement in turbulence measurements is obtained by aligning the four
receivers symmetrically along the bisectors of the longitudinal and transversal planes
(Fig. I.1), as theoretically explained and illustrated in chapter I.2.

This configuration does not allow to measure closer than about 15 cm to an obstacle, such
as a vertical bank (or a bridge pier,…). Therefore, an asymmetrical configuration, with all
four receivers at the same side of the emitter, has been developed that enables to measure
as close as about 3 cm to an obstacle (Fig. I.1). Both configurations were applied in the
large-flume experiments (see section 3).

Furthermore, in the small-flume experiments (see section 2), measurements of transversal
water columns were made through the vertical Plexiglas bank of the flume, with the
ADVP placed in a water-filled box attached to the bank (Fig. I.1). This configuration is
completely non-intrusive (the “vertical configuration” somewhat perturbs the water
surface) and allows to measure even closer to the bank. It has not been adopted in the
large-flume experiments since the flume’s width of 1.3 m could not be covered.

Finally, acoustic measurements based on the Doppler principle are often hindered by a
lack of scattering targets in the flow. Within the framework of this PhD a method has
been developed to add scattering targets, in the form of micro air bubbles, to the flow by
electrolysis. It is presented in chapter I.2.

A rich experience has been gained in the study of flow and turbulence in straight-uniform
flow (Kironoto and Graf, 1994; Song et al., 1994; Cellino and Graf, 1999; Hurther,
2001)2, but this PhD is its first application in a complex three-dimensional flow.
Therefore, a first limited series of experiments in a small low-budget laboratory flume
was mainly intended to test the ADVP in such flows, and especially to test its capabilities
to measure accurately the very weak outer-bank cell of secondary circulation (see Fig.
0.1). These small-flume experiments yielded results beyond all expectations that form the
core of this dissertation. They were followed by extended series of measurements in a
new and large optimized flume. Both the small and the large-flume experiments are
briefly presented in the following.

                                                  
2 Kironoto, B. A., & Graf, W. H. (1994). “Turbulence characteristics in rough uniform open-channel flow.”

Instn Civ. Engrs, Wat., Marit. et Energy, Vol. 106, 333-344.
   Song, T., Graf, W. H., & Lemmin, U. (1994). “Uniform flow in open channels with movable gravel bed.”

J. Hydr. Res., ASCE, 32(6), 861-876.
   Cellino, M., & Graf, W. H. (1999). “Sediment-laden flow in open-channels under noncapacity and

capacity Conditions.” J. Hydr. Engng, ASCE, 125(5), 455-462.
   Hurther, D. (2001). “Sediment transport assessment in suspension flow based on coherent structure

characteristics.” Proc. JFK Student Paper Comp., 29th-IAHR congress, Beijing, China, 73-82.
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2 Small -flume experiments

The small laboratory flume, shown in Fig. I.2, is B=0.4m wide and has a rectangular
cross-section of 0.3m height with boundaries made out of Plexiglas. It consists of an inlet
basin (I), followed by a 2m long straight inflow reach (II), a 120º bend with constant
centerline radius of curvature, R=2m (III), a sediment deposition basin (IV), a V-shaped
weir (V) and an outlet basin (VI). The overall length of the flume is 6.2m along the
centerline. The discharge is regulated by the automatically operated pump, PF, and valve,
VF1. The supply (1) and restitution (2) pipes have a diameter of φ=200mm and water is
recirculated through the laboratory sump (VII).

Legend: (all scales in mm)

I: Inlet basin
II: Straight inflow reach
III: Constant curvature bend
IV: Sediment deposition basin
V: V-shaped weir
VI: Outlet basin
VII: Laboratory sump
PF: Pump for flow recirculation
VF1: Electrical valve on flow supply pipe, φ=315 mm
1: Supply pipe, φ=200 mm
2: Restitution pipe, φ=200 mm
a: sand bed
b: gravel bed
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Fig. I.2: Small laboratory flume

As mentioned above, measurements were first done in this small low-budget flume with
the aim of evaluating the capabilities of our ADVP to measure accurately the flow and the
turbulence in an open-channel bend. The supreme test consists of attempting to measure
the outer-bank cell of secondary circulation (see Fig. 0.1) characterized by very weak
velocities of O(1 cm/s). Therefore, measurements were made on two overlapping grids in
the outer half of one single cross-section at 60º in the bend under one hydraulic condition.
Measurements were made along transversal water columns with the ADVP placed in a
water-filled box attached to the outer bank. The small-flume experiments were done over
the mobile-bottom topography shown in Fig. I.2, which, together with the water surface,
was measured with a point gauge. The measuring section at 60°, the measuring grids, the
ADVP-configuration and the hydraulic conditions are shown in Fig. I.3.
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cross-section at 60º and hydraulic conditions

Fig. I.3: Measuring section at 60°, measuring grids, ADVP-configuration and hydraulic
conditions in small-flume experiments

These small-flume experiments were unexpectedly successful. The most relevant
experimental data, including the outer-bank cell of secondary circulation, are presented in
chapters II.1 and II.2 and subsequently analyzed in chapters III.1-4.

3 Large -flume experiments
As mentioned above, the small-flume experiments have been followed by extended series
of measurements in a new and larger optimized laboratory flume, shown in Fig. I.4, with
the aim of:
- confirming the results of the small-flume experiments.
- extending the research by measuring entire cross-sections all along the flume under

various hydraulic conditions and for different bottom configurations.
- Investigating new questions that emerged from the small-flume experiments.

The large flume’s geometry is primarily determined by characteristics of the ADVP. Its
positioning at the water surface (Fig. I.6) to measure vertical water columns imposes an
optimal flow depth between 0.1m < H < 0.2m. In order to have a reasonable aspect ratio,
B/H >6, a width of 1.3 m has been adopted. By considering a sharp bend, R/B=1.31, the
curvature effects are more pronounced, hence better visible.

The large laboratory flume (Fig. I.4) has rectangular cross-sections with boundaries made
out of Plexiglas. It consists of a 2m long inlet basin (II), followed by a 9m long straight
inflow reach (III), a 193º bend with constant centerline radius of curvature, R=1.7m (IV),
a 3m long straight outflow reach (V, VI), a 2m long sediment deposition basin (VII) and a
2m long outflow basin (VIII). The overall length of the flume is 22.7m along the
centerline. By covering the sediment deposition basin with a flat Plexiglas plate, the
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length of the straight outflow reach can be extended to 5m. The depth of the sections in
the straight inflow (III) and outflow (VI, VII) reaches is 0.6m. To allow the study of local
bend scour, sections with a depth of 0.85m are foreseen in the bend (IV) and in the
straight outflow reach just downstream of it (V). The entire flume is posed on adjustable
feet (e) with a maximum height of about 0.1m.

Legend: (all scales in mm)

I: Constant discharge basin
II: Inlet basin
III: Straight inflow reach (depth 600 mm)
IV: Constant curvature bend (depth 850 mm)
V: Straight outflow reach (depth 850 mm)
VI: Straight outflow reach (depth 600 mm)
VII: Sediment deposition basin / straight outflow reach (depth 600 mm)
VIII: Outlet basin
IX: Laboratory sump

PF: Pump for flow recirculation
VF1: Electrical valve on flow supply pipe, φ=315 mm
VF2: Manual valve on pipe,  φ=315 mm, to regulate water level in I 

1: Perforated pipe, φ=315 mm
2: Porous plate filter
3: Perforated  pipe, φ=315 mm
4: Porous polyether filter 10 ppi, 10 mm thick
5: Adjustable water level control weir
6: Restitution pipe,  φ=315 mm
7: Sediment feeder

a: Inclinable guiding rail for carriage
b: Carriage for straight inflow and outflow reaches
c: Two pivoting-arm carriages for bendway
d: sediment bed
e: adjustable feet
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The discharge in the flow recirculation system is regulated by the automatically operated
pump, PF, and valve, VF1. The supply pipe has a diameter of φ=315mm and the
maximum discharge is, Q=250l/s. Water is pumped from the laboratory sump into the
constant discharge basin (I) in which the water level is regulated by the manual valve
VF2. The porous plate filter (2) and the choice of a water level of about 2.5m (~15m3

stocking) in the constant discharge basin guarantee the elimination of discharge
fluctuations and of air bubbles entrained by the pump. From the constant discharge basin
(I), the water flows into the inlet basin (II) through a perforated pipe, φ=315mm,
symmetrically disposed on the flume axis. The inlet basin is connected with the actual test
reach by a 45º inclined ramp, which together with the porous polyether filter (4)
guarantee stable flow conditions at the entrance of the test reach. At the downstream end
of the flume, the water level is controlled by a manually adjustable weir (5). The water
flows back into the sump from the outlet basin (VIII) through a restitution pipe (6),
φ=315mm.

When conducting experiments with a mobile bottom, the sediment deposition basin (VII)
is uncovered and sediment is continuously fed (7) into the flume near its entrance.
Sediment falls from a funnel on a plate, and is moved into the flume by means of a back-
and-forth moving scraper. The frequency of the scraper regulates the sediment discharge.

Measuring instruments can be mounted on the carriages (b) and (c). The carriage (b) for
the straight flow reaches is guided by a rail (a), that can be given an inclination. The two
bend carriages (c) pivot around a pile placed in the center of curvature of the bend. The
flume bed is normally covered with a 0.15m thick layer of sand (which is deformed in
mobile-bottom experiments) of nearly uniform diameter, 1.6mm < d < 2.2mm.

Measurements of the bottom and the water surface topography are made by moving a set
of 8 acoustic limnimeters, mounted on a carriage that covers the width of the flume, along
the flume (Fig. I.5).

Fig. I.5: Acoustic limnimeters for measuring water-surface and bottom topography

Based on the small-flume experiments, which only considered one outer half-section
under one hydraulic condition, a non-linear model for the vertical flow structure and the
secondary circulation has been proposed (chapter IV.1) that indicates that the principal
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parameters in a curved open-channel flow are the curvature ratio H/R and the spanwise
distribution of the downstream velocity. On this basis, measurements in the large-flume
were made:
- in entire cross-sections on the fine grid shown in Fig. I.6.
- all along the flume in order to track the downstream evolution of the flow field.
-  for three different curvature ratios, H/R, corresponding to the hydraulic conditions

indicated in Fig. I.6.
- over a horizontal bottom topography (maximum velocity at the inside) as well as a

mobile-bottom topography (maximum velocity at the outside).

The measured sections, the measuring grids, the ADVP-configurations and the hydraulic
conditions are indicated in Fig. I.6.
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First, the series of experiments over a horizontal bottom configuration was made (because
its data treatment is less complicated). For each of the three curvature ratios,
measurements were first of all made on the centerline, with a streamwise spacing of 0.5m
in the straight inflow and outflow reaches and of 15º in the bend. These measurements
gave valuable information on the downstream evolution of the mean-flow field and the
turbulence. These centerline measurements allowed to identify the cross-section in the
bend characterized by the strongest secondary circulation, which was subsequently
measured in detail on the fine grid shown in Fig. I.6. For comparison, also the reference
cross-section in the straight inlet reach 2.5m upstream of the bend was measured in the
same detail. For the middle value of the three curvature ratios investigated, the twelve
cross-sections along the flume indicated in Fig. I.6 were measured in detail. The
measuring strategy in the subsequent series of experiments over a mobile-bottom
configuration is completely similar.

As mentioned before, the small-flume experiments yielded results beyond all expectations
and they form the core of this dissertation. As a side effect, the large-flume experiments
were somewhat postponed and their detailed analysis is not yet accomplished. This
dissertation presents large-flume data in chapters II.3, II.4 and IV.1. More large-flume
results will be communicated in literature.
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I.2 Improving Acoustic Turbulence Measurements

By K. Blanckaert1 and U. Lemmin2,

(submitted for publication to Journal of Hydraulic Engineering, ASCE)

Abstract

Although three-receiver Acoustic Doppler Velocimeters (ADV) can accurately measure
the three-dimensional mean flow field, their turbulence measurements suffer from
parasitical noise contributions. By adding a fourth receiver and optimizing the transducer
configuration, the turbulence results can be considerably improved. Redundant
information is obtained for all velocity components which theoretically allows to achieve
noise-free turbulence measurements. Experiments show that the parasitical noise
contribution is not completely eliminated but reduced by an order of magnitude and the
useful low-noise frequency range extended by one. Furthermore, the noise levels of the
different components can be directly estimated from the redundant information which
allows (i) to check the quality of the measurements and the system; (ii) to estimate the
accuracy of the turbulence measurements; (iii) to optimally choose the measuring
frequency. Good turbulence results with a four-receiver ADV require a sufficiently high
acoustic scattering level of the fluid. A simple, low cost and non-polluting technique to
enhance the acoustic scattering level by generating micro hydrogen bubbles in the flow is
presented and its efficiency is demonstrated.

Keywords
Acoustic Doppler Velocimetry, turbulence measurements, Doppler effect, noise reduction

1 Introduction
Recently, Acoustic Doppler Velocimeters (ADV) have become popular in the field of
fluid dynamics. They are applied to study the three-dimensional flow field and turbulence
in laboratory applications, as well as in rivers, lakes and the ocean.

ADVs are able to accurately measure the time-averaged flow field. Rolland (1994) and
Lemmin and Rolland (1997) suggest an accuracy that is typically better than 4%. High
resolution ADV measurements of turbulence are only possible with pulse-to-pulse
coherent instruments (Lhermitte and Lemmin, 1994), however, and are known to suffer
from parasitical noise contributions. Authors such as Garbini et al. (1982), Lhermitte and
Lemmin (1994), and Voulgaris and Trowbridge (1998) have worked on the identification
of the different noise sources which have been summarized by Hurther and Lemmin
(2001). The noise problem is not specific to the ADV, since all measuring techniques
suffer from it.

                                                  
1 Res. Assoc., Lab. d' Hydraulique Environnementale, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland.
2 Res. Assoc., Lab. d' Hydraulique Environnementale, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland.

Koen Blanckaert
A slightly modified version of this paper (downloadable from 
ftp://lrhmac15.epfl.ch/Pub/Thesis/Blanckaert/) has been published:
Blanckaert, K. & Lemmin, U. (2065). “Means of noise reduction in acoustic turbulence measurements.” J. Hydr. Res., IAHR, 44(1), 3-17.
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Hurther and Lemmin (2001) have proposed a direct correction method, referred to as the
HL method in this paper by which most of the noise in turbulence measurements with
four-receiver ADV instruments can be eliminated. The additional receiver (most ADV
only have three receivers) gives redundant information on the vertical velocity component
which provides for an estimate of the noise level. This noise level is subsequently
subtracted from the longitudinal and transversal components. Their method is uniquely
based on the measurements and does not depend on flow or instrument characteristics.
They compared profiles of the turbulent normal stresses, the turbulent kinetic energy, the
turbulent shear stresses and terms in the energy balance equation measured in a straight,
uniform flow with semi-theoretical models in order to demonstrate the effectiveness of
the correction method.

This paper refines and complements the HL method. It proposes and illustrates a simpler
but better performing method to eliminate the noise on turbulence measurements. By
optimizing the ADV geometry, redundant information can be obtained for all three
velocity components, instead of only for the vertical component. From this information
the (theoretically) noise-free turbulence characteristics can be readily obtained.

ADV instruments are known to perform poorly in clear water characterized by a low
acoustic scattering level that is often found in laboratory flumes, the deep ocean or lakes,
etc. This paper describes a simple, low cost, non-polluting technique to supply acoustic
targets to the flow in the form of micro hydrogen bubbles generated by electrolysis.

First, the principle of Acoustic Doppler Velocimetry will be briefly recalled. Next, the
noise reduction method is presented and subsequently validated by measurements done
with an Acoustic Doppler Velocity Profiler (ADVP). The ADVP and the experimental
conditions are also presented. Finally, the technique used to enhance the acoustic
scattering level is described.

The presentation and illustration of the noise reduction by geometrical optimization of the
ADV configuration and the description of the acoustic target supply technique do not
require an in depth treatment of the underlying acoustics and statistics. For more details
on these subjects, reference is made to Hurther and Lemmin (2001).

2 Principle of Acoustic Doppler Velocimetry (ADV)

The principle of Acoustic Doppler Velocimetry (ADV) is illustrated in Fig. 1. An ADV
basically consists of two fixed transducers, an emitter and a receiver. The emitter
generates an acoustic wave of frequency fe and wavelength λe=c/fe (c is the speed of
sound) that propagates through the fluid, is scattered by acoustic targets (see later)
moving with the fluid velocity rv , and finally is detected by the receiver. Due to the target
velocity rv , the wavelength λr and the corresponding frequency fr=c/λr of the scattered
acoustic wave differ from those of the emitted one; the Doppler frequency is defined as
the frequency shift of the acoustic wave, induced by the moving target, i.e. fD=fr-fe. Fig. 1
summarizes the relation between the Doppler frequency and the projections of the fluid
velocity rv  along the emitter and receiver axes, ve and vr, respectively: fD=fe/c(ve+vr).
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Fig. 1: Principle of Acoustic Doppler Velocimetry (ADV)

In this paper we will adopt a Cartesian reference system (x,y,z). Furthermore, we will
consider ADV configurations with one vertically pointing emitter and receivers inclined
at an angle α with respect to the vertical, positioned in a vertical plane placed at an angle
β with respect to the (x,z)-plane; the extension to other configurations is straightforward.
In this configuration, the measured Doppler frequency fD relates to the target velocity
r
v v v vx y z( , , ) as (Fig. 1):
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e

x y z
f
c

v v v= + + +[ ]cos sin sin sin (cos )β α β α α 1 (1)

It is easy to show that the right-hand side corresponds to the projection of the velocity rv
along the bisector of the emitted and scattered wave paths. The univocal determination of
the three-dimensional velocity vector 
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Three-dimensional ADV instruments typically have a sampling frequency of O(20Hz).
They measure time series of the quasi-instantaneous velocity, 

r
v t( ) . From these data the

time-averaged velocity 
r
v v v vx y z( , , ), the fluctuating velocity ′ = −

r r r
v t v t v( ) ( ) , the Reynolds

stresses, ′ ′v vi j , as well as higher-order turbulence correlations, ′ ′v va b
j k  (i,j,k=x,y,z and a,b

integer) can be derived; the overbar denotes time-averaged values. Obviously,
r r
v c f fe D= −( / )G 1  and r r

′ = ′−v t c f f te D( ) ( / ) ( )G 1 , where:
r r r
f t f f tD D D( ) ( )= + ′ (3)

Acoustic velocity measurements are often affected by parasitical noise since the measured
Doppler frequencies ˜

,fD i (i=1 to 3) contain a noise contribution σ i besides the true
Doppler frequency fD i,  related to the fluid velocity:

˜ ( )   ( ) ( )   ( ) ( ) ˜ ( ), , , , , ,fD i D i i D i D i i D i D it f t t f f t t f f t= + = + ′ +[ ] = + ′σ σ (4)

With good approximation, this noise has the following characteristics, as experimentally
verified by Hurther and Lemmin (2001):

-  Its energy content is uniformly distributed over the investigated
frequency domain (white noise).

- It is unbiased: σ i = 0 . Therefore, it does not affect the estimates of
the time-averaged velocity rv .

-  It is statistically independent of the corresponding true Doppler
frequency: σ i D if , = 0 .

-  The noise of the different receivers is statistically independent:
σ σi j = 0  if i≠j.















  ( )5

The main problem of acoustic velocity measurements in fluid mechanics, and especially
turbulence measurements, is that the energy content of the noise, σ i

2 0> , biases the
estimates of the Reynolds stresses, since (Figs. 2 and 3):

′ = ′ +˜
, ,f fD i D i i
2 2 2σ (6)

If the different receivers are identical and ideal, which is commonly assumed, their noise
has the same energy content:

σ σ σi j
2 2 2= = (7)

Garbini et al. (1982), Lhermitte and Lemmin (1994), and Voulgaris and Trowbridge
(1998) have identified different noise sources which have been summarized in Hurther
and Lemmin (2001).

This paper proposes efficient ways to improve turbulence measurements with an ADV by
reducing the noise contribution. In the next section an optimized ADV configuration with
four instead of three receivers is proposed that eliminates the major part of the noise
contribution. Thereafter, a simple technique is presented that enables to considerably
increase the signal-to-noise ratio (SNR).
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3 Noise reduction by optimizing the ADV configuration

3.1 Principle of ADV optimization

3.1.1 Three -receiver ADV

As mentioned above, an emitter surrounded by at least three receivers is required to
measure the three-dimensional velocity field. Most commercially available ADV
instruments consist of a central emitter symmetrically surrounded by three receivers at
60° angles, as indicated in Fig. 2.
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Fig. 2: Acoustic Doppler Velocimeter configuration with three receivers
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For this ADV configuration, Fig. 2 also reports the relations between the measured
Doppler frequencies and the time averaged velocities, the turbulent normal stresses and
the turbulent shear stresses. As mentioned before, the noise is unbiased, σ i = 0 , and does
not influence the estimates of the time-averaged velocities. Since σ σi j = 0 , noise-free

estimates of the turbulent shear stresses are obtained if σ σ σi j
2 2 2= =  (Eq. 7). The

estimates of the turbulent normal stresses, however, are affected by noise. The noise level
of the two horizontal components is equal and it is typically an order of magnitude larger
than that of the vertical component (α~45° for most commercial instruments and 15° <
α < 60° for the ADVP presented below).

The noise contribution can only be removed by indirectly estimating it from semi-
theoretical models for the different noise sources, as proposed by Lhermitte and Lemmin
(1994), Zedel et al. (1996) and Voulgaris and Trowbridge (1998). These estimates depend
on characteristics of the flow and the ADV instrument and are not very accurate. Since
the noise contribution cannot be correctly determined, the accuracy of the turbulence
measurements cannot be estimated either. The parasitical noise contributions can be
reduced, but not eliminated by increasing the SNR, as will be illustrated later.

3.1.2 Four -receiver ADV

Although most ADV work with three receivers, an ADV Profiler (ADVP) consisting of a
central emitter symmetrically surrounded at 90° angles by four receivers has been
developed in our laboratory. It will be presented below. Hurther and Lemmin (2001)
reported that the parasitical noise contribution can almost be entirely eliminated with the
fourth-receiver configuration.

Fig. 3 shows the configuration of the four-receiver ADVP, as adopted by Hurther and
Lemmin (2001). The ADVP is composed of two so-called tristatic systems, oriented
along longitudinal and transversal directions. The longitudinal system measures the
longitudinal and the vertical velocity components, vx and vz1. The transversal system
measures the transversal and the vertical components, vy and vz,2, according to the
relations given in Fig. 3. This configuration thus gives a redundancy of the vertical
velocity component, since vz1 and vz2 are simultaneously measured.

Similar to the three-receiver configuration, the estimates of the turbulent shear stresses
are free of noise if σ σ σi j

2 2 2= =  (Eq. 7), whereas the estimates of turbulent normal

stresses are noise polluted (Fig. 3).
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Fig. 3: Acoustic Doppler Velocimeter configuration with four receivers
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Hurther and Lemmin (2001) have proposed the HL method which makes use of the
redundancy of the vertical velocity component to eliminate the parasitical noise and
which we will briefly summarize. The estimate of the vertical turbulent normal stress
from only one of the measured vertical velocities contains noise, ˜  ′ = ′ +v vz z zj j

2 2 2σ  (j=1,2),

whereas an estimate based on two redundant simultaneously measured vertical velocities
is (theoretically) noise free, ˜ ˜   ′ ′ = ′v v vz z z1 2

2  (see Fig. 3). From the difference between the
two estimates, the noise level of the vertical component can be determined:

σ σ
σz

z z z

z z z

v v v
v v v

2
2 2

2 2
≈

= ′ − ′ ′
= ′ − ′ ′





z1 1 1 2

z2 2 1 2

˜ ˜ ˜
˜ ˜ ˜

(8)

The horizontal turbulent normal stresses can now be corrected by extracting the
parasitical noise, which is geometrically related to the vertical noise level (see Fig. 3):

′ = ′ −v vj HL z, ˜
tan

2 2
2

22
2j α

σ    (j=x,y) (9)

The method proposed in this paper, based on an optimization of the ADVP configuration,
will show that the best result is obtained by taking σ σ σz

2 2 20 5= +. ( )z1 z2 . Hurther and
Lemmin (2001) have reported successful applications of this noise correction method by
which all Reynolds stresses are obtained free of noise. Advantages of this method are:

- The quality of the measurements and the system can be assessed by comparing the
two redundant vertical velocities and the corresponding noise levels σ z1

2  and σ z2
2 .

- It enables an estimate of the accuracy of the turbulence quantities, since the noise
level can be estimated.

Unfortunately, this correction method still has some disadvantages:

- It is based on the essential assumption that σ σ σi j
2 2 2= =  (i,j =1 to 4, Eq. 7) which

cannot be verified from the measurements.
-  The noise level of the horizontal components is obtained by multiplying the

experimentally estimated noise level of the vertical component with a geometrical
factor of 2/tan2(α/2). For the measurements reported below, the angle α varied from
50° at the water surface to 25° at the bottom, resulting in values of this geometrical
factor as high as 40 near the bottom. Therefore this approach is rather sensitive to
error propagation.

3.1.3 Four -receiver ADV with optimized geometry

The optimized four-receiver geometry is obtained by simply rotating the previously
discussed four-receiver ADVP configuration over 45°. In this way the transducer planes
are aligned along the bisectors of the longitudinal and transversal planes, as illustrated in
Fig. 4. Although this might appear to be a trivial difference, due to the enhanced
symmetry of this configuration redundancies now exist for all three velocity components
instead of only for the vertical component. This allows to readily obtain all turbulent
normal stresses free of noise, without having to first estimate the noise levels of the HL
method, as indicated in Fig. 4:

′ = ′ ′v v vi
2 ˜ ˜i1 i2  (i=x,y,z) (10)
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This procedure is thus more efficient than the HL method. Note that each of the three
turbulent shear stresses can now be obtained in four different ways; only the average of
these four possibilities is indicated in Fig. 4.

Planview in horizontal (x-y)-plane 
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Fig. 4: Optimized Acoustic Doppler Velocimeter configuration with four receivers
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Further advantages of this configuration are:

-  The quality of the measurements can be evaluated by comparing the redundant
information for all time-averaged velocities and all Reynolds stresses.

-  It provides for an estimate of the accuracy of the turbulence quantities, since the
noise levels of all turbulent normal stresses can be estimated: σ ij i i iv v v2 2= ′ − ′ ′˜ ˜ ˜j 1 2  (i=x,y,z

and j=1,2).

- The quality of the ADVP system can be assessed by experimentally verifying that the
noise of the different receivers has the same energy content σ σ σi j

2 2 2= =  (j=1 to 4,

cf. Eq. 7). This is non-trivial, and an essential condition to obtain noise-free
turbulence measurements. According to the relations in Fig. 4:

σ α σ σ σ α σ σ

σ α σ σ σ α σ σ

σ α σ σ σ α σ

x1 1 4 x2 2 3

y1 1 3 y2 2 4

z1 1 2 z2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2

2 2

1 1 1 1

= +( ) = +( )
= +( ) = +( )
= +( ) +( ) = +( )

  sin                     sin     

  sin                     sin      

cos              cos 33 4
2 2+( )








σ

(11)

which can be transposed into:
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An illustration will be given in the result section below. Note that the assumption of
equality of the noise of the four receivers implies that the noise of the different
turbulent normal stresses is equal:

σ σ σ σ
α

σ
α

σx1 x2 y1 y2 z1 z2
2 2 2 2

2
2

2
22

2
2

2
= = = = =

tan tan
(13)

Table 1 summarizes the noise characteristics of ADV instruments with three receivers,
four receivers and four receivers with optimized geometry.

noise correction:
  estimation of noise from w’ �

�and subsequent subtraction 
�of noise from  u2,v2 

3 receivers 4 receivers 4 receivers optimized

:  noise-free

:  noisy

no noise correction

:  noise-free :  noise-free

:  noisy :  noise-free

multiple noise estimations 
enable check of system  
and data quality

′ ′ ′ ′ ′ ′v v v v v vx y x z y z, , ′ ′ ′ ′ ′ ′v v v v v vx y x z y z, ,′ ′ ′ ′ ′ ′ ′v v v v v v vx y x z y z z, , ,  2

′ ′ ′v v vx y z
2 2 2,  ,  ′ ′ ′v v vx y z

2 2 2,  ,  ′ ′v vx y
2 2,  

′vz
2

′ ′v vx y
2 2,  

Table 1: Summary of noise characteristics of ADV configurations
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3.2 ADVP instrument and experimental set-up

The importance of the parasitical noise contributions, the HL method and the above
proposed noise elimination by geometrical optimization will be illustrated below based on
measurements carried out with an Acoustic Doppler Velocity Profiler (ADVP), developed
and built in our laboratory.
The ADVP consists of a central emitter surrounded by four receivers, as illustrated in Fig.
5. This instrument is completely non-intrusive. The transducers are placed in a separate
water-filled housing that is in contact with the water surface. Contrary to most
commercially available ADV instruments, the ADVP does not measure a profile point-
wise but it simultaneously provides the quasi-instantaneous velocities along an entire
water column. The emitter is focalized and has a constant beam diameter of ~0.7cm
(Hurther and Lemmin, 1998). The water column is divided into intervals of height
~0.3cm, resulting in a continuous string of identical measuring volumes. Acoustic wave
pulses are generated by the emitter with a frequency, called “pulse-repetition-frequency”
(prf). From a number of NPP (number of pulse-pairs) scattered acoustic pulses, one quasi-
instantaneous Doppler frequency can be estimated by the pulse-pair algorithm for each
volume. The measuring frequency, given by prf/NPP, is a parameter of the ADVP, since
both prf and NPP can be chosen.

flow

emitter

αi

R1, R4R2,R3

i=N

i

water-filled housing

∆z≈0.3[cm]

αi

emitted pulse

pulse backscattered 
at gate i

water 
surface

bottom

 i=1

wide-angle receivers: 
covering a field of 30º

φ≈0.7[cm]

α now designates 
the angle between 
the vertical and the 
scattered wave

Fig. 5: Four-receiver Acoustic Doppler Velocity Profiler (ADVP). Receivers R1 and R3
are in one plane and R2 and R4 in a plane perpendicular to it (see Fig. 4)

Different aspects of the ADVP development have been reported in the literature
(Lhermitte and Lemmin, 1994; Shen and Lemmin, 1996 and 1997; Lemmin and Rolland,
1997; Rolland and Lemmin, 1997; Hurther and Lemmin, 1998 and 2001). The instrument
system has been successfully applied in various studies on straight, uniform and non-
uniform clear water flows over rigid as well as movable bottom configurations (Song et
al., 1994; Song and Graf, 1996), straight, uniform suspension flow (Cellino and Graf,
1999), coherent flow structures in straight, uniform flow (Hurther, 2001), highly three-
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dimensional flow around cylinders over a flat rigid as well as scoured movable bottom
configuration (Graf and Yulistiyanto, 1998 and Graf and Istiarto, 2002) or highly three-
dimensional curved flow (Blanckaert, 2001; Blanckaert and Graf, 2001), testifying to its
versatility and reliability.

The present measurements were made in a straight, uniform flow over a mobile rough
granular bottom in a 16.8m long and 0.6m wide open-channel laboratory flume. A
vertical profile was measured at the centerline of the cross-section 8m downstream of the
flume’s entrance where the boundary layer is fully developed. The hydraulic conditions
are summarized in Table 2:

Q:  flow discharge �u*:  shear velocity estimated from the profile of 
H:  flow depth �Re=UH/ν: flow Reynolds number
Sb: bottom slope �Fr =U/(gH)1/2:  Froude number     
U: depth-averaged velocity �B: channel width
The median grain size diameter of the immobile bed material was 6 mm, 
that of the moving bedload material was 2.5 to 3 mm

Q
[l/s]

H
[m]

U
[m/s]

Fr
[/]

65 0.175 1.5 0.62 0.47

B/H
[/]

3.4

Re
[103]
1080.035

u*
[m/s]

Sb
[‰]

′ ′v vx z

Table 2: Hydraulic conditions

A prf of 1000 Hz was adopted for the present ADVP measurements and Doppler
frequencies were estimated with NPP=16 and 32, yielding measuring frequencies of 62.5
Hz and 31.25 Hz, respectively. The measurement duration was 600s. The angle α
decreased from 50° at the water surface to 25° at the bottom (Fig. 5).

3.3 Experimental verification

3.3.1 Validation of the noise correction methods

The noise characteristics of turbulence measurements with both the standard as well as
the optimized four-receiver configuration are illustrated in Fig. 6. It shows vertical
profiles of the longitudinal turbulent normal stress, estimated:

- from only one of the velocity measurements, ˜′vx12  and ˜′vx22 (curves 1 and 2).

- by applying the HL method for the elimination of noise (subscript HL; curves 3 and 4).

- from both redundant velocity measurements, ˜ ˜′ ′v vx x1 2  (curve 5).

Furthermore, curve 6 represents the vertical profile of the noise contribution,
0 5 1

2
2

2
1 2. ( ˜ ˜ ) ˜ ˜v v v vx x x x+ −  and curve 7 is the semi-theoretical expression for the longitudinal

turbulent normal stress proposed by Nezu and Nakagawa (1993). NPP=32 was chosen in
these measurements, yielding a measuring frequency of 31.25 Hz.
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These results show the importance of the parasitical noise contribution. For this specific
example with a high acoustic scattering level, the parasitical noise increases towards the
bottom and accounts on the average for about 74% of the true value, ˜ ˜′ ′v vx x1 2 . As
mentioned above, no accurate methods for the reduction of this parasitical noise exist for
measurements done with three–receiver ADV instruments.

The longitudinal velocity obtained with the standard four-receiver ADVP configuration is
identical to the average of the two redundant longitudinal velocities obtained with the
optimized configuration, ṽx, HL ≡  0 5. ( ˜ ˜ )v vx1 x2+ . Two estimates of the longitudinal
turbulent normal stress are obtained by applying the HL method which correspond to:

′ = ′ − ( )−v v zjxj, HL x, HL
2 2 2 22˜ tan  α σ  (j=1,2). It is straightforward to demonstrate that the noise-

free profile obtained with the optimized ADVP configuration coincides with the average
of both estimates with the HL method:

˜ ˜   ˜   .
tan

( )′ ′ ≡ ′ − +v v vx1 x2 x, HL z1 z2
2

2
2 20 5

2α σ σ (14)

The turbulence results obtained with the optimized ADVP configuration thus confirm and
refine the HL method. Being directly calculated, they eliminate the ambiguity on the
estimate of the noise level for the vertical component by the HL method. Both estimates
with the HL method as well as the noise free profile obtained with the optimized ADVP
configuration agree fairly well with the semi-theoretical curve proposed by Nezu and
Nakagawa (1993).

As mentioned above, a major advantage of the optimized four-receiver ADVP
configuration is that it allows a better assessment of the quality of the measurements and
the system. Whereas only σ z1

2  and σ z2
2  can be experimentally estimated with the HL

method, σ x1
2 , σ x2

2 , σ y1
2  and σ y2

2  can now also be experimentally obtained with the

optimized receiver configuration. According to Eq. 12, this enables to experimentally
verify the equality of the noise levels of the four receivers, σ σ σi j

2 2 2= =  (j=1 to 4, cf. Eq.

7), which is an important and essential condition to obtain noise-free turbulence
measurements. Fig. 7 shows that the noise levels of the four receivers are all nearly
identical. They are rather constant over most of the water column but increase near the
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bottom (z/H  < 0.2). This increase is mainly due to strong vertical gradient of the
horizontal velocity component in this layer.

A better insight into the noise characteristics and in the functioning of the correction
methods is obtained by analyzing the power spectral density of the signals. Fig. 8 presents
the (co)spectra and the cumulative (co)spectra of ˜′vx12 , ˜ ˜′ ′v vx x1 2  and σ x1

2  for the point at
z/H=0.4 indicated in Figs. 6 and 7. They are based on Doppler frequencies estimated with
NPP=16, yielding a measuring frequency of 62.5 Hz and a Nyquist frequency (maximum
frequency for which the power spectral density can be estimated) of 31.25 Hz. The
spectrum of σ x1

2  is close to that of white noise, in agreement with the above assumption
(cf. Eq. 5). In the low frequency range, f < 1 Hz, the energy content of the noise is small
compared to the energy content of the true fluctuations and the difference between the
spectra of ˜′vx12  and ˜ ˜′ ′v vx x1 2  is small. With increasing frequency the SNR decreases and the
spectrum of ˜ ˜′ ′v vx x1 2  starts to deviate considerably from that of ˜′vx12 . Finally, in the high
frequency range, f > 10 Hz, the energy content of the noise is an order of magnitude
greater than that of the true velocity fluctuations.
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According to Kolmogoroff’s concept (Kolmogoroff, 1941), the power spectrum should
contain a low-frequency production range, followed by an inertial subrange, and a high-
frequency viscous range. The inertial subrange is characterized by a –5/3 slope in a log-
log presentation and covers a rather broad intermediate frequency range. In this inertial
subrange, turbulence production and dissipation are in equilibrium and the turbulent
kinetic energy is merely transferred from larger to smaller eddies in the so-called energy
cascade. In the viscous range, the slope of the power spectrum becomes steeper than –5/3
due to dissipation.

Nezu and Nakagawa (1993) present an expression for the velocity power spectrum in the
production and inertial subranges that has originally been proposed by von Karman:
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kw is the wave-number, Lx and 1/k0 are both macroscales of turbulence. By applying
Taylor's frozen-turbulence hypothesis (Nezu and Nakagawa, 1993):

S k v S fw
x( ) ( )=
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
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2π (16)

an equivalent expression for the power spectrum in the frequency space is obtained:
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where Tx=(2�/vx)Lx and f0=(vx/2�)k0. Integration of this expression with respect to f
indicates that the corresponding cumulative spectrum should have a typical “S” shape in a
semilog representation.

Fig. 8a shows that the slope of the spectrum of ˜′vx12  remains flatter than –5/3.
Furthermore, in the high frequency range, it does not steepen, but instead flattens and
finally becomes almost horizontal when the ˜′vx12  signal mainly consists of white noise.
The corresponding cumulative spectrum (Fig. 8b) does not show the typical “S” shape,
but “explodes” at the high frequency end. The spectrum and the cumulative spectrum of
˜ ˜′ ′v vx x1 2  (Figs. 8a,b) agree much better with the Kolmogoroff concept. The spectrum shows

a –5/3 slope in the frequency range 1 Hz < f < 10 Hz, and only starts to flatten for f > 10
Hz. Correspondingly, the cumulative spectrum has an “S” shape for f < 10 Hz and only
starts to deviate slightly for f > 10 Hz.

Fig. 8a, and especially Fig. 8b, show that a considerable improvement is obtained by
estimating the turbulent normal stress ′vx

2  from the redundant velocity information as
˜ ˜′ ′v vx x1 2  instead of from only one velocity information as ˜′vx12 . Although the estimate ˜ ˜′ ′v vx x1 2

should theoretically be free of parasitical noise, Figs. 8a and b indicate a remaining noise
contribution in the high frequency range. However, this noise level is about one order of
magnitude smaller than the original noise level of ˜′vx12 . As a result, the useful frequency
range where noise contributions are small has been extended by about an order of
magnitude by applying the noise correction method.

In the example given in Figs. 8a,b, a parasitical noise contribution remains for f > 10 Hz.
This limiting frequency depends on the SNR and thus on the acoustic scattering level of
the fluid. This will be further discussed below.

The above results indicate that by simply optimizing the ADV configuration with four
receivers, the parasitical noise on turbulence measurements can largely be eliminated.
Obviously, the turbulence characteristics can be obtained in any other reference system
by applying a coordinate transformation.
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3.3.2 Discussion of results

In the following, we will focus on two important points that are rarely discussed in the
literature:

(i) What measuring frequency should be chosen in ADV turbulence measurements ?

As mentioned before, the measuring frequency of the ADVP is given by prf/NPP. Here,
the measurements will by treated with NPP=16, yielding a measuring frequency of 62.5
Hz.

The cospectra and the cumulative cospectra of the three almost noise free turbulent
normal stresses, estimated as ˜ ˜′ ′v vx1 x2 , ˜ ˜′ ′v vy1 y2  and ˜ ˜′ ′v vz1 z2  are given in Figs. 9a,b. The
cospectrum of ˜ ˜′ ′v vz1 z2  clearly shows a zone with a –5/3-slope and does not contain any
parasitical noise tail. Its slope even gets steeper in the high frequency range. The
corresponding cumulative cospectrum has a typical “S” shape. The cospectra of ˜ ˜′ ′v vx1 x2

and ˜ ˜′ ′v vy1 y2  also show a zone with a –5/3 slope but they contain a remaining high

frequency noise tail for f > 10 Hz. This noise tail is clearly discernible in the cumulative
cospectra, that have the typical shape for f < 10 Hz, but start to deviate for f > 10 Hz.

The reason that the vertical turbulent normal stress ˜ ˜′ ′v vz1 z2  has better noise characteristics
than the horizontal ones ˜ ˜′ ′v vx1 x2  and ˜ ˜′ ′v vy1 y2  is purely geometrical. The horizontal velocity

components are calculated from the difference between measured Doppler frequencies,
whereas the vertical ones are obtained from their sum (cf. Fig. 4), which is less sensitive
to error propagation.
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With a measuring frequency of 62.5 Hz, ′vx
2  and ′vy

2  are clearly overestimated. Fig. 9b

further indicates that increasing the measuring frequency would result in an important
deterioration of the estimates, since the parasitical noise tail tends to “explode”. Taking
too low a measuring frequency instead can result in considerable underestimates, since
most of the energy is contained in the inertial subrange . For example, when estimating
the longitudinal turbulent normal stress as ˜′vx12 , the low noise range is limited to f < 1 Hz
(Fig. 8), which would lead to an underestimate of about 35% (cf. Fig. 9b). Figs. 9 a,b
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demonstrate that good estimates are obtained by choosing the “cut-off” measuring
frequency in the flat part of the cumulative (co)spectrum before the noise tail becomes
important. For the considered example, good estimates are obtained with a measuring
frequency of 31.25 Hz (NPP=32, corresponding to a Nyquist frequency of 15.6 Hz).

Obviously, the choice of the optimal measuring frequency is case- and instrument-
dependent and is based on the knowledge of the noise levels. If the SNR level is too low,
the flat part in the cumulative spectrum is not reached as is the case in Fig. 8b for ˜′vx12 , and
accurate estimates of the turbulent normal stresses are not possible. The next section
presents and illustrates a technique to increase the SNR.

(ii) What is the influence of a relatively low measuring frequency on the turbulence
results ?

Obviously, the accuracy of ADV turbulence measurements depends on:

- The characteristic lengthscales of the flow,

- The acoustic scattering level of the fluid,

- The measuring frequency

- The characteristics of the ADV

The effect of most of these aspects can only be roughly estimated. In the above example,
good turbulence results are obtained with a measuring frequency of 31.25 Hz in a flow
with a relatively high acoustic scattering level. The accuracy estimates indicated in Fig.
9b correspond to the accuracy estimate of O(10%) given by Hurther and Lemmin (2001).

Typically, the measuring frequency with ADV instruments is O(20 Hz), and the
corresponding Nyquist frequency (maximum frequency for which the power spectral
density can be estimated) is O(10 Hz). Taylor has defined a microscale of turbulence as

λ ν ε= ′15 2vx  with ε the dissipation rate, which is a characteristic scale for the small

turbulent eddies that dissipate energy. Using Taylor’s frozen turbulence hypothesis, Eq.
16, the corresponding frequencies can be estimated as f vxλ π λ= ( )2 . In the spectral

space, these small eddies are found at the high frequency end of the –5/3-slope region. As
mentioned above, this inertial subrange is followed by a viscous range where the slope is
steeper than –5/3 due to dissipation. Nezu and Nakagawa (1993) propose different
methods to experimentally estimate λ, all of which resulted in fλ=O(10 Hz) for the
investigated flow. This complies with Fig. 9a, where the slope of the spectrum at fN=31.25
Hz is already steeper than –5/3. The presented ADVP measurements thus cover the entire
inertial subrange and even the beginning of the viscous range. In general, the extent of the
inertial subrange in the frequency domain depends on the specific flow conditions, and
especially on the Reynolds number of the flow. Often, ADV measurements of turbulence
are limited to the low-frequency part of the inertial subrange. The influence of the non-
captured high frequency contributions on the interpretation of the turbulence results will
now be discussed.
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Figs. 9a and b show the cospectra and cumulative cospectra of the three “noise-corrected”
turbulent normal stresses, estimated as ˜ ˜′ ′v vx1 x2 , ˜ ˜′ ′v vy1 y2  and ˜ ˜′ ′v vz1 z2 . In the low frequency

range, f < 1Hz, the energy content of the longitudinal fluctuations is larger than that of the
transversal fluctuation, and the vertical fluctuations contain the least energy (Fig. 9a).
With increasing frequency, the power spectral densities converge and they nearly
coincide at about 5 Hz. Physically, this signifies that the turbulence tends towards
isotropy and nearly reaches it at about 5 Hz. For f > 10 Hz, the power spectral densities
diverge again since the remaining parasitical noise of the vertical fluctuations is smaller
than that of the other two components (see above). This behavior is not physical,
however, since turbulence is known to converge progressively towards isotropy with
increasing frequency.

Turbulence anisotropy plays an important physical role. First of all, it is the anisotropy of
the turbulent normal stresses that gives rise to the turbulent shear stresses, as can easily be
demonstrated by a representation of the turbulent stresses on a Mohr circle. As a result,
the turbulent shear stresses will mainly be generated in the low frequency range.
According to Tchen (1953) and Nikora (1999), the velocity cospectra have a –7/3 slope in
the inertial subrange, indicating the rapid decay of shear stress generation with increasing
frequency. This implies that an accurate estimate of the turbulent shear stresses can be
obtained with a lower measuring frequency than the turbulent normal stresses and that the
accuracy of the turbulent shear stresses will be better than that of the turbulent normal
stresses.

Secondly, turbulence anisotropy interacts dynamically with the mean flow field. The
anisotropy ′ − ′v vy z

2 2  is responsible for the generation of near bank cells of secondary

circulation in straight, open-channel flow (Nezu and Nakagawa, 1993). Blanckaert and de
Vriend (2002) have shown that it also plays a dominant role in the generation of a
secondary circulation cell near the outer bank in open-channel bends. Similar to the
turbulent shear stresses, the turbulence anisotropy is mainly generated in the low
frequency range. It can be resolved with a lower measuring frequency than the turbulent
normal stresses and its estimate is more accurate. Note that the high frequency, nearly
isotropic turbulence does not play an important dynamical role. It accounts for the
dissipation of energy and does not interact with the mean flow field.

4 Noise reduction by increasing the signal-to-noise ratio (SNR)

As explained above, acoustic measurements based on the Doppler principle require the
scattering of acoustic waves on acoustic targets moving with the fluid. Shen and Lemmin
(1997) have shown that the acoustic targets for the ADVP are turbulence induced air
bubble microstructures with a mean size of about 750 µm, which are ideal flow tracers
since they follow the fluid motion with negligible inertial lag. The size of the ideal flow
tracers depends on the frequency of the emitted acoustic wave and is thus instrument
dependent. Most commercial ADV instruments operate at a higher frequency than our
ADVP, which emits1 MHz-pulses, and require smaller targets.
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ADV instruments are known to perform poorly in (very) clear water characterized by a
low acoustic scattering level, as is often found in laboratory applications or in naturally
clean water areas such as the deep ocean, deep lakes, arctic water, etc. The successful
application of ADV measurements in such cases requires an artificial supply of neutral
acoustic targets to the water in order to increase the SNR. Note that this is particularly
important for three-receiver ADV configurations where no accurate noise reduction
techniques can be applied. The aim of this section is to describe a simple, low cost, non-
polluting technique of supplying acoustic targets to the water that has proven to be
successful in measurements with the ADVP and with a commercial Nortek NDV (not
shown).

The technique, illustrated in Fig. 10, consists of generating hydrogen bubbles of the
correct size in the fluid by means of electrolysis. The cathodic and anodic electrodes are
formed by an array of horizontal stainless steel wires with a diameter of 100 µm that
cover the entire water depth with a vertical spacing of about 1 cm. The spacing between
the two electrodes is about 2cm and they are placed about 15cm upstream of the
measured vertical water column. This distance is about 1500 times the wire diameter,
which is sufficient to avoid any perturbation in the turbulence characteristics. The
horizontal span of both electrodes has to be adequate to assure that the measured water
column is outside the wake of the vertical insulating stems which carry the wires. A
constant tension of O(5V) was sufficient to obtain a high acoustic scattering level with
this configuration. The bubble generation is initially not efficient when the stainless steel
wires are still clean. After some minutes, a surface reaction takes place on the wires and
the bubble generation becomes efficient. Note that a similar supply of hydrogen bubbles
to the flow has been commonly used in the past to measure velocities by means of the so-
called hydrogen bubble technique.

flow
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ADVP: see Fig. 5

Fig. 10: Application of acoustic target supply by hydrogen bubble generation



I.30

The measurements with the optimized four-receiver ADVP configuration presented in the
previous section were carried out with a supply of acoustic targets by this technique. They
will now be compared to measurements without bubble injection under identical flow
conditions (both treated with NPP=16 corresponding to fN= 31.25 HZ).

Vertical profiles of the longitudinal turbulent normal stress, estimated as ′ṽx1
2  and ˜ ˜′ ′v vx x1 2 ,

are shown in Fig. 11. They indicate that the measurements with a low acoustic scattering
level contain considerably more noise. Even the estimate of ˜ ˜′ ′v vx x1 2 , which in theory
should be noise free, still contains a rather important noise contribution. The noise
correction methods presented and illustrated in the previous section thus require a
sufficiently high SNR. Note that the turbulence results should be independent of the
acoustic scattering level under the condition that it is sufficiently high.
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Fig. 11: Estimates of longitudinal turbulent normal stress with low and high acoustic
scattering level

The corresponding (co)spectra and cumulative (co)spectra of ′ṽx1
2  and ˜ ˜′ ′v vx x1 2 , for the level

at z/H=0.4, confirm these findings. The noise contribution to ′ṽx1
2  in the measurements

with a low acoustic scattering level is higher than in those with a supply of acoustic
targets. In both cases it remains nearly constant over the frequency range. The cospectrum
and cumulative cospectrum of ˜ ˜′ ′v vx x1 2  for the measurements with a supply of acoustic
targets show the typical –5/3-slope and “S” shape, respectively, and appear to be of good
quality. Their counterparts for the measurements with low acoustic scattering level
indicate that the remaining noise in ˜ ˜′ ′v vx x1 2  mainly affects the frequency range above 1 Hz.
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Even though the measurements with low acoustic scattering level yield low quality
turbulence results that are polluted by noise, they still give good estimates of the time-
averaged velocities, as shown in Fig. 13. Nearly identical profiles of the time-averaged
longitudinal velocity are obtained for low and high acoustic scattering levels. This
confirms that the noise is unbiased, σ i = 0 . Hence it does not affect the estimates of the
time-averaged velocity.
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Fig. 13: ṽ Ux1  and ṽ Ux2  measured with low and high acoustic scattering level

It can be concluded that accurate measurements of the time-averaged velocities can be
obtained even with low acoustic scattering levels, but that accurate turbulence
measurements require a high acoustic scattering level which can be improved by
supplying suitable acoustic targets to the flow.

5 Conclusions

This paper proposes efficient ways to reduce the parasitical noise contribution in pulse-to-
pulse coherent Acoustic Doppler Velocimetry (ADV) thereby improving turbulence
measurements with such instruments. Although the three-dimensional mean flow field
can be accurately measured with three-receiver ADV instruments, turbulence
measurements with these instruments suffer from parasitical noise contributions that
cannot be accurately estimated and eliminated. To overcome this problem, Hurther and
Lemmin (2001) propose the HL method, based on an ADV configuration with four
instead of three receivers. Due to the fourth receiver, a redundancy of the vertical velocity
component exists that allows to estimate the noise level and subsequently extract it from
the longitudinal and transversal velocity components.

In the present investigation, this four-receiver ADV system has been optimized by turning
the receiver plains by 45° with respect to the direction of the mean flow. This
reorientation has several advantages:
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-  It provides for redundant information on all three velocity components which
theoretically allows to directly obtain all turbulent stresses free of noise. This
avoids the potential of error propagation which may result from the application of
the HL method.

- The quality of the measurements can be checked with this configuration because
the noise levels of all three velocity components can be directly estimated from
the measurements. Furthermore, from this information the noise level of each
receiver can be individually determined providing a continuous check on the
performance of the instrument. This is a great advantage over the previous four-
receiver ADVP which did not allow this detailed system check.

The parasitical noise is not completely eliminated by the proposed method. It is, however,
reduced by about an order of magnitude when compared to the uncorrected results where
the uncorrected results represent the level that can be obtained with three-receiver
instruments. Therefore, the useful frequency range characterized by low noise levels is
also extended by about an order of magnitude.

The knowledge of the noise levels through the calculation of noise spectra allows to
estimate the accuracy of the turbulence measurements. We have demonstrated that
cumulative power spectra are particularly well suited for the determination of the noise
effects and their elimination due to their particular shape in turbulent flow. They allow:

- to investigate the quality of the data. Power spectra become always noisy at the
high frequency end and the amplitude of the variation makes it often difficult to
determine the mean spectral slope in that range (Fig. 8a). Cumulative power
spectra are smooth and therefore indicate more clearly the trend at the high
frequency end (Fig. 8b). We have demonstrated that the noise effect strongly
modifies this part of the cumulative spectra and this makes it easy to detect noise
contributions.

- to provide for an optimal choice of the measuring frequency. The presence of an
inertial subrange in a power spectrum is in itself not yet a proof that the turbulence
is well resolved in the measurements. The extent of the inertial subrange in the
frequency domain depends on the specific flow conditions. Thus a cumulative
spectrum should always reach past the “straight line” section and well into the
high frequency curving part (Fig. 9). This is a good indication that a high enough
sampling frequency has been chosen. However, it has to be realized that
increasing the sampling frequency in an effort to extend the observations to higher
frequencies may deteriorate the turbulence estimates. It risks to push the Nyquist
frequency into a spectral region where only white noise is found (Fig. 9).

ADV instruments typically operate at a measuring frequency of O(20Hz). This may not
always be sufficient to cover the full inertial subrange. It was demonstrated that
turbulence is nearly isotropic above 10 Hz in the open-channel laboratory flow we have
investigated. In this particular case the non-captured high frequency range does not
significantly contribute to the turbulent normal stresses with the contribution being
estimated at less than 10% (Fig. 9). This corresponds to the estimated system accuracy.
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The contributions of the high frequency range to the turbulent shear stresses and the
turbulent isotropy are even smaller. ADV instruments can thus resolve the low frequency
part of the turbulence spectrum that interacts dynamically with the mean flow and that is
important for the understanding of typical hydraulic processes. The non-captured, high
frequency contribution mainly relates to the nearly-isotropic energy dissipation. ADV
instruments can thus be successfully applied in many turbulence investigations provided
that the noise contribution is correctly eliminated. However, in all these efforts it has to
be remembered that the actual velocity sampling frequency is virtually restricted to what
the acoustic targets can provide.

Successful acoustic turbulence measurements with all ADV require sufficiently high
acoustic scattering levels. Estimates of time-averaged velocities, on the other hand, are
less sensitive and may still be possible at low acoustic scattering levels if measurements
are taken over a sufficiently long time. Low scattering levels are often encountered in
clear water, as is found in laboratory flumes, deep oceans, lake etc. Little can be done
about this in a “natural” flow environment of deep oceans, lakes and some rivers. For
laboratory studies, it is frequently suggested to “seed” the flow using small, almost
neutrally buoyant particles as seeding material in order to increase the signal-to-noise
ratio. Although this may be a solution in some cases, it is difficult, rather costly and may
cause an undesirable pollution of the installation.

A simple low cost and non-polluting technique to supply acoustic targets to the fluid has
been described here which proved to be successful in our laboratory measurements. It
consists of generating micro-hydrogen bubbles of an optimum size in the fluid by means
of electrolysis. It is illustrated that very noisy turbulence measurements are obtained with
low acoustic scattering levels and that a significant improvement in the quality of the
results is possible by supplying sufficient micro-hydrogen bubbles as acoustic targets.

The principal conclusion of this paper is that accurate turbulence measurements can be
obtained with Acoustic Doppler Velocimeters by adopting an optimized four-receiver
configuration of the instrument and by assuring a sufficiently high acoustic scattering
level. Although uniquely illustrated by means of ADVP measurements which have the
further advantage to allow non-intrusive profiling, the concepts outlined herewith can
invariantly be applied to improve turbulence measurements with other ADV instruments.
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APPENDIX II.  NOTATION

ADV = Acoustic Doppler Velocimeter / Velocimetry
ADVP = Acoustic Doppler Velocity Profiler
B = flume width
Fr=U gH/ = Froude number
H = flow depth
Lx = macro lengthscale of turbulence in the wavenumber space
NPP = number of pulse-pairs
Q = discharge
Re=UH/ν = Reynolds number of reach-averaged flow
Sb = downstream bottom slope
Sij = cospectrum of components i and j
SNR = signal-to-noise ratio
Tx = macro timescale of turbulence in the frequency space
U = Q/(BH) = globally-averaged velocity
c = speed of sound in the fluid
f = frequency
k = wavenumber
prf = pulse-repetition-frequency
vj = velocity component along i-direction
x,y,z = longitudinal, transversal and vertical reference axes

symbols
α = angle between vertical and scattered wave
β = angle between longitudinal axis and vertical (emitter-receiver) plane
λ = wavelength
ν = molecular viscosity of water; ν= 1.004 x 10-6 m2/s at 20°
σ = noise contribution on a receiver or a velocity component
arrow = vector quantity
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overbar = time-averaged values
prime = fluctuating part of a quantity (with zero time-averaged value)
tilde = measured value of a quantity that estimates its true value
O(.) = order of magnitude of .

subscripts
D = Doppler
H = horizontal component or projection in the horizontal (x,y)-plane
HL = reference to Hurther and Lemmin (2001)
N = Nyquist
e = emitter
r = receiver
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II.0 Introduction

An Acoustic Doppler Velocity Profiler (ADVP), developed in our laboratory, has been
used to measure in detail the three-dimensional flow field and the turbulence in open-
channel bends. A limited series of experiments in a small low-budget flume, done with
the aim of testing the capabilities of the ADVP, was followed by extended series of
experiments in a large optimized flume. This dissertation mainly considers the small-
flume experiments, which yielded results beyond all expectations, and only includes few
large-flume results.

This part II presents the most relevant experimental data and observations that are
subsequently analyzed in parts III and IV. It consists of four papers with the following
contents:

- chapter II.1 explains the working principle of the ADVP and the data-analysis
techniques. Furthermore, it presents distributions of all three mean velocity
components and all six Reynolds stresses as well as the mean flow and turbulent
kinetic energy measured in the small-flume experiments.

- chapter II.2 compares distributions of the downstream velocity and the secondary
circulation measured in the small-flume experiments with predictions according to
linear models, which are commonly used to account for the vertical dimension of the
flow field in depth-integrated flow models. Chapter IV.1 will explain these linear
models in detail.

- Similar to the previous paper, chapter II.3 compares distributions of the downstream
velocity and the secondary circulation measured in the large-flume experiments with
linear model predictions.

- chapter II.4 presents three-dimensional patterns of the downstream velocity and the
multi-cellular secondary circulation measured in the large-flume experiments.

At the end of Part II, the main conclusions are summarized.

Some other small-flume data have been presented in a paper that is not included in this
dissertation:

Blanckaert, K., and Graf, W. H. (1999) “Experiments on flow in open-channel bends.” Proc. 28th congr.
IAHR., Techn. Univ.Graz, Graz, Austria, CD-ROM.





II.1         MEAN FLOW AND TURBULENCE IN OPEN-CHANNEL BEND

By Koen Blanckaert1 and Walter H. Graf,2 Member, ASCE

ABSTRACT: Flow over a developed bottom topography in a bend has been investigated experimentally. The
measuring section is in the outer-bank half of the cross section at 60� into the bend. Spatial distributions of the
mean velocities, turbulent stresses, and mean-flow and turbulent kinetic energy are presented. The cross-sectional
motion contains two cells of circulation: besides the classical helical motion (center-region cell), a weaker
counterrotating cell (outer-bank cell) is observed in the corner formed by the outer bank and the water surface.
The downstream velocity in the outer half-section is higher than the one in straight uniform flow; the core of
maximum velocities is found close to the separation between both circulation cells, well below the water surface.
The turbulence structure in a bend is different from that in a straight flow, most notably in a reduction of the
turbulent activity toward the outer bank. Both the outer-bank cell and reduced turbulent activity have a protective

II.1
effect on the outer bank and the adjacent bottom and thus influence the stability of the flow perimeter and the
bend morphology.
INTRODUCTION

Most natural rivers meander and tend to erode the outer
banks in their successive bends. Important engineering efforts
are undertaken on rivers of all scales to stabilize the banklines.
This is an essential component of projects to improve navi-
gability; increase flood capacity and decrease floodplain de-
struction; avoid massive loss of fertile soil (Odgaard 1984);
and reduce dredging requirements of the river. Recently, there
has been an increased interest in the modeling of the erosional
behavior of the outer bank (see the discussion section). How-
ever, little is known about the characteristics of the mean flow
and turbulence near the outer bank, where the flow pattern is
highly three-dimensional (3D).
A large amount of research on flow in bends has been per-

formed in the last decades, but most of the experimental in-
vestigations concentrated on the central portion of the flow
and often did not cover the outer-bank region in detail. More-
over, in most investigations a fixed rectangular section with a
smooth bed was imposed on the flow. This is different from
the rough turbulent flow over a typical developed bed topog-
raphy, as found in nature. Furthermore, in most experimental
investigations, not all of the three velocity and six turbulent
stress components were measured, and the measuring grids
were rather coarse. A literature review of experimental re-
search on flow in open-channel bends is given in Table 1.
More recently, environmental problems such as the spread-

ing and mixing of pollutants or the transport in suspension of
polluted sediments have become of major concern in river
management. These phenomena are closely related to the tur-
bulence structure of the flow.
The scarcity of reliable experimental data on the 3D flow

pattern and turbulence structure, particularly in bends, is re-
sponsible for the lack of insight into the physical mechanisms,
such as those related to outer-bank erosion and the mixing of
pollutants. Furthermore, this lack hampers the verification of
investigations by means of numerical simulations.
In this study, detailed measurements were made of a rough

turbulent flow in equilibrium with its developed bottom to-
pography. Special attention was given to the complex flow

1Res. Assoc., Lab. de Recherches Hydrauliques, Ecole Polytechnique
Fédérale, CH-1015 Lausanne, Switzerland.

2Prof., Lab. de Recherches Hydrauliques, Ecole Polytechnique Féd-
érale, CH-1015 Lausanne, Switzerland.
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$.50 per page. Paper No. 22307.
JOURNAL OF HYDRAULIC ENGINEERING / OCTOBER 2001 / 835

region near the fixed vertical outer bank. Nonintrusive mea-
surements were made on a fine grid with an acoustic Doppler
velocity profiler (ADVP), which simultaneously measures in-
stantaneous profiles of all velocity components. This enables
one to evaluate the three mean velocity components, vj ( j =
s, n, z), along the downstream, transversal, and vertical axes,
respectively [Figs. 1 (a and c)], as well as the six turbulent
stress components, ( j, k = s, n, z).��v �v �j k

This paper aims at improving our understanding of the flow
and turbulence in bends and their relationship to boundary
erosion and spreading (mixing) of pollutants. Furthermore, due
to the detailed measurements on a fine grid, we want to pro-
vide a useful data set for verification of numerical simulations
of the flow field. The paper gives a description of the experi-
mental facility, hydraulic parameters, ADVP, and data-treat-
ment procedures. Spatial distributions of the mean downstream
velocity, mean cross-sectional motion, turbulent normal and
shear stresses, and mean-flow and turbulent kinetic energy are
presented and analyzed. The importance of the observed flow
and turbulence distributions with respect to the stability of the
outer bank and the adjacent bottom are discussed.

EXPERIMENTAL INSTALLATION

Experiments were performed in a B = 0.4 m wide laboratory
flume with fixed vertical sidewalls made of plexiglass, con-
sisting of a 2 m long straight approach section followed by a
120� bend with a constant radius of curvature of R = �2 m
[Fig. 1(a); R is negative along the n-axis]. Initially, a horizontal
bottom of nearly uniform sand, d50 = 2.1 mm, was installed.
Subsequently, a discharge corresponding to clear-water scour
conditions was established. As a result, the bottom in the
straight approach channel remained stable, but a typical bar-
pool bottom topography developed in the bend. Ultimately,
this topography stabilized and there was no active sediment
transport along the flume. The resulting developed bottom to-
pography is shown in Fig. 1(a). The transversal bottom slope
increases from �0� at the bend entry to a maximum value of
�24� at 45� into the bend and subsequently shows an oscil-
lating behavior [Fig. 1(b)]. A number of analytical models for
the flow and the bottom topography have been proposed that
qualitatively predict such a behavior (de Vriend and Struiksma
1984; Odgaard 1986). A comparison of different models can
be found in Parker and Johannesson (1989). A supereleva-
tion of the water surface [Fig. 1(b)] develops from the bend
entry onto �45� into the bend. Subsequently it remains nearly
constant (the fluctuations are within the measuring accu-
race) at �0.65�, yielding a difference of �zs = 4.5 mm =
1.5(B/R)(U 2/g) in water surface elevation between the two
banks.
The hydraulic conditions of the flow over this bottom to-



TABLE 1. Literature Review of Experimental Research on Flow in Open-Channel Bends

Literature
Cross section and

channel bed Planform Flow regime
Size of measuring grid

(approximately)

Number of vertical
profiles in outer-
bank region

Flow and turbulence
measurements

Rozovskii (1957) Rectangular: smooth bed
rough bed

Triangular

Single bend, 180� Transition
Rough turbulent
Transition

H/7 � B/8
H/7 � B/8
H/7 � B/4

2
2
1

vs, vn

Götz (1975) Rectangular smooth bed Single bend, 180� Transition H/5 � B/10 (denser near
banks and bottom)

2, 3, 4, 5 (for aspect
ratios of 20, 10,
4.6, 2.9)

vs, vn

de Vriend (1979) Rectangular smooth bed Single bend, 180� Transition H/10 � B/10 3 vs, vn

de Vriend (1981) Rectangular rough bed Single bend, 180� Rough turbulent H/10 � B/10 3 vs, vn

Siebert (1982) Rectangular smooth bed Single bend, 180� Transition H/5 � B/4
z/H = 0.09, 0.66 � B/3

3
2

vs, vn

vz, v�v�j k

Dietrich and Smith
(1983)

Natural topography; sand
bottom

Meander, field study Rough turbulent H/6 � B/13 <10 vs, vn

Steffler (1984) Rectangular smooth bed Single bend, 270� Transition H/10 � B10 (denser near
bottom)

2 vs, vn,
2 2v� , v�s n

Anwar (1986) Natural topography; sand
bottom

Single bend, 35�;
field study

Rough turbulent H/4 � B/15 <7 vj,
2v�j

v�v�, v�v�s n s z

Odgaard and
Bergs (1988)

Natural bed topography,
fixed inclined banks;
sand bottom

Single bend, 180� Transition H/10 � B/8 1 vs, vn

Muto (1997) Rectangular smooth bed Meander Transition H/10 � B/10 5 vj, v�v�j k

Tominaga et al.
(1999)

Rectangular smooth bed
� different configura-
tion with vegetation

Single bend, 60� Transition H/10 � B/18 (bend outlet
section)

H/5 � B/18 (other sec-
tions)

6 vs, vn, vz

Present study Natural bed topography,
fixed vertical banks;
sand bottom

Single bend, 120� Rough turbulent H/22 � B/33 65 vj, v�v�j k

Note: H = averaged water depth; B = channel width; z = distance above bed; outer-bank region = region extending 2H from outer bank; vj ( j = s, n,
z): mean velocities; ( j, k = s, n, z): turbulent correlations.v�v�j k

pography are listed in Table 2. Q = 17 L/s is the discharge, H the reach with the least downstream bottom variation, where
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= 0.11 m is the reach-averaged flow depth, U = Q/(BH ) = 0.38
m/s is the reach-averaged velocity, and Ss = 1.89‰ is the

only the half-section at the outer bank was investigated. The
data were analyzed in a reference system with the s-axis point-
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reach-averaged water-surface gradient on the centerline. From
these basic hydraulic parameters, the following reach-averaged
quantities can be derived.
The boundary-shear stress estimated from this water-surface

gradient as � � �gRhSs = 1.35 N/m2—where Rh = 0.07 m is
the hydraulic radius of the cross section—corresponds well to
the critical shear stress for the sediment according to Shields’
diagram. The Chézy friction factor can be estimated by C =
21.1 (Rh/d50)

1/6 = 38 m1/2/s [Strickler (1923), pp. 11–15] or
by C = U/(RhSs)

1/2 = 33 m1/2/s. Throughout the study, a value
of C = 35 m1/2/s is therefore adopted further on. The flow
Reynolds numbers, R = UH/� = 42,000 and R = u*ks/� � 70
(with u* = (�g/C)U, ks � d50 is the Nikuradse equivalent
sand roughness, and � is the molecular kinematic viscosity),
show that the flow is rough turbulent, and the Froude number,
F = indicates a subcritical flow.U/ gH = 0.36,�
The parameters R/B = 5 and R/H = 17.9 correspond to a

rather tight bend. With an aspect ratio of B/H = 3.6, the flume
is much narrower than typical natural open-channel bends. In
a wide bend with a developed bed topography, however, often
the shallow point bar is wide and the flow is concentrated over
the deepest part of the section near the outer bank, where an
important transversal bottom slope exists [Odgaard (1984),
Fig. 20; Dietrich (1987), Fig. 8.2]. It is expected that the flow
over the deepest outer half-section in the reported experiment
is representative of the flow over the deepest part in wider
natural bends.
Three-dimensional velocity measurements were made at one

single section, located at 60� from the bend entrance, being in
ing downstream along the channel centerline, the transversal
n-axis pointing to the inner bank, and the vertical z-axis di-
rected upward from the horizontal (s, n)-plane [Figs. 1(a and
c)]. The ADVP developed in our laboratory (Lemmin and Rol-
land 1997) was used. The nonintrusive measurements were
made by measuring through the outer bank (plexiglass), with
the ADVP mounted in a water-filled box attached to the outer
bank [Figs. 1(a and c)].
The ADVP consists of a central emitter, symmetrically sur-

rounded by four wide-angle receivers, R1 to R4 (Fig. 2). The
central transducer periodically emits acoustic pulses. Imagine
that it emits an acoustic pulse at the time t = 0 (Fig. 2). While
progressing along the water column, the acoustic pulse is
backscattered on targets moving with the water. The back-
scattered echo is recorded by the four receivers, R1 to R4. An
echo recorded after a time ti has traversed a flight path of
length cti (c � 1,500 m/s is the speed of sound in water).
From elementary geometry it follows from what position along
the water column, i = 1, . . . , N (Fig. 2), the backscattered
echo originated. By continuously recording the backscattered
signal, the entire water column is covered.
By dividing the arrival time, ti, in intervals of �t (which

can be chosen), discrete measuring points are defined along
the water column (with a spacing of about c�t/2). After a time
T = prf�1 (pulse repetition frequency), long enough to have
the backscattered echo recorded from the entire water column
and long enough for parasitical echoes to have died out, the
central transducer can emit the next acoustic pulse (Fig. 2).
The signals recorded by the receivers from NPP (number pulse
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FIG. 1. (a) Experimental Setup, Bottom Topography, and Reference System; (b) Transversal Bottom and Water Surface Slope along Flume; (c)
Measurement Section at 60�, Acoustic Doppler Velocity Profiler (ADVP), and Reference System

II.3



TABLE 2. Hydraulic Conditions
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R
(m)

B
(m)

d50
(mm)

Q
(L/s)

H
(m)

Ss
[‰]

U
(m/s)

u*
(m/s

2.0 0.40 2.1 17 0.11 1.89 0.38 0.03

FIG. 2. Acoustic Doppler Velocity Profiler

pairs) consecutive acoustic pulses are used to estimate one
quasi-instantaneous Doppler frequency, (r = 1, . . . , 4),f (t)Dr,i

in each of the measuring points (i = 1, . . . , N, Fig. 2), which
corresponds with one quasi-instantaneous velocity, vj,i(t) ( j =
s, n, z; i= 1, . . . , N) (see below).
In the reported experiment, T = 1,400 	s, and for most

analysis the data were treated with NPP = 16, thus giving a
sampling frequency of f = (T � NPP)�1 = 44.6 Hz for the
quasi-instantaneous velocities. The sampling period was 180
s, and measuring points were defined every �n = 3 mm along
the water column (�t = 4 	s). By using a central emitter con-
sisting of five annular piezoelectrical transducers, a focalized
acoustic field with a constant beamwidth over the entire water
column can be generated. The intensity of the acoustic field is
maximum on the axis of the emitter, decreasing in a Gaussian
way with distance perpendicular to the axis. The intensity
isoline of �6 dB is situated at about 0.35 cm from the axis,
from which the diameter of the measuring volume can be es-
timated as 
 � 0.7 cm (Hurther and Lemmin 1998) (Fig. 2).
The zone where the acoustic field is focalized is limited and
depends on the electronic configuration of the ADVP. In the
presented experiments, measurements were made with focal-
ized zones of 25 and 15 cm long [corresponding to measuring
)
C

(m1/2/s)
R

(103)
R*
(/)

F
(/)

R/B
(/)

R/H
(/)

B/H
(/)

4 35 42 70 0.36 5 17.9 3.6

grids 1 and 2; see Fig. 1(c)]. Due to this limitation, the entire
channel width could not be covered and the measurements are
limited to the outer half-section.
In the following, the derivation of the velocity field from

the Doppler frequencies is given for the horizontal plane
formed by the two receivers R2 and R4; the vertical plane
formed by the two receivers R1 and R3 is similar (Fig. 2).
The Doppler frequencies and resulting from thef (t) f (t),D2,i D4,i

signal recorded by R2 and R4, relate to the velocity compo-
nents lying along the axes of the emitter and the receiver,

and respectively and [Lemmin andv (t) V (t), v (t) V (t)n,i 2,i n,i 4,i

Rolland (1997), eq. (1)] as

fe
f (t) = (�v (t) � V (t)) (1a)D2, i n,i 2,i

c

and

fe
f (t) = (�v (t) � V (t)) (1b)D4, i n,i 4,i

c

where fe = 1 MHz is the frequency of the emitter and c is the
speed of sound in water. By substitution of the geometrical
relations (�i defined in Fig. 2)

V (t) = v (t)sin(�� ) � v (t)cos(�� ) (2a)2,i s,i i n,i i

V (t) = v (t)sin(� ) � v (t)cos(� ) (2b)4,i s,i i n,i i

a system of equations for the velocity components (vs,i, vn,i) is
obtained

fe
� [�v (t)sin � � v (t)(cos � � 1)] = f (t) (3a)s,i i n, i i D2, i

c

fe
� [v (t)sin � � v (t)(cos � � 1)] = f (t) (3b)s,i i n,i i D4,i

c

that has the solutions

f (t) � f (t) cD4, i D2,iv (t) = � (4a)s,i 2 sin � fi e

f (t) � f (t) c f (t) � f (t) cD4,i D2, i D4,i D2, iv (t) = � � = � � (4b)n,i 22(cos � � 1) f 4 cos � /2 fi e i e

The index i = 1, . . . , N, indicating the measuring point, is
dropped from there on. From these instantaneous velocities,
vj(t) ( j = s, n, z), it is straightforward to derive the mean
velocities, vj, the velocity fluctuations, = vj (t) � vj,v�(t)j

and turbulent correlations, ( j, k = s, n, z) (the overbarv�v�j k

denotes time-averaged values; for simplicity of notation it is
omitted on the mean velocities). In both orthogonal planes
formed by the receivers, a simultaneous and independent mea-
surement of the transversal velocity component, vn(t), exists.
This is of importance since it permits an evaluation and cor-
rection for the experimental noise (Hurther and Lemmin
2001). Furthermore, comparison of both measurements gives
an idea about the accuracy of the ADVP.
The above describes how the ADVP measures the flow over

an entire water column, which is oriented along the n-axis with
the present ADVP configuration [Figs. 1(c) and 2]. Measure-
ments were made in two overlapping grids [Fig. 1(c)] by man-
ually displacing the ADVP in a vertical direction. Only the
results from the larger grid are shown in the following; results
from the smaller grid are similar. The grid spacing for the



larger grid was 0.5 cm vertically (�H/22) and 0.3 cm trans-
versally (�B/133), resulting in 1,360 measuring points. The
regions near the water surface and the bottom [indicated in
Fig. 1(c)] could not be measured with the adopted configura-
tion of the ADVP (see below).
The ADVP sometimes produces results in a limited number

of measuring points that fall far outside the usual scatter. There
are two reasons for these clearly erroneous measurements. (1)
As explained in the section on the ADVP, the velocity in point
i (Fig. 2) on the transversal profile is derived from the back-
scattered signal recorded at arrival time ti. It sometimes hap-
pens that multiple-scattered parasitical echos reach the receiver
at exactly the same arrival time, thus perturbating the mea-
surement in point i. This effect is very local and only influ-
ences a couple of points on the profiles. By carefully choosing
the ADVP configuration, this problem is strongly reduced and
these parasitical echos only occur occasionally. (2) In the re-
ported experiment, the regions close to the water surface and
to the bottom far away from the bank contained some clearly
erroneous points. This is while the flypath of the backscattered
signal passes near the water surface or the bottom for points
far away from the bank. The influence of this surface and
bottom proximity gave perturbations in some of the measuring
points.
A goal of this research is to analyze experimentally the var-

ious terms in the flow equations (momentum, vorticity, and
energy equations) and to derive the mixing coefficients. This
requires the evaluation of derivatives of the measured quan-
tities (such as derivatives of mean velocities or turbulent
stresses), which is difficult to do from the raw data because
of the experimental scatter. Therefore, analytical surfaces have
been fitted to the experimental data using 2D smoothing
splines with weight functions [de Boor (1978), chapters 14 and
17]. Thanks to the weight functions, the measured data can be
extended outside the measuring grid by imposing physical
boundary conditions (such as the no-slip condition on rigid
boundaries and no shear parallel to the water surface). The
fitted surface is found as a compromise between smoothness
of the analytical surface [see de Boor (1978) for a mathematical
description] and proximity to the measured data, defined as

2w(n, z)(x (n, z) � x (n, z)) < tolerance (5)exp fit�
grid

in which w is the weight function, xexp are the experimental
values of the concerned variable, and xfit the approximation by
surface fitting to them. The choice of a compromise between
both criteria is subjective and has to be made separately for
each fitted quantity. Care has been taken not to introduce sys-
tematic errors. This means that xexp � xfit should have a random
distribution over the measuring grid with frequent sign
changes along both the n- and z-directions. Thanks to the fine
measuring grid, this analytical surface fitting could be done
with a high precision.
This surface fitting is illustrated for the normalized trans-

versal turbulent normal stress, [this variable is treated2 2v� /un ,60*
further on in Fig. 5(c)]. Figs. 3(a and b) show a spatial view

II.5
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FIG. 3. Surface Plots of Measured (a) and Surface-Fitted (b) Normalized Transversal Turbulent Normal Stress Vertical (c) and Transversal2 2v � /u ;n ,60*
(d) Profiles of Measured and Surface-Fitted 2 2v � /un ,60*



of the raw data and the surface-fitted ones. Fig. 3(c) shows
vertical profiles of the raw and the fitted data at some char-
acteristic locations [close to the outer bank, in the outer-bank
cell, at the separation between both cells, and in the center-
region cell; see Fig. 4(b)]. Similarly, Fig. 3(d) shows some
transversal profiles distributed over the measuring grid. At the
outer bank, the physical boundary condition, = 0, has been2v�n
imposed [Figs. 3(b and d)]. The fitted surface closely follows
the raw data and conserves all its characteristic features, but
smooths the scatter. The analytically fitted surfaces are used
for most analysis of the data and for their further presentation
in this paper.
The accuracy of the measurements has been evaluated in-

directly by

1. Comparing the results of the measurements made on the
two overlapping grids with different configurations of the
ADVP

2. Comparing the two simultaneous and independent mea-
surements of the transversal velocity component, vn(t)

3. Evaluating a coefficient of determination of the surface
fitting procedure, defined as [Lancaster and Salkauskas
(1986), p. 55]

2(x � x )exp fit�
2R = 1 � (6)

2(x � ��x 

)exp exp�
in which ��xexp

 is the average value over the measuring
grid of xexp. The summation is done over the measuring
grid; clearly erroneous data (explained before) have been

II.6

omitted. This coefficient gives an idea about the scatter
on the data. This scatter includes systematic errors due
to inaccuracy of the ADVP alignment as well as random
scatter inherent to experimental measurements.

An estimation of the accuracy and the coefficient of deter-
mination of the surface-fitting procedure are reported in Figs.
4–6. Overall, a high accuracy was obtained. The accuracy of
the mean velocities was slightly better than that of the turbu-
lent normal stresses, followed by the turbulent shear stresses.
In general, the uncertainty increased somewhat with distance
from the bank. Close to fixed boundaries (in the region of
about 20% of the water depth), the measurements of the tur-
bulent stresses are not very reliable, which is mainly due to
the large gradient in the mean velocity that exists in the mea-
suring volumes. Care should be taken with the interpretation
of boundary shear stresses, which can only be estimated after
bridging this region through extrapolation. The mean velocity
measurements remain accurate close to the fixed boundaries.
A detailed analysis of the precision and accuracy of measure-
ments made with the ADVP is presented by Hurther and
Lemmin (2001).

EXPERIMENTAL RESULTS

Time-Averaged Velocities

The distribution of the normalized downstream velocity
component, vs/U, in the half-section investigated is presented
in Fig. 4(a). Over the larger part of the measured region, its
depth-averaged value is almost constant at Us/U � 1.35 [Fig.
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FIG. 4. (a) Isocontours of Normalized Downstream Velocity, vs /U; (b) Vector Representation of Normalized Cross-Sectional Motion, 2 2v � v /U;� n z

(c) Normalized Depth-Averaged Downstream Velocity, Us /U, and Normalized Unit Discharge, UsBh/Q, (d) Extrapolations Outside Measuring Grid and
Estimation of Accuracy



FIG. 5. Isocontours of Normalized (a) Downstream Turbulent Intensity (b) Vertical Turbulent Intensity (c) Transversal Turbulent2 2 2 2v � /u ; v � /u ;s ,60 z ,60* *
Intensity (d) Cross-Sectional Turbulent Anisotropy (2 2 2 2 2v � /u ; v � � v � )/un ,60 n z ,60* *

4(c)], thus being higher than the reach-averaged velocity, U =
0.38 m/s. The distribution of the normalized unit discharge,

consists of cross-sectional velocities of =2 2v � v /U� n z

O(0.03) on the average. These observations can be summa-

II.7
(UsBh)/Q [Fig. 4(c); h is the local flow depth], shows that the
flow is concentrated over the deeper outer part of the section.
Integration of this profile shows that about 80% of the dis-

rized as

2 2 2 2v � v < v � v << U (7a)

charge flows through the investigated half-section. Whereas
the maximum velocity over the flow depth in straight uniform
flow is usually found near the water surface, in our bend ex-
periment the core of maximum velocity, vs,max � 1.5U, was
observed in the lower part of the flow depth and close to the
outer bank [Fig. 4(a), �)].
The vectorial representation of the normalized cross-sec-

tional motion, in the half-section investigated is2 2v � v /U,� n z

shown in Fig. 4(b). A circulation cell—named center-region
cell—with outward velocities near the water surface and in-
ward velocities near the bottom is observed in the center re-
gion. This cell represents the classical helical motion charac-
teristic of flow in bends. It consists of cross-sectional velocities
of = O(0.1) on the average. A region character-2 2v � v /U� n z

ized by weaker cross-sectional velocities is noticed close to
the outer bank. In the upper part of this outer-bank region an
additional circulation cell—named outer-bank cell—with a
rotation sense opposite to the center-region cell is noticed. It
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� �n z outer-bank cell n z center-region cell

O(0.01) m/s < O(0.04) m/s << 0.38 m/s (7b)

and

U = 0.38 m/s < v = O(1.35U ) = O(0.5) m/s (8)s

Contrary to the center-region cell, the outer-bank cell has
not always been observed in previous experiments on flow in
channel bends. Possibly it is not well documented because in
most previous investigations the measuring grid was too
coarse (Table 1) and the accuracy too low to measure these
small velocities, O(0.01 m/s). Furthermore, the outer-bank cell
has an intermittent behavior and thus is difficult to visualize
experimentally. It is only after time-averaging the measured
data over long periods that it becomes discernible (Blanckaert
and Graf 1999a). The effects of this outer-bank cell on the
stability of the outer bank are discussed in the discussion
section.



FIG. 6. Isocontours of Normalized Reynolds Shear Stresses (a) and (b) (c) Isocontours of Normalized Reynolds2 2��v �v �/�u ��v � v �/�u ;ns z ,60 z ,60* *
Shear Stress and Normalized Bank Shear Stress (d) Extrapolations Outside Measuring Grid and Estimation of Accuracy2 2��v �v �/�u � /�u ;s n ,60 bank ,60* *

Turbulent Normal Stresses

Figs. 5(a–c) show the distribution in the investigated half-
section of the turbulent normal stress components, (i =2v �i

2

perimental noise but has a physical reason.) When averaged
over the entire measuring grid—indicated by �� 

—the ratios
of the cross-sectional normal stress components to the one
downstream are

II.8
s, n, z), normalized by The characteristic shear veloc-u .,60*
2 2 2 2
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ity in the measuring section, u*,60, is defined as u*,60 =
where ��zS,60/�s is the local downstreamgR (��z /�s),� h S,60

water-surface gradient at the centerline in the section at 60�.
In the present experiment, the downstream water surface slope
was 2.89‰ and the hydraulic radius was Rh = 0.07 m, giving
u*,60 = 0.045 m/s.
The spatial distribution of the dominant component [Fig.2v �s

5(a)] shows an outward decrease from the centerline to mini-
mum values at about the separation between the outer-bank
region and the center region; subsequently it increases strongly
in the outer-bank shear layer. The spatial distribution of the
vertical component [Fig. 5(b)] is similar, with the excep-2v �z
tion that vertical fluctuations are damped near the bottom and
near the water surface due to their geometrical constraints.
Contrary to and the transversal component [Fig.2 2 2v � v � , v�s z n

5(c)] has its highest values at about the separation between the
center region and the outer-bank region and decreases toward
the bank and the shallower inner half-section. (A spectral anal-
ysis of the fluctuating velocities has confirmed that the inward
increase of and is not due to an increase of ex-2 2v � v�s z
��v � /v � 

 = 0.34 < ��v � /v � 

 = 0.47 (9)n s z s

This shows that the downstream fluctuations (s) are dominant
and that the intensity of the transversal fluctuations (n) is
smaller than that of the vertical fluctuations (z). Both ratios
have a pronounced spatial distribution in the measured half-
section. In a bidimensional straight uniform flow, however,
they approach constant values [Nezu and Nakagawa (1993),
p. 54], such as

2 2 2 2��v � /v � 

 � v � /v � � = 0.51n s straight n s straight

2 2 2 2> ��v � /v � 

 � v � /v � � = 0.31z s straight z s straight (10)

where the intensity of the transversal fluctuations is larger than
that of the vertical fluctuations. Such differences show that
turbulence has a complex 3D structure in a bend, which is
different from that in a straight uniform flow.
Near the flow boundaries, the fluctuations perpendicular to

the boundary are hindered by geometrical constraints. This be-
comes obvious when considering the distribution of the an-



isotropy of the cross-sectional turbulence, � as shown2 2v � v � ,n z

normalized by in Fig. 5(d). In the regions near the bottom2u ,60*
and the water surface, the vertical fluctuations are hindered
and > whereas in the region near the outer bank the2 2v � v � ,n z

transversal fluctuations are hindered and < On a line2 2v � v� .n z

formed by the diagonals pointing away from the upper and
lower corners of the flow domain [dark line in Fig. 5(d)], the
transversal and vertical fluctuations are equally hindered by
the outer bank, respectively the water surface and the bottom,
resulting in isotropic cross-sectional turbulent normal stresses,

=2 2v � v � .n z

Similar patterns of � have been measured in ex-2 2v � v �n z

perimental investigations on cross-sectional circulation cells
near vertical banks in straight uniform flow [Nezu et al.
(1985), Fig. 15 for airflow in a duct; Tominaga et al. (1989),
Fig. 11(b) for open-channel flow]. The latter showed this term
to be responsible for the generation of these near-bank circu-
lation cells.

Turbulent Shear Stresses

Fig. 6(a) shows the distribution of the normalized turbulent
shear stress, in the investigated half-section. It2��v �v �/�u ,s z ,60*
is mainly generated by the downstream component of the bot-
tom shear stress, �b,s. In the outer-bank region, this turbulent
shear stress assumes small negative values on the measuring
grid: �0.1 < < 0. The measured values in-2��v �v�/�us z ,60*
crease toward the center region of the channel, where the
nearly parallel isolines with the bottom indicate the close re-
lation of this turbulent shear stress with friction on the bottom.
In the center region, where mainly a downflow occurs [Fig.
4(b)], this turbulent shear stress remains low in the upper part
of the flow depth and increases sharply—and nearly linearly
—in the lower part of the flow depth, attaining values as high
as = 7. As mentioned before, measurements2��v �v �/�us z ,60*
close to the bottom (�20% of the flow depth) are not very
reliable, and care should be taken with their interpretation.
However, close to the bottom has to decrease2��v�v �/�us z ,60*
from its maximum value to the value of the normalized down-
stream bottom shear stress, which can be estimated as �b,s/

� �g(Us/C)
2/ � g(1.35U/C)2/ � 1 [Fig.2 2 2�u �u u,60 ,60 ,60* * *

4(c)]. Nezu et al. [(1985), Fig. 13], have measured similar
vertical profiles of this turbulent shear stress in the downflow
region of a cross-sectional circulation cell existing near a ver-
tical bank for the case of an air flow in a straight duct. In the
outer-bank region, where mainly a downflow occurs also, an
important vertical gradient might exist close to the bottom,
outside the measuring grid.
Fig. 6(b) shows the distribution of the normalized cross-

sectional turbulent shear stress, in the inves-2��v �v �/�u ,n z ,60*
tigated half-section. This turbulent shear stress seems to be
correlated with the circulation cells [Fig. 4(b)] as it increases
toward maximum negative values in the eyes of the cells. In
both circulation cells rotating in opposite sense, this turbulent
shear stress has the same sign. In the eye of the weaker outer-
bank cell, the value is only slightly lower than near the
eye of the center-region cell. This turbulent shear stress is
of the same order of magnitude as both and2��v �v �/�us z ,60*

In the region affected by bottom friction, it is2��v �v �/�u .s n ,60*
mainly generated by the transversal component of the bottom
shear stress, which is inward directed near the bottom and thus
assumes positive values. In that bottom region, the pattern of
isolines is similar to that of the shear stress ��v�v �.s z

Fig. 6(c) shows the distribution of the normalized turbu-
lent shear stress, in the investigated half-2��v �v �/�u ,s n ,60*
section. In the outer-bank region, a triangular region affected
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by bank friction, increasing in lateral extent from the surface
to the bottom, is discernible. The transversal distribution of

in this region is nearly linear, with a comparable gra-��v �v �s n

dient at all elevations above the (s, n)-plane. A similar linear
distribution in transversal direction of has been mea-��v �v �s n

sured by Nezu et al. [(1985), Fig. 14] near vertical banks in a
straight uniform airflow in a duct. Extrapolation of the linear
profiles onto the outer bank (thus bridging the region close to
the bank where the measurements are not very reliable—see
before) gives an idea about the bank-shear stress, �bank. A tri-
angular vertical distribution results [Fig. 6(d)], increasing from
about �bank = 0 at the water surface toward �bank = at20.25u ,60*
the lower edge of the measuring grid at z/h = 0.2 (h is the
local flow depth). Similar to the -profiles in the center��v �v�s z

region, the vertical gradient might increase more than linearly
near the bottom, z/h < 0.2. In the center region, a region af-
fected by transversal shear on the inclined bottom can be dis-
cerned. The isolines have a pattern similar to those of the shear
stress ��v �v �.s z

Mean-Flow and Turbulent Kinetic Energy

Figs. 7(a and b) show the normalized distributions over
the investigated half-section of the mean-flow kinetic energy,
K/(1/2U 2), and the turbulent kinetic energy, per2k/(1/2u ),,60*
unit mass, defined as

1 12 2 2 2 2 2K = (v � v � v ) and k = (v � � v � � v � ) (11)s n z s n z2 2

The composition of the total kinetic energy, averaged over the
entire measuring grid, ��K � k

, is summarized in Table 3.
The downstream velocity vs dominates; integrated over the

flow field it contains 98.7% of the total kinetic energy. The
kinetic energy content of the cross-sectional motion, being
0.4% of the total kinetic energy, is smaller than that of the
turbulence, being 0.9% of the total kinetic energy, ��K � k 

.
The distributions of K and k are very similar to those of their
dominant components, [Fig. 4(a)] and [Fig. 5(a)], re-2 2v v �s s

spectively.
The distributions of K and k are more or less opposite [Figs.

7(a and b)]. The position of the maximum of K nearly coin-
cides with that of the minimum of k, and positive/negative
gradients of K correspond to negative/positive gradients of k.
Fig. 7(c) shows the normalized depth-averaged mean-flow and
turbulent kinetic energy, �K
/(1/2U 2) and re-2�k
/(1/2u ),,60*
spectively, and the ratio �k
/�K
; �K
/(1/2U 2) � 1.9 is nearly
constant in the outer-bank region, but decreases toward the
shallower inner half-section. The turbulent kinetic energy

decreases from the outer bank to a minimum2�k
/(1/2u ),60*
value of � 0.9 at some distance from the bank2�k
/(1/2u ),60*
and then increases toward the centerline. Similar to

the ratio �k
/�K
 has a minimum value at some2�k
/(1/2u ),,60*
distance from the bank and is smaller than �k
/�K
 < 0.01 in
the outer-bank region. Toward the shallower inner half-section,
the ratio increases to values of �k
/�K
 � 0.02.
In straight uniform flow, the ratio �k
/�K
 depends uniquely

on the friction coefficient, increasing with the bottom rough-
ness. Assuming a logarithmic downstream velocity profile [for
example, de Vriend (1977)]

z g z�
v = U f = U 1 � 1 � ln (12)straight s s s� � � � ��h �C h

and an exponentially decreasing turbulent kinetic energy from
the bottom toward the water surface [Nezu and Nakagawa
(1993), p. 54]

II.9



FIG. 7. Isocontours of Normalized (a) Mean Flow Kinetic Energy K/(1/2U 2); (b) Turbulent Kinetic Energy (c) Depth-Averaged Nor-2k/(1/2u );,60*
malized Mean Flow and Turbulent Kinetic Energy, �K
/(1/2U 2) and and Ratio �k
/�K
; (d) Vertical Profiles of in Straight Flow2 2�k
/(1/2u ), k/(1/2u ),60 ,60* *
and Bend Flow (Measured)

TABLE 3. Composition of Total Kinetic Energy, Averaged over
Entire Measuring Grid

In Fig. 7(d), the vertical profile of as found2k /(1/2u )straight ,60*
in straight uniform flow—according to (13) and based on u*1/2

II.10
(10�4 m2/s2) (10�4 m2/s2) = U�g/C with C � 35 m /s—is compared with the vertical
rofiles of measured at 5.9 and 17.9 cm from the2k/(1/2u )
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2 �2(z/h)k = 4.78u e (13)straight *

it is found by integration of (12) and (13) over the flow depth
that

2
�k
 �k 
 4.133 u 4.133 g gstraight *= = � = � � 4.1	 � �2 2 2 2�K
 1 � f 
 U � f 
 C Cs s sstraight 2�v 
straight2

(14)

For the earlier estimated bottom roughness, C � 35 m1/2/s, a
ratio of �k
/�K
 � 0.03 would be expected, which is nearly the
case toward the inner half-section but is higher than the ob-
served value, �k
/�K
 < 0.01, in the outer-bank region.
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uter bank. Whereas the straight flow profile decreases expo-
entially from the bottom toward the water surface, the mea-
ured profiles decrease from the bottom to a minimum value
nd then increase toward a maximum value near the water
urface [see also Fig. 7(b)]. Muto [(1997), Figs. 4.10, 23, 36,
9, 57] and Tamai and Ikeya [(1985), Fig. 3(d)] have measured
imilar profiles in a meandering channel.

ISCUSSION

The most important features observed in our experiment are
e existence of an outer-bank cell of secondary circulation
Fig. 4(b)] and the reduced level of turbulent activity in the
egion near the outer bank [Fig. 7(c)]. Their influence on the
tability of the outer bank and the adjacent bottom will be
iscussed.
As already mentioned in the introduction, bankline stabili-

ation is a major task in river management. Some recent pa-
ers witness the increased interest in the erosional behavior of
e channel banks and their modeling. Thorne (1982) has rec-
gnized two dominant processes of bank erosion and retreat:
asal erosion and geotechnical bank failure. Basal erosion
teepens the bank and intermittently causes mass bank failure.
uan et al. (1999) presented a detailed model of bank retreat
rough basal erosion, driven by the bank shear stress. A



depth-averaged flow model, extended with semiempirical in-
formation on the vertical flow structure, is used. The bank
shear stress contains contributions from the downstream en-
ergy slope (accounting for downstream changes in the near-
bank velocity and near-bank bottom shear stress) and from the
transversal momentum exchange by the cross-sectional flow
(circulation cells). Darby and Thorne (1996) have proposed a
model for prediction of the probability of geotechnical bank
failure and for the amount of collapsed bank material. Nagata
et al. (2000) proposed a model that accounts for bank retreat
through basal erosion followed by intermittent geotechnical
bank failure. They divide the intermittent process of bank ero-
sion into four steps: bed scouring at the side bank; bank col-
lapse due to instability of the scoured bank; deposition of the
collapsed bank materials at the front of the bank; and trans-
portation of the deposited materials. They used a depth-aver-
aged flow model and described the intermittent sediment trans-
port near the bank with a nonequilibrium model.
These recent models use simplified representations of the

flow: 3D flow patterns, such as the outer-bank cell, and tur-
bulence are not accounted for. In our experiment, both the
outer-bank cell and the reduced level of turbulent activity have
a protective effect on the outer bank and the adjacent bottom.
The outer-bank cell acts as a stabilizing buffer region be-

tween the center-region cell and the outer bank [Fig. 4(b)].
The outward increase of the downstream velocity, vs, does not
extend into the outer-bank region, and the core of maximum
velocity, vs,max, is found at the separation between the center
region and the outer-bank region and well below the water
surface [Figs. 4(a and b), �]. By keeping the core of maximum
velocity at a distance, the outer-bank cell has a protective ef-
fect on the outer bank and the adjacent bottom. Blanckaert and
Graf (1999b) have given a more rigorous proof of this protec-
tive effect, by means of an experimental analysis of the depth-
averaged momentum equation.
The reduced turbulent activity results in a reduced bank

shear stress. Extrapolation of the linear -profiles [Fig.��v �v�s n

6(c)] toward the outer bank yields a triangular vertical distri-
bution of the outer-bank shear stress, increasing from about
�bank = 0 at the water surface toward a maximum of about �bank
= at the toe of the bank. This value is considerably20.35�u ,60*
lower than the shear stress on a vertical bank in a straight
uniform flow, being of the order of �bank � This is in2�u .,60*
contrast to the expectation that the increase of velocity in the
outer half-section results in an increase of bank shear stress,
�bank >

2�u .,60*
The strength of the outer-bank cell and the reduction in

turbulent activity are expected to increase with tightness of the
bend. Both mechanisms could explain why the bend tightness
in a meandering river does not grow infinitely but seems to
adopt a maximum value. Since turbulence is an important fac-
tor in the generation of the outer-bank cell, we can conclude
that the erodibility of the outer bank and adjacent bottom and
thus the morphologic evolution of a bend do not only depend
on the mean flow distribution, but that turbulence also plays
a major role. Furthermore, such phenomena as the spreading
and mixing of pollutants or the transport in suspension of pol-
luted sediments are also closely related to the turbulence struc-
ture of the flow. A general conclusion from this experiment is
that it is of engineering importance to predict the turbulence
characteristics accurately.

SUMMARY AND CONCLUSIONS

It should be emphasized that our experimental results come
from measurements in one single section, being at 60� into the
bend, under one set of hydraulic (F, C) and geometric (R/B,
B/H ) conditions. The experimental research is presently en-
larged by measuring in different sections and under various
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hydraulic conditions in a larger flume (Blanckaert and Graf
2001).
With an ADVP, 3D measurements of the flow were made

in an outer half-section of an open-channel bend for a rough
turbulent flow over a developed bottom topography (Figs. 1
and 2). The ADVP measures the three components of the mean
velocity, = (vs, vn, vz), as well as the six turbulent stresses,→v

( j, k = s, n, z), on a fine grid.��v �v �,j k

1. In the outer half-section, the downstream velocity is
higher than the straight-flow velocity [Figs. 3(a and c)].
The core of maximum velocity is found at the separation
between the center region and the outer-bank region,
well below the water surface [Figs. 3(a and b)].

2. The pattern of cross-sectional velocities contains two cir-
culation cells [Fig. 3(b)]. Besides a center-region cell—
the classical helical cell—a weaker counterrotating cell
is observed in the corner formed by the outer bank and
the water surface.

3. The downstream and vertical turbulent normal stresses
show an outward decrease from the centerline and in-
crease again in the outer-bank shear layer; the transversal
turbulent normal stress has an opposite behavior [Figs.
5(a–c)]. Turbulence in a bend is structurally different
from turbulence in a straight flow, as appears from the
ratios of the turbulent normal stresses. Fluctuations per-
pendicular to the boundaries are damped [Fig. 5(d)].

4. The turbulent shear stress components and��v �v �s z

are low in the outer-bank region, resulting in an��v �v �s n

outer-bank shear stress that is smaller than the one in a
straight flow [Figs. 6(a, c, d)]. This is in contradiction to
the expected increase of the outer-bank shear stress in
bends. The turbulent shear stress component is��v �v �n z

related to the circulation cells, as it increases to maxi-
mum values in the eyes of both cells [Fig. 6(b)].

5. Averaged over the entire measuring grid, the downstream
velocity contains 98.7% of the kinetic energy, and tur-
bulence (0.9%) contains more kinetic energy than the
cross-sectional velocities (0.4%). The mean and turbulent
kinetic energy have opposite distribution patterns [Figs.
7(a and b)].

6. Averaged over the depth, the ratio of turbulent to mean
kinetic energy �k
/�K
 decreases outward from the cen-
terline, only to increase again in the outer-bank shear
layer [Fig. 7(c)]. In most of the outer-bank region, tur-
bulence is reduced, as appears from the ratio �k
/�K
,
which is significantly smaller than in straight channel
flow.

7. Both the outer-bank cell and the reduced turbulent activ-
ity have a protective effect on the outer bank and the
adjacent bottom: the outer-bank cell keeps the core of
maximum velocity away from the bank [Figs. 3(a and
b)], whereas the reduced turbulence results in a reduced
outer-bank shear stress. Hence, the morphologic evolu-
tion of bends depends not only on the mean flow but
also on the turbulence.

A detailed analysis of the data herewith presented will be
communicated in a forthcoming paper.
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TATION

The following symbols are used in this paper:

ADVP = acoustic Doppler velocity profiler;
B = channel width;
C = Chézy roughness coefficient;
c = celerity of sound in water, c = 1,500 m/s at 20�;

d50 = mean diameter of sand bottom;
F = Froude number = ;U/ gH�
fs = normalized vertical profiles of downstream ve-

locity component, vs;
fDr = Doppler signal recorded by receiver r, r = 1, 2,

3, 4;
fe = frequency of emitter, = 1 MHz;
g = gravitational acceleration;
H = reach-averaged flow depth;
h = local flow depth;
K = mean flow kinetic energy per unit mass;
k = turbulent kinetic energy per unit mass;
ks = Nikuradse equivalent sand roughness;
N = number of measuring points on profile;

NPP = number of pair-pulses;
n = transversal reference axis;

n* = distance from outer bank;
prf = pulse repetition frequency;
Q = discharge;
R = radius of curvature of channel centerline;
R 2 = coefficient of determination of surface fitting;
Rh = hydraulic radius of cross section;
Rr = Receiver r, r = 1, 2, 3, 4;

R = UH/� = Reynolds number;

* = u*ks /� = particle Reynolds number;
Ss = reach-averaged water surface gradient on cen-

terline;
s = downstream reference axis;
t = time;
U = Q/(BH) = reach-averaged velocity;
Us = depth-averaged downstream velocity;

= U�g/C = friction velocity;
Vr = velocity component along axis of receiver r, r =

1, 2, 3, 4;
vj = time-averaged velocity component, j = s, n, z;

vj (t) = instantaneous velocity component, j = s, n, z;
v � (t)j = instantaneous velocity fluctuation, j = s, n, z;
v �v �j k = time-averaged correlation of velocity fluctua-

tions, j, k = s, n, z;
xexp = experimental data;
xfit = approximation by surface fitting to xexp;
z = vertical reference axis; elevation above horizon-

tal (s, n)-plane;
z* = distance under water surface;
�i = angle defined in Fig. 2;

�n = height of measuring volumes;



� = von Karman constant;
� = molecular viscosity of water; � = 1.004 � 10�6

m2/s at 20�;
� = density of water; � = 998.2 kg/m3 at 20�;
� = shear stress at flow boundary (bottom or bank);

 = diameter of measuring volumes;
overbar = time-averaged values;
��
 = values averaged over local flow depth;

���

 = values averaged over the measuring grid; and
O(�) = order of magnitude of.
Subscripts

b = bottom;
bank = values at outer bank;
max = maximum magnitude over measuring grid of

variable;
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S = water surface;
straight = corresponding value in straight uniform flow;

and
60 = value in the section at 60�.
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.2    BEND-FLOW SIMULATION USING 2D
DEPTH-AVERAGED MODEL

a

Discussion by K. Blanckaert5

The authors are to be commended for presenting a simple
model that is accessible for practicing engineers, for simulat-
ing the flow in a channel bend. The authors’ main conclusion
—that dispersion stresses contribute to the transverse convec-
tion of momentum and should be considered in bend flow
simulations—is in agreement with the conclusions of Kalk-
wijk and de Vriend (1980) and Johannesson and Parker (1989).
In the following, some experimental results obtained by the

discusser will be presented which hopefully will add to the
understanding of some simplifications adopted in the authors’
model.
The discusser performed velocity measurements in a curved

flow over a mobile-bed topography. Our laboratory flume is B
= 0.4 m wide and consists of a 2 m long straight approach
section, followed by a 120� bend with a constant radius of
curvature of Rc = 2 m (Fig. 16). The hydraulic conditions of

aOctober 1999, Vol. 125, No. 10, by H. C. Lien, T. Y. Hsieh, J. C.
Yang, and K. C. Yeh (Paper 17977).

5Res. Asst., Lab. de Recherches Hydrauliques, Ecole Polytechnique
Fédérale, CH-1015 Lausanne, Switzerland.
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FIG. 16. Experimental Setup, Bottom Topography, and Velo-
cimeter

FIG. 17. Depth-AveragedStreamwise Velocity, (cm/s)ū

F
a

the flow are as follows: Q = 17 l/s is the discharge; d = 0.11
m is the reach-averaged flow depth; U = Q /(Bd) = 0.38 m/s
is the reach-averaged velocity; Ss = 1.89‰ is the reach-aver-
aged water-surface gradient on the centerline; c = 35 m1/2/s is
the Chezy friction factor; R = Ud/v = 42,000 is the Reynolds
number; and F = U/ = 0.36 is the Froude number. Thegd�
parameters Rc /B = 5 and Rc /d = 17.9 correspond to a rather
tight bend. The mean diameter of the sand bed is d50 = 2.1
mm. 3D velocity measurements were made at one single sec-
tion, located at 60� from the bend entrance; there, only the
half-section at the outer bank was investigated (Figs. 17–20).
Fig. 17 shows our measured depth-averaged velocity, ,=u
whereas Fig. 18 shows our measured distributions of the
streamwise, transversal, and vertical velocity components, ū,
and w̄. Figs. 19(a and b) show the analytical streamwise andv̄

transversal [excluding the net transversal mass transport,
velocity distributions according to (14), based on our=v f (�)]m

measured depth-averaged velocity, ; the Chezy frictional fac-=u
tor, c = 35 m1/2/s, and the radius of lines parallel to the banks.
Fig. 19(c) shows the vertical velocity component, computed
by substituting the analytical transversal velocity in the con-
tinuity equation for axisymmetric flow. Fig. 20 shows the dis-
persion stresses, DSXYexp, based on our measured velocity dis-
tribution, and DSXYan, based on the analytical distributions
[Figs. 19(a and b)]. A description of the experimental setup,
the velocimeter, the data treatment, a presentation of the data
on the mean velocities and the Reynolds stresses, and an anal-
ysis of the data can be found in Blanckaert and Graf (1999;
in preparation, 2000a,b).
The authors compute the dispersion stresses from the ana-

lytical streamwise and transversal velocity profiles proposed
by de Vriend (1977), who defines those velocity profiles in the
directions parallel and perpendicular to the depth-averaged
flow and uses the radius of curvature of the local depth-av-
eraged streamline. In the authors’ model, however, the velocity
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rofiles parallel and perpendicular to the �- and �-axis are
equired. The authors’ (14) is an approximation, proposed by
alkwijk and de Vriend (1980, equations 12 and 18) for small
urvatures, that consists in retaining the profile parallel to the
epth-averaged flow in the �-direction and adding the net
ransversal mass transport, , to the profile perpendicular=v f (�)m

o the depth-averaged flow. Furthermore, they approximate the
adius of curvature of the local depth-averaged streamline by
he one of the channel centerline Rc . This approximation re-
ults in a discontinuous behavior of , DSXY, and all termsv̄
epending on at the bend entry and exit in the authors’ testv̄
ases (Figs. 10–15). This discontinuous behavior could have
een avoided by applying de Vriend’s analytical profiles in the
irections parallel and perpendicular to the local depth-aver-
ged flow, based on the radius of curvature of the local depth-
veraged streamline, followed by a transformation of these ex-
ressions in the �- and �-directions. This procedure has been
ollowed successfully by Yulistiyanto et al. (1998) to simulate
he flow around a cylinder by means of a depth-averaged
odel including dispersion stresses.
The analytical velocity profiles [(14)] can only be resolved

rom the simplified flow equations, in which the interaction
etween the streamwise velocity and the secondary flow is



FIG. 19. Isocontours of Analytical Streamwise, Transversal,
and Vertical Velocities, , , (cm/s)¯ ¯ ¯u v w

FIG. 20. Measured and Analytical Dispersion Stress, DSXY
(N/m)

neglected. Momentum transport by the secondary flow, how-
ever, causes a flattening of the streamwise velocity profiles (de
Vriend 1981a), which in turn results in a decrease of the
strength of the secondary flow (de Vriend 1981b; pp. 26–27)
and thus a decrease of the dispersion stress, DSXY. This in-
teraction between the streamwise velocity and the secondary
flow increases with the bend tightness, RcB. Consequently, the
dispersion stress, DSXY, calculated with the analytical veloc-
ity profiles [(14)] can only represent the momentum convec-
tion for mildly curved bends. For strongly curved bends in
JOURNAL OF HYDRAULIC ENGINEERING / FEBRUARY 2001 / 169

which an important interaction between the streamwise and
the secondary flow exists, such as the authors’ second test case,
the dispersion stress does not reliably model the momentum
convection, and a fully 3D model should be used. This is il-
lustrated by our experimental results in Figs. 18–20. Whereas
the analytical streamwise velocity profiles have their maxi-
mum at the water surface, our measured profiles showed an
important flattening with the maximum well below the water
surface [Figs. 18(a) and 19(a)]. Furthermore, our measured
transversal velocities are weaker than the predicted analytical
ones [Figs. 18(b) and 19(b)]. These differences are amplified
in the dispersion stress, DSXY (Fig. 20). Near the centerline,
the dispersion stress based on our measured velocities,
DSXYexp, is an order of magnitude smaller than the dispersion
stress, DSXYan, based on the analytical velocity distributions;
in the region covered by the outer-bank cell, the measured
dispersion stress almost vanishes. It should be remarked that
there is some uncertainty on DSXYexp due to the extrapolation
of our velocity profiles outside the measuring grid near the
bottom and the water surface [Fig. 18(a)]. However, this un-
certainty cannot be responsible for the difference of an order
of magnitude between DSXYexp and DSXYan. A more detailed
analysis of the interaction between the streamwise velocity and
the secondary flow is presented in Blanckaert and Graf
(2000b).
The authors use the analytical profiles of de Vriend over the

whole cross-section to compute the dispersion stress, resulting
in DSXY � 0 (Fig. 20). Johannesson and Parker (1989) have
shown that, to account correctly for the effect of the transverse
momentum flux, this dispersion stress must satisfy two con-
ditions: (1) DSXY should be positive in the central region of
the cross section; and (2) it should decay to zero toward the
impervious banks. For their simulation of the strongly curved
flow, the authors impose free-slip boundary conditions at the
banks. Johannesson and Parker (1989; p. 1022) have shown
that this is equivalent to generating a fictitious momentum flux
at the banks that just balances out the redistribution and pre-
vents it from being felt. Fig. 15 illustrates this transversal mo-
mentum flux through the banks. For their simulation of the
mildly curved flow, the authors impose the no-slip condition
at the banks, ū = 0, resulting in DSXY = 0. However, Johan-
nesson and Parker (1989; p. 1031) pretend that this procedure
does not correctly model the dispersion stresses, but only rep-
resents them as higher-order contributions to the momentum
balance. This is confirmed by the results of Kalkwijk and de
Vriend (1980; p. 339), who find a better agreement with ex-
perimental data when the dispersion stress is multiplied by a
factor of 1.5. Fig. 19 shows that using de Vriend’s profiles
with the bank boundary condition, ū = 0, does not yield a
realistic pattern of secondary flow for the discusser’s experi-
ment, with notable shortcomings near the banks: (1) the ana-
lytical transversal velocity attains its maximum value very near
the bank and drops sharply to zero in a thin layer near the
bank [Figs. 18 and 19(b)]; and (2) over most of the outer half-
section, upflow occurs w̄ > 0, resulting—due to continuity—
in a much too large downflow, w̄ < 0, concentrated in a thin
layer near the outer bank [Figs. 18 and 19(c)]. Dispersion
stresses based on such an unrealistic pattern of secondary flow
cannot be expected to model correctly the transversal momen-
tum convection and will notably fail to account correctly for
the influence of the impervious banks. Ikeda et al. (1990) have
presented analytical solutions for ū and that are valid overv̄
the whole cross section, including the bank boundary layers.
Dispersion terms based on their profiles should model more
correctly the transversal momentum convection and the influ-
ence of the impervious banks.
The authors have tested their model for two cases. The first

concerns a mildly curved flow, Rc /B = 8.3, for which de
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Vriend’s assumptions seem to be justified. The second case
concerns a strongly curved flow, Rc /B = 1, in which the dis-
persion stresses contribute significantly to the momentum bal-
ance. The discusser’s experimental data show that the authors’s
model of momentum convection by dispersion stresses is un-
reliable for strong curvatures. Our measured flow field is
highly three-dimensional, as shown by the important interac-
tion between the streamwise velocity and the secondary flow
and by the appearance of an outer-bank cell of circulation
[Figs. 18(b and c)]. In the discusser’s opinion, only fully 3D
simulations can be reliable for strongly curved flows. Unfor-
tunately, no channel bends with a curvature of Rc /B � 3,
which is typical for natural bends, were tested by the authors.
The above remarks and our experimental result are aimed

to show that care should be taken when applying the authors’

II.18
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model to bends of moderate or strong curvature.
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II.3 Experiments on Flow in a Strongly Curved Channel Bend

K. BLANCKAERT and W.H. GRAF
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ABSTRACT
The secondary circulation in open-channel bends largely determines the bed topography. It is
often described by the “Rozovskii model” in depth-integrated flow models. Our experimental
results indicate that the “Rozovskii model” has a tendency to overpredict the strength of the
secondary circulation and its effect on the velocity distribution for the case of strongly curved
open-channel flow. Both also decrease with increasing curvature ratio; this is in contrast with the
unique dependence on the Chezy coefficient predicted by the “Rozovskii model”.

KEYWORDS
strongly curved flow, open-channel bend, secondary circulation, experiments

INTRODUCTION
The most characteristic feature of curved flow is the helical flow pattern, also known as
secondary circulation. It advects flow momentum and redistributes transversally the velocity and
the boundary shear stress over the bend. Furthermore, the direction of the bottom shear stress,
and thus also of the sediment transport, directly depends on the strength of the secondary
circulation. As a consequence, the evolution of the secondary circulation will largely determine
the resulting bed topography with its characteristic bar-pool formation.
Since fully-3D flow models are not yet feasible for engineering problems concerned with the
river morphology, most often 2D depth-integrated flow models are used. By depth-integrating the
flow equations, all information on the secondary circulation is lost. However, as mentioned
above, it is essential to account for the effect of the secondary circulation and this can only be
done by providing it as input to the model. This input is mostly based on simplified expressions
for the velocity profiles, which have been proposed by Rozovskii (1957).
In this paper, experimental data is presented that illustrates the shortcomings of this approach for
strongly curved flows. Blanckaert (2001) presents a model for the velocity profiles in strongly
curved flows that explains the features observed in the here reported experiments.

THEORETICAL CONSIDERATIONS
The distribution of the depth-averaged downstream velocity, Us, is governed by the depth-
integrated downstream momentum equation. Assuming a hydrostatic pressure, this equation is
(Dietrich and Whiting, 1989):
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where τbs is the downstream component of the bottom shear stress, ρ is the water density, g is the
gravitational acceleration, h is the local flow depth, R is the centreline radius of curvature,
(1+n/R) is a metric factor, zS is the elevation of the water surface above the horizontal reference
plane (s,n) (for which the flume-average bottom level is chosen), τns is a component of the
Reynolds tensor and vj (j=s,n,z) are the time-averaged velocity components along the reference
axes. The s-axis follows the channel centreline, the n-axis is perpendicular to it and points
towards the outer bank and the vertical z-axis is positive in upward direction (Fig.1a). The
brackets,    , indicate depth-averaged values.

In a 2D straight uniform flow, the bottom shear stress τbs/ρ is in equilibrium with the energy
expenditure G in all points (s,n) of the flume, and the momentum equation reduces to τbs/ρ=G. In
a 3D flow, the velocities are non-uniformly distributed and the other terms have to be considered.
The terms T1 and T2 are shear stresses which are mainly generated by transversal velocity
gradients; they are usually of minor importance. The terms C1, C2 and C3 represent advective
transport of momentum. C1 is due to downstream variation of the flow field and drops out when
the flow is completely adapted to the curvature (∂/∂s=0). The non-uniform velocity distribution
over the channel width is mainly due to the terms C2 and C3. These are redistribution terms that
nearly cancel when integrated over the cross-section. They represent the effect of the advective
transport of downstream momentum, ρvs, by the transversal velocities, vn, which after depth-
integration yields: ρh v vs n . By decomposing the velocity components vj (j=s,n) in a depth-

averaged value, v j =Uj, and its local deviations, v j
∗ :

v v v U vj j j j j    = + = +∗ ∗ where v j
∗ = 0 (2)

the velocity redistribution term can be decomposed as:

v v U v U v U U v vs n s s n n s n s n= +( ) +( ) = +∗ ∗ ∗ ∗ (3)

The first term, UsUn, represents a redistribution of downstream velocity Us by the transversal

velocity Un; it can be resolved by depth-integrated flow models. The second term, v vs n
∗ ∗ ,

represents the velocity redistribution by the secondary flow; since it depends on the vertical
distributions of vs

∗  and vn
∗ , it is an unknown in the depth-integrated momentum equation and has

to be modelled. Often, this term is modelled using vertical profiles of vs
∗  and vn

∗  that are derived
from a simplified set of the 3D Navier-Stokes equations, proposed by Rozovskii (1957). de
Vriend (1977) gives the following solution of these simplified equations, which will be called the
“Rozovskii model” further on:
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where fs and fn are the normalised profiles of vs, and vn
*, C is the Chezy friction coefficient, κ is

the von Karman constant, η=z/h is the normalised vertical co-ordinate and η0 is the near-bottom
level where fs(η0)=0. According to the “Rozovskii model”, the secondary circulation, vn

∗ ,

increases linearly with increasing curvature ratio, h/R, for a given downstream velocity, Us. f fs n

represents the velocity redistribution term v vs n
∗ ∗  normalised by Us

2h/R:

v v v U v U
h
R

f f U
h
R

f fs n s s n s s n s s n
∗ ∗ ∗= −( ) = −( ) =2 21 (6)

where fn = 0. f fs n  is called the velocity-redistribution coefficient further on, while fn
2  shall

be interpreted as the normalised strength of the secondary circulation. According to the
expressions, eq.4 and eq.5, both fs and fn, - and thus also fn

2  and f fs n  - are unique functions of

the Chezy friction coefficient, C, and do not depend on the curvature parameter, h/R. fn
2  and

f fs n  calculated from the “Rozovskii model” as a function of C are shown in Fig.3.

In this paper, predictions of fn
2  and f fs n  based on “Rozovskii model” (eq.4 and eq.5 and

shown in Fig.3) will be compared with experimental data for a strongly curved open-channel
bend (Fig4 and Fig.5). The experimental normalised velocity profiles are calculated from the
measured distributions of vs(η) and vn(η) according to eq.2, eq4 and eq.5 as:

f v U
s s

η η( ) = ( )s (7)

f v U
H
R

v U U
H
Rn s snη η η( ) = ( ) 







 = ( ) −( ) 









∗
n n (8)

where the flume-averaged water depth, H, will be used as an approximation for the local water
depth, h.

THE EXPERIMENTS (FIG.1)
Experiments were performed in a 1.3m wide laboratory flume, consisting of a 9m long straight
inflow, followed by a 193° bend with a constant radius of curvature of R=1.7m on the centreline,
and a 5m long straight outflow. The horizontal bed was covered by a sand with diameters in the
range 1.6mm < d < 2.2mm, which has been fixed by spraying a layer of paint on it, thus
preserving the roughness of the sediments. The vertical banks were made of Plexiglas. A ratio
R/B=1.31 was chosen, which corresponds to a very strongly curved bend; a bend is considered
strongly curved when R/B<2 to 3.

The investigated hydraulic parameters are tabulated in Fig.1c. The main parameter of interest is
the curvature ratio H/R, which was varied by testing three different values of the flume-averaged
water depth, H=10.8, 15.9 and 21.2 [cm], yielding a curvature ratio of, H/R=0.064, 0.094 and
0.125. In the paper, the experiments will be named after their discharge: Q56, Q89 and Q104[l/s].
In all three experiments, a similar flume-averaged velocity was chosen, U=0.4, 0.43 and
0.38[m/s], corresponding to different Fr-numbers, Fr=U/(gH)1/2=0.39, 0.35, 0.26 (A literature
review has shown us that the flow field in a channel bend is rather insensitive to the Froude
number). The flume-averaged water surface gradient and energy gradient were, Ss=-∂ZS/∂s=1.41,

0.94, 0.49[‰] and Es=-∂(ZS+ Us /2g)/∂s=1.46, 1.01, 0.54[‰], where ZS is the sectional-
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averaged water surface elevation and Us  is sectional-averaged downstream velocity. The

shear velocities were, u*=(gHSs)
1/2=3.9, 4,0 and 3.3[cm/s] giving Chezy coefficients,

C=g1/2U/u*=32, 34 and 35[m1/2/s] and the channel aspect ratios were, B/H=12.1, 8.2 and 6.1.

By moving a set of 8 acoustic limnimeters - mounted on a carriage that covers the width of the
channel - along the channel, a detailed description of the water surface topography was obtained.

Velocity measurements were made with an Acoustic Doppler Velocity Profiler (ADVP),
developed in our laboratory (Lemmin and Rolland, 1997). It measures simultaneously and quasi-
instantaneously profiles of the three velocity components, from which the three time-averaged
velocity components, 

r r
v v v v v= ( , , )s n z , as well as the six turbulent stresses, − ′ ′ρv vi j  (i, j = s, n, z),

and higher order turbulent correlations can be computed. With the ADVP placed in a water-filled
box on the water surface (Fig.1b), velocity profiles covering the flow depth were obtained. The
measuring volumes were cylinders of (π0.72/4)x(0.3)=0.12[cm3]. The sampling frequency was
31.25 Hz and the sampling time was 200s. Detailed information on the ADVP and estimations of
the accuracy of the measurements can be found elsewhere (Hurther and Lemmin, 2000).

Velocity profiles were measured on the centerline, with a streamwise spacing of 0.5m in the
straight inflow and outflow reaches and of 15º in the bend. In this paper, mainly these centreline
measurements are exploited. Only the calculation of the coefficient αs (see further, Fig.2) required
detailed measurements of the 3D-velocities in cross-sections. These detailed cross-sectional
measurements were made in the section with the strongest secondary circulation – at 135º for
Q56, at 90º for Q89 and at 75º for Q104, as determined from the centerline measurements (Fig.4)
– as well as in the reference section m25 (Fig.1a). In these sections, 29 vertical profiles were
measured, with a transversal spacing that decreases towards the banks (Fig.1b). For the Q89-
experiment sections all along the flume (sections m25, m05, 30˚, 60˚, 90˚, 120˚, 150˚, 180˚, p05,
p15, p25, p35, Fig.1a) have been measured in detail on the same fine grid.

Q
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[‰]

U
[m/s]

Fr
[/]

56 1.46 0.40 0.39

R/B
[/]
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[/]
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0.092 1.41

89 1.01 0.43 0.35 1.31 0.094 8.269340.040Q89 0.159 0.128 0.94

104 0.54 0.38 0.26 1.31 0.125 6.181350.033Q104 0.212 0.160 0.49

a
c
b Fig.1: (a) Laboratory flume and measuring sections; (b) Measuring grid 

    in sections and ADVP; (c) Hydraulic parameters.
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EXPERIMENTAL RESULTS
VELOCITY DISTRIBUTION
Modelling the secondary flow in strongly curved channel bends (Blanckaert, 2001), a strong
interdependence between the transversal non-uniformity of the downstream velocity distribution,
∂Us/∂n, and the strength of the secondary circulation, fn

2 , was elaborated. The transversal non-

uniformity of the velocity distribution is well reflected by its centreline value, ∂Us/∂n at n=0. After
normalisation by Us/R at n=0, a dimensionless parameter, αs, can be evaluated such as:

α
∂

∂s n
=  

U U

R
s s at n=0 (9)

For the Q89-experiment, the distribution of Us(s,n) along the flume has been evaluated and the
resulting αs-values are shown in Fig.2. There one observes that αs decreases from αs=0 in the
straight inflow to αs=-1 at about 30º into the bend. αs subsequently increases to a value of αs≈0.3
at 180º. At the bend exit, it increases to αs=1 and then shows a decreasing tendency in the straight
outflow. Furthermore, the two experimental points for the Q56 and Q104-experiments (see Fig.2)
suggest a similar evolution.
For flow over a horizontal bed, the velocity distributions are often approximated by a “free-
vortex” distribution near the bend entry and by a “forced-vortex” distribution near the bend exit
(de Vriend, 1981, p29-30, p213; Steffler, 1984, p30-33). In the adopted reference system, the
“free-vortex” distribution is defined by, Us(n)=Us(n=0)(1+n/R)-1, giving αs=(∂Us/∂n)/(Us/R)=-1,
whereas the “forced-vortex” distribution is defined by, Us(n)=Us(n=0)(1+n/R), giving
αs=(∂Us/∂n)/(Us/R)=1. Our experimental data thus confirm these approximations, as used in the
literature. The two types of vortices are schematically illustrated in Fig.2.

SECONDARY CIRCULATION AND VELOCITY REDISTRIBUTION
Fig.4 shows the centreline evolution of the strength of the secondary circulation, fn

2 , for the

three experiments. After being negligible in the straight inflow, the strength of the secondary
circulation starts to increase almost linearly at the bend entry. Then a zone of almost constant
maximum strength is attained, extending from about 90º-135º for Q56, 75º-120º for Q89 and 75º-
105º for Q104. Subsequently, the strength decreases and it is reduced to less than 50% of its
maximum value at the bend exit. In the straight outflow, it further decreases to attain negligible
values only relatively far downstream of the bend. Similar observations have been reported (de
Vriend, 1981, figs.65,69,73; Odgaard and Bergs, 1988, Fig.9) and explained (de Vriend, 1981,
p.216; Yeh and Kennedy, 1993, p.782) before. It is often assumed that the strength of the
secondary circulation attains an equilibrium value in long bends, eventually after initially
attaining higher values. In none of our experiments, such an equilibrium value was observed,
since the strength still decreased considerably at the bend exit.

The “Rozovskii model” predicts the strength of the secondary circulation, fn
2 , as a function of

C, but independent of the curvature ratio, H/R. This is in contradiction with our experimental
observation where the strength of the secondary circulation decreases with an increasing
curvature ratio. The maximum observed values on the centreline decrease with the curvature ratio
from about fn

2 ≈10 for Q56 (H/R=0.064), to fn
2 ≈5.5 for Q89 (H/R=0.094) and fn

2 ≈4 for

Q104 (H/R=0.125). The average values over the entire bend reach (0-193º) decrease from
fn

2 ≈6.9 for Q56, to fn
2 ≈3.0 for Q89 and fn

2 ≈2.2 for Q104. With the only exception of the
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maximum value attained for Q56, these values are also lower than the value of fn
2 ≈9 predicted

by the “Rozovskii model” (Fig.3). This behaviour has already been remarked and physically
explained by de Vriend (1981, Fig.5c). He shows a similar result computed with a fully 3D flow
model, which however was for the case of laminar flow.

Fig.5 shows, for the same three experiments, the centreline evolution of the velocity-
redistribution coefficient, f fs n . For all cases, this coefficient is negligible in the straight inflow.

At the bend entry it increases and attains maximum values at about 60º in the bend. After
reaching these maximum values, it drops to nearly zero values at the bend exit. In the straight
outflow the term is positive for the experiments Q56 and Q89, whereas it is slightly negative for
Q104. Similar to fn

2 , the centreline evolution of f fs n  does not attain an equilibrium value in

the bend.

The “Rozovskii model” predicts the coefficient f fs n  as a function of C, but independent of the

curvature ratio, H/R. Our experimental observations suggest that f fs n  decreases with increasing

curvature ratio. The average values over the entire bend reach (0-193º) decreased from
f fs n ≈0.156 for Q56 (H/R=0.064), to f fs n ≈0.152 for Q89 (H/R=0.094) and f fs n ≈0.075 for

Q104 (H/R=0.125). The maximum values on the centreline were f fs n ≈0.25 for Q56, f fs n ≈0.29

for Q89 and f fs n ≈0.20 for Q104. In all cases, these values are lower than the value of

f fs n ≈0.44 predicted by the “Rozovskii model” (Fig.3). An even stronger over-prediction by the

“Rozovskii model” has been observed for the case of flow in an open-channel bend over a
developed bar-pool topography (Blanckaert, 2001).

Blanckaert (2001) presents a model for the downstream velocity and the secondary circulation
that explains the observed centreline evolution of fn

2  and f fs n  and the discrepancies with the

“Rozovskii model”.

CONCLUSION
The secondary circulation in open-channel bends largely determines the bed topography. Depth-
integrated flow models, used in engineering practice, cannot resolve the secondary circulation
and information on it has to be provided as input to these models. The effect of the secondary
circulation on the velocity distribution is accounted for by the velocity-redistribution coefficient,
f fs n , in the depth-integrated flow models, while the strength of the secondary circulation is

defined as, fn
2 . Both are often described according to the “Rozovskii model”, which gives

analytical expressions for the normalised profile of the downstream velocity, fs, as well as for the
normalised profile of the secondary circulation, fn. This paper reports on an experimental
investigation on strongly curved open-channel flow (Fig.1), used to evaluate the “Rozovskii
model”.

The strength of the secondary circulation, fn
2  (see Fig.4), and the velocity-redistribution

coefficient, f fs n  (see Fig.5), increase at the bend entry. After reaching a maximum value, they

decrease and do not attain an equilibrium value in the bend. fn
2  (see Fig.4) and f fs n  (see Fig.5)

are over-predicted by the “Rozovskii model” (see Fig.3). Furthermore, fn
2  and f fs n  show a
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decrease with increasing curvature ratio, H/R, which is in contradiction with the unique
dependence on the Chezy coefficient C predicted by the “Rozovskii model”. It can be concluded
that the “Rozovskii model” does not correctly represent the secondary circulation and its effect
on the velocity distribution for strongly curved open-channel flows.

Blanckaert (2001) presents a model for the flow in strongly curved channel bends that explains
and predicts the behaviour observed in the reported experiments. This model depends on the
transversal non-uniformity of the downstream velocity, which has been parametrised by the
normalised transversal velocity gradient on the centreline, αs=(∂Us/∂n)/(Us/R). In the reported
experiments (see Fig.2), αs decreases from αs=0 in the straight inflow to αs=-1 just downstream
of the bend entry. In the bend, αs increases slightly, only to increase strongly near the bend exit to
values of αs=1.

Fig.5: Centreline evolution of velocity- 
redistribution coefficient,          .  
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1 INTRODUCTION

Secondary currents play an important role in three-
dimensional open-channel flows. By advecting flow
momentum, they redistribute the velocity, the
boundary shear stress and the sediment transport,
and shape the river morphology. Furthermore, they
enhance the mixing and spreading of suspended
matter, pollutants and heat. Hence, an accurate rep-
resentation of the secondary circulation is a prereq-
uisite to successful flow simulations.

The classical helical motion, termed here center-
region cell, has been amply investigated and is rela-
tively well understood. Its outward/inward veloci-
ties in the upper/lower part of the water column are
commonly explained as resulting from the interplay
between the centrifugal force, the pressure gradient
due to the tilting of the water surface, and the bot-
tom friction.

De Vriend (1981a) already noticed an important
feedback between the center-region cell and the
downstream velocity distribution. The center-region
cell flattens the downstream velocity profile, by in-
creasing/decreasing the velocities in the lower/upper
part of the water column, which reduces the cen-
trifugal forcing and weakens the center-region cell.
Based on the above mentioned interplay between
the centrifugal force, the pressure gradient and the

bottom friction, Blanckaert (2001) and Blanckaert
& Graf (2001c, 2002) have proposed a non-linear
model for the center-region cell and the downstream
velocity profile that accounts for this feedback. This
model agrees fairly well with experimental data for
moderately and strongly curved flow. For very
strong curvatures, however, Blanckaert & de Vriend
(2002) show that the mechanics underlying the cen-
ter-region are more complex and require a fully
three-dimensional flow description. Experimental
data on center-region cells in moderately to strongly
curved flows are scarce.

s

z

n

Downstream velocity: vs

Outer-bank cell
Center-region cell

Transversal velocity: vn

Secondary circulation:

Vertical 
velocity: vz

Figure 1. Definition sketch of curved open-channel flow and
secondary circulation.
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ABSTRACT: The importance of secondary currents in open-channel bends has long been recognized. They
redistribute the flow, the boundary shear stress and the sediment transport, and hence affect the river mor-
phology. Furthermore, they are an important contributor to the mixing and spreading of suspended matter,
pollutants and heat. Besides the classical center-region cell (helical motion), a relatively weak outer-bank cell
of secondary circulation often occurs, which plays a major role with respect to bank erosion processes. De-
spite their importance both circulation cells still bear secrets. Especially the outer-bank cell is poorly under-
stood: its conditions of occurrence are not known and its numerical simulation is not yet satisfactory. This
paper presents detailed patterns of bi-cellular secondary currents and downstream velocity measured in a
sharp laboratory bend with a horizontal bottom. Three hydraulic conditions are investigated, corresponding
to three values of the ratio between the flow depth and the centerline radius of curvature.
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Near the outer bank of channel bends, often an
additional counter-rotating circulation cell, termed
outer-bank cell, occurs. Although relatively weak, it
is of major importance with respect to bank erosion
processes. Both cells of secondary circulation are
schematically indicated in  Figure 1.

Outer-bank cells have since long been observed
in laboratory flows (Mockmore 1943, Einstein &
Harder 1954, Rozovskii 1957, etc.) as well as in
natural flows (Bathurst et al. 1979, Dietrich &
Smith 1983, de Vriend & Geldof 1983, etc.). Nev-
ertheless, they are still poorly understood, which is
mainly due to a lack of detailed experimental data.
Important questions that remain unanswered are:
- What are the relevant mechanisms with respect

to the generation of the outer-bank cell ?
- Under what conditions do these mechanisms

lead to the formation of an outer-bank cell ?
- How can outer-bank cells be simulated numeri-

cally ?
- How do outer-bank cells behave as a function of

the hydraulic parameters ?
- What role do outer-bank cells play in bank ero-

sion processes and river meandering ?

Blanckaert & Graf (2001a) experimentally in-
vestigated an outer-bank cell existing over a natural
bottom topography in a laboratory flume. They pre-
sent distributions of all three mean velocity com-
ponents as well as all six Reynolds stresses on a
fine grid. Subsequently, Blanckaert & Graf (1999)
have analyzed the influence of this outer-bank cell
on the boundary shear stress and the bank stability.
Blanckaert & de Vriend (2002) have investigated
the mechanisms underlying this outer-bank cell
which led to their successful simulation by Jia et
al. (2001) with a non-linear k-ε turbulence closure.
Although these investigations yielded valuable in-

formation, they are restricted to one highly non-
uniform flow over a varying natural bottom topog-
raphy in a relatively narrow flume.

Christensen et. al. (1999) have simulated nu-
merically the outer-bank cell for the case of axi-
symmetric flow (infinitely long bend, often called
fully-developed flow) with a standard k-ε turbulence
model as well as with a second-order Reynolds
stress turbulence model. They investigated its be-
havior as a function of the ratio H/R (H being the
flow depth and R the radius of curvature at the cen-
terline) and the bottom topography. The main
drawback of these investigations is the lack of vali-
dation with experimental data.

The key to a better understanding is the avail-
ability of high-resolution experimental data on both
circulation cells including all three mean velocity
components. Such data are at present scarce, in par-
ticular for the outer-bank cell. Most previous ex-
perimental investigations of the circulation cells
were restricted to measurements of the downstream
and the transversal velocity components on rela-
tively coarse grids in the center of the cross-section
and with a relatively low accuracy (Blanckaert and
Graf, 2001a).

The main goal of this paper is to present high-
quality experimental data on both cells of secondary
circulation. Experiments over a horizontal bottom
topography, adopted to facilitate interpretation,
have been conducted under different hydraulic con-
ditions. Sharp bends were investigated, with the
aim of obtaining pronounced outer-bank cells. This
paper reports some preliminary results: the meas-
ured distributions of the downstream velocity and
bi-cellular patterns of secondary circulation are pre-
sented and discussed.

9m

5m

193º

135º

90º

75º
inlet 
basinB=1.3m

s z

n

R=1.7m

LC

Q
[l/s]

U
[m/s]

Fr [/]=
U/(gH)1/2

56 0.40 0.39

R/B
[/]

1.31

R/H
[/]

15.6

B/H
[/]

12.1

Re=UH/ν
[/]

43.000

[/]

10.2

name

Q56

H
[m]

0.108

89 0.43 0.35 1.31 10.6 8.269.00010.8Q89 0.159

104 0.38 0.26 1.31 8.0 6.181.00011.2Q104 0.212

1 Cf
u

[m/s]
*

0.039

0.040

0.033

R: centerline radius of curvature
B: channel width 
Q: flow discharge
H: reach-averaged flow depth 
      ≈ flow depth at centerline
U: reach-averaged velocity
u   : friction velocity;
τ   : bottom shear stress,
Es : reach-averaged energy slope
C   : friction factor,
Re=UH/ν: reach-averaged
        Reynolds number
Fr =U/(gH)1/2: reach-averaged
        Froude number
ν: molecular viscosity       

b

f

*
u b* = τ ρ

C Uf b= τ ρ 2

τ ρb sgHE=

Figure 2. Laboratory flume and hydraulic conditions.
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2 THE EXPERIMENTS

Experiments were conducted in the laboratory flume
shown in Figure 2. It consists of a 9 m long
straight entry reach, followed by a 193° bend with
constant centerline radius of curvature, R=1.7 m,
and a 5 long straight exit reach. The vertical side-
walls are made of Plexiglas and the horizontal bot-
tom is covered with a nearly uniform sand, 1.6 mm
< d < 2.2 mm, that was fixed by spraying a paint
on it, thus preserving its roughness.

Experiments were done for three values of the
curvature ratio, H/R. They will be named after their
discharge Q. The hydraulic conditions are tabulated
in Figure 2. The parameters R/B = 1.31 and R/H =
8 to 15.6 corresponds to sharp bends. These values
were chosen with the aim of obtaining pronounced,
hence well visible, outer-bank cells. The aspect ra-
tio, B/H = 6.1 to 12.1, corresponds to flows that
are narrower than usual in natural lowland rivers,
but do occur in mountain rivers and man-made
channels.

Non-intrusive three-dimensional measurements
of the mean flow field and the turbulence were
made with an Acoustic Doppler Velocity Profiler
(ADVP), developed in our laboratory (see Fig. 3).
This instrument measures simultaneously the quasi-
instantaneous velocity components at a high spatial
and temporal resolution. From the measured data,
the mean velocity field,   

rv (vs,vn,vz), can be derived,
as well as the fluctuating velocity field,
 
r
′v (v´s,v´n,v´z), and the turbulent stress tensor, ′ ′v vj k

(j,k = s,n,z). Whereas most commercial velocity
meters measure point-by-point, our ADVP meas-
ures simultaneously all the velocities along its
main axis. This profiling capacity allows to do
measurements much faster and to cover much
denser grids than with conventional instruments.

The non-intrusive measurements were made
with the ADVP placed in a water-filled housing
that touches the water surface (Fig. 3). In this con-
figuration, vertical profiles were measured that were
divided into discrete cylindrical measuring volumes
of size (�0.72/4)x(0.3)=0.12 cm3. The sampling fre-
quency was 31.25 Hz and the acquisition time was
200 s. The accuracy on the mean velocities is typi-
cally better than 4 %. More information on the
working principle of the ADVP, its experimental
accuracy and its comparison with other velocity me-
ters can be found in Lemmin & Rolland (1997),
Hurther & Lemmin (1998, 2001), Blanckaert &
Graf (2001a) and Blanckaert & Lemmin (2002).

3 EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Centerline evolution of secondary circulation

For each of the three hydraulic conditions, meas-
urements were first of all done along the centerline
of the flume with a spacing of 0.5 m in the straight
reaches and 15° in the bend. These measurements
aimed at investigating the downstream evolution of
the secondary circulation and identifying the cross-
section characterized by the strongest secondary cir-
culation.

In order to define the strength of the secondary
circulation, let’s first decompose the velocity com-
ponent as:

v U fs s s= (1)

v U f v U f U H
R

fn n s n n s s n= + = +∗ (2)

vs and vn are the downstream and transversal veloc-
ity components; Us and Un their depth-averaged
values; vn

∗  is the transversal component of the sec-
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ondary circulation; fs and fn are the normalized pro-
files of vs and vn

∗ , respectively. Since the strength of
the secondary circulation is expected to increase
with curvature, H/R has been included in the nor-
malization of vn

∗ . At the centerline, where the verti-
cal velocity component is negligible, the strength
of the secondary circulation is now defined by:

f
h

f dzn n
z

z

b

S
2 21= ∫ (3)

h=zS-zb is the flow depth where zS and zb are the
elevations of the water surface and the bottom, re-
spectively.

Figure 4 shows the measured evolution of fn
2

along the centerline for the three experiments. The
secondary circulation comes into existence at the
bend entry and increases nearly linearly in the be-
ginning of the bend. About halfway in the bend, a
zone of almost constant maximum strength exists,
which extends from about 90º-135º for Q56, 75º-
120º for Q89 and 75º-105º for Q104. Subsequently,
the secondary circulation weakens considerably and
at the bend exit its strength is reduced to less than
50% of its maximum value. In the straight outflow,
it further decreases to attain negligible values at the
end of the flume. Similar findings have been re-
ported before by de Vriend (1981a) and Odgaard &
Bergs (1988).

It is often assumed that the secondary circula-
tion attains an equilibrium strength in long bends,
eventually after an initial overshoot. In none of our
experiments, such an equilibrium value was ob-
served, since the strength still decreased considera-
bly at the bend exit. De Vriend (1981a) and Yeh &
Kennedy (1993) have qualitatively explained the
mechanisms underlying this behavior of the secon-
dary circulation. Blanckaert (2001) and Blanckaert
& Graf (2001c, 2002) have proposed a non-linear
model for the secondary circulation that agrees well
with the presented experimental findings.
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Figure 4. Measured centerline evolution of strength of secon-
dary circulation, fn

2 .

3.2 Three-dimensional flow patterns

Subsequently, the three-dimensional flow patterns
were measured in the cross-section characterized by
the strongest secondary circulation. According to
Figure 4, these cross-sections are situated at 135°,
90° and 75° for the Q56, Q89 and Q104-
experiments, respectively.

The measurements were made on the fine grid
shown in Figure 3, containing 48 verticals with a
transversal spacing that progressively decreases to-
wards the banks. These measuring grids cover about
1700, 2500 and 3400 measuring points for the three
experiments, respectively. Close to the banks, a
spacing of 1 cm was required to obtain a high-
resolution image of the cells of secondary circula-
tion. Furthermore, an adapted asymmetrical con-
figuration of the ADVP (see Figure 3) was devel-
oped that enabled to measure onto 2/3 cm from the
inner/outer bank. To improve the legibility of the
figures, the experimental scatter has been eliminated
by fitting analytical surfaces to the raw data, using
two-dimensional smoothing splines with weight
functions (de Boor, 1978).

Figure 6 (see further) presents isolines of the
downstream velocity normalized with the overall
mean velocity, vs/U. Blanckaert & Graf (2001b)
have presented the evolution of the spanwise distri-
bution of Us/U in the same experiments. Near the
bend entry, it approaches a “potential-vortex” dis-
tribution with the core of maximum velocities at
the inner bank. Advective momentum transport by
the secondary circulation causes the core of maxi-
mum velocities to shift gradually towards the outer
bank. Near the bend exit, the core of maximum ve-
locities is found at the outer bank and Us/U ap-
proaches a “forced-vortex” distribution.

This gradual outward shifting of the core of
maximum velocities is clearly discernable in Figure
6. In the cross-section at 135° in the Q56-
experiment, the core of maximum velocities has
reached the centerline. At 90° in the Q89-
experiment, it is found in the inner bend at about
45 cm from the inner bank and at 75° in the Q104-
experiment, it has shifted only about 30 cm from
the inner bank. The role of the secondary circulation
is revealed by the inclination of the vs-isolines,
which is caused by the outward/inward secondary
velocities in the upper/lower part of the water col-
umn. As a result, the maximum velocities in the
inner bend are not found at the water surface, as in
straight uniform open-channel flow, but in the
lower part of the water column.
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Figure 5 shows the normalized profiles of vs,
averaged over the width of the cross-section. In the
near-bottom zone, z/H < 0.1, the profiles are loga-
rithmic (Fig. 5a) and allow an estimation of the lo-
cal friction velocity and friction factor in the con-
sidered cross-section. The local values of the
friction velocity are considerably higher than their
flume-averaged counterparts: u*,135=4.6 cm/s >
u*=3.9 cm/s for the Q56-experiment, u*,90=4.9 cm/s
> u*=4.0 cm/s for the Q89-experiment and u*,75=4.8
cm/s > u*=3.3 cm/s for the Q104-experiment, and
the corresponding local friction factor of 1/√Cf ≈
8.4 is lower than the flume-averaged one of 10.2 to
11.2 (cf. Fig. 2). These values indicate that the in-
vestigated cross-sections, where the secondary circu-
lation is at maximum strength, are characterized by
enhanced friction losses.

In the introduction, it was mentioned that a
feedback mechanism between the center-region cell
and the downstream velocity leads to a flattening of
the vs-profiles. This is illustrated in Figure 5b,
where the measured width-averaged profiles are
compared to a logarithmic profile for the local fric-
tion factor 1/√Cf ≈ 8.4. The profiles are rather simi-
lar for the three experiments and are considerable
flatter than the logarithmic profile. Furthermore, the
locus of maximum velocity is found in the lower
part of the water column. It is remarkable, however,
that near the spanwise location of the ‘eye’ of the
center-region cell, the maximum downstream ve-
locities are found at the water surface.

Figure 6 also presents normalized streamlines of
the secondary circulation, 100ψ/(UH). For axi-
symmetric curved flow (∂/∂s=0, infinitely long
bend), the relation between the secondary circula-
tion and the streamfunction ψ is given by:

v v
n R z

n n= = −
+

∗
1

1
∂ψ
∂

(4)

v
n R n

z  =
+

1
1

∂ψ
∂

(5)

ψ = − +( ) = +( )∗∫ ∫1 1
2

n R v dz n R v dnn
z

z

z
n

B

b

/
(6)

1+n/R is a metric factor accounting for the diver-
gence of the transversal co-ordinate axes. Figure 6
is based on the average of both expressions in
Equation 6.

In developing curved flow, as is the case in the
experiments, the above definitions are only ap-
proximate. Inserting the velocities according to
Equations (1) and (2) in the continuity equation
yields:

∂
∂

∂
∂

U f

s n
n R U fs s

n s+ +( )[ ]1

          + +( )[ ] + +( )[ ] =∗
∂
∂

∂
∂n

n R v
z

n R vn z1 1 0 (7)

By definition of ψ, Equations (4) and (5), the sec-
ond line is identically zero. Although the terms on
the first line tend to balance each other, their sum
does not equal to zero, as can be seen from the
depth-integrated continuity equation:

∂
∂

∂
∂

U h

s n
n R U hs

n+ +( )[ ] =1 0 (8)

If fs and h vary less than Us and Un, the first line in
Equation (7) is close to zero and the secondary cir-
culation can with good approximation be repre-
sented by its streamfunction ψ.

The ψ-patterns in Figure 6 clearly reveal the ex-
istence of a bi-cellular secondary circulation for all
three experiments. They are rather smooth, except
for some irregularities near the inner bank, where
the three-dimensional flow pattern is very complex.
The outer-bank cells are noticeable in the corner
formed by the outer bank and the water surface.
They seem to widen with increasing curvature ratio.
For the Q56-experiment, the outer-bank cell covers
a width of about 3/4 H, for Q89 its width increases
to about H and for Q104 it covers already twice the
flow depth. Note that the figures are distorted: the
vertical scale equals twice the horizontal one. Cor-
respondingly, the center-region cell narrows and oc-
cupies the remaining part of the cross-section. The
‘eye’ of the center-region cell is not found near the
axis of the flume, but seems to coincide with the
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spanwise location of the core of maximum down-
stream velocities.

Table 1 summarizes the information on the
strength of both circulation cells. On the basis of
linear perturbation theory, one might expect the
strength of the center-region cell to increase linearly
with the curvature ratio H/R. When adopting the
linear model proposed by de Vriend (1977), a ψ-
profile results that increases from zero values at the
bottom and the water surface to a maximum value
at about mid-depth that depends on the friction fac-
tor. For the considered experiments, this value is
[100ψ/(UH)max]/(H/R) ≈ 150. Our measurements
show that the maximum ψ-values in center-region
cell hardly vary between the three experiments, and
they decrease considerably when normalized with
H/R. The maximum value in the Q56-experiment is
comparable to the linear model prediction, whereas
the values in the Q89 and Q104-experiments are
considerably smaller. This indicates that the effi-
ciency of the curved flow to generate secondary cir-
culation reduces with increasing curvature.

Note that [100ψ/(UH)max]/(H/R) and fn
2  are

both measures of the normalized strength of the
center-region cell. The experimental data indicate
that they are equivalent, since their ratio is nearly
constant (cf. Table 1). This confirms that the
streamfunction approach is adapted to investigate
the secondary currents.

As aforementioned, de Vriend (1981a) already
noticed that this reduced efficiency of secondary cir-
culation generation is due to a negative feedback be-
tween the downstream velocity profile and the cen-
ter-region cell. As illustrated in Figure 5, the
downstream velocity profile is flattened by the cen-
ter-region cell. This decreases the centrifugal forcing
and weakens the center-region cell. Blanckaert
(2001) and Blanckaert & Graf (2001c, 2002) have
proposed a non-linear model for the secondary cir-
culation that captures and explains this reduced effi-
ciency of secondary circulation generation with in-
creasing curvature. Similar to the linear models, it
calculates the center-region cell from a simplified
transversal momentum equation that expresses the

interplay between the centrifugal force, the pressure
gradient due to the superelevation of the water sur-
face, and the bottom friction. However, contrary to
the linear models that adopt a straight-uniform-flow
vs-profile, they calculate the flattened vs-profiles
from a simplified downstream momentum equation
that accounts for advective momentum transport by
the center-region cell.

The solution of this non-linear model for the
strength of the center-region cell is shown in Fig.
7, normalized by the linear-model solution. It is
expressed as a function of one single parameter,
called bend parameter ß, that accounts for the curva-
ture ratio H/R, the friction factor Cf, and the span-
wise distribution of the downstream velocity. For
vanishing curvature, this non-linear model reduces
to the linear model. The non-linear model predicts a
reduction of the strength of the center-region cell of
about 0.6 for the Q56 and Q89-experiments and
about 0.45 for the Q104-experiments (cf. Fig. 7),
which should be compared with the experimental
values of 0.97, 0.70 and 0.57, respectively (cf. Ta-
ble 1, derived from ψ). For the Q89 and Q104-
experiments, the agreement is reasonably well.
Blanckaert & Graf (2002) have shown that the re-
maining differences are largely due to the neglect of
inertia in the non-linear model. For the Q56, hardly
any reduction was observed in the experiment, and
this despite the pronounced curvature. Note that the
bend parameter allows to distinguish objectively
between weak, moderate and strong curvatures (see
Fig. 7). According to this criterium, the considered
flows are strongly curved.

Similar near-bank circulation cells exist in
straight uniform open-channel flow and their
strength is characterized by maximum magnitudes
of 100ψ/(UH) ≈ 0.2 to 0.4 (Tominaga et al. 1989,
Nezu & Nakagawa 1993). Outer-bank cells in bends
are thought to be stronger than near-bank cells in
straight flow. Christensen et al. (1999) have simu-
lated the outer-bank cell for axisymmetric flow (in-
finitely long bend) with a second-order Reynolds
stress turbulence model. They found it even to oc-
cur in wide channels of weak curvature and to
strengthen with H/R.

Table 1. Strength of the circulation cells

name H/R

center-region cell outer-bank cell

100ψ/(UH)max
100ψ/(UH)max

H/R
100ψ/(UH)max

100ψ/(UH)max
H/R

Q56
Q89
Q104

section

135º
90º
75º

0.064
0.094
0.125

9.2
9.6
10.3

-0.3
-0.9
-2.7

-5
-10
-22

145
102
83

3.2
2.3
1.9

fn
2 fn

2 ψ/(UH)max
H/R

2.2
2.2
2.3

ψcenter regionψouter bank

-31
-11
-3.8
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The experimental results confirm this strength-
ening, which occurs at a more than linear rate. For
H/R=0.064 in the Q56-experiment, the outer bank
cell is weak with maximum magnitudes of about
100ψ/(UH)=0.3 (cf. Table 1). For H/R=0.094, the
maximum magnitude is tripled to about 0.9 and for
H/R=0.125 it is tripled again to 2.7. This is in con-
trast with the behavior of the center-region cell, as
is clearly indicated by the ratio of the strengths of
both cells. Whereas the center-region cell is about
31 times stronger than the outer-bank cell for
H/R=0.064, this ratio drops to 3.8 for H/R=0.125.
In their simulation for axisymmetric curved flow,
Christensen et al. (1999) found a small ratio of
about 5 for a weak curvature of H/R=0.0074.

It is surprising that the outer-bank cell in the
Q56-experiment is not stronger than the near-bank
cells in straight flow, despite the high curvature ra-
tio, and that its relative strength in all three ex-
periments is smaller than in the weakly curved flow
simulated by Christensen et al. (1999). Possible,
the outer-bank cell is crushed against the outer bank
and weakened by the center-region cell, which is at
maximum strength in the measured section. With
increasing curvature ratio, the center-region cell gets
relatively weaker (cf. Fig. 7) and the outer-bank cell
can better develop. Moreover Blanckaert & de
Vriend (2002) claim that the outer-bank cell is gen-
erated by two mechanisms that positively interact,
whence the outer-bank cell strengthens around the
bend.

So the size and strength of the outer-bank cell
are expected to vary in an opposite way to the cen-
ter-region cell along the bend, and thus increase.
This explains why Christensen et al. (1999) found
such an important relative strength of the outer-
bank cell in his weakly curved axisymmetric flow.

It is interesting to mention some results ob-
tained for the case of strongly curved laminar flow,
which is characterized by a similar bi-cellular pat-
tern of secondary circulation. Cheng et al. (1976),
de Vriend (1981b) and Winters (1987) have done
numerical simulations for the case of axisymmetric
flow and obtained an outer-bank cell that was only
slightly weaker than the center-region cell. In an
experimental investigation, Hille et al. (1985)
found that the outer-bank cell is much weaker than
the center-region cell in most of the bend, and only
picks up beyond 120°.

4 CONCLUSIONS

Secondary currents are a characteristic feature of
flow in open-channel bends. Besides the classical
helical motion, termed here center-region cell, often
a weaker and smaller outer-bank cell occurs near the
outer bank. It plays an important role in bank ero-
sion processes and in meander formation.

In spite of their importance, secondary currents
still bear a lot of questions, which is largely due to
a lack of detailed experimental data. Most previous
investigations considered weakly curved flow and
were restricted to the center-region cell.

This paper presents detailed data on the down-
stream velocity distribution and on both circulation
cells based on measurements of all three mean ve-
locity components on a fine grid. Three strongly
curved flows were investigated, parameterized by
different values of the ratio between the flow depth
and the centerline radius of curvature, H/R.

The strength of the secondary circulation does
not increase towards an equilibrium value along the
bend, as is often assumed. It increases quickly upon
entering the bend, reaches a maximum and subse-
quently decreases rather strongly in the second part
of the bend. Three-dimensional patterns of the
downstream velocity and the secondary circulation
are presented in the cross-section of maximum sec-
ondary circulation.

The effect of the secondary circulation is clearly
visible in the distribution of the downstream veloc-
ity vs. The locus of maximum velocity shifts in
outward direction and the vertical profiles are flat-
tened (increased/decreased velocities in the
lower/upper part of the water column). An estima-
tion of the friction velocity and the friction factor
from the logarithmic near-bottom part of the vs-
profile reveals that the cross-section of maximum
secondary circulation is characterized by enhanced
energy losses.
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For all three experiments, a bi-cellular pattern of
secondary currents exists. The secondary circulation
is represented by its streamfunction ψ. The strength
of the center-region cell does not increase linearly
with the curvature ratio H/R, as could be expected
on the basis of linear perturbation theory, but
hardly varies between the three experiments. This
relative weakening of the center-region cell is due to
the flattening of the vs-profiles and the correspond-
ing centrifugal forcing. The measured evolution
with increasing curvature agrees fairly well with
predictions based on a non-linear model that takes
due account of the negative feedback between the vs-
profile and the center-region cell.

The outer-bank cell seems to widen and
strengthen more than linearly with H/R. However,
it is weaker than could be expected on the basis of
the similar near-bank cells in straight uniform flow
or in axisymmetric curved turbulent flow. Possible,
it is crushed against the outer bank and weakened
by the center-region cell, which attains its maxi-
mum strength in the investigated sections. Fur-
thermore, the outer-bank cell is expected to
strengthen upon proceeding through the bend.

A more detailed analysis of the flow field, and
especially the bi-cellular pattern of secondary circu-
lation will be reported in forthcoming papers.

ACKNOWLEDGEMENTS

This research is being sponsored by the Swiss Na-
tional Science Foundation under grants Nr.2100-
052257.97/1 and 2000-059392.99/2. The author
gratefully acknowledges his PhD supervisor, prof.
W.H. Graf, for his support and Prof. de Vriend for
fruitful discussion during his stay at EPFL.

REFERENCES

Bathurst, J.C., Thorne, C.R. & Hey, R.D. 1979. Secon-
dary flow and shear stress at river bends. J. Hydr.
Div. 105(10): 1277-1295.

Blanckaert, K. 2001. A model for flow in strongly
curved channel bends. Proc. 29th-IAHR congr., J.F.
Kennedy Student Paper Comp. Beijing: Tsinghua
Univ. Press.

Blanckaert, K., & de Vriend, H.J. 2002. Secondary flow
in sharp open-channel bends. (submitted for pub-
lication)

Blanckaert, K. & Graf, W.H. 1999. Outer-bank cell of
secondary circulation and boundary shear stress in
open-channel bends. Proc. 1st-RCEM symp.,
Genova: Univ. Genova.

Blanckaert, K. & Graf, W.H. 2001a. Mean flow and tur-
bulence in open channel bend. J. Hydr. Engng.
127(10): 835-847.

Blanckaert, K. & Graf, W.H. 2001b. Experiments on
flow in a strongly curved channel bend. Proc.

29th-IAH congr., Theme D, Vol. I, Beijing:
Tsinghua Univ. Press

Blanckaert, K. & Graf, W.H. 2001c. Non-linear model
for secondary circulation and transversal bottom
slope in sharp bends. Proc. 2th-RCEM-congr. Obi-
hiro..

Blanckaert, K. & Graf, W. H. 2002. Secondary circula-
tion and vertical flow structure in open-channel
bends. I. Presentation and analysis of a non-linear
model. (submitted for publication).

Blanckaert, K. & Lemmin, U. 2002. Improving acoustic
turbulence measurements. (submitted for publica-
tion).

Cheng, K.C., Lin, R.C. & OU, J.W. 1976. Fully devel-
oped laminar flow in curved rectangular channels.
J. Fluids Engng: 41-48.

Christensen, B., Gislason, K. & Fredsoe, J. 1999. Sec-
ondary turbulent flow in an infinite bend. Proc.
1st-RCEM symp., Genova: Univ. Genova.

de Boor, C. 1978. A Practical Guide to Splines.
Springer: Berlin.

de Vriend, H.J. 1977. A mathematical model of steady
flow in curved shallow channels. J. Hydr. Res.
15(1): 37-54.

de Vriend, H.J. 1981a. Steady flow in shallow channel
bends. Report No. 81-3, Dept. Civ. Eng., Delft
Univ. Techn., Delft.

de Vriend, H.J. 1981b. Velocity redistribution in
curved rectangular channels. J. Fluid Mech 107:
423-439.

de Vriend, H.J. & Geldof, H.J. 1983. Main flow velocity
in short and sharply curved river bends. Report
No. 83-6, Dept. Civ. Eng., Delft.

Dietrich, W.E. & Smith, J.D. 1983. Influence of the
point bar on flow through curved channels. Water
Resourc. Res., 19(5): 1173-1192.

Einstein, H.A. & Harder, J.A. 1954. Velocity distribu-
tion and the boundary layer at channel bends.
Trans. AGU, 35(1): 114-120.

Hille, P., Vehrenkamp, R. & Schulz-Dubois, E.O. 1985.
The development and structure of primary and
secondary flow in a curved square duct. J. Fluid
Mech. 151: 219-241.

Hurther, D. & Lemmin, U. 1998. A constant beamwidth
transducer for three-dimensional Doppler profile
measurements in open channel flow. Meas. Sc.
Techn. 9(10): 1706-1714.

Hurther, D. & Lemmin, U. 2001. A correction method
for turbulence measurements with a 3-D acoustic
Doppler velocity profiler. J. Atm. Oc. Techn., 18:
446-458.

Jia, Y., Blanckaert, K. and Wang, S.S.. 2001. Numerical
simulation of secondary currents in curved chan-
nels. Proc. 8th FMTM-congress, Tokyo.

Lemmin, U. & Rolland, T. 1997. Acoustic velocity pro-
filer for laboratory and field studies. J. Hydr.
Engng. 123(12): 1089-1098.

Mockmore, C.A. 1943. Flow around bends in stable
channels. Transactions ASCE 109: 593-628 (incl.
discussions).

Nezu, I. & Nakagawa, H. 1993. Turbulence in open-
channel flows. Rotterdam: Balkema.

Odgaard, J.A., & Bergs, M.A. 1988. Flow processes in a
curved alluvial channel. Water Resour. Res. 24(1):
45-56.

Rozovskii, I.L. 1957. Flow of Water in Bends of Open
Channels. Jeruzalem: Isr. Progr. Sc. Transl.

Tominaga, A., Ezaki, K., Nezu, I. & Nakagawa, H. 1989.
Three-dimensional turbulent structure in straight
channel flows. J. Hydr. Res. 27(1): 149-173.

Yeh, K.C. & Kennedy, J.F. 1993. Moment model of
nonuniform channel-bend flow. I: Fixed beds. J.
Hydr. Engng. 119(7): 776-795.

Winters, K.H. 1987. A bifurcation study of laminar
flow in a curved tube of rectangular cross-section.
J. Fluid Mech. 180: 343-369.



II.36



II.37

PART II

EXPERIMENTAL OBSERVATIONS

II.5 Conclusions

The experiments testify to the ability of our Acoustic Doppler Velocity Profiler (ADVP)
to measure accurately the mean flow field, including both cells of secondary circulation,
and the turbulence in complex three-dimensional flows, such as occurring in open-
channel bends.

The small-flume experiments yielded some interesting observations on the mean-flow
field and the turbulence that will be further investigated in parts III and IV:

- The downstream velocity increases from the centerline towards the outer bank, and
the core of maximum velocity is found at the separation of both cells of secondary
circulation. Furthermore, the downstream velocity profiles are not monotonically
increasing towards the water surface, as in a straight uniform open-channel flow, but
have maximum values in the lower part of the water column.

-  Besides the classical center-region cell (helical motion), a weaker counter-rotating
outer-bank cell of secondary circulation exists in the corner formed by the outer bank
and the water surface. Although relatively small and weak, this outer-bank cell is
important since it has a protective effect on the stability of the outer bank by keeping
the core of maximum velocity at distance.

- The Reynolds stresses have pronounced spatial distributions that considerably differ
from their counterparts in straight uniform open-channel flow. Most interestingly, the
turbulence activity, represented by the ratio of turbulent to mean-flow kinetic energy,
is reduced in the outer half of the cross-section in the investigated bend.

The large-flume experiments confirmed the existence of a multi-cellular pattern of
secondary circulation. The center-region cell strengthens only slightly with increasing
curvature, whereas both the size and the strength of the outer-bank cell are considerably
enhanced.

Furthermore, the small and large-flume experiments show that linear models, which are
commonly used to account for the effect of the secondary circulation in depth-integrated
flow models, do not comply with the observed behavior: they are over-estimative and do
neither reproduce the observed weakening of the secondary circulation with increasing
curvature, nor its observed downstream evolution. The reasons responsible for their
failure are investigated in part III and a non-linear model that reproduces the observations
of the small and large-flume experiments is proposed in chapter IV.1.
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III.0 Introduction

The physical mechanisms and processes underlying the experimental observations
reported in part II are investigated, mainly by making term-by-term evaluations of the
relevant flow equations based on the experimental data. Since the ADVP-measurements
give the distributions of all three mean velocity components and all six Reynolds stresses
on a fine grid, most of the terms in the flow equations can be evaluated. To eliminate
scatter, the raw data are first smoothed following the procedure outlined and illustrated in
chapter II.1. These term-by-term evaluations of the flow equations indicate what terms
and corresponding physical mechanisms play an important role. They are applied in:

-  chapter III.1 on the downstream momentum equation in order to explain the
downstream velocity distribution reported in chapter II.1. A similar analysis limited to
the depth-integrated downstream momentum equation has been presented in a paper
that is not included in this dissertation:

Blanckaert K. and Graf, W. H. (1999b). "Outer-bank cell of secondary circulation
and boundary shear stress in open-channel bends." Proc. symp. River, Coastal and
Estuarine Morphodynamics, Univ. Genova, Genova, Italy, Vol. I, 533-543.

- chapter III.2 on the downstream vorticity equation in order to explain the bi-cellular
pattern of secondary circulation reported in chapter II.1.

- chapter III.3 on the turbulent kinetic energy equation in order to explain the lower
than expected turbulence activity in the outer bend reported in chapter II.1.

Chapter III.4 further analyses the turbulence structure observed in the small-flume
experiments, by investigating the instantaneous flow behavior, in order to explain an
observed coherence in the bulk-behavior of the pattern of circulation cells.

Part III ends with a summary of the main conclusions.

Note that this part on fundamental research makes uniquely use of the small-flume
experiments. Based on these results, the large-flume experiments have been designed, and
their analysis will be reported in the future.
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III.1 Momentum Transport in Sharp Open-Channel Bends

By Koen Blanckaert1 and Walter H. Graf2, life member, ASCE

(tentatively approved for publication in Journal of Hydraulic Engineering, ASCE)

Abstract

Flow in open-channel bends is characterized by cross-stream circulation, which
redistributes the velocity and the boundary shear stress and thereby shapes the
characteristic bottom topography. Besides a center-region cell - the classical helical
motion – a weaker counter-rotating outer-bank cell often exists. In spite of its engineering
importance, the mechanisms underlying the distributions of the velocity and the boundary
shear stress in open-channel bends, and especially the role of both circulation cells, are
not yet fully understood.

In order to investigate these mechanisms, an evaluation is made of the various terms in
the momentum equations based on the measured data, which gave the following results.
The outer-bank cell forms a buffer layer that protects the outer bank from influences of
the center-region cell and keeps the core of maximum velocity at distance from the bank.
Advective momentum transport by the center-region cell is a dominant mechanism; it
significantly contributes to the observed outward shift of the downstream velocity and the
bottom shear stress and to the flattening of the vertical profiles of the velocity.

This important advective momentum redistribution has to be included in the depth-
integrated flow models often used in engineering practice. Commonly used linear models
overpredict the effects of the center-region cell. Based on the results of the analysis of
experimental data, these models are extended by accounting for the feedback between the
center-region cell and the downstream velocity. The thus obtained non-linear model
clearly reveals the mechanisms of the center-region cell and its advective momentum
transport. An analysis of non-linear model results confirms and complements the analysis
of experimental data. A true quasi-three-dimensional flow model is obtained by coupling
this non-linear model to depth-integrated flow models, thus providing an engineering tool
for morphodynamical investigations.
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Open-channel flow, channel bend, advection, secondary circulation, laboratory
experiments, velocity distribution, turbulence, quasi-three-dimensional model
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1 Introduction

The velocity distribution in open-channel bends is characterized by the existence of a
cross-stream circulation (also called helical flow or secondary flow; Boussinesq, 1868;
Thomson, 1876), which redistributes the velocity, influences the sediment transport and
shapes the characteristic bar-pool bottom topography around the bend. Accurate
predictions of the velocity distribution and the bottom topography are essential to
problems related to river restoration, navigability, water quality and structures such as
bridge piers and abutments. In spite of its practical importance, the mechanisms
underlying the distributions of the velocity and the boundary shear stress in open-channel
bends are not yet fully understood. This paper reports on an investigation of these
mechanisms, but especially on the role of the cross-stream circulation, by means of a
combined experimental and mathematical analysis.

Insight into this role – and into the flow dynamics in general – is hampered by the
scarcity of experimental data, due to the difficulty of measuring the weak cross-stream
velocities and the various Reynolds stress components (see Table 1 in Blanckaert and
Graf, 2001a). The presented experimental analysis is based on a detailed dataset
(Blanckaert and Graf, 2001a) that includes distributions of all mean velocity components
and all Reynolds stresses on a fine grid in the outer half of one cross-section of a strongly
curved laboratory flume. From these data, the terms in the downstream momentum
equation, as well as in its depth-integrated form, are evaluated, which gives indications on
the relative importance of the different mechanisms underlying the observed distribution
of the velocity and the boundary shear stress. This experimental analysis will confirm and
help to clarify the dominant role played by the cross-stream circulation cells. In addition,
this experimental evaluation of terms in the momentum equations can also be used to
validate numerical models.
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Figure 1: Victoria bend.

A practical relevance of our research is illustrated with the case of the Victoria bend in
the lower Mississippi River between Arkansas and Mississippi (Fig. 1). This is a rather
sharp bend where barges often experience navigational problems. It has an opening angle
of about 108°, a radius of curvature of about R=1280m and a ratio of radius of curvature
to channel width that varies between 1<R/B<3, depending on the flow stage. This bend
has been under investigation to improve the navigability by modifying the flow field and
the channel bed topography. Jia and Wang (2000) have carried out a three-dimensional
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numerical simulation of the flow field in this bend, assuming a fixed channel bed. The
solution of the problem, however, would require a three-dimensional simulation with a
movable bed. In a large area like the Victoria bend, such simulations are not yet
practically feasible, due to limitations in computer power. Simulations of a movable bed
are therefore still based on the depth-integrated flow equations. However, when
integrating the flow equations over the depth all information on the cross-stream
circulation is lost. To remedy this shortcoming, the depth-integrated flow equations have
to be extended with a (semi-)analytical model for the cross-stream circulation.

The commonly used models (Rozovskii, 1957; Engelund, 1974; de Vriend, 1977, etc) –
termed linear models - are known to be insufficient and to overestimate the role of the
cross-stream circulation (de Vriend, 1981a; Yeh & Kennedy, 1993; Blanckaert, 2001a;
Blanckaert & Graf, 2001b). Moreover, they do not clearly reveal the mechanisms
underlying the cross-stream circulation, mainly because they neglect its feedback with the
downstream velocity. Based on the results of the here-presented experimental analysis,
we have extended the linear models by including this feedback. The obtained non-linear
model agrees well with experimental data (Blanckaert, 2001b & 2002b; Blanckaert &
Graf, 2001c), even for strongly curved flow. A mathematical analysis of this non-linear
model is performed in order to confirm and complement the results of the foregoing
analysis of experimental data.

The first part of our paper concerns the analysis based on the experimental data. The
relevant experimental data are presented, the underlying theory is developed and the
downstream momentum equation and its depth-integrated form are analyzed using the
data. The second part focuses on the modeling of the cross-stream circulation in the
depth-integrated flow equations. The insufficiency of the linear models is illustrated, the
outline and solution of the non-linear model are briefly presented, and a mathematical
analysis is performed. Finally, the engineering potential of the non-linear model for the
numerical investigation of morphodynamical river problems is discussed.

2 Analysis of Experimental Data

2.1 The Experiment

The experimental set-up, the ADVP velocity meter, the data processing, the measuring
grid, the experimental accuracy and the observed distributions of the mean velocities and
the turbulent stresses have been presented in detail by Blanckaert (2002b) and Blanckaert
and Graf (2001a). Only features of particular importance for the presented analysis are
reported hereafter.

Flow measurements were performed in a curved laboratory flume with a mobile-bed
topography (Fig. 2). The laboratory flume consisted of a 2 m long straight approach
reach, followed by a 120° bend with a constant radius of curvature of R=2 m. The flow
conditions are tabulated in Fig. 2. The parameters R /B=5, R /H=17.9 and B/H=3.6



III.4

correspond to a rather sharp bend being much narrower than typical natural open-channel
bends. These ratios do occur in man-made channels and mountain rivers. Moreover, in
wide bends with a developed bed topography, the shallow point bar is usually wide and
the flow is concentrated most of the time in the deep part near the outer bank, where an
important transverse bottom slope exists (Fig. 1; also see Odgaard, 1984, and Dietrich,
1987). It is therefore expected that the flow in the deep outer half of the cross-section of
the flume is representative of the flow in the deepest part of wider natural bends.
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Fig. 2: Experimental set-up, bottom topography, reference system, measurement section
at 60° and hydraulic conditions.

Velocity measurements were made with an Acoustic Doppler Velocity Profiler (ADVP)
on a fine grid in one cross-section at 60° from the bend entrance (Fig. 2). Even though
only the outer-half of the cross-section was measured, about 80% of the total discharge
was captured. The data are represented and analyzed in a cylindrical co-ordinate system
with the s-axis along the channel centerline, the n-axis perpendicular to it and pointing
towards the center of curvature, and the z-axis pointing vertically upwards from the
horizontal (s,n)-plane. The ADVP measures profiles of the three quasi-instantaneous
velocity components vj(t), simultaneously along the acoustic beam. Thus the mean
velocity vector 

r
v v v v= ( , , )s n z , as well as the fluctuating velocity vector 

r′ = ′ ′ ′v v v v( , , )s n z  and
all Reynolds stresses ′ ′v vi j  (i,j=s,n,z), can be evaluated.
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The vectorial representation of the cross-stream motion (vn,vz), normalized by the overall
mean velocity U= Q/(BH), is shown in Fig. 3b. Besides the classical helical motion –
called here center-region cell – a weaker counter-rotating cell of cross-stream circulation
– called outer-bank cell – exists in the corner formed by the water surface and the outer
bank. This outer-bank cell is occasionally reported in the literature (see Mockmore, 1943;
Shukry, 1949; Einstein and Harder, 1954; etc.), but is as yet not fully understood, nor
precisely measured. The part of the cross-section covered by the center-region cell and
the outer-bank cell will be denoted by center region and outer-bank region, respectively.
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The velocity components vj (j=s,n) can be decomposed into a depth-averaged value
v j  = Uj and local deviations from it, v j

∗:

v v v U vj j j j j    = + = +∗ ∗          in which v j
∗ = 0  by definition (1)

vn
∗  therefore refers to the transversal component of the cross-stream circulation. The

depth-averaged transversal velocity Un = vn  (Fig. 3d) – sometimes called cross-flow - is

directed towards the outer bank in the center region and reaches maximum values of
about 2% of U. It decreases in the outward direction and is negligible in the outer-bank
region. Un is mainly induced by downstream variations in the bottom topography and its
direction corresponds with the deepening of the bed downstream of the measuring section
(Fig. 2). Odgaard and Bergs (1988) have shown that over a typical bar-pool topography
Un alternates between positive and negative values along the bend. Contrary to the
transversal component of the cross-stream circulation, vn

∗ , Un vanishes in fully-developed
curved flow, which is defined by ∂/∂s=0.
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The distribution of the normalized downstream velocity component, vs/U, in the half-
section investigated is presented in Figs. 3a,c. Fig. 3c compares some of the observed
vertical profiles with a logarithmic profile for the experimental Chezy friction factor of
C=35 m1/2/s. The shown profiles are averages of the profiles measured in the outer-bank
region (0-6 cm from outer bank), in the transition zone between both regions (6-12cm)
and in the center region (12-20cm). The profiles observed in these three regions are rather
similar, but differ significantly from the logarithmic profile. In the upper part of the water
column the velocity is up to 20% smaller, in the lower part it is up to 20% larger, even to
the extent that the maximum velocities are located in the lower part of the water column.
The downstream velocity increases in outward direction: it is larger than the overall mean
velocity in the outer-half of the cross-section and has to be smaller in the inner half due to
mass conservation. The core of maximum velocity (  in Fig. 3a) is found close to the
bottom and near the separation of the two circulation cells. This observation already
indicates the importance of the circulation cells with respect to the vs-distribution.

A further indication of this importance follows from the case of laminar bend flow, which
has been investigated numerically by Cheng et al. (1976), de Vriend (1981b) and Winters
(1987) and experimentally by Hille et al. (1985). They reported that in the case of weak
curvature only the center-region cell exists. With increasing curvature, the center-region
cell gets stronger and the core of maximum downstream velocity shifts to the outward
direction, to be ultimately found close to the outer bank. Further increasing the curvature,
an outer-bank cell suddenly comes into existence and the core of maximum downstream
velocity is found further from the outer bank at the separation between the two circulation
cells. This behavior, which is in agreement with our experimental observations (Figs.
3a,c), suggests the outer-bank cell to have a positive effect on the stability of the outer
bank. Although the flow mechanisms in laminar flow differ from those in turbulent flow,
the observations also suggest that the downstream velocity distribution be strongly
influenced by the cross-stream circulation cells.

In the following sections, we will analyze the turbulent flow data, in order to understand
the mechanisms that underlie the observed distribution of the downstream velocity vs and
the downstream bottom shear stress, τbs, with special attention to the role of the cross-
stream circulation cells.

2.2 Theoretical Considerations

The momentum equations in cylindrical co-ordinates are given by Batchelor (1970,
p.598). Its downstream component, which governs the distribution of the downstream
velocity, vs, reads:
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Using the mass-conservation equation, the first term in the right-hand part of Eq. (2) can
be transformed to:
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Integration of Eqs. (2) and (3) over the flow depth yields the depth-integrated downstream
momentum equation. It governs the distribution of the downstream component of the
bottom shear stress vector τbs and is given as (see Dietrich and Whiting, 1989):
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The bottom shear-stress term in the left-hand-side of Eq. (4) results mainly from the
depth-integration of the term ∂ ′ ′v vs z /∂z in Eq. (2). Since no pressure measurements were
made, a hydrostatic pressure distribution is assumed in the above equations, p=ρg(zS-z);
h=zS-zb is the local flow depth, where zS and zb are the water surface and bottom elevation
above the horizontal (s,n)-plane. (1+n/R) is a metric factor accounting for the divergence
of the n-coordinate lines; the brackets    indicate depth-averaged values. Being

irrelevant in turbulent flow, molecular diffusion terms have been omitted. Our experiment
concerns steady flow (∂vs/∂t = 0), but the unsteady term is retained in Eq. (2) to facilitate
interpretation: positive/negative terms in the right-hand-side tend to increase/decrease the
local downstream velocity, vs.

Open-channel flow is driven by gravity, via the terms containing g∂zS/∂s in Eqs. (2) and
(4), and resisted by friction at the flow boundaries, generating momentum fluxes by the
Reynolds stresses, ′vs

2 , ′ ′v vs n  and ′ ′v vs z . Advective transport of flow momentum is
represented by the terms in square brackets in the momentum equations, Eqs. (2) and (3),
and in its depth-integrated form, Eq. (4). It does not generate or dissipate flow
momentum, but just redistributes it over the cross-section. This distributive property is
characteristic of divergence-type terms (cf. Eq. (3)), as can be demonstrated applying the
divergence theorem. This already indicates that the advective momentum transport may
play an important role in the distributions of vs and τbs.

Besides the ∂/∂s-term related to the downstream non-uniformity of the flow field, the
advective momentum transport according to Eqs. (2) and (4) is associated with the cross-
stream motion (vn,vz). A distinction can be made between the translatory and the
circulatory parts of this motion, sometimes also called ‘cross-flow’ and ‘identifiable
downstream vortices’ (Bradshaw, 1987). The decomposition of the transversal velocity in
Eq. (1) roughly corresponds to this distinction, Un= vn  being the cross-flow and vn

∗

being the transversal component of the cross-stream circulation. Applying this velocity
decomposition to the advective momentum transport terms in the momentum equations,
Eqs. (2) and (4), (terms in square brackets only) gives:



III.8

1
1

1
1

1
1+ + + +







+ + + +












∗
∗

n s
s

n
s

n
s n

n
s

n
s n

z
s

s n n zR R R
v v U v v U

R
v v v v

R
v v∂

∂
∂
∂

∂
∂

∂
∂ (5)

and

1
1

2
1

2
1

2

+ ( ) + ( ) + +






+ ( ) + +






















∗ ∗
∗ ∗

n s s n n
s n

s n n

s n

s n nR R R
v h U U h U U h

R
v v h

v v h
R

∂
∂

∂
∂

∂
∂ (6)

When a straight channel is followed by a bend, the flow field and the bottom topography
gradually adapt to the imposed curvature. The cross-stream circulation (vn

∗ ,vz) comes into
existence and a bar-pool bottom topography develops around the bend (Fig. 2). This
varying bottom topography gives rise to a cross-flow, Un (Fig. 3d). Both this topography-
induced cross-flow and the cross-stream circulation advect momentum and lead to a
redistribution of the velocity and the boundary shear stress over the cross-section. The
former is represented by the first group of terms in brackets in Eqs. (5) and (6), whereas
the latter is represented by the second group in either equation. Flow in this adaptation
zone is called developing curved flow. Obviously, the flow in our experiment belongs to
this category: the bottom topography varies in downstream direction (Fig. 2) and a non-
zero cross-flow exists (Fig. 3d). Ultimately, the flow field and the transversal bottom
slope become completely adapted to the curvature and no longer vary in the downstream
direction. Hence ∂/∂s=0 (except for the driving gravity term) and, by implication, Un=0.
In this so-called fully-developed curved flow (also called uniform or axisymmetric curved
flow), the first group of terms in brackets in Eqs. (5) and (6) vanishes and the distribution
of the velocity and the boundary shear stress over the cross-section is uniquely due to
advective momentum transport by the cross-stream circulation ( vn

∗ ,vz). According to
Dietrich and Whiting (1989), the ∂/∂s-term and the Un-terms in the first group of the
depth-integrated equation (6) also tend to balance each other in developing curved flow.
In our further considerations, attention will be focused on the second group of terms in
either of the above equations, representing advective momentum transport by the cross-
stream circulation.

The aim of our experimental research is to understand the mechanisms underlying the
redistribution of the velocity and the boundary shear stress in a bend and especially the
influence of the advective momentum transport by the cross-stream circulation. To that
end, the different terms in the downstream momentum equation and its depth-integrated
form are evaluated on the basis of the measured data. Only the terms related to
downstream variations in the flow field – terms containing ∂/∂s, except for the gravity
term - could not be evaluated from our measurements in a single section. To evaluate the
terms in the depth-integrated equations (4) and (6), the measured data were extrapolated
outside the measuring grid towards the water surface and the bottom (Figs. 2 and 3). The
measured distributions of the mean velocities and the turbulent stresses, their accuracy
and their extrapolation are reported by Blanckaert and Graf (2001a). Due to the products
and derivatives in the terms, experimental errors tend to be accumulated and amplified,
hence these evaluations are bound to be rather inaccurate. Interpretations should therefore
be limited to order-of-magnitude considerations. Yet, this is sufficient to identify the
relevant mechanisms and to investigate the role of the advective momentum transport by
the cross-stream circulation.
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Distributions of the most important terms in the downstream momentum equation, Eq. (2)
and (5), as well as in its depth-integrated form, Eqs. (4) and (6), are shown in Figs. 4 and
5, respectively. All terms are normalized by – and thus compared with - the value in the
centerline (n=0) of the driving gravity term:

− = =∗g u
R

m sS

h

∂
∂
z

s
, , .  /60 60

2
20 028             in the downstream momentum equation (7a)

− = =∗gR u m sh
S∂

∂
z

s
,

, .  /60
60

2 2 20 002       in the depth-integrated equation  (7b)

in which Rh is the hydraulic radius of the cross-section. In either of these equations, the
characteristic shear velocity in the measuring section, u∗,60 , is defined as
u gRh S∗ = −, ,( )60 60∂ ∂z s . As −∂ ∂z sS,60  = 0.0029 and Rh= 0.07 m, the shear velocity
amounts u∗ =,60 0.045 m/s.

2.3 Downstream Momentum Equation

In summary, the most important terms in the following form of the downstream
momentum equation will now be analyzed one by one (see Fig. 4):
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The normalized gravity term, -[(1+n/R)-1g∂zS/∂s]/( u Rh∗,60
2 ), is constant over the depth

and is by definition O(1). It varies like the metric factor -(1+n/R)-1 over the width,
decreasing nearly linearly from a value of 1.1 at the inner bank (n/R=-0.1) to a value of
0.9 at the outer bank (n/R=0.1).

In two-dimensional straight uniform flow, Eq. (8) reduces to the balance between the
driving gravity term -(1+n/R)-1g∂zS/∂s and the resisting Reynolds stress term -(∂ ′ ′v vs z /∂z),
both of which are constant throughout the water column and have a constant ratio of -1.
The Reynolds stress term can be expressed by introducing the eddy viscosity concept, -

′ ′v vs z =νt∂vs/∂z. The resulting equation can be solved for vs, to yield vertical profiles that
are completely determined by the prescribed eddy viscosity (a parabolic eddy viscosity,
for instance, yields logarithmic vs-profiles). Far from the sidewalls, the horizontal
distribution of vs (and Us) is identical to that of the gravity term.

In our experiment on curved flow, the vertical vs-profiles have an a-typical shape, with
the maximum velocity occurring in the lower part of the water column (Fig. 3c).
Furthermore, the transversal distribution of vs (and of Us) differs from that of the gravity
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term (cf. Fig. 3a). This measured vs-distribution will be explained by evaluating the
different terms in the downstream momentum equation, Eq. (8). Besides the gravity term,
all other terms have pronounced distributions and show a different behavior in the center
region and in the outer-bank region. These two regions will therefore be analyzed
separately.
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Fig.4:    Distribution of normalized terms in downstream momentum equation, Eq. (8).

2.3.1 Center Region

As mentioned above, Eq. (8) reduces in straight uniform flow (vn=vz=0) to the balance
between the gravity term and the remaining Reynolds stress term, whose ratio is exactly
equal to –1. Averaged over the flow depth, the ratio of the two terms is still O(-1) in our
experiment on curved flow, since it can be estimated as:
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in which use is made of the experimental result Us~1.35U (Blanckaert and Graf, 2001a).
However, the normalized Reynolds stress term −(∂ ′ ′v vs z /∂z)/( u∗,60

2 /Rh), shown in Fig. 4a,
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now has a pronounced vertical distribution. In the center region, it shows negative values
O(-1) near the surface, then strongly decreases to values O(-10) in the lower part of the
water column and subsequently increases strongly up to values O(20) close to the bottom.
The observed behavior should be interpreted with caution, however, since the turbulence
data are less reliable in the lower 20% of the water column (Blanckaert and Graf, 2001a).

Obviously, the advective momentum transport by the cross-stream circulation,
v v v v R v v u RR hn s

n
s n z sn z∗ − ∗

∗( ) + +( ) ( ) + ( )[ ] ( )∂ ∂ ∂ ∂1 1
60

2
, , vanishes in straight uniform flow,

since vn
∗=vz=0. Yet, it is the dominant mechanism in the center region of the curved flow

and reaches values that are an order of magnitude larger than the driving gravity term.
The terms related to the transversal component vn

∗  (Fig. 4c) increase from high negative
values near the water surface to high positive values near the bottom, reaching normalized
magnitudes up to 30 times the driving gravity term. Note that these high values are driven
by the steep spanwise velocity gradient ∂vs/∂n in the narrow flume, and may be larger
than typical values in wide bends. The combination of terms is maximum near the
centerline and decreases towards the edge of the center-region cell. As compared to
straight flow, it tends to flatten the vs-profile by decreasing the velocity in the upper part
of the water column and increasing it in the lower part, in line with our observations.
Averaged over the flow depth, however, the group of terms is of the same order of
magnitude as the gravity term, i.e. O(1), and causes an overall increase of the velocities in
the outer half-section. The term related to the vertical component vz (Fig. 4d) is generally
smaller than that related to vn

∗ . However, at about mid-depth towards the edge of the
center-region cell, it attains maximum normalized values O(-2), whence it is the dominant
term in the momentum equation in that part of the cross-section.

The Reynolds stress terms generated by friction on the inclined bottom,
∂ ∂′ ′ + +( ) ′ ′( )[ ] ( )−

∗v v v v R u RR hs n
n

s nn 2 1 1
60

2
,  (see Fig. 4b), as well as momentum advection

by the cross-flow, U v v U R u RR hn s
n

s nn∂ ∂( ) + +( ) ( )[ ] ( )−
∗1 1

60
2
,  (not shown), play a minor

role.

In steady flow, all terms in the right-hand-side of Eq. (8) should add up to zero. Even
when taking the experimental inaccuracy into account, the sum of the investigated terms
significantly deviates from zero: it is negative in the upper part of the cross-section and
positive in the lower part. This non-zero sum is probably compensated by the non-
uniformity term -(1+n/R)-1vs∂vs/∂s, which was not measured. If this is the case, there
should be an ongoing flattening of the vs-profiles in downstream direction, which is
characteristic of accelerating flow (Graf and Altinakar, 1998, p.49). This is in agreement
with the further deepening of the outer half-section downstream of the measuring section
(Fig. 2) and with the observed outward cross-flow Un<0 (Fig. 3d).

In summary, in the center region the advective momentum transport by the secondary
circulation, and especially by its transversal component, is the dominant mechanism
underlying the vs-distribution. It tends to flatten the vs-profiles and causes an outward
increase of vs.
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2.3.2 Outer-Bank Region

The outer-bank region is hydrodynamically less active than the center region, since all the
terms in the momentum equation are smaller and show less variation (Fig. 4a-d).

The gravity term in the outer-bank region is almost balanced by the friction at the bottom
and the outer bank. This friction gives rise to the ′ ′v vs z - and the ′ ′v vs n -Reynolds stress
components, respectively. In the part of the outer-bank region covered by the measuring
grid, the Reynolds stress ′ ′v vs z  is positive, but remains negligibly small (Fig. 6 in
Blanckaert and Graf, 2001a). Correspondingly, the ′ ′v vs z -turbulent transport term (Fig. 4a)
is small: 0<−(∂ ′ ′v vs z /∂z)/( u∗,60

2 /Rh)<1. Towards the bottom, the Reynolds stress has to
increase to the bottom value of O(-1), which induces the negative values of
−(∂ ′ ′v vs z /∂z)/( u∗,60

2 /Rh)<-1 near the lower bound of the measuring grid.

In a triangular region affected by friction at the outer bank, the ′ ′v vs n -turbulent transport
terms (Fig. 4b) reach normalized values O(-0.25). This indicates that the outer bank
friction is smaller than the bottom friction, i.e. its absolute value is smaller than O(1),
although strong gradients may exist near the bottom outside the measuring grid. These
smaller values of the turbulent transport terms related to - ′ ′v vs n  and - ′ ′v vs z  are in agreement
with the reduced turbulence activity observed in the outer-bank region (Fig. 7c in
Blanckaert and Graf, 2001a).

The advective momentum transport by the cross-stream circulation – (vn
∗ ,vz)-terms - is of

the same order of magnitude as the gravity term, so an order of magnitude smaller than in
the center region. The transversal component vn

∗  (Fig. 4c) is dominant near the outer
bank, where it conveys low-momentum fluid away from the bank near the water surface
and near the bottom and high-momentum fluid towards the bank near the lower edge of
the outer-bank cell. The outer-bank cell has also been observed by Bathurst et al. (1979)
in a field study. They claim that the high-momentum fluid it conveys towards the bank at
its lower edge locally increases the near-bank velocity and thus endangers bank stability.
In our experiment, this mechanism is weak and no local increase of vs is noticed. The
magnitude of the vertical advection term (Fig. 4d) increases with the distance from the
bank. With the exception of the corner formed by the water surface and the outer bank, it
is negative, reaching values O(-0.5), so tending to decrease the downstream velocity
adjacent to the outer bank. This indicates a protective effect on the stability of the outer
bank.

In summary, in the outer-bank region, the ′ ′v vs z -term and the advective transport term are
smaller than in the center-region. Furthermore, friction at the outer-bank is smaller than
the bottom friction in the center-region. By creating a hydrodynamically quiet zone
between the center-region cell and the outer bank, the outer-bank cell protects the outer
bank.
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2.4 Depth-Integrated Downstream Momentum Equation

Combining Eqs. (4) and (6), the following depth-integrated downstream momentum
equation is investigated:

(9)
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A detailed analysis of this equation, which describes the mechanisms that contribute to
the downstream bottom shear stress τbs, is given in Blanckaert and Graf (1999). As
mentioned before, the downstream non-uniformity term on the first line and the advective
momentum transport term associated with the cross-flow nearly balance each other.
Therefore, they are ignored in this analysis (cf. Dietrich and Whiting, 1989). Fig. 5 (based
on Fig. 4a in Blanckaert and Graf, 1999) shows only the most important terms,
normalized by u∗,60

2  (cf. Eq. (7b)).
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In our experiment, the measured downstream water surface slope in the measuring section
is nearly constant over the width. The transverse bottom slope gives rise to an almost
linear outward increase of the gravity term, − +( ) ( )[ ]−

∗1 1
60

2n sR Sgh z u∂ ∂ ,  (curve a), from a

value of 1.1 at the inner bank (h = 0.07 m), via 1.6 in the centerline (h = 0.11 m), to a
value of 2.1 at the outer bank (h = 0.16 m). According to Eq. (9), this outward increase of
the gravity term provokes a contribution to τbs with a similar width-distribution: values
smaller than average in the inner part of the half-section and larger than average in the
outer part.

The terms ∂ ∂v v h v v h R uRs n
n

s nn∗ ∗ − ∗ ∗
∗( ) + +( )[ ]2 1 1

60
2
,  (curve b) behave differently in the

center region and in the outer-bank region. In the center region, the normalized value of
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the group increases from about zero near the centerline to a maximum O(1) somewhat
further outwards, and then decreases again to zero at the edge of the outer cell.
Throughout the outer-bank region, the value is negligible. Since these terms are
redistribution terms and must cancel out when integrating over the entire width, they have
to be negative in the inner half-section of the channel, where no measurements are
available. These advective transport terms will therefore decrease the downstream bottom
shear stress (and also the downstream velocity) in the inner half-section and increase it in
the part of the outer half-section covered by the center-region cell. Due to the negligible
values in the outer-bank region, this outward increase does not continue in the outer-bank
region. This is consistent with the observation that the core of maximum velocity occurs
near the edge of the outer-bank region (cf. Figs. 3a,c).

The outward increase of the downstream bottom shear stress, which is typical of flow in
alluvial open-channel bends, is thus explained by the combined influence of the sloping
bottom (gravity term) and the cross-stream circulation (advective momentum
redistribution). In our experiment, the normalized gravity term increases by about 0.5
from the centerline to the outer bank, whereas the advective momentum transport terms
show a variation of about 1.0. This indicates that their effects on the redistribution of the
bottom shear stress and the depth-averaged downstream velocity will be comparable in
magnitude. This agrees with findings by Johannesson and Parker (1989b).

In the outer-bank region, the terms related to the friction at the outer bank are negative:
− ′ ′( ) + +( ) ′ ′[ ]−

∗∂ ∂v v h v v h R uRs n
n

s nn 2 1 1
60

2
, =O(-0.5) (curve c). They balance part of the

driving gravity term and thus reduce the downstream bottom shear stress. In the center
region, these terms are negligible.

In summary, gravity and advective momentum transport by the center-region cell have a
contribution of comparable magnitude to the outward increase of the downstream bottom
shear stress and velocity. Note that over a horizontal bottom, only the advective
momentum transport contributes. Due to the negligible advective momentum transport in
the outer-bank region, the maximum downstream velocity occurs at the inner edge of the
outer-bank region. This confirms the conclusion from the analysis of the momentum
equation, Eq. (8): the outer-bank cell protects the outer bank.

3 Theoretical model and mathematical analysis

The analysis so far has revealed the importance of the advective momentum transport by
both the center-region cell and the outer-bank cell with respect to the distribution of vs

and τbs. In engineering practice, flow models are often based on the depth-integrated
momentum equations (like Eq. (9)). Only the depth-averaged velocities, Uj (j=s,n), can be
solved from these equations, in which the advective momentum transport v vs n

∗ ∗  by the

cross-stream circulation appears as an unknown that needs to be modeled in terms of
these depth-averaged velocities. Even in recently reported depth-integrated flow
simulations, these important terms are still often neglected (Ye & McCorquodale, 1997;
Jia &  Wang, 1999; Duan et al., 2001; Kassem & Chaudhry, 2002; the latter three do
however account for the effect of the cross-stream circulation in the sediment transport
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calculations). Depth-integrated flow simulation including these terms have been reported
by Yulistiyanto et al. (1998) and Lien et al. (1999).

The mechanisms underlying the outer-bank cell are complicated and it can only be
simulated using the fully three-dimensional flow equations with complicated turbulence
closures (Section 9.2.6 in de Vriend, 1981a; Christensen et al., 1999; Jia et al., 2001).
Since a simplified conceptual model for the outer-bank cell is hard to develop, the
mathematical analysis will focus only on the center-region cell, which was shown above
to be of major importance for the outward increase of the velocity and the bottom shear
stress, as well as for the deformation of the vertical velocity profiles.

Conceptual models have been developed that account for the effects of the center-region
cell. They typically follow a two-step approach:

(i) A model is developed for the case of fully-developed curved flow (∂/∂s=0 and Un=0)
and limited to the central part of the center-region cell where vz<<vn

∗ , n≈0 and h≈H.
(ii) The solution is subsequently extended to include for inertia effects (developing

curved flow) and to cover the entire flow width.

Hereafter, attention will be limited to the first step. Commonly-used models – termed
linear models - are simple, but known to overestimate the effects of the center-region cell,
especially for moderately to strongly curved flows. These models neglect the feedback
between the downstream velocity and the center-region cell and do not clearly reveal the
mechanisms underlying the center-region cell. We have extended and improved these
linear models, mainly by incorporating advective momentum transport by the center-
region cell, which was identified by the experimental analysis as the dominant
mechanism. The so obtained non-linear model clearly reveals the mechanisms underlying
the center-region cell and its feedback with the downstream velocity. Furthermore, it
agrees well with experimental data for strongly curved flows. Some aspects of this non-
linear model have already been presented by Blanckaert (2001b) and Blanckaert and Graf
(2001c) and a detailed presentation is reported by Blanckaert (2002b).

Hereafter, the linear model is briefly outlined and the principle of the non-linear model
and its general solution are briefly presented. This paper mainly aims at presenting the
results of a mathematical analysis of the non-linear model, that intended to:

- confirm the conclusion of the foregoing analysis that advective momentum transport,
v vs n

∗ ∗ , significantly contributes to the deformation of the vs-profiles. As mentioned

before, the accuracy of the terms in the momentum equations evaluated from
measured data is rather low and terms related to downstream variations of the flow
field could not be evaluated. Furthermore, the laboratory flume was much narrower
than typical open channels and some questions remain on the role of the high but
poorly reliable values of the shear stress term close to the bottom.

-  gain insight into the behavior of the advective momentum transport v vs n
∗ ∗ . The

analysis so far is limited to an experiment under one hydraulic condition. The
mathematical analysis enables investigating the behavior of the advective momentum
transport as a function of the hydraulic parameters.

- establish a model for the advective momentum transport by the center-region cell that
can be usefully coupled to the depth-integrated flow equations.
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3.1 Linear Model

The advective momentum transport v vs n
∗ ∗  by the center-region cell is usually modeled by

assuming the downstream velocity vs to have the same vertical profile as in straight
uniform flow. The profile of the transversal component of the cross-stream circulation vn

∗

in the central part of the center-region cell is subsequently found from a simplified
transversal momentum equation for steady fully-developed curved flow, as proposed by
Rozovskii (1957):

− = − +






∗v
R

g z
n

d
dz

dv
dz

s S
t

n
2

      ∂
∂ ν (10)

where an eddy viscosity model is used to describe the turbulent momentum flux as − ′ ′v vn z

= ν t ndv dz∗ . According to this equation, the horizontal component of the cross-stream
circulation, vn

∗ , results from the local imbalance between the centrifugal force, -vs
2/R, and

the transverse pressure gradient, -g∂zS/∂n. From the computed profiles of vs and vn
∗  , the

advective momentum transport by the center-region cell and the strength of the center-
region cell can easily be derived as:

v v U H
R

Cs n s snfnct∗ ∗ = 2 ( )     and      v U H
R

Cn s
∗ =, ( )2 fnctnn (11)

Models of this type, which are essentially based on a perturbation approach, yield
solutions that are linearly proportional to the curvature ratio, H/R. This approach has been
proposed by Rozovskii (1957) and is commonly used in combination with a depth-
integrated flow model (Yulistiyanto et al., 1998, Lien et al., 1999). Similar linear models
have been proposed by Engelund (1974), Kikkawa et al. (1976), de Vriend (1977), Falcon
and Kennedy (1983) and Johannesson and Parker (1989a). All of them are based on
vertical profiles of the downstream velocity, vs, and the eddy viscosity, νt, derived from
straight uniform flow. Kalkwijk and de Vriend (1980) and Ikeda et al. (1990) proposed
basically similar models that are valid over the entire cross-section.

The distributions of the downstream velocity, vs, the cross-stream circulation, vn
∗ , and the

advective momentum transport, v vs n
∗ ∗ h, according to the above linear model deviate

significantly from the measured distributions (for a detailed comparison see Blanckaert,
2001a). Table 1 indicates that the linear model overestimates the advective momentum
transport by the center-region cell, v vs n

∗ ∗ h, by about an order of magnitude on the

centerline in the investigated flow. The observed center-region cell may be weakened by
the narrow cross-section and the pronounced transversal bottom slope, but these effects
cannot account for the observed discrepancy of an order of magnitude in v vs n

∗ ∗ h.

Measured Linear model Non-linear model
-0.5 to -1 -5 -0.5 v v h u Rhs n

∗ ∗
∗( ),60
2

Table 1: Advective momentum 
transport                             in 
central part of center-region cell.

It is well known that the overestimation of the linear model is due to the adoption of a
straight-flow vs-profile, thereby neglecting the feedback between the vs-profile and the
center-region cell. De Vriend (1981a) already qualitatively described this negative
feedback mechanism as follows: advective momentum transport by the center-region cell
deforms the vertical vs-profile (cf. Fig. 3c), which weakens the center-region cell, leads to
a reduction of the advective momentum transport v vs n

∗ ∗ , and hence reduces the

deformation of the vs-profile.



III.17

3.2 Non-Linear Model

The foregoing rationale leads to the conclusion, that the effects of the center-region cell in
moderately to strongly curved flow can only be modeled when taking due account of the
deformation of the downstream velocity profiles and the feedback between the
downstream velocity and the center-region cell.

According to our analysis of experimental data, both mechanism are dominated by those
terms in the downstream momentum equation representing advective momentum
transport by the center-region cell. By incorporating these terms in the linear model
formulation, we have developed the so-called non-linear model. Some aspects of this
model have already been presented by Blanckaert (2001b) and Blanckaert and Graf
(2001c) and a detailed presentation is reported by Blanckaert (2002b). Hereafter, the
outline of the non-linear model and its general solution are briefly presented and
subsequently the main results of a mathematical analysis of the model are reported. The
aim of this section is to illustrate how the theoretical conceptual model has been used to
confirm and complement the results of the analysis of experimental data.

3.2.1 Outline and general solution of the non-linear model

The transversal component of the center-region cell vn
∗  is described by the same

momentum equation as in the linear model, namely Eq. (10). Instead of using a straight-
uniform-flow vs-profile, the vs-profile is now computed from the following simplified
downstream momentum equation (cf. Eq. 8):

v v
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v v
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where an eddy viscosity model is used to describe the turbulent momentum flux as − ′ ′v vs z

= ν t sdv dz . Recall that this equation is applied for the case of fully developed flow near
the central part of the center-region cell. The left-hand part of this equation accounts for
advective momentum transport by the center-region cell. Our foregoing analysis of the
experimental data identified these terms as the main responsibles for the deformation of
the vs-profiles. They furthermore account for the coupling of the downstream velocity and
the center-region cell. By neglecting them, Eq. (12) reduces to its straight-uniform-flow
form, which was at the basis of the preceding linear model.

To solve equations (10) and (12) for vs and vn
∗ , they need some further elaboration.

Similar to straight uniform flow, a parabolic eddy viscosity is adopted,

ν κ τ ρt b h z
h

z
h

= −



1 (13)

whose magnitude is proportional to the norm of the bottom shear-stress vector. The
transverse gradient of the downstream velocity in Eq. (12) shall be parameterized by

∂
∂ αv v

R
s s

n s=             near n=0 (14)
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which means that vs in the vicinity of the centerline is described as a power-law function
of n. Thus, Eq. (12) reduces from a partial to an ordinary differential equation,

1+( ) = − + 





∗
α ∂

∂ νs
n s S

t
sv v

R
g z

s
d
dz

dv
dz
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The left-hand-side vanishes for αs=−1. This corresponds to a "potential-vortex" spanwise
velocity distribution, and can be seen as a reasonably lower bound for αs (Blanckaert,
2001b). For flows over a natural bar-pool bottom topography, values are typically αs>>0.

The solution of the non-linear model generally depends on the three parameters H/R, C
and αs. Surprisingly, when represented as a function of the combined parameter

ß= g C H R s( ) ( ) +( )[ ]−2 2 2
0 25

1
. .

α  - termed bend parameter – the general solution only

shows slight scatter around single curves. The general solutions for the advective
momentum transport v vs n

∗ ∗  and the strength of the center-region cell vn
∗,2 , normalized

by the corresponding linear model solutions are shown in Fig.6b. They can be written as:

   v v v v U H
R

C
linear

Eq

s n s n sn s sn snfnct ß fnct fnct ß∗ ∗ ∗ ∗= =( ) ( ) ( )
.( )11

2

v v U H
R

Cn n
linear

Eq

s
∗ ∗= =, ,

.( )

( ) ( ) ( )2 2
11

fnct ß fnct fnct ßnn nn nn (16)

Fig 6a illustrates the deformation of the vs-profiles with increasing bend parameter ß, for
the experimental Chezy friction factor of C=35 m1/2/s.

Although the numerical solution of the non-linear model is quite cumbersome, its general
solution is hardly more complicated than the linear-model solution and can be represented
by single curves as a function of one additional parameter. Validations of this non-linear
model solution with experimental data for moderately to strongly curved flow are
reported by Blanckaert (2001b) and Blanckaert and Graf (2001c).
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Fig. 6: Solutions of the non-linear model: (a) deformation of the vs-profiles with
increasing bend parameter ß for C=35m1/2/s; (b) strength of the center-region cell vn

∗,2

and its advective momentum transport v vs n
∗ ∗  as a function of the bend parameter.
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3.2.2 Analysis of the non-linear model

The non-linear model enables to confirm and complement the results of the previous
"analysis of experimental data". As mentioned before, this paper only briefly mentions
the main results, while an in-depth presentation and analysis are reported in Blanckaert
(2002b).

Fig. 6b shows that the non-linear model reduces to the linear model for vanishing
curvature ratio, H/R ↓ 0, i.e. the linear model is an asymptotic solution of the non-linear
model. The non-linear model thus confirms and quantifies the over-estimative character
of the linear model. Moreover, it provides an objective criterion to distinguish between
weak, moderate and sharp curvatures. Weak curvatures correspond to the validity range
of the linear model, given by ß<0.4. Without stretching the low ß range by taking the

parameter combination g C H R s( ) ( ) +( )[ ]−2 2 2 1. α  to the power 0.25, this region would

not be noticeable. Moderate bend curvatures correspond to the ß region where the ratio of
non-linear to linear model decreases strongly and nearly linearly, and strong curvature
corresponds to the region where the advective momentum transport is reduced to less than
half its linear model value. Whereas previous (rather arbitrary) definitions of strongly
curved flow were based on purely geometrical parameter like H/R or B/R, the definition
based on the bend parameter ß also includes the channel roughness and the flow
distribution. The non-linear model clearly indicates that the center-region cell becomes
self-limiting for sharp bends. This idea is not completely new, but the non-linear model
establishes this phenomenon clearly and quantifies it.

The non-linear model captures well the negative feedback between the downstream
velocity and the center-region cell. With increasing bend parameter, the vs-profiles flatten
(Fig. 6a) and the strength of the center-region cell, vn

∗,2 , as well as its advective

momentum transport, v vs n
∗ ∗ , weaken (Fig. 6b). The simulated vs-profile agrees rather

well with the measured profile (Fig. 3c). Moreover, whereas the linear model
overestimated v vs n

∗ ∗  by an order of magnitude (cf. Table 1), the non-linear model

prediction – based on the experimental values C = 35 m1/2/s, H/R = 0.057 and αs=3.6, -
agrees fairly well with the measured v vs n

∗ ∗  (Fig. 6b).

Whereas the influence of the parameters C and H/R was only qualitatively known before,
the non-linear model now provides a quantification. Furthermore, the non-linear model
identifies and quantifies the influence of the spanwise velocity distribution on the
feedback between the downstream velocity and the center-region cell. This influence was
not known before.

Finally, the non-linear model confirms the result of the analysis of experimental data that
the advective transport of momentum by the center-region cell is the dominant
mechanism with respect to the downstream velocity distribution, since good results are
obtained by adopting a very basic eddy viscosity turbulence closure.
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4 Relevance to Engineering Practice

An analysis of our experimental data showed the important role of advective momentum
transport by the cross-stream circulation in the redistribution of the downstream velocity
and bottom shear stress. River engineering problems concerning morphology are often
studied using models that are based upon the depth-integrated flow equations, extended
with a (semi)-analytical description of the cross-stream circulation.

As of to date, linear models being used for the cross-stream circulation are simple but
rather inaccurate, especially for moderate to strong curvatures. The above presented non-
linear model is particularly well suited for improving the description of the cross-stream
circulation. By accounting for the feedback between the downstream velocity and the
cross-stream circulation, it gives accurate results even for moderate to strong curvatures,
and is computationally hardly more expensive than the linear models. To incorporate it in
the depth-integrated flow equations, it suffices to multiply the existing linear-model
implementation by the correction factors defined in Fig. 6b, representing the ratio of the
non-linear to the linear model as a function of the unique bend parameter ß.

Contrary to the linear model, the non-linear model describes the effect of the cross-stream
circulation in a dynamical way, i.e. it depends on the to-be-computed depth-averaged
flow field. The depth-averaged flow equations require input on the relationship between
v vs n

∗ ∗  and the depth-averaged velocity, but it produces values of H/R, αs and C, whereas

the non-linear model requires input on ß= g C H R s( ) ( ) +( )[ ]−2 2 2
0 25

1
. .

α , but gives the

relationship between v vs n
∗ ∗  and the depth-averaged velocity. So, the 3-D flow field can

be described with a combination of a 2-D depth-integrated model and a model describing
the vertical structure of the flow, thus yielding a real quasi-three-dimensional flow model.

This dynamical coupling between the depth-integrated flow equations and the non-linear
model is presently being done, and first results indicate that it is computationally efficient
enough to be used in morphological computations.

Note, that the non-linear model describes the advective momentum transport by the
center-region cell, but it cannot account for the outer-bank cell. Our analysis indicates
that the outer bank cell has a stabilizing effect on the outer bank. Discarding the effect of
the outer-bank cell is therefore not dramatic: it will only lead to conservative estimates of
the boundary shear stress in the outer-bank area.

5 Conclusions

The hydromechanics of flow in a sharp open-channel bend was analyzed on the basis of
experimental data and by means of a theoretical model. Attention was paid to the role of
both cells of cross-stream circulation: the classical helical motion – termed here center-
region cell - and the weaker counter-rotating outer-bank cell. The conclusions to be drawn
from this work can be summarized as follows:
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• Evaluation of the different terms in the downstream momentum equation (Eq. (8) and
Fig. 4) and its depth-integrated form (Eq. (9) and Fig. 5) on the basis of the
experimental data showed a different hydrodynamical behavior in the center region
and in the outer bank region (corresponding to either circulation cell). Advective
momentum transport by the center-region cell is the dominant mechanism behind the
velocity redistribution in the center region; it significantly contributes to the observed
outward increase of the downstream velocity and to the flattening of its vertical
profile. By creating a hydrodynamically quiet zone between the center-region cell
and the outer bank, the outer-bank cell protects the outer bank from influences of the
center-region cell and keeps the core of maximum downstream velocity away from
the bank.

• Based on the results of the experimental analysis, we have developed a conceptual
theoretical model – termed non-linear model - for advective momentum transport by
the center-region cell. Contrary to the previous linear models, it takes due account of
the feedback between the downstream velocity profile and the center-region cell, and
agrees much better with experimental data. In this paper, the analysis of experimental
data is complemented by a mathematical analysis of this non-linear model. The non-
linear model quantifies the overestimation by the linear model, as well as the
influence of the Chezy friction factor C and the curvature ratio H/R, which were
previously only qualitatively understood. It identifies the spanwise velocity
distribution as an important parameter and quantifies it. It confirms and quantifies the
idea that the center-region cell becomes self-limited for strong curvature and allows
to distinguish objectively between weak, moderate and strong curvatures. Finally, by
yielding good results with a basic eddy viscosity turbulence closure, it confirms the
result of the analysis of experimental data that the advective momentum transport is
the dominant mechanism with respect to the velocity distribution.

•  Since the advective momentum transport by the cross-stream circulation strongly
influences the downstream velocity distribution, it has to be included in the depth-
integrated flow models that are often used in engineering practice. The linear models
that are used to date are known to yield poor results for moderate to strong
curvatures. The non-linear model is particularly well suited to improve the
description of the effects of the center-region cell at low computational cost. It
suffices to multiply the linear model implementation by a correction factor – non-
linear-model / linear model (Fig. 6b) – that depends on a unique, newly defined bend
parameter. Tests have indicated that the dynamical coupling between the depth-
integrated flow equations and the non-linear model is computationally efficient
enough to be used in morphological computations.

Even though the experimental data were limited to the outer-half of one single cross-
section under one set of hydraulic and geometric conditions, they yielded valuable
information on the mechanisms underlying the velocity distribution, which resulted in the
development of a conceptual theoretical model for the dominant center-region cell. The
experimental research is presently extended by measuring entire cross-sections all along a
large optimized laboratory flume under different hydraulic and geometric conditions.
Some results of these experiments have already been reported by Blanckaert and Graf
(2001b) and Blanckaert (2002a,b).
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APPENDIX II.  NOTATION

ADVP = Acoustic Doppler Velocity Profiler
B = channel width
C = Chezy roughness coefficient
d50 = mean diameter of the sand bottom
Fr=U gH/ = Froude number
g = gravitational acceleration
H = reach-averaged flow depth
h = local flow depth
n = transversal reference axis
p = pressure
Q = discharge
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R = radius of curvature of the channel centerline
Rh = hydraulic radius of the cross-section
Re=UH/ν = Reynolds number of reach-averaged flow
S = water surface slope
s = downstream reference axis
t = time
U = Q/(BH) = reach-averaged velocity
Uj = depth-averaged velocity component, j=s,n
u*=U√g/C = friction velocity
vj = time-averaged velocity component, j=s,n,z
vj(t) = instantaneous velocity component, j=s,n,z
v’j(t) = instantaneous velocity fluctuation, j=s,n,z
v j

∗ = local deviations from the depth-averaged velocity, j=s,n
′ ′v vj k = time-averaged correlation of the velocity fluctuations, j,k=s,n,z

z = vertical reference axis; elevation above the horizontal (s,n)-plane

symbols
αs = normalized transversal velocity gradient, (∂vs/∂n)/(vs/R)

ß = g C H R s( ) ( ) +( )[ ]−2 2 2 0 25
1. .

α : bend parameter

κ = Karman constant
ρ = density of water; ρ=998.2 kg/m3 at 20 °
ν = molecular viscosity of water; ν= 1.004 x 10-6 m2/s at 20 °
νt = eddy viscosity
τ = shear stress at the flow boundary (bottom or bank)
arrow = vectorial quantity
overbar = time-averaged values

. = values averaged over the local flow depth
O(.) = order of magnitude of .
... = absolute value of

subscripts
b = bottom
max = maximum magnitude over the measuring grid of a variable
S = water surface
60 = value in the section at 60 °
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III.2 Secondary Flow in Sharp Open-Channel Bends

K. Blanckaert1 and H.J. de Vriend2

(submitted for publication to J. Fluid Mech., Cambridge Univ. Press)

Abstract

Secondary currents are a characteristic feature of flow in open-channel bends. They
advect flow momentum, redistribute the velocities, the boundary shear stresses and the
sediment transport and shape the channel morphology. Their accurate prediction is a
prerequisite for successful numerical simulations. Besides the classical helical motion
(centre-region cell), often a weaker and smaller counter-rotating circulation cell (outer-
bank cell) is observed near the outer bank. It plays an important role with respect to bank
erosion processes. Rather similar bi-cellular patterns of secondary circulation occur in
curved duct flow. The mechanisms underlying the circulation cells, and especially the
outer-bank cell, are still poorly understood, and their numerical simulation still poses
problems, which is largely due to a lack of detailed experimental data. The reported
research provides detailed experimental data on both circulation cells. Furthermore, the
underlying dynamics are investigated by simultaneously analysing the vorticity equation
and the kinetic energy transfer between the mean flow and the turbulence. This shows that
turbulence plays a minor role in the generation of the centre-region cell, which is mainly
due to the centrifugal force. By accounting for the important negative feedback between
the downstream velocity profile and the centre-region cell, accurate predictions of the
centre-region cell can be obtained for moderate curvatures from a simplified vorticity
balance that can be incorporated in depth-integrated flow models. For strong curvatures,
however, a fully three-dimensional flow description is required. Due to the non-
monotonic velocity profiles, the centrifugal force favours the outer-bank cell. Terms
related to the anisotropy of the cross-stream turbulence, induced by boundary proximity,
are of the same order of magnitude and include contributions that enhance the outer-bank
cell. Both mechanisms strengthen each other. Furthermore, the occurrence of the outer-
bank cell is not a matter of flow instability, as in the case of the similar outer-bank cell in
curved laminar flow, but it also appears for weak curvatures. The outer-bank cell is
enhanced by kinetic energy input from turbulence, and at the same time suppressed by
turbulent dissipation. Although the kinetic energy transfer from turbulence to the mean
flow is small compared to the total energy losses, it is essential for the generation of the
outer-bank cell. Turbulence models based on a linear stress-strain relationship are
inherently unable to account for it, which explains their inability to simulate turbulence-
generated circulation cells.
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1 Introduction

Curved open-channel flow is characterized by the existence of cross-stream circulation
cells (secondary flow). By advecting flow momentum, these determine the spatial
distributions of the velocities and the boundary shear stresses (Blanckaert & Graf 2002),
and thereby shape the bottom topography.

Besides the classical helical motion (called hereafter centre-region cell) that covers a
large part of the cross-section (called hereafter centre region), often a weaker counter-
rotating cell is observed near the outer bank. Although relatively small and weak, this
outer-bank cell is important, as it tends to protect steep outer banks against erosion
(Blanckaert & Graf 1999, 2002). Figure 1 illustrates both circulation cells in a reach of an
open-channel bend. Rather similar bi-cellular patterns of cross-stream circulation occur in
curved duct flow; nonetheless important differences are known to exist between open-
channel flow and duct flow (Nezu & Nakagawa 1993).

s

z

n

Downstream velocity: vs

Outer-bank cell
Centre-region cell

Transversal velocity: vn

Cross-stream circulation:

Vertical 
velocity: vz

Figure 1: Definition sketch of curved open-channel flow and cross-stream circulation.

Detailed experiments on both circulation cells are scarce (Booij 1985, Booij & Tukker
1996, Blanckaert & Graf 2001a, Blanckaert 2002a,b), because they require accurate high-
resolution measurements of the transversal and vertical velocity components on a fine
grid. Most experimental investigations of the circulation cells are restricted to
measurements of the downstream and the transversal velocity components on relatively
coarse grids and with a relatively low accuracy (Blanckaert & Graf 2001a). This explains
why, in spite of the fact that the occurrence of the second cell has been reported in the
literature long ago (e.g. Mockmore 1943), they usually concentrate on the centre-region
cell far from the banks.
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The mechanisms underlying the two circulation cells are revealed by the downstream
vorticity equation, which shows that the centrifugal force and the cross-stream turbulent
stresses play a dominant role. So far, the experimental confirmation of this finding used to
be hampered by the scarcity of experimental data on these cross-stream turbulent stresses.

A better insight into the mechanisms underlying the circulation cells will improve their
numerical modelling and hence the modelling of the flow field in general. The centre-
region cell is often explained as resulting from the local imbalance between the driving
centrifugal force and the transverse pressure gradient (e.g. Rozovskii 1957, Engelund
1974) and it is usually modelled according to this simplified concept in the quasi-three-
dimensional flow models that are often used in engineering practice (Lien et al. 1999). It
is not clear to what extent this basic description captures all relevant mechanisms.
Turbulence is known to be important to the generation of the outer-bank cell. However,
there is little insight into the dynamics of the turbulence in the vicinity of that cell, and
even the conditions of occurrence of the outer-bank cell are hardly known. The centre-
region cell seems to be reproduced rather well by the fully-three-dimensional flow
equations with standard turbulence closure, but more sophisticated turbulence closure
models seem to be needed to reproduce the outer-bank cell (de Vriend 1981a,
Christensen, Gislason & Fredsoe 1999, Jia, Blanckaert & Wang 2001). A better
description of turbulence will be shown to be the key to better numerical simulations of
the double-cell pattern.

The experimental research presented herein aims at getting a more detailed picture of the
double-cell pattern in an open-channel bend, so as to gain insight into its dynamics and
especially into the role of turbulence, and to find guidance for numerical modelling.
Where previous investigations on cross-stream circulation cells only considered the
vorticity equation (e.g. Perkins 1970, Demuren & Rodi 1984, Bradshaw 1987, Nezu &
Nakagawa 1993), the present work simultaneously analyses the vorticity equation and the
kinetic energy transfer between mean flow and turbulence. The experimental data are
based on simultaneous high-resolution measurements of the three velocity components on
a fine grid in one cross-section of a bend in a laboratory flume. This makes it possible to
evaluate all three mean velocity components, as well as all turbulent stress components.
Based on these results, the relevant terms in the vorticity equation and the kinetic energy
transfer between the mean flow and the turbulence can be evaluated.

In the first part of this paper, a theoretical framework of analysis is given and the current
state of knowledge on the cross-stream circulation is reviewed. The importance of
considering the kinetic energy transfer between mean flow and turbulence is shown and
the objectives of the analysis are formulated. Subsequently, the experiment is presented
and an analysis of the mechanisms underlying the two circulation cells is made, on the
basis of the experimental data and making use of the downstream vorticity equation and
the kinetic energy equation. Special attention is paid to the implications for numerical
modelling.
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2 Theoretical basis and previous work

2.1 Cross-stream motion and downstream vorticity

A cylindrical co-ordinate system is adopted, with the curvilinear s-axis pointing
downstream along the channel axis, the transversal n-axis pointing left and the vertical z-
axis pointing upward from the horizontal (s,n)-plane (also see figures 1 and 3). The
transformation of the flow equations from a Cartesian to a cylindrical co-ordinate system
is given by Batchelor (1970, p.598).

The cross-stream motion, (vn,vz), is governed by the transversal and vertical momentum
equations for incompressible flow (Schlichting & Gersten 2000):
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in which (1+n/R) is a metric factor accounting for the divergence of the n-coordinate
lines, R being the radius of curvature of the channel axis; p is the pressure; t is time; g is
the gravitational acceleration; rv v v v= ( , , )s n z and r′ = ′ ′ ′v v v v( , , )s n z  are the mean and
fluctuating velocity components; -ρ ′ ′v vj k  (j,k=s,n,z) are the turbulent stresses; ν is the

molecular kinematic viscosity; ∇2  is the Laplace-operator.

The transversal momentum equation (1) is dominated by the centrifugal-force and
pressure-gradient terms, which nearly balance each other: (1+n/R)−1(vs

2/R) - ρ−1∂p/∂n ≈ 0.
The vertical momentum equation (2) is dominated by the hydrostatic balance, g +
ρ−1∂p/∂z ≈ 0. This keeps these equations from clearly revealing the dynamics of the cross-
stream motion. For clarity’s sake, a distinction will be made between the translatory and
the circulatory parts of the cross-stream motion, which Bradshaw (1987) names cross-
flow and identifiable downstream vortices, respectively. The translatory part is mainly
pressure-induced, whereas the circulatory part is independent of the pressure field. The
downstream component of the vorticity vector
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has the advantage of representing the cross-stream circulation by a scalar, instead of a
vector field. Therefore, the downstream vorticity balance is a good basis for analysis. The
corresponding equation is obtained by cross-differentiation of equations (1) and (2), thus
eliminating the pressure,
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in which the n- and z-components of the vorticity vector are defined as:
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Without pretending mathematical rigour, this equation can be interpreted as follows in
physical terms (e.g. Perkins 1970, Demuren & Rodi 1984, Bradshaw 1987, Nezu &
Nakagawa 1993). The terms vn∂ωs/∂n+vz∂ωs/∂z in the right-hand-side of the first line
represent the advective transport of downstream vorticity by the cross-stream motion
(vn,vz). This mechanism does not generate or dissipate ωs, but redistributes it over the
cross-section. The ωs∂vs/∂s-term in the second line represents amplification of ωs due to
vortex stretching. The terms in square brackets in the second line represent skewing-
induced vorticity redistribution by quasi-inviscid deflection of existing mean vorticity
rω (ωs,ωn,ωz). Skewing-induced vorticity corresponds to Prandtl’s circulation of the first

kind (Prandtl 1942, p.130-134). By substitution of the definitions (3) and (5), these terms
can be transformed into:
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showing terms accounting for downstream non-uniformities (the ∂/∂s-terms in square
brackets), a curvature-induced term with vnωs/R, and a term associated with the
centrifugal force, -vs

2/R. Apparently, skewing-induced vorticity mainly results from the
centrifugal force.
Apart from the mean centrifugal force, the second line of equation (4) also includes a
turbulence-related centrifugal force term. The third line in equation (4) represents the
influence of the cross-stream turbulent stress components, ′vn

2 , ′vz
2  and ′ ′v vn z , on the
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vorticity field. Globally, vorticity is dissipated by these turbulent stresses. In certain
regions of the flow domain, however, they can generate mean vorticity (see below).
The terms in the fourth line of equation (4), as well as the ∂/∂s-terms in the first and
second line relate to the downstream non-uniformity of the flow. They vanish for
axisymmetric curved flow (defined by ∂/∂s = 0), whence they are not characteristic of the
aspects of curved flow considered herein. The last line represents the dissipation by the
molecular viscosity. In the next section, the physical meaning of the various
terms/mechanisms in the downstream vorticity equation will be analysed for
axisymmetric curved flow (also see figure 2 below).

2.2 Current state of knowledge

The centre-region cell and the outer-bank cell are caused by different mechanisms. They
will therefore be treated separately.

2.2.1 Centre-region cell

The centre-region cell has amply been investigated in the past, with Boussinesq (1868)
and Thomson (1876) as pioneers. Its formation is usually explained as follows (see figure
2(a)). The centrifugal force -vs

2/R in a bend tends to move the fluid particles in outward
direction and leads to a set-up (superelevation) of the water surface against the outer
bank. This superelevation generates an inward directed pressure gradient –ρ−1∂p/∂n that
globally balances the centrifugal force. Whereas this pressure gradient is constant over the
depth (assuming hydrostaticity), the centrifugal force has a pronounced vertical structure.
It is the local imbalance between the two that drives the centre-region cell. In the central
part of the centre-region cell, where the vertical velocity is negligible, this mechanism can
be represented by the simplified transversal momentum equation (cf. equation (1)),
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or by the equivalent simplified downstream vorticity equation (cf. equations (4) through
(6)),
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Equation (8) expresses the balance between the vorticity generation by the centrifugal
force term and the vorticity dissipation by the turbulent shear stress ′ ′v vn z  and the

molecular viscosity. The mechanism is similar in laminar and turbulent curved flow. In
turbulent flow, the vertical profile of the transversal velocity in the central part of the
centre-region cell can be solved from either of the above equations, by modelling the
turbulent shear stress with an eddy-viscosity model and assuming vertical profiles for the
downstream velocity and the eddy viscosity.

Without loss of generality, the downstream velocity can be written as the product of its
depth-averaged value, Us, and a given vertical profile function, typically the straight-
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uniform-flow profile. If the eddy viscosity is taken proportional to UsH, with H denoting
the water depth in the channel axis, the above equations show that the strength of the
centre-region cell must be proportional to H/R. In fact, the cross-stream velocity is treated
here as a first-order perturbation to the downstream velocity, ignoring higher-order
feedback. This is why such models are called linear. Linear models for the centre-region
cell have been proposed among others by Rozovskii (1957), Engelund (1974), Kikkawa,
Ikeda & Kitagawa (1976), de Vriend (1977), Falcon Ascanio & Kennedy (1983) and
Johannesson & Parker (1989). Kalkwijk & de Vriend (1980) and Ikeda, Yamasaka &
Kennedy (1990) proposed basically similar models that are valid all over the cross-
section.

These linear models only give good results for very mildly curved bends, but
overestimate the strength of the centre-region cell for moderately to strongly curved
bends. Experimental data for strongly curved flow that illustrate this deficiency of linear
models have been reported for flow over a horizontal bottom (de Vriend 1981a, Booij &
Tukker 1996, Blanckaert & Graf 2001b), as well as for flow over a developed bottom
topography (Blanckaert 2001a). It is a consequence of neglecting the feedback between
the downstream velocity and the centre-region cell, i.e. the assumption of a straight-flow
vs-profile in equations (7) and (8) (cf. de Vriend 1981a). Advective momentum transport
by the centre-region cell deforms the vs-profiles, by decreasing the velocities in the upper
part of the water column and increasing them in the lower part (Blanckaert & Graf 2002).
For strong curvatures, the maximum velocity even occurs in the lower part of the water
column, as is also the case in the experiment presented herein (cf. figures 4(a,c)). This
deformation of the vs-profile reduces the vertical gradient of the centrifugal force,
(∂/∂z)(vs

2/R), which, according to equation (8), is the driving mechanism for the cross-
stream circulation.

Yeh & Kennedy (1993) gave another description of this feedback mechanism, based on
the principle of conservation of moment-of-momentum. This conservation law, however,
can formally be derived from the mass and momentum balances, whence it should not add
any new information. Blanckaert (2001b, 2002b) and Blanckaert & Graf (2001c) propose
a non-linear model that accounts for this feedback. Similar to the linear models, a vertical
profile of the eddy viscosity is assumed. However, instead of prescribing a straight-flow
vs-profile, they calculate the deformed vs-profile from a simplified downstream
momentum equation that accounts for advective momentum redistribution by the centre-
region cell. This deformed vs-profile is subsequently inserted into equation (7), yielding
the vertical profile of the transversal velocity in the central part of the centre-region cell.
This model compares rather well with experimental data for moderately to strongly
curved flow over a horizontal bed (Blanckaert 2001b, 2002b), as well as over a developed
bed topography (Blanckaert & Graf 2002).

Although this comparison with data is promising, it is not clear to what extent the non-
linear model captures all relevant mechanisms underlying the formation of the centre-
region cell. Especially the effects of the neglected advective transport terms in equations
(7) and (8) and the rather basic modelling of turbulence need further investigation.
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2.2.2 Outer-bank cell

Outer-bank cells have often been observed in curved turbulent flow and are known to
play an important role with respect to the stability of the outer bank (Bathurs, Thorne &
Hey 1979, de Vriend 1981a,b, Christensen et al. 1999, Blanckaert & Graf 1999, 2002).
Despite this importance, little is known about the underlying mechanisms and the
conditions under which these cells occur. This is to be attributed to the difficulty of
accurately measuring the low velocities and the turbulent stresses involved (further see
Blanckaert and Graf 2001a). Both skewing-induced and turbulence-induced vorticity
generation must be expected to play a role. Similar cells have been observed in curved
laminar flow and in straight turbulent flow, which can be seen as asymptotic cases, each
showing one of the vorticity-generating mechanisms in isolation. In curved laminar flow,
vorticity is exclusively skewing-induced (centrifugal force), whereas in straight turbulent
flow it is exclusively turbulence-induced. Before considering curved turbulent flow, the
literature on either of these asymptotic cases will be reviewed.

2.2.2.1 Curved laminar flow

The control parameter of outer-bank cell formation in curved laminar flow is the Dean
number, defined as the product of the Reynolds number and the square root of a curvature
ratio, e.g. De = Re.(H/R)0.5, or De = Re.(B/R)0.5. Numerical investigations have been done
by Cheng, Lin & Ou (1976), de Vriend (1981b) and Winters (1987) for the case of
axisymmetric curved flow (∂/∂s = 0). They show that, when increasing the Dean number,
the outer-bank cell suddenly comes into existence at one critical value of De and suddenly
disappears again at another critical value. Both critical Dean numbers depend on the
curvature ratio, H/R, and the aspect ratio, B/H. As described before for the centre-region
cell, the vs-profiles in curved flow are stronger deformed as the curvature increases, and
the driving centrifugal term (∂/∂z)(vs

2/R) in the vorticity equation correspondingly
decreases. The outer-bank cell comes into existence when the vs-profiles are so strongly
deformed that the driving term changes sign in the upper part of the water column (see
figure 2(a)). Physically, the Dean number can be interpreted as the ratio between the
centrifugal term, which favours the outer-cell formation, and the molecular dissipation,
which opposes it. For the curved flows investigated in these numerical models, the outer-
bank cell was only slightly weaker than the centre-region cell. These numerical results
have been confirmed by an experimental investigation of the flow in a 180° curved duct
by Hille, Vehrenkamp & Schulz-Dubois (1985). However, they found the outer-bank cell
to be much weaker than the centre-region cell in most of the bend, and only to pick up
beyond 120°. All investigations indicate an outward shift of the core of maximum
velocity with increasing Dean number within the single-cell range. When the outer-bank
cell exists, the core of maximum velocity is found further away from the outer bank, near
the separation point between the two cells. Apparently, the outer-bank cell keeps the
downstream velocity maximum away from a steep outer bank, thus providing a natural
protection for it.
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2.2.2.2 Straight turbulent flow

The near-bank cells in straight uniform open-channel flow, as well as the corresponding
downstream vorticity equation, are shown in figure 2(b). Prandtl (1942) suggested that
these near-bank circulation cells be caused by turbulence, and Einstein & Li (1958)
showed with a rigorous analysis that gradients of turbulent stresses generate the
corresponding downstream vorticity. Ever since, the role of the cross-stream turbulence,

′vn
2 - ′vz

2  and ′ ′v vn z , in the downstream vorticity equation (4) has been investigated

extensively, in experiments as well as in numerical models.

Due to the difficulty to accurately measure the turbulent stresses, most experiments have
been carried out in air flow (closed conduits) and did not include measurements of ′ ′v vn z

(except Perkins 1970). Demuren & Rodi (1984) summarize the experimental findings of
Brundett & Baines (1964), Gessner & Jones (1965), Perkins (1970) and Gessner (1973) as
follows. The dominant terms in the downstream vorticity equation include ′vn

2 - ′vz
2  and

′ ′v vn z , which are almost equal and of opposite sign. The difference is of the same order of
magnitude as the advective terms vn∂ωs/∂n  + vz∂ωs/∂z and drives the near-bank cells.
Nezu & Nakagawa (1984) and Nezu, Nakagawa & Tominaga (1985) analysed the
downstream vorticity equation in airflow experiments in rectangular ducts, whereas
Tominaga et al. (1989) investigated it for open-channel flow experiments with different
boundary roughnesses, aspect ratios and sidewall inclinations. They could not measure
the turbulent shear stress ′ ′v vn z  and suggest that ′vn

2 - ′vz
2  be the source term for the cross-

stream circulation, and ′ ′v vn z  a dissipating sink term, as summarized by Nezu & Nakagawa

(1993). Bradshaw (1987), on the other hand, states that the relative contributions of ′vn
2 -

′vz
2  and ′ ′v vn z  only depends on the orientation of the n- and z-axis. This is illustrated by

representing the cross-stream turbulence on a Mohr circle (figure 2(b)). When choosing
the (n*,z*)-coordinates along the principal axes of the turbulent stress tensor, the cross-
stream turbulent shear stress vanishes, i.e. ′ ′ =∗ ∗v v

n z
0 , and the difference between the

normal stresses, ′ − ′∗ ∗v v
n z

2 2 , is maximum. If this quantity differs from zero, the cross-stream

turbulence is anisotropic. Figure 2(b) also illustrates how such anisotropic turbulence
contributes to the vorticity balance by exerting a torque on the fluid (also see Perkins
1970). The vorticity equation does not indicate, however, whether the cross-stream
turbulence terms generate or dissipate mean downstream vorticity ωs. For the case of
straight uniform flow, they must contribute to the generation of ωs since the vorticity
equation does not contain other generation terms. Turbulence-generated vorticity
corresponds to circulation of Prandtl’s second kind (Prandtl 1942, p.130-134).

Nezu & Nakagawa (1993) highlighted the importance of the water surface, by comparing
the turbulence-generated cross-stream circulation cells in open channels with those in
curved ducts. Furthermore, they schematise in a very detailed and complete way the
interactions between the cross-stream circulation, the cross-stream turbulence, the
distributions of the mean flow and the boundary shear stress, the boundary properties, the
channel geometry, etc.
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Naot & Rodi (1982) and Demuren & Rodi (1984) claim that the turbulence-generated
near-bank cells in straight turbulent flow cannot be simulated with linear eddy viscosity
models, i.e. models assuming a linear stress-strain relationship. They succeed in
simulating them with an Algebraic Stress Model. Speziale (1987) attributes this failure of
linear eddy viscosity models (such as the linear k-ε model) to their inability to represent
correctly the turbulent normal stresses and proposes non-linear turbulence models (k-ε
and k-l models) that are able to simulate the near-bank cells. Indeed, Colombini (1993)
succeeds in simulating these cells with such a non-linear turbulence model. Kawahara &
Tamai (1988) demonstrate mathematically that linear eddy viscosity models cannot
simulate turbulence-induced cross-stream circulation.

Based on these experimental and numerical investigations and theoretical considerations,
the following hypothesis concerning the formation of near-bank circulation cells in
straight turbulent flow can be formulated. The advective transport redistributes vorticity
over the cross-section, but is fundamentally unable to generate or dissipate vorticity.
Hence, the cross-stream turbulent stresses, ′vn

2 - ′vz
2  and ′ ′v vn z , have to account for both the

generation and the dissipation of vorticity. Physically speaking, no distinction can be
made between the role of the turbulent normal stresses ′vn

2 - ′vz
2  and the role of the

turbulent shear stress ′ ′v vn z , since their relative magnitudes uniquely depend on the

orientation of the n- and z-axis. Locally, the difference between the terms including ′vn
2 -

′vz
2  and ′ ′v vn z  is balanced by the advective transport terms. However, the mechanisms

behind turbulence-generated vorticity and the physical explanation why linear turbulence
models are unable to simulate the near-bank cells, whilst more complicated models are,
require further investigation. These issues will be addressed further on in the paper.

2.2.2.3 Curved turbulent flow

The bi-cellular pattern of cross-stream circulation has often been observed in curved
turbulent flow, in laboratory experiments (Mockmore 1943, Einstein & Harder 1954,
Rozovskii 1957, Götz 1975, Choudhary & Narasimhan 1977, Siebert 1982, Booij 1985,
Booij & Tukker 1996, Shiono & Muto 1998, Tominaga, Nagao & Nezu 1999), as well as
in the field (Bathurst et al. 1979, Dietrich & Smith 1983, de Vriend & Geldof 1983). Yet,
little is known about the mechanisms underlying it, nor about the conditions of its
occurrence. Götz (1975) suggests a dependence on the aspect ratio, whereas Bathurst et
al. (1979) suggest that the outer-bank cell occurs near steep banks, but not near shelving
banks. In order to arrive at a quantitative criterion of occurrence, de Vriend (1981a)
assumes the mechanisms to be the same as in curved laminar flow, where the outer-bank
cell is generated by the centrifugal force only. He assumes the cross-stream turbulent
stresses to act in a similar (dissipative) way as the molecular stresses in laminar flow,
replacing the molecular viscosity in the Dean number by the depth-averaged turbulent
eddy viscosity that is often used in straight uniform flow:

ν τ
ρ

κ
t

b
f fu H H C UH C UH= = = =∗0 067 0 067 0 067

6
. . . . . (9)
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Thus the turbulent Dean number becomes

De C
H

Rt f= 6
κ

(10)

The curvature ratio H/R represents the driving centrifugal force whereas the friction factor
Cf represents the opposing turbulent dissipation. From observations of the outer-bank cell
in mildly curved bends, however, combined with the inability to simulate this pattern with
fully three-dimensional numerical models with a linear turbulence closure, de Vriend
concludes that the outer-bank cell cannot be explained from the centrifugal force only.
Because the observed outer-bank cells in bends are stronger than in straight flows, they
cannot be exclusively turbulence-generated, either. This led to the hypothesis that the
outer-bank cell in curved turbulent flow is generated by the combined action of the
centrifugal force (vortex-skewing) and turbulence. Christensen et al. (1999) carried out
numerical simulations of the outer-bank cell with a linear k-ε closure and with a Reynolds
Stress Model. From the differences between the results they conclude that the outer-bank
cell is not uniquely skewing-induced, but that turbulent vorticity-generation plays an
important role. Jia et al. (2001) successfully simulated the outer-bank cell observed in the
present experiment with a non-linear k-ε closure.

From this literature review, it can be concluded that the isolated behaviour of the
centrifugal term and the cross-stream turbulence terms is relatively well understood
(figure 2). The insight into the physics of curved-flow turbulence and its interaction with
the centrifugal force, however, needs further development.

2.3 Kinetic energy transfer between mean flow and turbulence

The above considerations on the downstream vorticity equation have shown that
downstream vorticity is generated by the centrifugal force (skewing), and redistributed
over the cross-section by the advective transport terms. To maintain the vorticity balance,
there must be dissipation by the turbulent stresses. For the case of the near-bank cells in
straight uniform flow, however, turbulent stresses are also responsible for the generation
of vorticity. It is not a priori clear from the vorticity equation whether locally the
turbulent stresses altogether tend to increase or decrease the mean vorticity.

By definition, the mean cross-stream motion (vn,vz) contains mean-flow kinetic energy,
(vn

2+vz
2)/2, whereas the cross-stream turbulent stresses correspond to cross-stream

velocity fluctuations (v’n,v’z) and thus contain turbulent kinetic energy, ′ + ′( )v vn
2

z
2 /2.

Hence, the exclusively turbulence-induced near-bank circulation cells in straight uniform
flow require a transfer of kinetic energy from the turbulence to the mean flow.

Previous investigations on cross-stream circulation cells were limited to the vorticity
equation (e.g. Perkins 1970, Demuren & Rodi 1984, Bradshaw 1987, Nezu & Nakagawa
1993), but further insight may be gained from looking into the transfer of kinetic energy
between the mean flow and the turbulence. Terms representing this kinetic energy transfer
appear with opposite signs in the dynamic equations for the mean-flow and the turbulent
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kinetic energy. In the turbulent kinetic energy equation, they appear as (Hinze 1975,
chapter 1-13):

P = − ′ −






+ ′ −






+ ′ −






+ ′ ′ + ′ ′ + ′ ′








v k e v k e v k e v v e v v e v v es ss n nn z zz s n sn s z sz n z nz

2 2 22
3

2
3

2
3

2 2 2 (11)

in which the turbulent kinetic energy, k, and the strain rates, ejk (j,k=s,n,z), are defined as
(Batchelor 1970, p.600):

k v v v= ′ + ′ + ′( )1
2

2 2 2
s n z (12)
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∂
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= ∂

∂
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Equation (11) indicates that the energy fluxes per unit mass take place through work done
by the turbulent stresses as the mean flow deforms. The sum of these energy fluxes is
(mostly) positive, i.e. from mean flow to turbulence; it is commonly called the production
or generation P of turbulent kinetic energy. Especially the sign of the kinetic energy
transfer via the cross-stream turbulent stresses, ′vn

2 , ′vz
2  and ′ ′v vn z , is expected to be

important with respect to the turbulence-induced vorticity.

A comparison of these terms related to the cross-stream turbulence with the terms
primarily related to boundary friction (the ′ ′v vs z - and ′ ′v vs n -terms) must give indications on

their importance with respect to the total energy loss (equivalent to the total turbulence
production) in a bend. This will be discussed later on in the paper.

Insight into the kinetic energy fluxes between mean flow and turbulence has important
consequences for the numerical modelling of turbulence. Often, mixing coefficients are
used to model the turbulent stresses. They are defined as the ratio between the deviatoric
turbulent stresses –( ′ ′ −v v kj k jk2 3δ ) and the corresponding strain rates ejk:

ν ν
δ

jk kj
j k jk

jk

= = −
′ ′ −v v k

e

2 3
2

     (j,k=s,n,z) and δ jk  is the Kronecker symbol (14)

Note that these six mixing coefficients do not have the frame-indifferent characteristics of
the Reynolds stress tensor ′ ′v vj k  or the strain rate tensor ejk. Applying the definition of the

mixing coefficients, the production of turbulent kinetic energy, equation (11), can be
rewritten as:

P=2(ν ν ν ν ν νss ss nn nn zz zz sn sn sz sz nz nze e e e e e2 2 2 2 2 22 2 2+ + + + + ) (15)

The sign of the mixing coefficient νjk indicates the sense of the corresponding kinetic
energy flux. Applying a scalar eddy viscosity for turbulence closure implies that
νss=νnn=νzz=νsn=νsz=νnz=νt>0 and that all kinetic energy fluxes are definitely positive:
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P=2 2 2 22 2 2 2 2 2ν t e e e e e ess nn zz sn sz nz+ + + + +( )>0 (16)

This implies that kinetic energy is always transferred from the mean flow to the
turbulence. By implication, when using a linear eddy viscosity concept the cross-stream
turbulence terms in the downstream vorticity equation (4) are always dissipative. This
means that this concept is not applicable to flows in which turbulence somehow
contributes to the mean kinetic energy.

3 Present objectives

From the above review of the current state of knowledge it can be concluded that the
mechanisms underlying the centre-region cell and the outer-bank cell are not yet fully
understood. Research so far was mostly restricted to the downstream vorticity equation.
Here we will carry out a simultaneous analysis of the downstream vorticity dynamics (cf.
equations (4/6) and figure 6) and the kinetic energy transfer between mean flow and
turbulence (cf. equation (11) and figures 7-8). This analysis will be based on the data
resulting from the experiment described hereafter. It will concern the following questions:

•  What are the relevant mechanisms behind the generation of the centre-region cell?
Does the simplified vorticity equation (8), which is often used to model the centre-
region cell, capture all relevant mechanisms? What are the roles of advective transport
and turbulence?

• Can the hypothesis of de Vriend (1981a) and Christensen et al. (1999) that the outer-
bank cell formation is associated with both skewing-induced and turbulence-induced
vorticity be confirmed or rejected? What is the interaction between the two
mechanisms?

•  What is the role of the cross-stream turbulence terms, ′vn
2 - ′vz

2  and ′ ′v vn z , in the

generation of turbulence-induced vorticity? The availability of data on all turbulent
stress components must enable investigating this role in further depth.

•  To what extent does the cross-stream turbulence dissipate or generate vorticity? A
simultaneous analysis of the downstream vorticity dynamics and the transfer of kinetic
energy between mean flow and turbulence must give further insight at this point.

•  What aspects are essential to the numerical modelling of strongly curved open-
channel flow, and especially of the outer-bank cell?

Furthermore, this paper presents a detailed data set on strongly curved turbulent flow with
a double pattern of cross-stream circulation cells.
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4 Analysis of experimental data

4.1 The experiment

A separate paper (Blanckaert & Graf 2001a) has been dedicated to the presentation of the
experimental set-up, the instrumentation, the measuring grids, the estimation of the
experimental accuracy, the data treatment procedures and the distributions of the mean
velocity components and the turbulent stress components. Here only features that are of
particular relevance to the present analysis are repeated.

Flow measurements were performed in a laboratory flume of 0.4 m wide, consisting of a
2 m long straight approach reach, followed by a 120° bend to the left of constant
curvature (radius 2 m). The initially horizontal sand bottom was deformed by the flow,
via a process of so-called clear-water scour. Ultimately, the sediment transport vanished
throughout and a bottom topography in static equilibrium with the flow was obtained
(figure 3).

Figure 3(a)

Figure 3(b)
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d50

[mm]
Q

[l/s]
B

[m]
H

[m]
Ss

[‰]
U

[m/s]
Fr
[/]

2.10.40 17 0.11 1.89 0.38 0.36

R
[m]

-2.0

R/B
[/]

5

R/H
[/]

17.9

B/H
[/]

3.6

Re* 

[/]

70

Re
[103]

42

Cf

[/]

0.008
R: centreline radius of curvature (negative along the n-axis) �Cf: friction factor (estimated by Blanckaert & Graf 2001a)
B: channel width �τb   : bottom shear stress, 
d50: median grain size diameter of the bed material �Fr =U/(gH)1/2: overall Froude number
Q: flow discharge �Re=UH/ν: overall flow Reynolds number
H: overall flow depth ≈ depth at centreline �Re*=u*ks/ν:  overall particle Reynolds number

Ss: overall water-surface slope at the centreline �       ν: molecular viscosity
U: reach-averaged velocity �       ks: Nikuradse equivalent sand roughness

τ ρb fu C U= =∗
2 2

Table 1: Hydraulic conditions

Table 1 shows the hydraulic conditions. Clearly, this concerns a rather sharp bend, as is
indicated by the parameter values R/B = 5 and R/H = 17.9 (B is the channel width, H is
the reach-averaged water depth, which can be confounded with the depth at the channel
axis in the investigated cross-section at 60°). With an aspect ratio B/H = 3.6, the flume is
much narrower than typical natural open-channel bends. Yet, these ratios do occur in
mountain rivers and man-made channels. Moreover, in a wide bend with a fully-
developed bottom topography, the shallow point bar is usually wide and most of the time
the flow is concentrated in the deepest part of the cross-section, where a significant
transversal bottom slope exists (figure 20 in Odgaard 1984, figure 8.2 in Dietrich 1987).
The flow in the deepest part of the cross-section in the experiment is considered to be
representative of the flow in the deeper part of wider natural bends.

Non-intrusive velocity measurements, using an Acoustic Doppler Velocity Profiler
(ADVP), were made in the outer half of the cross-section located at 60° from the bend
entrance. The ADVP was mounted in a water-filled box attached to the outer bank. The
measuring section, the measuring grid and the ADVP-configuration are shown in figure
3(b).

The ADVP simultaneously measures profiles along its main axis of the three quasi-
instantaneous velocity components vj(t), from which the mean-velocity components vj and
the turbulent stress components ′ ′v vj k  (j,k=s,n,z) can be derived. By traversing the ADVP

vertically, radial profiles covering about half the channel width were taken every ∆z =0.5
cm. Detailed information on the working principle of the ADVP, its experimental
accuracy and its comparison with other velocity meters can be found in Lemmin &
Rolland (1997), Hurther & Lemmin (1998, 2001), Blanckaert & Graf (2001a) and
Blanckaert & Lemmin (2002). The accuracy of the mean-velocity measurements is
typically better than 4%, the accuracy of the turbulent normal stresses is estimated as
better than 10% and the accuracy of the turbulent shear stresses is slightly better than that
of the turbulent normal stresses. In the lower 20% of the water column, however, the
accuracy of the turbulence measurements is reduced, due to the important mean-velocity
gradients in the measuring volume (effect of spatial averaging).

The present analysis requires the evaluation of the various terms in the vorticity equation
(4/6), as well as the kinetic energy fluxes between mean flow and turbulence (equation
(11)). These equations include derivatives of the measured quantities, which are difficult
to evaluate directly from the raw data, because of the experimental scatter. Therefore, the
experimental data have first been smoothed using two-dimensional splines with weight
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functions (de Boor 1978, Ch.14, 17). Nonetheless, the results are rather inaccurate and
interpretations should therefore be restricted to order-of-magnitude considerations.
Thanks to the weight functions, the measured data can be extended outside the measuring
grid by imposing physical boundary conditions (such as the no-slip condition at rigid
boundaries, no shear parallel to the water surface, etc.). Wherever this has been done, it is
indicated in the relevant figures. For further information on the smoothing technique
(including an example), the extrapolations outside the measuring grid and the estimated
accuracy, reference is made to Blanckaert & Graf (2001a).

4.2 Experimental results

The vectorial representation of the measured cross-stream velocity field, (vn,vz),
normalised by the overall mean velocity U = Q/(BH), is shown in figure 4(d). The centre-
region cell reflects the ‘classical’ helical motion that is characteristic of flow in bends.
The magnitude of the velocities involved is typically 10% of U. A region with weaker
cross-stream velocities is found close to the outer bank. In the upper part of this outer-
bank region an additional circulation cell can be observed, with a sense of rotation opposite
to the one of the centre-region cell. The velocities in this region are typically 3 % of U.

The circulatory part of the cross-stream motion is expressed in the downstream vorticity,
ωs, which is shown in figure 4(e). The centre-region cell and the outer-bank cell,
separated by the ωs=0-contour, are clearly visible in the vorticity field. The vorticity
increases towards the ‘eye’ of either cell and reaches maximum magnitudes of about 0.9
U/H near the eye of the centre-region cell and -0.22 U/H near the eye of the outer-bank
cell. Close to the outer-bank, ωs assumes positive values, which represent the boundary
layer near the bank, rather than an identifiable vortex.

The distribution of the normalized downstream velocity component, vs/U, is given in
figure 4(a). Its depth-averaged value is nearly constant over most of the measuring area:
Us/U ≈ 1.35 (figure 4(b)), which means that the depth-averaged velocity there is well
above the overall mean velocity. The same figure shows that the distribution of the
normalized unit discharge, UsBh/Q, with h denoting the local water depth, is concentrated
in the deep outer part of the cross-section. Integration of this profile shows that about
80% of the discharge passes through the investigated outer half of the cross-section. The
core of maximum velocity, marked by  in figures 4(a-b), is found near the transition
between the two circulation cells. Figure 4(c) compares some measured vs/Us-profiles
with a logarithmic profile for a friction factor Cf = 0.008, which corresponds to the value
estimated by Blanckaert & Graf (2001a) in the experiment. The profiles shown are
averaged over the outer-bank region (0-6 cm from the outer bank), the transition zone (6-
12 cm) and the centre region (12-20 cm). The profiles in these three regions are rather
similar: the measured velocities are well below the logarithmic profile in the upper part of
the water column and well above it in the lower part. This deformation of the vs/Us-
profiles is substantial, to the extent that the velocity maximum is found in the lower part
of the water column. By analysing the downstream momentum equation on the basis of
the measured data, Blanckaert & Graf (2002) show that this redistribution of the
downstream velocity is mainly due to advective momentum transport by the two cross-
stream circulation cells.
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extrapolations to the outside of the measuring grid:
vs  : surface: linear

bottom: logarithmic
bank:     logarithmic

vn  : surface: outer-bank cell: mass conservation
    centre-region cell: tangential to measured profile
        with ∂2vn/∂z2=0 at border of measuring grid

        and  ∂vn/∂z=0    at the water surface

bottom: Rozovskii’s (1957) profile  for Cf=0.008
bank:     no mass flux

vz  : surface: no mass flux
bottom: kinematic boundary condition
bank:    no-slip condition
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Figure 4(a):  Isolines of normalized downstream velocity, vs/U.

Figure 4(b):  Normalized depth-averaged downstream velocity, Us/U, 

  Normalized unit discharge, (UsBh)/Q.

Figure 4(c):  Vertical profiles of measured downstream velocity, vs/Us.

Figure 4(d):  Vector representation of normalized cross-sectional motion, (vn,vz)/U.

Figure 4(e):  Isolines of normalized downstream vorticity, ωsH/U.

Figure 4(f):  Extrapolation outside of measuring grid and estimation of accuracy.

Figures 5(a-b) show the distributions of the turbulence properties ′vn
2 - ′vz

2  and ′ ′v vn z , which

play an important role in the vorticity equation. They have been normalized by the
characteristic shear velocity in the measuring section, u*,60, which is defined as
u gR zh S∗ = −, ,( )60 60∂ ∂s , in which −∂ ∂zS,60 s is the downstream water-surface gradient in

the centreline and Rh is the hydraulic radius. In the experiment, this shear velocity
amounted to 0.045 m/s. Near the flow boundaries, the velocity fluctuations perpendicular
to the boundary are hindered by geometrical constraints. Near the bottom and near the
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water surface, this concerns the vertical fluctuations, so there ′ > ′v vn z
2 2 . In the region near

the outer bank, the transversal fluctuations are hindered and ′ < ′v vn z
2 2 . The damping of the

fluctuations by the water surface is only slightly weaker than that by the outer bank, and
the line where ′ = ′v vn z

2 2 , drawn in figure 5(a), only slightly deviates from the bisector of

the upper right corner of the flow domain. There, the pattern of ′vn
2 - ′vz

2  is nearly anti-

symmetrical about this line. Similar patterns of ′vn
2 - ′vz

2  have been observed in

experiments with straight uniform flow (Nezu et al. 1985, for airflow in a duct, Tominaga
et al. 1989, for open-channel flow). Nezu & Nakayama (1998, 1999) have shown that the
damping by the water surface depends on the Froude number. For low Froude numbers,
like in the present experiment, the water surface almost completely dampens the nearby
vertical fluctuations, whereas this damping gets less as the Froude number increases.
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The turbulent shear stress ′ ′v vn z  seems to be correlated with the circulation cells. Even

though the cells have a different sense of rotation, this turbulent shear stress does not
change sign. Near the ‘eye’ of the weaker outer-bank cell, the absolute value is only
slightly less than near the ‘eye’ of the centre-region cell. The pattern of ′ ′v vn z  is nearly

symmetrical about the bisector of the upper right corner of the flow domain, which again
indicates a similar influence of the water surface and the outer bank on the turbulent
stresses. A similar near-corner pattern of ′ ′v vn z  has been measured by Nezu & Nakagawa

(1984) in the case of air-flow in a duct. It is to be expected that the influence of the water
surface on ′ ′v vn z  also depends on the Froude number. In the region dominated by bottom

friction, this stress component is primarily associated with the transversal component of
the bottom shear stress. It is positive there, since the bottom shear stress is directed
towards the centre of curvature, so in the positive n-direction.
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4.3 Analysis of the centre-region cell

4.3.1 Observations (Figures 4(e), 6 and 7)

As mentioned before, there is an important feedback between the downstream velocity
and the centre-region cell. Skewing of existing mean vorticity by the centrifugal force,
–vs

2/R, is the principal generation mechanism of the centre-region cell. Integrated over the
water depth, the centrifugal term in the vorticity equation (4/6) is always positive, which
complies with the sense of rotation of the centre-region cell. In curved flow, advective
momentum transport by the centre-region cell deforms the vertical vs-profiles by
decreasing vs in the upper part of the water column and increasing it in the lower part.
This is why the velocity maximum in the present experiments is found in the lower part of
the water column (figure 4(c)). As a consequence, the centrifugal term –(∂/∂z)(vs

2/R) in
the vorticity equation is negative in a significant part of the water column (figure 6(a)),
opposite to the observed sense of rotation of the centre-region cell.

The advective transport terms in the vorticity equation, vn∂ωs/∂n+vz∂ωs/∂z, are of the
same order of magnitude as the centrifugal term. They redistribute the vorticity over the
cross-section. The positive values in the upper part of the water column (figure 6(b))
compensate for the negative centrifugal term (figure 6(a)). This explains why the centre-
region cell extends over the entire water depth, instead of splitting into two cells on top of
each other. The advective transport is generally dominated by the transversal contribution,
vn∂ωs/∂n. The vertical contribution, which is not shown separately in figure 6, is usually
much smaller.

The role of the turbulent stress ′ ′v vn z  on the centre-region cell is complex. The ′ ′v vn z -terms

are of leading order in the vorticity equation (figure 6(d), cf. equation (8)). Close to the
bottom, ′ ′v vn z  is associated with the transversal component of the bottom shear stress.
Hence, the ′ ′v vn z -term in the vorticity equation opposes the observed vorticity in this layer,

and mean-flow vorticity is dissipated into turbulence there (figure 7(b)). Just above that
near-bottom layer, but still in the lower part of the water column, the ′ ′v vn z -term favours

the observed vorticity. Analysis of the energy equation shows that a weak kinetic energy
flux from turbulence to the mean flow occurs via ′ ′v vn z . In this zone, the centrifugal and

′ ′v vn z -terms compliant with the existing vorticity are mainly balanced by the opposed

advective transport term. As mentioned before, the turbulence measurements in the lower
20% of the water column are less accurate and should therefore be interpreted with care.
In most of the upper part of the water column, the ′ ′v vn z -term opposes the observed

vorticity and mean-flow kinetic energy is transferred to turbulence.

The ′ − ′v vn z
2 2 -terms in the vorticity equation are smaller than the other terms, but they are

not negligible (cf. figure 6(c)). In the upper part of the water column, their sign is
opposite to that of the observed (positive) vorticity. In the lower part of the water column,
the sign of these terms complies with the observed vorticity.
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values favouring the observed ωs (figure 4(e)) values opposed to the observed ωs (figure 4(e))
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4.3.2 Modelling implications

For mild to moderate curvatures, the simplified vorticity equation (8) is an adequate
approximation of the downstream vorticity balance in the central part of the centre-region
cell. Blanckaert (2001b, 2002b) and Blanckaert & Graf (2001c) have proposed a non-
linear model for the centre-region cell based on equation (8), but coupled to a simplified
downstream momentum equation that accounts for the deformation of the vs-profile. By
combining this model with a two-dimensional depth-averaged flow model, it should be
possible to reproduce the velocity field in moderately curved flows with a reasonable



III.48

accuracy. However, for curvatures that are so strong that the velocity maximum is found
in the lower part of the water column, like in the present experiment, it is essential to
include the advective momentum transport terms into the transversal momentum
equation. An accurate simulation of the centre-region cell, and of the flow field in
general, now requires the use of the fully three-dimensional flow equations.

Turbulence is not purely dissipative, but restitution of kinetic energy from turbulence to
the mean flow occurs in certain regions of the flow, accompanied by mean vorticity
generation. The turbulence-generated vorticity away from the banks, however, is
relatively weak, so that a fully three-dimensional numerical model with a linear
turbulence closure must be good enough to describe the centre-region cell, even in the
case of strong curvature.
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turbulence via the cross-stream turbulent stresses (cf. equation (11)).

4.4 Analysis of the outer-bank cell

4.4.1 Observations

Except for the centrifugal term, all terms in the downstream vorticity equation (4/6) (cf.
figure 6) and all kinetic energy fluxes between mean flow and turbulence (cf. equation
(11) and figure (7)) are smaller in the outer-bank region than in the central region. The
profiles of the downstream velocity in the outer-bank region are similar to those in the
central region. The velocity maximum is located in the lower half of the water column
and ∂vs/∂z is slightly negative above that point. This implies that the sign of the
centrifugal term in the vorticity equation complies with the sense of rotation of the outer-
bank cell. Note that this is the only mechanism that drives the outer-bank cell in laminar
bend flow.

In turbulent bend flow, cross-stream turbulence plays an important role. As was shown
before, the normal stress difference ′ − ′v vn z

2 2  in the region occupied by the outer-bank cell
is nearly anti-symmetrical and the shear stress ′ ′v vn z  is nearly symmetrical about the
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bisector of the top right corner of the flow domain. If these distributions were perfectly
anti-symmetrical and symmetrical, respectively, like in a corner flow, anti-symmetrical
patterns of the corresponding terms in the vorticity equation would result in either case
(as is easily demonstrated by interchanging the n- and z-indices). Figures 6(c-d) show the
distributions of the ′ − ′v vn z

2 2 - and the ′ ′v vn z -terms in the vorticity equation (4),

respectively. In the flow domain covered by the outer-bank cell, either of them assumes
positive and negative values of the same order of magnitude as the centrifugal term. The
negative values, which comply with the sense of rotation of the outer-bank cell, seem to
be found near the eye of the cell, but this observation is not conclusive due to the limited
accuracy of the evaluations.

In the flow domain covered by the outer-bank cell, the advective transport of vorticity is
negligible (figure 6(b)). The kinetic energy transfer between mean flow and turbulence
via the cross-stream turbulent stresses ′vn

2 , ′vz
2  and ′ ′v vn z  is an order of magnitude smaller

than in the centre region (figures 7). It includes positive and negative contributions, which
indicates that mean-flow energy in the outer-bank cell is produced as well as dissipated
by cross-stream turbulent stresses.

4.4.2 Interpretation and modelling implications

The above observations lead to the following answers to the questions formulated in the
“Present objectives”.

The hypothesis of de Vriend (1981a) and Christensen et al. (1999) that both skew-induced
and turbulence-induced vorticity generation contribute to the generation of the outer-bank
cell can be confirmed. Skew-induced generation seems to be dominant: all over the region
occupied by the outer-bank cell, the sign of the centrifugal term complies with its rotation
sense. The cross-stream turbulence terms contain favourable as well as opposing
contributions, whereby the former seem to occur mainly near the ‘eye’ of the outer-bank
cell.

The turbulence-induced vorticity generation seems to be quite similar to that in straight
turbulent flow. Slight asymmetries may be relevant to the resulting vorticity pattern. This
indicates the importance of accurately modelling the boundary conditions in numerical
simulations. Nezu & Nakayama (1998, 1999), for example, have investigated the
dependence of the boundary condition at the water surface on the Froude number.

In steady flow, all terms in the right-hand-side of equations (4/6) should add up to zero.
Even when taking the experimental inaccuracy into account, the sum of the investigated
terms seems to be negative in the flow region occupied by the outer-bank cell. This non-
zero sum is presumably compensated by the non-uniformity term, -(1+n/R)−1vs∂ωs/∂s,
which was not measured. This would mean that the outer-bank cell further strengthens in
downstream direction, indicating that the two vorticity-generating mechanisms strengthen
each other. For axisymmetric flow (∂/∂s=0), it is hypothesized that the downstream
vorticity balance be maintained by an increase of the dissipation by the cross-stream
turbulence.
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For the present case of a channel with vertical sidewalls and a straight inflow reach
followed by a constant-curvature bend, this positive feedback can be explained as
follows. In the straight inflow reach, near-bank circulation cells are induced by the cross-
stream turbulence. By advecting flow momentum, they deform the vs-profiles, yielding a
negative velocity gradient ∂vs/∂z in the upper part of the water column. Upon entering the
bend, this negative gradient gives rise to a centrifugal force that enhances the outer-bank
cell, hence the deformation of the vs-profile, etc. This positive feedback between the cell
and the centrifugal force tends to intensify the outer-bank cell along the bend. This is in
line with the observed strengthening of the outer-bank cell along the bend in curved
laminar flow (Hille et al. 1985) and also explains why the near-bank cell in turbulent
curved flow is stronger than in straight flow. Such an interaction between the two
mechanisms has already been suggested by de Vriend (1981a). The experimental results
indicate that outer-bank cells even occur in weakly curved flow and that the conditions of
occurrence are not related to an instability phenomenon, like in curved laminar flow. This
also supports the above interpretation.

De Vriend (1981a) and Christensen et al. (1999) furthermore claim that turbulence
anisotropy be the mechanism responsible for the turbulence-induced vorticity and that it
cannot be accounted for by a standard linear turbulence closure. Our observations show
that the cross-stream turbulent stresses ′vn

2 - ′vz
2  and ′ ′v vn z  have a similar role and contribute

to the generation as well as the dissipation of mean-flow vorticity. As was shown before
(figure 2(b)), the combination of these stresses represents the cross-stream turbulence
anisotropy. Hence it can be concluded that turbulence anisotropy is indeed the physical
cause of turbulence-induced vorticity. Also the kinetic energy fluxes via these turbulent
stresses are of comparable (small) magnitude and generate as well as dissipate mean-flow
energy of the outer-bank cell.

Speziale (1987) demonstrates that linear turbulence models are unable to correctly
represent the turbulent normal stresses. He remarks that the near-bank circulation cells in
straight flow cannot be resolved by them and postulates that a necessary condition for
turbulence models to reproduce turbulence-generated circulation cells is that the
downstream velocity field should give rise to a non-zero difference between the turbulent
normal stresses: ′vn

2 - ′vz
2  ≠ 0. He attributes the failure of linear turbulence models, among

which the linear k-ε model, to the inability to satisfy this condition. Based on our
simultaneous analysis of the vorticity dynamics and the kinetic energy transfer between
mean flow and turbulence, this hypothesis can be refined and complemented.

Although linear turbulence models are unable to correctly represent the turbulent normal
stresses, there is no physical reason why they should yield a zero cross-stream turbulence
anisotropy:

′ − ′ = − −








 ≠∗ ∗

∗

∗

∗

∗
v v

v v
tn z

n z

n z
2 2 2 0ν

∂
∂

∂
∂

(17)

Consider for example a point in the central part of the centre-region cell, where vz≈0.
Obviously, ∂vn/∂z ≠0 and, when using a linear eddy viscosity model,

′ ′ = − +( ) ≠v v v vtn z n zz nν ∂ ∂ ∂ ∂ 0 . According to figure 2(b), this implies that ′ − ′ ≠∗ ∗v v
n z

2 2 0 ,
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so a non-zero turbulence anisotropy. As a consequence, the inability of these models to
correctly represent the turbulent normal stresses does not explain why they should not
predict turbulence-generated cross-stream circulation cells (be it incorrect ones).
Nonetheless, they apparently don’t, which can be clarified as follows.

In the case of straight uniform flow considered by Speziale, linear turbulence models do
not reproduce the near-bank circulation cells, i.e. v vn z,( ) = 0 . Consequently,

′ − ′ = − −( ) =v v v vtn z n zn z2 2 2 0ν ∂ ∂ ∂ ∂ . This heuristic observation, however, does not prove

that it is impossible for these models to simulate turbulence-generated circulation.
Introducing a perturbation to the flow, ˆ , ˆv vn z( ) ≠ 0 , such that ω̂ s ≠ 0  and

′ − ′ = − −( ) ≠ˆ ˆ ˆ ˆv v v vtn z n zn z2 2 2 0ν ∂ ∂ ∂ ∂ , will generally give rise to generation and/or

dissipation of mean-flow vorticity. The numerical model shows that the perturbation
dampens out, whence the turbulent stresses must be dissipative. Elaboration of the
downstream vorticity equation with a constant eddy viscosity easily leads to the same
conclusion.

In fact, when using a linear turbulence closure, the kinetic energy fluxes are always
directed from the mean flow to turbulence (equation (16)). The analysis of our
experimental data indicates that, in the region of the outer-bank cell, the (weak) kinetic
energy fluxes due to the cross-stream turbulent stresses are directed both from the mean
flow to turbulence and inversely. Hence, the cross-stream turbulent stresses contribute to
the generation as well as the dissipation of the outer-bank cell. Clearly, this phenomenon
cannot be reproduced by linear closure models with a scalar eddy viscosity. Kinetic
energy fluxes from turbulence to mean flow have been observed in various other
experiments in open-channel bends (Booij 1985, Anwar 1986, Booij & Tukker 1996,
Shiono & Muto 1998 for the case of overbank flow in a meander).

The above analysis shows that, in addition to Speziale’s (1987) necessary condition, there
is a second necessary condition for turbulence models to reproduce turbulence-generated
vorticity. The turbulence model may not be purely dissipative, but must be able to
represent fluxes of kinetic energy from turbulence to the mean flow. This is confirmed by
the results of Kawahara & Tamai (1988), who demonstrate theoretically that linear eddy
viscosity models cannot represent turbulence-induced vorticity. Their demonstration is
based on the presumption of a positive eddy viscosity. In a linear closure model, fluxes of
kinetic energy from turbulence to the mean flow would imply negative mixing
coefficients (cf. equation (15)).

Non-linear turbulence models, based on a non-linear relationship between the turbulent
stresses and the strain rates, seem to satisfy both necessary conditions. At least, they
correctly predict the near-bank cells in turbulent straight flow (Speziale 1987, Colombini
1993), as well as the outer-bank cell in the present experiment (Jia et al. 2001). Higher-
order turbulence models, such as Algebraic Stress Models or Reynolds Stress Models,
also seem to satisfy both conditions. Naot & Rodi (1982) and Demuren & Rodi (1984)
simulated the near-bank cells in turbulent straight flow with an Algebraic Stress Model,
and Christensen et al. (1999) simulated outer-bank cells in turbulent curved flow with a
Reynolds Stress Model, even for weak curvature. They have also succeeded in simulating
the outer-bank cell in a bend with a standard linear k −ε  model, but only for very strong
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curvature ratios (R/H<16). With the k-ε model, turbulence is dissipative and a very strong
skewing-induced vorticity generation is needed to obtain the outer-bank cell. This is in
line with the above conclusions.

The above results indicate that the vorticity pattern cannot be explained by uniquely
considering the vorticity equation (4/6), as has been done in previous investigations, but
that the kinetic energy transfer plays an essential role. Other observations seem to confirm
this. Our measurements show that the influence of the water surface and the outer bank on
the cross-stream turbulence, ′vn

2 - ′vz
2  and ′ ′v vn z  (cf. figure 5), is nearly identical. The

distributions of the corresponding cross-stream turbulence terms in the downstream
vorticity equation will thus be nearly identical in a corner formed by two fixed boundaries
and in one formed by a water surface and a fixed boundary. However, Tominaga et al.
(1989) and Nezu & Nakagawa (1993) have shown that the resulting vorticity patterns are
significantly different for the case of straight uniform flow. Whereas two identical
counter-rotating circulation cells exist in a corner formed by two fixed boundaries, the
circulation cell near the water surface is dominant over the counter-rotating one near the
bank in an open-channel corner. These different vorticity patterns can be explained by
differences in the kinetic energy fluxes. Near the water surface, the kinetic energy fluxes
are smaller than near the fixed boundary, where the mean velocity gradients are more
pronounced due to the no-slip condition.

The results of the present analysis of the outer-bank cell can be summarised as follows.
The proximity of flow boundaries modifies the turbulence characteristics, which, in their
turn, influence the downstream vorticity field, and thus the cross-stream motion (vn,vz). In
the case of a bend with a vertical outer wall, this results in the formation of an outer-bank
cell. By advecting momentum, the cross-stream motion causes a redistribution of the
velocity and the boundary shear stress. An accurate description of the effects of boundary
proximity on the turbulence characteristics, and especially on the kinetic energy transfer,
is therefore a prerequisite to the accurate modelling of the flow field in the vicinity of the
outer bank.

4.5 Kinetic energy transfer

Our analysis shows that the correct modelling of the kinetic energy fluxes between mean
flow and turbulence, which add up to the total production of turbulent kinetic energy (cf.
equation (11)), is the key to accurate simulation of the cross-stream circulation cells,
especially the one near the outer bank. In order to estimate how this production of
turbulent kinetic energy is composed, the contributions of the cross-stream turbulent
stress components, ′vn

2 , ′vz
2  and ′ ′v vn z  (cf. figure 7), will be compared with the main

contributions related to friction at the flow boundaries.

In two-dimensional straight uniform flow, turbulence is produced by bottom friction and
represented by the kinetic energy flux − ′ ′2v v es z sz , with the strain rate esz defined according
to equation (13). Assuming a triangular distribution of − ′ ′v vs z , between 0 at the water
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surface and u*
2  at the bottom, and assuming a logarithmic vertical profile of vs, this can be

elaborated to

− ′ ′ = −

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
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∗2 1 1
3

v v e
u

H

H
s z sz zκ

          or           
− ′ ′

= −

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
∗

2 1 13

v v e

u H

Hs z sz

zκ
(18)

This function is shown in figure 8(c). The measured distribution of this component
− ′ ′ ( )∗2 60

3v v e u Hs z sz ,  in the present experiment is shown in figure 8(a). In the central

region, kinetic energy is transferred from turbulence to the mean flow in the part of the
water column where ∂vs/∂z < 0, since − ′ ′ ( )∗2 60

3v v e u Hs z sz , < 0. Considerable magnitudes

of this quantity are found in this region: − ′ ′ ( )∗2 60
3v v e u Hs z sz , = O(-50). Near the bottom

mean flow kinetic energy is dissipated into turbulence, with transfer rates that strongly
increase towards the bottom and reach values of − ′ ′ ( )∗2 60

3v v e u Hs z sz ,  = O(300). This

measured order of magnitude agrees with that from the straight-flow profile in figure 8(c).
In the part of the outer-bank region that is covered by the measuring grid, this component
of the kinetic energy transfer is relatively small.

Close to the bottom, the kinetic energy transfer component − ′ ′ ( )∗2 60
3v v e u Hn z nz ,  (figure

7(b)) is associated with the transversal component of the bottom friction. Its maximum
near-bottom values in the central region are of a similar order of magnitude as those
associated with the downstream component of the bottom friction, − ′ ′ ( )∗2 60

3v v e u Hn z nz , =

O(100).
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In the central region, the pattern of − ′ ′ ( )∗2 60
3v v e u Hs n sn ,  (figure 8(b)), is similar to that of

− ′ ′ ( )∗2 60
3v v e u Hs z sz ,  (figure 8(a)). In the upper part of the water column, where ∂vs/∂z<0,

it is negative, whereas it is positive in the lower part and strongly increases near the
bottom, up to values O(100). The latter was to be expected, since − ′ ′v vs n  represents
downstream friction on the vertical projection of the inclined bottom. The strong increase
of this term towards the outer bank is obviously associated with the bank friction. Yet, the
turbulence production by the bank shear stress only reaches values of
− ′ ′ ( )∗2 60

3v v e u Hs n sn ,  = O(20), which is significantly smaller than the turbulence

production by the bottom shear stress. This indicates that the bank shear stress is
considerably smaller than the bottom shear stress, which is in agreement with the
observed smaller turbulence activity in the outer-bank region (Blanckaert & Graf 2001a).

Mean flow kinetic energy is thus mainly transferred to turbulence in the boundary layers,
especially near the bottom. The normalized kinetic energy flux related to boundary
friction reaches values O(100). Except for − ′ ′ ( )∗2 60

3v v e u Hs z sz ,  = O(-50), the normalized

kinetic energy fluxes in the centre region are at least one order of magnitude smaller, viz.
O(1 to 10), over most of the water column. In the outer-bank region outside the area
dominated by the sidewall-friction, they are at least another order of magnitude smaller,
viz. O(0.1). So the kinetic energy transfer via the cross-stream turbulent stresses in the
regions covered by the two circulation cells represents a negligible part of the total kinetic
energy transfer between mean flow and turbulence. Hence it is irrelevant to the total
energy expenditure in a bend. Nonetheless, these small kinetic energy fluxes play an
essential role in the formation of the circulation cells, hence the distribution of the
downstream velocity and the boundary shear stress. In the centre-region cell, the
dissipation of mean flow kinetic energy into turbulence balances the driving centrifugal
force in most of the water column. The outer-bank cell partly originates from turbulent
kinetic energy restitution and at the same time it is dissipated into turbulence via the
cross-stream turbulent stresses.

5 Conclusions

Previous investigations of strongly curved turbulent flow, in which only the downstream
vorticity equation was considered, have not produced a clear picture of the physics
underlying the two cross-stream circulation cells. The present analysis, based on high-
quality three-dimensional flow measurements, considers the combination of the
downstream vorticity balance and the kinetic energy transfer between mean flow and
turbulence. This leads to a better physical understanding, especially of the role of
turbulence. Furthermore, it gives guidance to the numerical modelling of flow in sharply
curved open-channel bends.

The centre-region cell is often explained as resulting from the balance between the
driving centrifugal term –(∂/∂z)(vs

2/R) and the dissipating shear stress term ∂2 ′ ′v vn z /∂z2 in

the downstream vorticity equation. It is therefore often modelled using the corresponding
simplified vorticity equation (8).
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There is an important feedback between the centre-region cell and the downstream
velocity, the distribution of which is determined to a large extent by the advective
momentum transport by the cross-stream circulation cells. This decreases the velocities in
the upper part of the water column, while increasing them in the lower part. The strength
of the centre-region cell is determined by the vertical profile of the centrifugal force,
which depends critically on the vertical profile of the downstream velocity. This leads to a
negative feedback between the downstream velocity profile and the centre-region cell,
and thus a considerably weaker centre-region cell than expected on the basis of the
classical first-order perturbation approach. In the case of mild to moderate curvature, the
simplified vorticity equation is nonetheless an adequate approximation of the downstream
vorticity balance in the central region of the cross-section, but it has to be combined with
a downstream momentum equation that takes due account of the advective redistribution
phenomenon.
In the case of strong curvature, like in the present experiment, the deformation of the
downstream velocity profiles due to advection is so strong, that the velocity maximum is
found in the lower part of the water column and the vertical derivative of the velocity is
negative above that point. This means that the centrifugal term in equation (8) changes
sign at the point of maximum velocity. Under these conditions, equation (8) would predict
two opposite centre-region cells on top of each other. The existence of a single centre-
region cell that covers the entire water column is to be attributed to advective transport of
vorticity, which compensates for the negative centrifugal term. Furthermore, the effect of
the turbulent stress ′ ′v vn z  is not exclusively dissipative, in the lower part of the water

column it also contributes to the generation of the centre-region cell. The accurate
simulation of the centre-region cell for these strong curvatures requires the use of fully
three-dimensional momentum equations, including the advective transport terms.
The linear turbulence closure (turbulent stress components linearly proportional to the
corresponding strain rate components) that is often used in three-dimensional numerical
models cannot account for the turbulence-generated vorticity, since it excludes the
transfer of kinetic energy from turbulence to the mean flow. The contribution of
turbulence-generated vorticity in the centre region is moderate, however, so fully three-
dimensional numerical models with a linear turbulence closure are likely to yield
reasonably accurate predictions of the centre-region cell, even in the case of strong
curvature.

For the outer-bank cell, the analysis confirms the hypothesis formulated in the literature
that both the centrifugal force and the cross-stream turbulent stresses contribute to the
generation of this cell. Like in the central region, the maximum downstream velocity in
the region near the outer bank is found in the lower part of the water column and the
velocity gradient ∂vs/∂z is negative in most of the water column. Hence the sign of the
centrifugal term in the vorticity equation complies with the sense of rotation of the outer-
bank cell, which means that the centrifugal force enhances this circulation. Terms related
to the cross-stream turbulent stresses are of the same order of magnitude as the centrifugal
term and include contributions that enhance the outer-bank cell. These turbulent stress
terms represent the anisotropy of the cross-stream turbulence due to the proximity of
boundaries. Cross-stream advective transport of vorticity seems to be negligible in the
outer-bank region. In the outer-bank cell, vorticity generation by the centrifugal term and
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by the cross-stream turbulence strengthen each other. The experimental results indicate
that an outer-bank cell will also occur in the case of weak curvature, and that its
occurrence is not caused by flow instability, like in the laminar flow case.
Linear turbulence closure models are unable to represent the turbulence-generated part of
the outer-bank cell, although they may well produce anisotropy of the cross-stream
turbulence. When described with such a linear turbulence model, the cross-stream
turbulent stresses always dissipate mean flow vorticity, since the kinetic energy transfer
can only be from mean flow to turbulence. The experimental results indicate that kinetic
energy is transferred in either direction, so also from turbulence to the mean flow. As a
consequence, the outer-bank cell is enhanced by kinetic energy input from turbulence,
and at the same time suppressed by turbulent dissipation. Turbulence closures that include
the possibility of kinetic energy transfer between turbulence and mean flow in either
direction are therefore required to accurately reproduce the outer-bank cell. The kinetic
energy transfer from turbulence to the mean flow is small compared to the total
production of turbulent kinetic energy, which is mainly due to boundary friction.
Nonetheless, it plays an essential role in the dynamics of the outer-bank cell.

Even though the experimental data were limited to the outer-half of one single cross-
section under one set of hydraulic and geometric conditions, they yielded valuable
information on the mechanisms underlying both cross-stream circulation cells and gave
guidance to improve their numerical simulation. The experimental research is presently
extended by measuring entire cross-sections all along a large optimised laboratory flume
under different hydraulic and geometric conditions. Some measurements of similar bi-
cellular patterns of cross-stream circulation have already been reported by Blanckaert
(2002a).
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III.3 Turbulence Characteristics in Sharp Open-Channel Bends

K. Blanckaert1 and H.J. de Vriend2
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Abstract

In spite of its importance, little is known about the turbulence characteristics in open-
channel bends. This paper reports on an experimental investigation of turbulence in one
cross-section of an open-channel bend, in which the flow is characterized by a bi-cellular
pattern of cross-stream circulation and a strongly reduced turbulence activity in the outer
bend, as compared to straight uniform shear flow. Measured distributions are given of the
turbulent kinetic energy, its production, the mixing coefficients, some parameters
characterizing the turbulence structure, and the fourth-order correlations of the turbulent
velocity fluctuations. Furthermore, the transport equation for the turbulent kinetic energy
is evaluated term by term, on the basis of the measured data. This shows that the
turbulence structure is the main cause of the observed reduction of turbulence activity.
The departures of the measured turbulence structure from its equivalent for straight
uniform shear flow are correlated with a curvature-flux-Richardson number, Rf, which
parameterizes the streamline curvature. Such a correlation may be useful to improve
simple turbulence closure models for curved open-channel flow. Since the cross-stream
circulation depends on the same parameter, Rf is an important scaling parameter in this
type of flow.

Keywords

Open-channel bend, curved flow, turbulence, turbulence structure, turbulent kinetic
energy, experiment, turbulence closure, mixing coefficient

1 Introduction

Turbulence plays an important role in open-channel flows. It is to a large extent
responsible for the spreading and mixing of suspended matter, pollutants and heat, and for
the transport of sediment. It also has a strong interaction with the mean velocity field and
the boundary shear stress. Turbulence plays an important role in the formation of cross-
stream circulation cells (cf. Blanckaert and de Vriend, 2002a), which in their turn
influence the distribution of the velocity and the boundary shear stress (cf. Blanckaert and
Graf, 2002). This interaction is reflected by the sensitivity of flow models to the
turbulence closure.
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Open-channel bends are ubiquitous in alluvial lowland rivers, but they also occur in
mountain rivers and in manmade channels. They influence the conveyance capacity of the
channel, may lead to undesired erosion/deposition and enhanced mixing, and they provide
a place for the intake of relatively clear water. From an ecological point of view, meander
migration is an important agent in floodplain rejuvenation. Many good reasons, therefore,
to investigate curved open-channel flow.

In spite of the relevance of both turbulence and bends, little is known about the turbulence
characteristics in open-channel bends. The study of environmental problems, such as the
spreading and mixing of pollutants and heat, suffers from an almost complete lack of
experimental data on the mixing process. Numerical simulations of the flow in open-
channel bends frequently use extensions of turbulence closures that were developed for
rectilinear shear flow. They often give poor results, due to the different turbulence
structure. The lack of experimental data, especially from simultaneous high-resolution
measurements of all three velocity components, hampers the development of improved
turbulence models.

The main goal of this paper is to present detailed experimental data on the turbulence
characteristics in an open-channel bend, including distributions of the turbulent kinetic
energy (tke), the production of turbulent kinetic energy, the mixing coefficients,
parameters characterizing the turbulence structure, and fourth-order turbulence
correlations. These experimental data are measured in one cross-section of a bend, in
which the flow is  characterized by the existence of a bi-cellular pattern of cross-stream
circulation and by a strong reduction of the turbulence activity in the outer bend as
compared to straight uniform shear flow.

A second goal of this paper is to analyze the mechanisms that lead to the reduction of the
turbulence activity in the outer bend, via a term-by-term evaluation of the transport
equation for the turbulent kinetic energy on the basis of the measured data. Special
attention will be given to the terms representing the production of tke and to those
representing its advective transport by the cross-stream motion. The turbulence structure
is shown to implicitly play an important role in the tke-equation. A further analysis of the
turbulence structure is reported in a complementary paper (Blanckaert and de Vriend,
2002b).

A third goal of this paper is to find indications on how turbulence closure models can be
improved. The observed turbulence structure is shown to be correlated with the so-called
curvature-flux-Richardson number, Rf, which parameterizes the effect of the streamline
curvature. This correlation may be used to improve the capabilities of simple semi-
empirical turbulence closures. Blanckaert (2001b) and Blanckaert and Graf (2001c) have
shown that the cross-stream circulation strongly depends on the same curvature-flux-
Richardson number. This number must therefore be an important parameter in curved
open-channel flow.
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2 The experiment

Flow measurements were performed in a laboratory bend with a natural bottom
topography: the initially horizontal sand bed was deformed by the flow corresponding to
clear-water-scour conditions (critical shear stress for sediment transport in straight
uniform flow), ultimately leading to the stable topography shown in Fig. 1. The
laboratory flume is B=0.4 m wide and consists of a 2 m long straight approach reach,
followed by a 120° bend with a constant radius of curvature of R = -2 m (R is negative if
the curvature vector is directed along the n-axis). The hydraulic conditions of the flow are
shown in Table 1.
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[/]
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B/H
[/]

3.6

Re* 

[/]
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42

C
[m1/2/s]

35

R: centerline radius of curvature (negative along the n-axis)  U: reach-averaged velocity
B: channel width  C: Chezy friction factor; C/√g=U/u*

d50: median grain size diameter of bed material  Fr =U/(gH)1/2: reach-averaged Froude number
Q: flow discharge  Re=UH/ν: reach-averaged flow Reynolds number
H: reach-averaged flow depth ≈ flow depth at centerline  Re*=u*ks/ν:  reach-averaged particle Reynolds number

      in section at 60°         ν: molecular viscosity
Ss: reach-averaged water-surface gradient at centerline         ks: Nikuradse equivalent sand roughness
u*:  friction velocity

Table 1: Hydraulic conditions

The parameters R/B = 5 and R/H = 17.9, and hence the aspect ratio B/H = 3.6, correspond
to a bend that is rather sharp and significantly narrower than usual in natural lowland
rivers. These ratios do occur, however, in mountain rivers and man-made channels.
Moreover, the flow in a wide bend with a mobile-bottom topography is concentrated most
of the time in the deepest part of the cross-section near the outer bank, where a significant
transversal bottom slope exists (Fig.1; Odgaard, 1984; Dietrich, 1987). The aspect ratio
there is significantly smaller than in a straight reach of the same channel. The flow in the
outer bend in the present experiment is thought to be representative of the flow in the
deepest part of natural channel bends. By considering a relatively sharp bend, the
curvature effects are more pronounced, hence better visible.

Velocity measurements were made on a fine grid in the outer half of the cross-section at
60° from the bend entrance, using an Acoustic Doppler Velocity Profiler (ADVP). The
measured data are represented and analyzed in a co-ordinate system with the s-axis along
the channel centerline, the n-axis perpendicular to it and pointing to the left and the z-axis
vertically upwards, perpendicular to the horizontal (s,n)-plane. The measuring section, the
reference system, the measuring grid and the ADVP-configuration are shown in Fig.1b.
The ADVP measures the three instantaneous velocity components vj(t) simultaneously in
a horizontal line perpendicular to the channel wall. This provides sufficient information to
derive the mean velocity vector rv v v v= ( , , )s n z , as well as the fluctuating velocity vector
r′ = ′ ′ ′v v v v( , , )s n z  and all turbulent correlations ′ ′v va b

i j
 (i,j = s,n,z; a and b are integers). To

eliminate the experimental scatter, analytical surfaces have been fitted to the raw
experimental data, using two-dimensional smoothing splines with weight functions (de
Boor, 1978). This procedure allows for a more precise evaluation of the differential-terms
in the transport equation for tke. Furthermore, thanks to the weight functions, the
measured data can be extended outside the measuring grid by imposing physical
boundary conditions (such as the no-slip condition on rigid boundaries, no shear parallel
to the water surface, etc.). Yet, these experimental evaluations are rather inaccurate and
interpretations should be limited to order-of-magnitude considerations. Detailed
information on the experimental set-up, the ADVP, the data treatment procedures, the
measuring grid and the extrapolations outside the measuring grid, estimations of the
experimental accuracy and presentations of the distributions of the mean velocities and
the turbulent stresses ′ ′v vi j  has been reported before (Blanckaert and Graf, 2001a). Only

the measured data that are of particular relevance to this paper, viz. the mean and
turbulent kinetic energy distributions, will be given here .
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3 Experimental results

The flow field in the investigated cross-section at 60° is characterized by a bi-cellular
pattern of cross-stream motion (vn,vz), which is shown in Fig.2. A circulation cell –
termed center-region cell - with outward velocities near the water surface and inward
velocities near the bottom is observed in the center region. This cell represents the
classical helical motion characteristic of flow in bends. The cross-stream velocities
involved are typically 10% of the mean downstream velocity. A region of considerably
weaker cross-stream velocities is observed close to the outer bank. In the upper part of
this outer-bank region an additional circulation cell – termed outer-bank cell – is found,
with a sense of rotation opposite to that of the center-region cell. The cross-stream
velocities involved are typically 3% of the mean downstream velocity. The mechanisms
leading to these two circulation cells have been analyzed by Blanckaert and de Vriend
(2002a).

02468101214161820
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Fig. 2: Vector representation of normalized cross-stream motion, (vn,vz)/U.

Figs. 3a,b show the normalized distributions over the investigated part of the cross-
section of the mean-flow kinetic energy, K/(1/2U2), and the turbulent kinetic energy,
k/(1/2u*

2
,60), per unit mass, in which K and k are defined as:

K v v v v= + +( ) ≈1
2

1
2

2 2 2 2
s n z s                and                 k v v v= ′ + ′ + ′( )1

2
2 2 2

s n z (1)

respectively. The characteristic shear velocity in the measuring section,
u gR zh S∗ = −, ,( )60 60∂ ∂s =0.045 m/s, is based on the downstream water-surface gradient at

the centerline, −∂ ∂zS,60 s = 2.89 ‰, and the hydraulic radius, Rh= 0.07 m, in the section at

60°. The contribution of the different components to k and to K have been reported by
Blanckaert and Graf (2001a).
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Fig.3a:  Isolines of normalized mean-flow kinetic energy,                . 

Fig.3b:  Isolines of normalized turbulent kinetic energy,                  .

Fig.3c:  Depth-averaged normalized mean flow and turbulent kinetic energy,             

                    and                     , and ratio,               . 

Fig.3d:  Vertical profiles of                   in straight flow and bend flow (measured).
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In a straight uniform flow, the vertical profiles of Kstraight = v2
s,straight/2 typically increase

from zero at the bottom to a maximum value near the water surface, whereas the vertical
profiles of k typically decrease monotonically from the bottom towards the water surface.
Assuming a logarithmic downstream velocity profile and an exponentially decreasing
turbulent kinetic energy from the bottom towards the water surface (Nezu and Nakagawa,
1993, p.54):

v U
g
C h

U fstraights s s s
z

, ln= + +













 =1 1κ        and      k u estraight

h= ∗

−
4 78 2 2
.

z

(2), (3)

(Us= vs  is the local depth-averaged downstream velocity), it is found by integration of
equations (2) and (3) over the flow depth h that k K  uniquely depends on the Chezy

friction coefficient:

k

K

k

v f

u

U f

g

C

g

C
straight

straight

straight

= =








 = ≈∗

1
2

2 2

2

2 2 2
4 133 4 133 4 1

s s s s,

.
.

.
. . (4)

For C≈35 m1/2/s, k K  would assume a value of about 0.03.
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In our experiment, the distributions of K and k show a much more complex behavior. The

vertical profiles of K/(1/2U2) ≈ v /Us

2( )  (Fig. 3a) do not increase from the bottom to the

surface but have their maximum in the lower part of the water column. K increases in
outward direction, to reach a maximum of about 1.1 U2 at the separation between the two
circulation cells. Fig. 3c shows that the depth-averaged value, K , increases strongly

near the centerline and is nearly constant at about 0.95 U2 in most of the outer half of the
cross-section. Since the total mean flow kinetic energy content of the cross-section will
not be very different from that in the corresponding straight channel flow, K  has to be

much smaller in the inner part of the cross-section. This means that the mean flow kinetic
energy is concentrated in the outer bend. The mechanism leading to this K-distribution
has been analyzed by Blanckaert and Graf (2002).

The measured distribution of k (Fig. 3b) exhibits an opposite pattern, in the water column
as well as over the width. The position of the core of minimum k-values nearly coincides
with that of maximum K-values, and positive/negative gradients of k correspond to
negative/positive gradients of K. In Fig. 3d, the vertical profile of kstraight/(1/2u*

2
,60) for

straight uniform flow - according to Eq. (3) and based on u* = U√g/C with C ≈ 35 m1/2/s –
is compared with the vertical profiles of k/(1/2u*

2
,60) measured at 5.9 cm and 17.9 cm from

the outer bank. In contrast to straight uniform flow, the measured profiles decrease from
the bottom to a minimum and then increase towards a maximum near the water surface
(Fig. 3b). Similar vertical k-profiles have been measured in channel bends and meanders
by Booij (1985), Tamai and Ikeya (1985), Anwar (1986), Muto (1997) and Sudo et al.
(2001). The depth-averaged value k /(1/2u*

2
,60) decreases from a centerline value of 2.2

to minimum values of about 1 in the outer-bank region, only to increase in the region
affected by bank friction.

While the ratio k K  would be constant (about 0.03) over the width in straight uniform
flow, the opposite patterns of K and k result in a pronounced variation of k K  over
the width in our experiment. Towards the centerline, k K  is of the expected order of

magnitude, but it then strongly decreases, down to 0.01 in most of the outer bend, only to
increase strongly in the region affected by bank friction. Since the cross-sectional mean
must be not far from 0.03, high k K -values must exist in the inner half-section. Thus,

as compared to straight uniform flow, the turbulence activity is rather strongly reduced in
the outer bend, and enhanced correspondingly in the inner bend.

As stated in the “Introduction”, knowledge of the turbulence characteristics and insight
into the role of turbulence are of practical relevance. In the next section, a term-by-term
evaluation of the transport equation for k is made on the basis of the measured data, in
order to gain insight into the mechanisms leading to the observed distributions of k and

k K .
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4 Analysis

4.1 Transport equation for k

The distribution of k is governed by the transport equation for k (Hinze, 1975; see
Batchelor, 1970, for the transformation to the curvilinear co-ordinate system):

(5)

pressure-gradient work + turbulent k-transport

PPPP    = production of k = exchange of kinetic energy between mean flow and turbulence

viscous dissipation of k

                                 1 2444 3444                                                                            1 2444444444 3444444444

                   1 24 34                     1 244 344

                                                                                                                             1 2444444444444444 3444444444444444

         123

          123

steady flow non-uniformity advective k-transport by 
cross-stream motion

non-uniformity

−
+

′ +








 ′









 +

+
+ ′ +









 ′









 + ′ +









 ′























1
1

1
1

1
n s n

n
n zs n zR

t
R

R t t

p
k v

p
k v

p
k v

∂
∂ ρ

∂
∂ ρ

∂
∂ ρ

( )

− ′ −






+ ′ −






+ ′ −






+ ′ ′ + ′ ′ + ′ ′








v k e v k e v k e v v e v v e v v es ss n nn z zz s n sn s z sz n z nz

2 2 22
3

2
3

2
3

2 2 2

−ε ν( )

0 1
1

= = −
+

+ +










∂
∂

∂
∂

∂
∂

∂
∂

k

t
v

k
v

k
v

k

R

                  
n s n zs n z

where kt denotes the instantaneous turbulent kinetic energy and e e ess nn zz+ + = 0 :

k v v vt = ′ + ′ + ′( )1
2

2 2 2
s n z (6)

Since they are not relevant for our experimental analysis, all terms containing the
molecular viscosity ν are regrouped in ε(ν). Besides the viscous dissipation of turbulence
it also contains some viscous diffusion (see Hinze, 1975), which is assumed to be
negligibly small, given the high Reynolds number in these experiments. In Eq. (5), t
denotes time, (1+n/R) is a metric factor accounting for the divergence of the radial co-
ordinate axes, p’ are the turbulent pressure fluctuations and eij (i,j=s,n,z) are the strain
rates.

The bracketed terms in the third line of Eq. (5), denoted by P, are found with the opposite
sign in the transport equation for the mean flow kinetic energy, K (Hinze, 1975). They
represent the exchange of kinetic energy between mean flow and turbulence, which
occurs through work of deformation of the mean motion by the turbulent stresses.
Although negative contributions may exist in some regions of the flow domain (also see
Fig. 4c), the sum is globally positive and it is commonly called the production of k.
Globally speaking, P is balanced by the viscous dissipation ε(ν). Locally, P and ε(ν) do
not balance and their difference is due to the transport terms in the first and second lines
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of Eq. (5). These terms do not generate or dissipate energy, but merely redistribute it from
one point in the flow to another (Tennekes and Lumley, 1972). The terms in the first line
represent the advective transport of k by the cross-stream motion (vn,vz) and due to the
flow non-uniformity (∂/∂s), whereas the terms in the second line represent turbulent
diffusion of k and work done by the pressure-gradient. Our experiment concerns steady
flow (∂k/∂t=0), but the unsteady term is retained in Eq. (5) to facilitate interpretation:
positive/negative terms in the right-hand-side correspond to terms that tend to
increase/decrease the local k.

The various terms in Eq. (5) are evaluated, as far as possible, from our experimental data,
in order to gain insight into the mechanisms underlying to the observed k-distribution. By
definition, the terms related to downstream variations in the flow field (∂/∂s-terms;
including those appearing implicitly in the strain rates ess, esn and esz) cannot be evaluated
from velocity measurements in a single cross-section. The terms related to the pressure
fluctuations could not be evaluated since the pressure was not measured.

In straight uniform flow, there is no advective transport of tke, whence Eq. (5) reduces to

0 2= − ′ +








 ′









 − ′ ′ −∂

∂ ρ
ε ν

z z s z sz

p
k v v v et ( ) (7)

Assuming a triangular distribution of − ′ ′v vs z  with values 0 at the water surface and u∗
2  at

the bottom, and assuming a logarithmic vertical profile of the downstream velocity vs (Eq.
2), one can easily derive that

Pstraight= − ′ ′ = −






∗2 1 1
3

v v e
u

H

H
s z sz zκ

       or       
− ′ ′

= −




∗

2 1 13

v v e

u H

Hs z sz

zκ
(8)

This function is shown in Fig. 4a. The k-production is maximum at the bottom and
rapidly decreases towards the water surface. Clearly, bottom friction is the principal
source of tke. This justifies normalizing the evaluated terms in the k-equation by
u H∗ =, .60

3 0 0008  m2/s3. The tke is redistributed over the flow depth by the first terms in

Eq. (7) and dissipated by the last term.

Intuitively, one would expect the observed k-pattern in our curved-flow experiment to be
redistributed (advective transport) by the cross-stream motion (vn,vz). This is difficult to
demonstrate, since the k-distribution strongly interacts with the cross-stream motion. In
order to have an idea of its influence, we start from a fictitious k-distribution, as would
exist in the absence of cross-stream motion, with high k-values near the flow boundaries
and a rapid decrease away from those boundaries. Such a distribution, inspired by Eq. (3),
is proportional with the bottom shear stress τ ρb u= ∗

2 , which in the absence of advective
momentum transport and neglecting influences from the banks, can be obtained from the
simplified depth-integrated downstream momentum equation (Blanckaert and Graf,
2002):

τ
ρ

∂
∂

b

R

Sgh
z= −

+
1

1 n s
(9)
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∂zS/∂s is nearly constant over the width of the bend; however, the physical water surface
slope, (1+n/R)−1∂zS/∂s, is larger in the inner bend than in the outer bend due to the metric
factor 1+n/R (n/R >/<0 in outer/inner bend). This is the so-called potential-vortex effect
that impels the locus of high velocity towards the inner bank. Over a natural bottom
topography, however, the influence of the local flow depth h is dominant and τ ρb u= ∗

2

increases in outward direction. The fictitious k-distribution shown in Fig. 4b is obtained
by inserting the measured values of ∂zS/∂s and h in Eq. (9) and Eq. (3). To account in a
simple way for turbulence generation by bank friction, the fictitioud k-pattern is taken
symmetrical about the bisectors of the lower corners of the flow domain.,
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Fig. 4: (a) Normalized production of k in straight uniform flow; (b) Fictitious k-
distribution and schematic pattern of cross-stream motion (vn,vz); (c) Normalized

production of k measured in the experiment; (d) Normalized advective transport of k
measured in the experiment.

We now let the measured (vn,vz)-pattern act upon this fictitious k-distribution (Fig. 4b).
The center-region cell advects tke clockwise:

- the high near-bottom k-values are concentrated in the inner bend;
- the high k-values near the inner bank spread out near the water surface in the inner

bend;
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- the low k-values near the water-surface shift towards the downward flow outer part of
the center-region cell and give rise to a core of low k-values further down in the water
column;

- the relatively low k-values originating from the region of downward flow between the
two cells concentrate near the bottom in the outer bend.

Similarly, the outer-bank cell advects tke counter-clockwise:

- the high k-values near the outer-bank shift towards the water-surface near the outer-
bank;

- the low values near the water surface shift towards the region where the outer-bank
cell goes downwards and contributes to the core of low k-values;

- the relatively low k-values in the lower half of the outer-bank cell are advected toward
the outer bank.

Qualitatively, the above description agrees well with the measured distribution of k (see
Fig. 3b).

However, the measured distribution of the advective k-transport by the cross-stream
motion (Fig. 4d) does not clearly show the above described redistribution. In the center-
region, the measured advective k-transport (Fig.4d) is negative near the bottom and thus
tends to decrease the observed k, whereas it is positive near the water surface and tends to
increase the observed k. Averaged over the flow depth, the positive and the negative
contributions nearly cancel. In the outer-bank region, the measured advective k-transport
is negligible. The measured advective k-transport can still explain the deformation of the
vertical k-profiles as compared to the straight-uniform flow profiles, but does not explain
anymore the observed width-distribution of k, and especially the reduced values in the
outer-bank region.

This seemingly contradiction is due to the non-linearity of the k-dynamics. Similar to the
fictitious k-distribution, a fictitious P-distribution can be assumed that would exist in the
absence of cross-stream motion. Proportional to the local (shear) velocity, it would
increase in outward direction and have the same vertical profiles as in straight uniform
flow (Eq. 8). Under the influence of the cross-stream motion, the fictitious k-distribution
gradually modifies as described above, which results in a gradual redistribution of P and
of the advective k-transport terms themselves.

The measured distribution of the production P (see Fig.4c) strongly deviates from the
fictitious distribution, over the flow depth as well as over the channel width. Whereas the
fictitious P-distribution increased in outward direction, the measured P-distribution
decreases in outward direction. In the center-region, P (Fig.4c) is mainly due to bottom
friction and the measured P-values are of the same order of magnitude as the typical near-
bottom values in straight uniform flow (Fig.4b); care should be taken, however, with the
interpretation of the near-bottom values since turbulence measurements near the bottom
are not very reliable (Blanckaert and Graf, 2001a). Contrary to the straight-uniform flow
profiles, negative values of P are observed over most of the flow depth, indicating a
restitution of kinetic energy from the turbulence to the mean flow. These negative values,
which reach normalized magnitudes as large as O(-25), are almost entirely due to the
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′ ′v v es z sz-contribution (Blanckaert and de Vriend, 2002a, Fig.7c). Obviously, as compared
to a situation with uniquely production of turbulent kinetic energy, P>0, the existence of
zones with P<0 tends to reduce k. In the outer-bank region, P has a lower magnitude than
in the center-region, which is mainly due to the negligible values of the turbulent shear
stress ′ ′v vs z  (Blanckaert and Graf, 2001a, Fig.6a) and of the corresponding ′ ′v v es z sz-

contribution (Blanckaert and de Vriend, 2002a, Fig.7c) on the measuring grid. Values
increase to O(20) in the region affected by friction on the outer bank, indicating that the
outer-bank friction is smaller than the bottom friction O(300) in the center-region, which
is in agreement with the measured distributions of ′ ′v vs n  and ′ ′v vs z  (Blanckaert and Graf,

2001a, Fig.6). This small outer-bank friction is explained partially by the smoothness of
the outer-bank as compared to the rough sand bottom and partially by the reduced
turbulence activity in the outer-bank region.   

The turbulent diffusion in transversal direction (not shown) is found to be relatively
small, with normalized magnitudes less than O(0.1). The accuracy of the evaluated
vertical  diffusion terms (not shown) is poor. As expected, the terms are positive near the
bottom, with relatively high normalized values of O(50), and negative over most of the
water column. By no means, these terms can explain the observed transversal distribution
of k.

The above analysis leads to the following hypothesis about the mechanisms responsible
of the observed distribution of k. In the absence of cross-stream motion, the fictitious
production P increases in outward direction and leads to an outward increasing fictitious
k-distribution as shown in Fig.4b. The advective k-transport by the cross-stream motion is
at the origin of the redistribution of k, and causes increasing values in the inner half of the
cross-section and decreasing values in the outer half. As k gets redistributed, the
advective k-transport becomes less efficient and ultimately, it does not explain the
observed width-distribution of k anymore. However, as k becomes redistributed also the
production terms P are modified (the values of the turbulent stresses ′ ′v vi j  obviously

depend on the available turbulent kinetic energy k). Whereas the initial fictitious P
increases in outward direction, the final modified P-distribution decreases in outward
direction. It can be concluded that this final P –distribution is the major responsible for
the similar measured outward decrease of k. Especially the low values of the ′ ′v v es z sz-

contribution in the outer-bank region might be important for the reduced k values.

Obviously there is a strong feedback between the reduced levels of k and the low values
of the production term P in the outer-bank region. From the distributions of k and of P,
however, it is not clear to what extent the reduced k is due to the low P-values, or rather
gives rise to those low values. This feedback problem will be investigated by means of
some typical turbulence characteristics in Section 4.2 and discussed in Section 4.3.
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4.2 Turbulence structure

In the previous chapter, the causal relation between k and P did not become clear. We will
therefore take a closer look at the turbulence-structure parameters a1 and νjk (the mixing
coefficients). The role of these turbulence-structure parameters in the k-P relationship and
the k-distribution will be discussed Section 4.3. A rather extensive presentation of the
mixing coefficients is given, since they are also important with respect to spreading and
mixing of matter, pollutants and heat.

4.2.1 Structure parameter a1

An important turbulence-structure parameter is a1, defined as (Schwarz and Bradshaw,
1994; Piquet, 1999):

a1= ′ ′ + ′ ′v v v v ks z n z
2 2 2 (10)

According to Schwarz and Bradshaw (1994), it can be regarded as a first indicator of the
efficiency of turbulent eddies in producing shear, given the amount of tke. The parameter
a1 is known to be largest in two-dimensional flow and smaller in three-dimensional flows.
These smaller values of a1 in various types of three-dimensional flows are shown and
physically explained by Schwarz and Bradshaw (1994) and Piquet (1999). To our
knowledge, values of a1 for three-dimensional open-channel flow have not been reported
before.

0 0.04 0.08 0.12 0.16
0

0.2

0.4

0.6

0.8

1

z/h

′ ′[ ]v v k
straight flows z 2

 0246810121416

CL

ou
te

r 
ba

nk

1820

z

n

s

[cm]

center-region outer-bank region

3
2.5

2
1.5

1

0.5
0.4 0.3 0.25

0.2
0.15

0.1

0.07
0.05

0.03

0.1

0.07

0.07

0.05
0.03

0.03
0.05

0.07

′ ′ + ′ ′v v v v ks z n z
2 2 2

Fig. 5: Turbulence structure parameter a1= ′ ′ + ′ ′v v v v ks z n z
2 2 2 ; (a) theoretical profile in

straight uniform flow; (b) measured distribution in curved flow.

The vertical profile of a1 for straight uniform open-channel flow is shown in Fig. 5a. It is
based on a triangular profile of - ′ ′v vs z  that increases from 0 at the water surface to u∗

2  at
the bottom, under the assumption that ′ ′v vn z =0 and that Eq. (3) holds for k. The a1-profile

increases from 0 at the water surface, reaches a maximum of about 0.14 around mid-depth
and subsequently decreases to about 0.1 at the bottom. The experimental distribution of a1

for our curved open-channel flow is shown in Fig. 5b. In the center region, values are
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high, O(1). The estimation of the near-bottom values, however, is not very accurate
(Blanckaert and Graf, 2001a), whence the values may be overestimated. Outward from
the centerline, a strong reduction of a1 is observed: a1 = O(0.1) near the separation of the
two circulation cells and even less in the outer-bank region. This strong outward decrease
of a1 corresponds with a similar outward decrease of ′ ′v vs z  (Blanckaert and Graf, 2001a).

Apparently, the efficiency of shear production decreases towards the outer bend.

4.2.2 Mixing coefficients

The mixing coefficients νjk also tell something about the turbulence structure. Similar to
the definition of the eddy viscosity, they are defined as the ratio between the deviatoric
turbulent stresses –( ′ ′ −v v kj k jk2 3δ ) and the corresponding strain rates ejk:

ν ν
δ

jk kj
j k jk

jk

= = −
′ ′ −v v k

e

2 3
2

     (j,k=s,n,z) (11)

in which δ jk  is the Kronecker delta. Note that these six mixing coefficients do not have

the frame-indifferent characteristics of the Reynolds stress tensor ′ ′v vj k  or the strain rate

tensor ejk. Applying the definition of the mixing coefficients, the terms representing
production of turbulent kinetic energy in Eq. (5) can be rewritten as:

P=2(ν ν ν ν ν νss ss nn nn zz zz sn sn sz sz nz nze e e e e e2 2 2 2 2 22 2 2+ + + + + ) (12a)

According to Eqs. (11) and (12a), the mixing coefficients can be regarded as indicators of
the efficiency of the strain rates in producing turbulence. The sign of the mixing
coefficient νjk corresponds to the sign of the energy exchange term - ′ ′ −( )v v k ej k jk jk2 3δ  in

P : νjk>0 corresponds to production of tke, whereas νjk<0 corresponds to a restitution of
kinetic energy from the turbulence to the mean flow via the corresponding turbulent stress

′ ′v vj k . Applying a scalar eddy viscosity for turbulence closure implies that

νss=νnn=νzz=νsn=νsz=νnz=νt>0 and that P is definitely positive:

P=2 2 2 22 2 2 2 2 2ν t e e e e e ess nn zz sn sz nz+ + + + +( )>0 (12b)

The mixing coefficients are particularly important with respect to environmental
problems such as the spreading and mixing of matter, pollutants and heat. Those
phenomena are described by an advection-diffusion equation, in which the six diffusion
coefficients (Rutherford, 1994, p. 33 ) are commonly taken proportional (multiplied by a
Prandtl or Schmidt number) to the mixing coefficients.

In a straight uniform flow, often a scalar eddy viscosity, νt, is assumed. A possible
approach is to prescribe this quantity algebraically, for instance by a parabolic
distribution over the water column. One such distribution, corresponding with the
logarithmic velocity profile in straight uniform flow, equals zero at the water surface and
at the bottom, and has a depth-averaged value ν t  = 0.067u*h . This is why the

experimental mixing coefficients shown in Fig. 6 are normalized by 0.1 u*h. Note that the
contributions due to the non-uniformity of the flow field (∂/∂s-contributions) in the strain
rates esn and esz could not be evaluated from the data available.
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The distributions of all mixing coefficients shown in Figs. 6a-e contain positive as well as
negative values. Near the bottom, mainly positive are found, whereas negative values
occur mainly in the upper part of the water column. These negative values, ν jk<0,
correspond to a restitution of kinetic energy from the turbulence to the mean flow via the
turbulent stress ′ ′v vj k . Obviously, the existence of zones with negative mixing coefficients

tends to reduce k with respect to the situation in which there is only production of
turbulent kinetic energy (νjk>0). Negative values of the mixing coefficients νjk - or of the
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corresponding kinetic energy exchange - ′ ′ −( )v v k ej k jk jk2 3δ  - have been reported before

(Booij, 1985; Anwar, 1986; Booij and Tukker, 1996; Shiono and Muto, 1998). Blanckaert
and de Vriend (2002a) have shown that this restitution of kinetic energy from the
turbulence to the mean flow plays an important role in the generation of the outer-bank
cell of cross-stream circulation in the here-considered experiment.

Looking at the distribution over the water column, the magnitude of the experimental
mixing coefficients has a tendency to be minimal near the bottom and near the water
surface and to have a maximum somewhere halfway the water column. Qualitatively, this
is in agreement with the parabolic profile used in straight uniform flow.

As stated before, the magnitudes of the mixing coefficients are very important to the
modeling of spreading and mixing of matter, pollutants and heat. However, experimental
data on these mixing coefficients are scarce. The present data show that the coefficient
ν nn  (Fig. 6a) is maximum near the centerline, decreases towards a minimum near the

separator between the two circulation cells and increases again towards the outer bank.
The coefficient ν zz  (Fig. 6b) shows the opposite behavior and has its maximum in the

separation zone between the two cells. As mentioned before, the (s,n) and the (s,z)
contributions are dominant in the production of tke. The magnitude of the corresponding
mixing coefficients ν sz  and ν sn  (Figs. 6c and 6d, respectively) strongly decreases in

the outward direction, from O(1 to 5) in the center region to O(0.1 to 0.5) in the outer-
bank region. ν nz  (Fig. 6e) behaves similarly, except that it assumes high values near the

center of the outer-bank cell. This outward decrease of the mixing coefficients related to
the turbulent shear stresses is in agreement with the outward decrease of the coefficient a1

(Fig. 5b) and confirms the observation that the efficiency of shear stress production for a
given turbulent kinetic energy is reduced in curved flow.

Fig. 6f shows the lateral distribution in the outer bend of the mixing coefficients, ν jk ,

being the depth-averaged absolute values evaluated within the measuring grid and
excluding the asymptotic values where the strain tends to zero. These lateral distributions
confirm the behavior observed in the three-dimensional distributions. Note the strong
decrease of ν sz  in outward direction, with very low values in the outer-bank region.

ν sn  reaches similar small values in the outer-bank region. The normalized average

values over the entire measuring grid, ν jk , are shown in the table below Fig. 6f. For

the (s,z)-component, a value of 0.67 is found, which coincides with the typical average
value in straight uniform flow (see before). The normalized values for the (s,n) and the
(n,z)-component are of similar magnitude. The dominant component is (n,n), with a
normalized value of 1.69 that should be compared with the values of 1.5 (laboratory
channels) to 6 (irregular waterways) reported by Graf and Altinakar (1998). It is
remarkable that the components related to the turbulent normal stresses are larger than
those related to the turbulent shear stresses. This confirms, once again, that the efficiency
of shear stress production, given the turbulent kinetic energy, is reduced in curved flow.
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4.3 Discussion

The analysis of the transport equation for k indicated that the reduced turbulence activity
in the outer-bank region cannot be explained solely from the advective redistribution of
tke by the cross-stream motion. This phenomenon is primarily due to an outward decrease
of the tke-production. The parameter a1 and the mixing coefficients νjk (chapter 4.2)
indicate that the turbulence structure in our curved flow experiment is significantly
different from that in straight uniform flow. Given the same amount of turbulent kinetic
energy k, the turbulent shear stresses ′ ′v vj k  (j≠k) turn out to be significantly smaller in the

curved flow.

The observed decrease of the turbulence activity in the outer-bank region can be
explained from these findings as follows. Suppose we start from the turbulence structure
in straight uniform flow. If less turbulent shear stress is produced while the k-level
remains the same, this leads to a reduced production of tke (see Eq. 5), and less
production obviously results in lower k-levels. The lower k-levels, in their turn, lead to
smaller turbulent stresses ′ ′v vj k  and thus also to a smaller production P. Ultimately, this

feedback mechanism will lead to a reduced k-level as compared to that for straight
uniform flow.

In a complementary paper, Blanckaert and de Vriend (2002b) have further analyzed the
turbulence structure of the same flow field. They found that the velocity fluctuations are
a-typically coherent over the width and therefore decomposed them into slow coherent
fluctuations and a background signal. The slow fluctuations represent a bulk-oscillation of
the pattern of circulation cells. A spectral analysis shows that the slow fluctuations have
the characteristics of a wave-like motion (low efficiency of shear generation) whereas the
background signal has the characteristics of developed turbulence. This physically
explains why the total velocity fluctuations lead to less shear stress production than if all
of it were developed turbulence.

As a consequence, in order to simulate accurately the k-distribution, it is not sufficient for
turbulence closures to incorporate the transport equation for k (Eq. 5), they also need to
accurately describe the turbulence structure, i.e. the distribution of the turbulence among
the different turbulent stresses. Factors that influence the turbulence structure are the
cross-stream motion, downstream and transversal pressure gradients, accelerations and
decelerations along streamlines, the curvature of the streamlines, the relative bottom
roughness d50/h, etc. Turbulence closures that use a transport equation for each of the
turbulent stresses – such as Reynolds Stress Models – can account for all these factors.
Such  models are computationally expensive, whence lower-order turbulence closures are
the most commonly used in practice, at the moment. The commonly used two-equation
closures, however, do not account for the factors mentioned above. The k-ε model, for
instance, which is often used for open-channel flows, contains the transport equation for
k, but distributes the deviatoric turbulent stresses –( ′ ′ −v v kj k jk2 3δ ) in proportion to the

strain rates ejk; the scalar eddy viscosity νt being the factor of proportionality (see Eqs. 11
and 12a,b). It cannot accurately represent the turbulence structure, since νt cannot account
for the observed behavior of the mixing coefficients:
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(i) νt is strictly positive, whereas the experimental mixing coefficients have positive as
well as negative values.

(ii) νt is a scalar, whereas the six experimental mixing coefficients have different
magnitudes and different distributions.

(iii) The scalar νt cannot account for the different behavior of the mixing coefficients
related to the turbulent normal stresses and those related to the turbulent shear
stresses, and especially the outward reduction of the latter.

All factors influencing the turbulence structure in our experiment directly or indirectly
result from the main flow curvature. In the following, it will be attempted to find a
qualitative correlation between the changes in the turbulence structure and a curvature
parameter. Such a correlation might be useful to make semi-empirical extensions to existing
turbulence closures, in order to improve their capabilities in curved open-channel flow.

5 Influence of streamline curvature on turbulence structure

5.1 Theoretical considerations

The structure of turbulence is known to be very sensitive to the streamline curvature: its
influence is an order of magnitude larger than predicted by straightforward extensions of
calculation methods for simple shear layers (Bradshaw, 1973). Bradshaw (1969) has
established a formal analogy between the influence of streamline curvature and the
influence of buoyancy. The analysis usually applied to derive buoyancy parameters from
the equations of motion can be used to formally derive analogous curvature parameters.
Whilst buoyancy leads to a density stratification of the flow, curvature leads to a pressure
stratification of the flow.

The influence of streamline curvature on the turbulence structure has been investigated
theoretically and numerically (Irwin and Smith, 1975; Gibson and Rodi, 1981; Leschziner
and Rodi, 1981; Rodi and Scheuerer, 1983; Cheng and Farokhi, 1992), as well as
experimentally (So and Mellor, 1973; Holloway and Tavoularis, 1992) for two-
dimensional shear flows. Bradshaw (1973) has written an extensive survey report on the
influence of streamline curvature, whereas Gibson and Rodi (1981) demonstrated its
influence briefly and elegantly from the transport equations for the turbulent stresses in a
two-dimensional flow. Both define a curvature-flux-Richardson number as :
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where rsn is the local radius of streamline curvature. Rf is interpreted as the ratio of the
curvature-induced production of (- ′vn

2 ) to the total ′vs
2 -production. In these two-

dimensional flows, turbulence is damped if Rf>0 and enhanced if Rf<0. Furthermore, the
distribution of the turbulent kinetic energy among the turbulent normal stresses is altered:

′ ′v vn s
2 2  decreases as Rf>0 and increases as Rf<0.
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Our experiment concerns a more complex three-dimensional flow field, with the strong
cross-stream motion as the main complicating factor. In the following, we will present
experimental data suggesting that a correlation between the turbulence structure and the
curvature-flux-Richardson number also exist in our three-dimensional curved flow.

5.2 Experimental observations

Fig. 7a,b show the experimental distributions of Rf and its depth-averaged value, Rf ,

respectively. The streamline curvature in the (s,n)-plane, rsn, is defined as:

1 1 1
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+
                 R being the centerline curvature and (14)
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and ratio k K  (cf. Fig. 3c).

Rf and Rf  are positive and increase in the

outward direction, from small values near
the centerline to maximum values O(2). In
the outer-bank shear layer, where Rf and

Rf  are negative, the influence of the

bank proximity dominates the influence of
the streamline curvature. R f is rather
uniformly distributed over most of the
flow depth but decreases strongly close to
the bottom.

Fig. 7b compares the transversal
distributions of Rf  and of k K . The

latter has been presented in Section 3.
There seems to be a rather strong
correlation between the two. Near the
centerline, where Rf ~0, k K

approaches its straight-uniform-flow value
(cf. Eq. 4). The outward decrease of

k K  is accompanied by increasing

values of Rf  > 0; the location of the

maximum Rf  coincides with that of the

minimum k K . In the outer-bank shear

layer, Rf  is negative and k K

strongly increases, due to friction at the
outer bank.
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Figs. 8a,b show the distributions of ′ ′v vn s
2 2  and ′ ′v vz s

2 2 , representative of the distribution

of the turbulent kinetic energy k among the turbulent normal stresses. Distributions of all
the turbulent stresses have been presented in Blanckaert and Graf (2001a). ′vs

2  and ′vz
2

have rather similar distributions, be it that the vertical fluctuations are damped near the
bottom and near the water surface, resulting in smaller values of ′ ′v vz s

2 2 . This quantity is

distributed rather uniformly over the width, as appears from the nearly horizontal isolines.
The ratio ′ ′v vn s

2 2  is nearly uniform over the water column, but has a pronounced

transversal distribution, which is due to the almost opposite behavior of ′vs
2  and ′vn

2 .
′ ′v vn s
2 2  is small near the centerline and increases outwards, to reach maximum values

near the separator of the two circulation cells. Due to the bank proximity, it decreases
close to the outer bank. The values of these ratios averaged over the entire measuring
grid,   , are:

′ ′ = < ′ ′ =v v v vn s z s
2 2 2 20 34 0 47. . (17a)

showing that the downstream normal stresses are dominant (both numbers are less than
1), and that the intensity of the transversal fluctuations is smaller than that of the vertical
fluctuations. These experimental ratios should be compared to their counterparts in
straight uniform flow. According to Nezu and Nakagawa (1993), these ratios are nearly
constant in straight uniform flow:

′ ′ = ′ ′ =v v v v
straight straightn s n s

2 2 2 2 0 51.  > ′ ′ = ′ ′ =v v v v
straight straightz s z s

2 2 2 2 0 31. (17b)

where the intensity of the transversal fluctuations is larger than that of the vertical
fluctuations. As compared to straight uniform flow, the ratio ′ ′v vn s

2 2  is smaller in the

curved flow experiment and ′ ′v vz s
2 2  is larger.
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In line with the expectations from the theoretical considerations on 2D flows, our
observations indicate that the curvature has a stabilizing effect for Rf >0 and leads to

smaller values of the ratio ′ ′v vn s
2 2 , that seem to be compensated by larger values of

′ ′v vz s
2 2 . The stabilizing curvature seems to affect the transversal structure of the flow

field (Rf and ′ ′v vn s
2 2 -distributions), but much less the vertical structure. Apparently, the

influence of streamline curvature on this highly three-dimensional flow field mainly acts
in the horizontal (s,n)-planes. Further evidence is given by the distributions of the fourth-
order turbulence moments presented below.

If it comes to the spreading and mixing of matter, pollutants and heat, sediment transport
and erosion of alluvial boundaries, the instantaneous values of the quantities ′ ′v t v tj k( ) ( )

are at least as important as their time-averaged values ′ ′v vj k , being the turbulent stresses.

In regions of low turbulent stress, considerable positive and negative instantaneous values
can be reached. This is illustrated for the turbulent shear stress ′ ′v vs z  at (n*, z*) = (7.4, -7.8)

cm, in Fig. 9a (n* and z* denote the distance from the outer bank and the distance below
the water surface). The magnitude of these instantaneous values is characterized by the

square root of the relevant fourth-order turbulent moment, ( )′ ′v vj k
2 . These are shown in

Figs. 9b-g, normalized by u∗,60
2 . With the exception of the (n,n)-component, all

components are almost uniformly distributed over the water column and decrease rather
strongly in the outward direction. These higher-order turbulence characteristics also
suggest that the streamline curvature imposes a transversal stratification onto the flow
field and damps the turbulence in the outer bend.

5.3 Discussion

The above experimental observations suggest that in the present curved-flow experiments
there is a correlation between the modified turbulence structure and the curvature-flux-
Richardson number Rf. Such a correlation might be of use in developing semi-empirical
extensions to turbulence closure models, such as the k-ε model.

Such extensions have been proposed for a variety of two-dimensional shear flows,
characterized by streamline curvature in the plane of main shear  (Irwin and Smith 1975;
Leschziner and Rodi, 1981; Rodi and Scheuerer, 1983; Cheng and Farokhi, 1992;
Holloway and Tavoularis, 1992). They are based on modeled versions of the simplified
transport equations for the turbulent stresses, in which advective transport by the cross-
stream motion is neglected. Although the advective transport by the cross-stream motion
is important in bends, the extension to the k-ε model proposed by Leschziner and Rodi
(1981) has been applied by Demuren and Rodi (1986) and by Ye and McCorquodale
(1998) to simulate flow and pollutant dispersion in curved channels. The eddy-viscosity
in this model is given by

ν
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in which the deviation from 1 in the denominator of the expression for cµ is the extension.
cµ reduces to its standard value 0.09 for Rf = 0. The extension is only applied for the
horizontal diffusion terms, and not for the vertical one. Demuren and Rodi (1986)
simulated the flow and pollutant dispersion in three cases of meandering channels with
rectangular cross-section. They only apply the curvature extension in the advection-
diffusion equation for the pollutant. Ye and McCorquodale (1998) simulated the flow
field in a single bend and the flow and pollutant dispersion in a meander, both with a
horizontal bottom and smooth boundaries. They also applied the curvature extension to
the flow field and found a significant effect on the intensity of the cross-stream motion,
(vn,vz), which in its turn transmits the effect to the downstream velocity, vs.

Both simulations concerned channels with a flat bottom. In alluvial channel bends, a
mobile-bottom topography develops with important transversal bottom slopes, especially
near the outer bank, which causes the velocity distribution to be more skewed in outward
direction than in the case of a flat bottom (Johannesson and Parker, 1989):   

∂
∂

∂
∂

v v

mobile bed topography flat bed

s s

n n−

〉 (19)

As a consequence, curvature effects are expected to be stronger  over a mobile-bottom
topography than over a flat bottom, since ∂vs/∂n is the main component in the curvature-
flux-Richardson number Rf. Furthermore, most of these numerical simulations were done
for the case of a series of meanders. In such a configuration, the flow and turbulence
fields are mainly a result of the geometrically imposed periodicity, with fluid elements
alternating between inner and outer banks in successive bends. Hence the curvature
effects are difficult to isolate .

Although such semi-empirical extensions are unable to correctly represent the turbulence
structure in highly three-dimensional flow with a significant cross-stream motion, they
can be useful to improve the capabilities of the standard models. Such semi-empirical
models that do not correctly represent the underlying physics have to be based on a large
amount of experimental data. By lack of experimental data for curved open-channel flow,
Demuren and Rodi (1986) and Ye and McCorquodale (1998) incorporated the semi-
empirical extension derived for two-dimensional flows in their simulations. The present
experimental data must provide a basis for further improvement and testing of semi-
empirical extensions for open-channel flows.

6 The curvature-Richardson number

The present paper mainly concerns the turbulence characteristics in an open-channel
bend. It shows that differences in turbulence characteristics as compared to straight
uniform flow can be attributed to the effect of the cross-stream motion and especially to
the modified turbulence structure. There seems to be a correlation between the observed
turbulence characteristics and a curvature-flux-Richardson number, Rf, that parameterizes
the curvature of the streamlines.
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Blanckaert (2001b) and Blanckaert and Graf (2001c) have proposed a mathematical
model for the cross-stream circulation (often called secondary circulation) that, contrary
to the commonly-used models, compares favorably with experimental data for strongly
curved open-channel flows. Whilst the commonly used models for the cross-stream
circulation uniquely depend on the Chezy friction coefficient, the proposed model also
depends on the curvature ratio H/R, on the Froude number and especially on the
normalized transversal gradient of the downstream velocity, parameterized by αs+1,
which is defined as:

α ∂ ∂
s

s

s

n+ = +1 1v

v R
(20)

It is easily shown from Eqs. (13) and (20) that

Rf
s

=
+

2
1α

(21)

The proposed model predicts a rather strong decrease of the cross-stream circulation with
increasing values of αs+1.

The cross-stream motion and the turbulence are the main agents responsible for the
redistribution of the mean flow field and the boundary shear stresses in the bend, and for
the spreading and mixing of matter, pollutants and heat. Since they both seem to depend
on the curvature-flux-Richardson number, Rf must be an important parameter in curved
open-channel flow.

7 Conclusions

This paper reports on an experimental investigation of turbulence characteristics in a
sharp open-channel bend. This fills a gap in the availability of turbulence data that has
hampered the modeling of such flows, so far.

In the outer half of one cross-section of a laboratory open-channel bend, three-
dimensional velocity measurements were made with an Acoustic Doppler Velocity
Profiler (ADVP) on a fine grid. This instrument takes simultaneous high-resolution
measurements of all three velocity components, from which the mean velocity vector can
be derived, as well as the fluctuating velocity vector, all six turbulent stress components
and all higher-order turbulent velocity correlations. The flow in the investigated cross-
section is characterized by the existence of a bi-cellular pattern of cross-stream circulation
and by a rather strongly reduced turbulence activity in the outer bend.

The observed distributions of all six turbulent stress have been reported elsewhere
(Blanckaert and Graf, 2001a). In the present paper, distributions of various other
turbulence characteristics are given, such as the turbulent kinetic energy, the ratio
between the depth-averaged turbulent kinetic energy and the depth-averaged mean flow
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kinetic energy, the turbulence-structure parameter a1, the mixing coefficients, the ratios
between the turbulent normal stresses, and the square root of the fourth-order turbulent
correlations.

An analysis of the mechanisms leading to the reduced turbulence activity in the outer
bend was made, via a term-by-term evaluation of the transport equation for the turbulent
kinetic energy k on the basis of the measured data. Special attention was given to the
terms representing the production of turbulent kinetic energy and to the terms
representing its advective transport by the cross-stream motion. The rather speculative
result can be summarized as follows. Initially, the cross-stream motion redistributes k
over the cross-section and thereby modifies the distribution of the production terms P and
the turbulence structure. The final k-distribution is such that the influence of the cross-
stream motion almost vanishes and that mainly the modified P-distribution is responsible
for the observed reduction of k towards the outer bank.

The relationship between the turbulent kinetic energy and its production is complex and
characterized by a feedback-mechanism. It is shown to depend mainly on the turbulence
structure, represented by the structure parameter a1 and the mixing coefficients. The
turbulence structure in our experiment is found to differ significantly from that in straight
uniform flow. Both a1 and the mixing coefficients indicate that the efficiency of shear
stress production for a given amount of turbulent kinetic energy is less in curved-channel
flow than in straight uniform flow, and that it decreases towards the outer bank. This
modified turbulence structure explains the observed reduction of turbulence activity in the
outer bend.

All departures from the turbulence structure in straight uniform flow are directly or
indirectly due to the imposed streamline curvature. For two-dimensional curved shear
layer flows , Bradshaw (1969) has established a formal analogy between streamline
curvature and buoyancy, which leads to the definition of a curvature-flux-Richardson
number, Rf. The turbulence structure in our highly three-dimensional flow appears to be
correlated rather strongly to Rf and the departures from straight uniform flow qualitatively
agree with predictions by the models developed for two-dimensional curved flow:
turbulence is damped for Rf>0 and the ratio ′ ′v vn s

2 2  is decreased. The influence of the
streamline curvature acts primarily in the horizontal and imposes a kind of transversal
stratification to the turbulence structure. The latter is further confirmed by the
distributions of the fourth-order turbulent correlations.

Consequently, it is not sufficient for turbulence closures to incorporate the transport
equation for the turbulent kinetic energy: they also have to represent the turbulence
structure. Two-equation turbulence models, such as the commonly used k-ε-model, are
inherently unable to do so. Semi-empirical extensions to two-equation turbulence closures
based on the curvature-flux-Richardson Rf number have been proposed for two-
dimensional curved flows. A similar approach may be used to improve the capabilities of
two-equation turbulence closures for three-dimensional curved flows, but this requires
more experimental data, with a larger spatial coverage and for a wider range of hydraulic
and geometric conditions.
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Finally, Blanckaert (2001b) and Blanckaert and Graf (2001c) have shown that the cross-
stream circulation also depends strongly on Rf. Apparently, the curvature-flux-Richardson
number is an important parameter in curved open-channel flow.

It should be emphasized that our experimental data originate from a single cross-section
at 60º from the bend entrance, under one set of hydraulic (Fr, C) and geometric (R/B,
B/H) conditions. The experimental program is presently extended to more cross-sections
and a wider range of hydraulic conditions in a larger flume (Blanckaert and Graf, 2001b).
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APPENDIX II.      NOTATION

a1 = turbulence structure parameter defined as a1= ′ ′ + ′ ′v v v v ks z n z
2 2 2

ADVP = Acoustic Doppler Velocity Profiler
B = channel width
C = Chezy roughness coefficient
cµ = coeffient in Eq. (18) for eddy viscosity νt

d = total derivative operator
d50 = mean diameter of sand bottom
ejk = strain rates , j,k=s,n,z
Fr=U gH/ = Froude number

H = reach-averaged flow depth ≈ flow depth at centerline in 60°-section
h = local flow depth
K = mean flow kinetic energy per unit mass
k = turbulent kinetic energy per unit mass
kt = instantaneous turbulent kinetic energy per unit mass, Eq. (6)
n = transversal reference axis
n* = distance from outer bank
p’ = turbulent pressure fluctuations
Q = discharge
R = radius of curvature of channel centerline
Rh = hydraulic radius of cross-section
Rf = curvature-flux-Richardson number
rsn = streamline curvature in horizontal (s,n)-planes
Re=UH/ν = Reynolds number
s = downstream reference axis
Ss = reach-averaged water-surface gradient at centerline
t = time
tke = turbulent kinetic energy per unit mass
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U = Q/(BH) = reach-averaged velocity
Us = depth-averaged downstream velocity
u*=U√g/C = friction velocity
vj = time-averaged velocity component, j=s,n,z
vj(t) = instantaneous velocity component, j=s,n,z
v’j(t) = instantaneous velocity fluctuation, j=s,n,z

′ ′v vj k = turbulent stress, j,k=s,n,z

′ ′v va b
j k = higher-order turbulent correlation, j,k=s,n,z and a,b=integer

z = vertical reference axis; elevation above horizontal (s,n)-plane
z* = distance below water surface

symbols
αs = normalized transversal gradient of downstream velocity,

(∂vs/∂n)/(vs/R)
∂ = partial derivative operator
δjk = Kronecker delta symbol; δjk=1 if j=k and δjk=0 if j≠k
ε = viscous dissipation of turbulent kinetic energy
κ = Karman constant; κ=0.41
P = production of turbulent kinetic energy in Eq. (5)
ρ = density of water; ρ=998.2 kg/m3 at 20 °
ν = molecular viscosity of water; ν= 1.004 x 10-6 m2/s at 20 °
νjk = mixing coefficient defined in Eq. (11); j,k=s,n,z
νt = eddy viscosity
arrow = vectorial quantity
overbar = time-averaged values

. , . = values averaged over local flow depth, over measuring grid, resp.

 .  = absolute value (magnitude)

O(.) = order of magnitude of .

subscripts
b = bottom
S = water surface
straight = corresponding value in  straight uniform flow
60 = value in section at 60°
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III.4 Turbulence Structure in Sharp Open-Channel Bends

K. Blanckaert1 and H.J. de Vriend2

(in preparation for submission to J. Fluid Mech., Cambridge Univ. Press)

Abstract

In spite of its practical relevance, little is known about the turbulence characteristics in
sharp open-channel bends. This paper reports on an experimental investigation of the
turbulence structure in one cross-section of an open-channel bend. The flow pattern in
this section is characterized by a bi-cellular pattern of cross-stream circulation (secondary
circulation) and a rather strongly reduced turbulence activity in the outer bend, as
compared to straight uniform shear flow. The turbulence structure differs fundamentally
from that in straight uniform shear flow. The velocity fluctuations are a-typically coherent
over the width, whence they are decomposed into slow width-coherent fluctuations and a
fast background signal. The width-coherent fluctuations reflect a bulk spatio-temporal
oscillation of the pattern of circulation cells whereas the background signal represents
developed turbulence. A spectral analysis shows that the width-coherent fluctuations have
the characteristics of a wave-like motion, i.e. they contribute significantly to the turbulent
normal stresses but only weakly to the shear stress, whereas the background turbulence is
characterized by efficient shear stress generation. The reduced turbulence activity and the
tendency of the secondary flow to oscillate are both effects of the streamline curvature.
Similar observations on reduced turbulence activity and the tendency to wave-like motion
have been reported in literature for flows in curved wind tunnels and density-stratified
flows. Our experimental results indicate that these phenomena are potentially important in
curved open-channel flows.

1 Introduction
Most natural rivers meander in their alluvial plane. Major points of attention in river
management are: (i) bank erosion, especially in the outer bends (ii) transport, spreading
and mixing of suspended matter, pollutants and heat, (iii) the transport of sediment and
the associated erosion and deposition phenomena. All of these points depend strongly on
the turbulence characteristics of the flow.

In spite of this practical relevance, little is known about the turbulence characteristics in
open-channel bends. Numerical models of flow in open-channel bends frequently use
extensions of turbulence closures that were developed for two-dimensional boundary-
layer flow. As these closure models take insufficient account of the curvature effects on
the turbulence structure, the results are often disappointing. The almost complete lack of
experimental data on the turbulence characteristics in sharply curved open-channel flow
hampers the development of improved turbulence models.

                                                  
1 Res. Assoc., Lab. d'Hydraulique Environnementale, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland.
2 Professor, Delft University of Technology, POB 5048, 2600 GA Delft, The Netherlands.
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A slightly modified version of this paper (downloadable from 
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Blanckaert, K. & de Vriend, H. J. (2005). “Turbulence structure in sharp open-channel bends.” J. Fluid Mech., Cambr. Univ. Press, Vol. 536, 27-48.
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In a complementary paper, Blanckaert and de Vriend (2002a) present detailed
experimental data on the turbulence characteristics in the outer half of one cross-section
of an open-channel bend, in which the cross-stream flow pattern (secondary flow)
consisted of two cells rotating in opposite directions. They report a rather strong reduction
of the turbulence activity in most of the outer bend, as compared to straight uniform shear
flow, and attribute this to differences in the turbulence structure: for the same turbulent
kinetic energy level, the efficiency of shear stress generation is less in curved flow.
Furthermore, they show the deviations from a straight-uniform-flow turbulence structure
to be correlated with a curvature-flux-Richardson number that represents the streamline
curvature.

In this paper, the turbulence structure of the same flow field is further investigated. The
experiment is briefly described and the main features of the mean flow and the turbulence
are presented. The paper further focuses on the analysis of the turbulence. The velocity
fluctuations are decomposed into slow large-scale fluctuations and a rapidly varying
background signal. The slow fluctuations are shown to represent an overall oscillation in
space and time of the pattern of circulation cells, with the characteristics of a wave-like
motion. The correlation of this unsteady behaviour with the streamline curvature is
investigated. The results are compared with similar findings reported in literature for
flows in curved wind tunnels and density-stratified flows. To our knowledge,
observations of these phenomena in open-channel flows have not been reported in
literature before.

2 The experiment

The experiment was carried out in a laboratory flume with a natural bottom topography,
which is in equilibrium with the flow. The initially flat sand bottom was deformed by the
flow, leading to the formation of a typical bar-pool topography (Fig. 1a). Since the flow
corresponds to clear-water-scour conditions (critical shear stress for sediment movement
in the straight uniform flow), a stable bottom topography is ultimately obtained without
active sediment transport.  The flume is 0.4 m wide and consists of a 2 m long straight
approach reach, followed by a 120° bend with a constant radius of curvature of 2 m. The
hydraulic conditions are shown in Table 1

The parameter setting R/B = 5 and R/H = 17.9 corresponds to a rather tight bend with a
high aspect ratio (B/H = 3.6). The flume is narrower than usual in natural lowland rivers,
but these ratios do occur in mountain rivers and man-made channels. Moreover, the flow
in bends with a mobile-bottom topography is concentrated in the deepest part of the cross-
section near the outer bank, where a significant transversal bottom slope exists (e.g.
Odgaard, 1984; Dietrich, 1987). The flow in the outer bend of the experimental flume is
expected to be representative of the flow in the deepest part of wider natural bends. By
considering a relatively sharp bend, the curvature effects are more pronounced, hence
better visible.
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Fig. 1: (a) Experimental set-up, bottom topography and reference system; (b) Measuring
section at 60°, Acoustic Doppler Velocity Profiler (ADVP) configuration
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R: centreline radius of curvature (negative along the n-axis) �U: reach-averaged velocity
B: channel width �C: Chezy friction factor; C/√g=U/u*

d50: median grain size diameter of bed material �Fr =U/(gH)1/2: reach-averaged Froude number
Q: flow discharge �Re=UH/ν: reach-averaged flow Reynolds number
H: reach-averaged flow depth ≈ flow depth at centreline �Re*=u*ks/ν:  reach-averaged particle Reynolds number
      in section at 60° �       ν: molecular viscosity
Ss: reach-averaged water-surface gradient at centreline �       ks: Nikuradse equivalent sand roughness

u*:  friction velocity

Table 1: Hydraulic conditions  
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Non-intrusive three-dimensional measurements of the mean flow field and the turbulence
were made in one cross-section at 60° from the bend entrance. The data are analysed in a
reference system with the s-axis pointing downstream along the channel centreline, the
transversal n-axis pointing to the inner bank and the vertical z-axis directed upward from
the horizontal (s,n)-plane (Figs. 1a,b). The measurements were made with an Acoustic
Doppler Velocity Profiler (ADVP), developed in our laboratory at EPFL. This velocity
meter simultaneously measures at a high spatial and temporal resolution the instantaneous
velocity components. From the measured data, the mean velocity field, rv v v vs n z, ,( ) , can
be derived, as well as the fluctuating velocity field, r′ ′ ′ ′( )v v v vs n z, , , and the turbulent stress
tensor, ′ ′v vj k  (j,k = s,n,z). Whereas most commercial velocity meters measure point-by-

point, our ADVP measures simultaneously all the velocities along the main axis of the
measuring device. This profiling capacity will be exploited in the presented analysis. The
non-intrusive measurements were made by measuring through the Plexiglas wall forming
the outer bank of the flume, with the ADVP mounted in a water-filled box attached to the
outside of the wall (Figs. 1a,b). In this configuration, profiles extending over half the
channel width were measured every ∆z = 0.5cm (Fig. 1b). The sampling frequency was
44.6 Hz and the acquisition time was 180 s. A detailed description of the experimental
set-up, the data-treatment procedures and the measuring grid is given in Blanckaert and
Graf (2001). More information on the working principle of the ADVP, its experimental
accuracy and its comparison with other velocity meters can be found in Lemmin and
Rolland (1997), Hurther and Lemmin (1998, 2001), Blanckaert and Graf (2001) and
Blanckaert and Lemmin (2002). In summary, the accuracy on the mean-velocities is
estimated as better than 4%, that on the turbulent normal stresses as better than 10% and
that on the turbulent shear stresses as slightly better than on the turbulent normal stresses.
In the lower 20% of the flow depth, however, the accuracy on the turbulence
measurements is reduced, due to the important mean-velocity gradients in the measuring
volume (effect of spatial averaging).  

3 Experimental results

Blanckaert and Graf (2001) gave a detailed presentation of the distributions of all three
mean velocity components, as well as all six turbulent stress components. Blanckaert and
de Vriend (2002a) present and analyse the kinetic energy distribution of the mean flow
and the turbulence. The measured data that are of particular relevance to the present paper
are briefly summarized below.

The distribution of the normalized downstream velocity component, vs/U, in the section
investigated is presented in Fig. 2. In a large part of the measuring domain, the
downstream velocity is higher than the reach-averaged velocity of 0.38 m/s. Whilst the
maximum velocity in straight uniform flow occurs near the water surface, the maximum
in this curved flow is found in the lower part of the water column. The mechanisms
leading to this distorted velocity distribution have been investigated by Blanckaert and
Graf (2002).
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Fig. 3: Vector-representation of normalized
cross-stream motion, (vn,vz)/U.

The vectorial representation of the normalized cross-stream motion, (vn,vz)/U , in the
section investigated is shown in Fig. 3. A circulation cell – termed centre-region cell -
with outward velocities near the water surface and inward velocities near the bottom is
observed in the centre region. It entails velocities typically of the order of magnitude
0.1U. This cell represents the well-known helical motion characteristic of flow in bends.
A region characterized by weaker cross-stream velocities, typically O(0.03U), is found
close to the outer bank. In the upper part of this outer-bank region an additional
circulation cell – termed outer-bank cell – occurs, with a sense of rotation opposite to the
centre-region cell. The mechanisms underlying this bi-cellular pattern of circulation cells
have been investigated by Blanckaert and de Vriend (2002b).

Figs. 4a,b show the normalized distributions of the mean flow kinetic energy, K/(1/2U2),
and the turbulent kinetic energy, k/(1/2 u∗,60

2 ), per unit mass, in which K and k are defined

as

K v v v= + +( )1
2

2 2 2
s n z      and         k v v v= ′ + ′ + ′( )1

2
2 2 2

s n z (1)

respectively. The characteristic shear velocity in the measuring section,
u gR zh S∗ = −, ,( )60 60∂ ∂s  = 0.045 m/s, is based on the downstream water-surface gradient

at the centreline, −∂ ∂zS,60 s = 2.89 ‰, and the hydraulic radius, Rh = 0.07 m, in the

section at 60°. The contributions of the different components to K and k have been
analysed by Blanckaert and Graf (2001). Fig. 4c shows the normalized depth-averaged
kinetic energy of the mean flow and the turbulence, K /(1/2U2) and k /(1/2 u∗,60

2 ),
respectively, together with the ratio k K . Due to the opposite behaviour of K and k,

this ratio exhibits a pronounced variation over the width. Blanckaert and de Vriend
(2002a) have shown that k K  is constant over the width in straight uniform open-

channel flow and uniquely depends on the friction factor via
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k

K

g

C
straight

≈ 4 1 2. (2)

which would yield k K  ≈ 0.03 for C ≈ 35 m1/2/s. In our curved flow, the experimental
k K  is of the expected order of magnitude near the centreline but it strongly decreases

towards the outer bend, down to O(0.01), to increase strongly in the region very close to
the outer bank, which is affected by bank friction. Averaged over the cross-section a
value of O(0.03) is expected, which means that high k K -values probably exist in the

inner part of the cross-section. As compared to straight uniform flow, the turbulence
activity is therefore less than average in the outer bend, and it is expected to be higher
than average in the inner-bend region.
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The mechanisms leading to this distributions of k and k K  are analysed by Blanckaert

and de Vriend (2002a). They present some turbulence-structure parameters indicating that
curved-flow turbulence is less efficient in producing shear than the straight-flow
equivalent with the same amount of turbulent kinetic energy. They show that this change
in the turbulence structure is at the basis of the observed distributions of the turbulence
properties. In the following, an analysis of the measured velocity fluctuations and the
turbulence structure will be made that is complementary to that analysis and will confirm
its results.
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4 Analysis of velocity fluctuations and of turbulence structure

4.1 Width-coherent velocity fluctuations

As mentioned before, the ADVP has the advantage of measuring simultaneous profiles of
the instantaneous velocity components along an entire line (instead of a single point).
This line-by-line approach offers the possibility to investigate coherent structures along
those lines. In the experiment (see Figs. 1a-b), profiles extending over half the channel
width are measured at different vertical levels. They enable investigating the time-
behaviour of the system of circulation cells. The time-stack plot in Fig. 5 shows the
transversal velocity fluctuations for the profile at 9.85 cm below the water surface. The
vertical streaks in this figure indicate that the transversal fluctuations are rather coherent
over the width.
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Fig. 5: Time-series of transversal velocity fluctuations for profile at z*=9.5 cm below
water surface.

In order to quantify the coherence of these fluctuations, two-point correlations are
evaluated via

R
v v

v v
jj

j j

j j

n z
n z n z

n z n z
( . , ; )

( . , ) ( , )

( . , ) ( , )
− =

′ = − ′

′ = − ′
7 5

7 5

7 52 2
(3)

The reference point of this correlation is located at n = -7.5 cm, i.e. at 12.5 cm from the
outer bank. The correlation Rnn is shown in Fig. 6a. As the results are rather similar
throughout the water column, the vertical mean is representative of the entire vertical.
Fig. 6b shows the cross-stream distribution of these vertically averaged values,

Rjj n( . , )−7 5 .

Typical two-point correlations of homogeneous turbulence would show an initial steep
descent around the reference point, down to values of about 1/3, followed by a tail with
Rjj<1/3 ( Prandtl et al., 1990, Bruns et al., 1999). Rzz  in Fig. 6b more or less follows this

pattern, but Rss  and Rnn  have rather a triangular shape and do not show any initial

steep descent. This indicates that the downstream and transversal fluctuations are a-
typically coherent over the width. In the outer-bank region, Rzz  is negative, which

indicates that the vertical fluctuations of the outer-bank cell are out of phase with those of
the centre-region cell. This phenomenon, however interesting, will not be investigated in
further detail. Henceforth, attention will be focused on the downstream and the
transversal fluctuations.
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4.2 Decomposition of the velocity fluctuations

Following Hussain (1983), the velocity fluctuations, v’j, can be decomposed into slow and
rapid fluctuations. Anticipating the results, we denote the slow fluctuations with the
subscript w (wave) and the rapid ones with the subscript b (background turbulence):

′ = ′ + ′v t v t v tw bj j, j,n z n z n z( , , ) ( , , ) ( , , )                (j=s,n) (4)

Hussain (1983) and Tamburrino and Gulliver (1999) made the split by taking a moving
average over a time period long enough to eliminate the fast fluctuations but short enough
not to lose essential information on the slow fluctuations. We exploit the profiling
capacity of the ADVP and make use of the observed width-coherence of the downstream
and transversal velocity fluctuations (Fig. 6): we assume that the fast fluctuations are not
coherent over the width, while the slow ones are. So we assume that, averaged over the
width range from n = -14.7 cm to n = 0.9 cm, i.e. over 53 measuring points,  

′{ } ≈ << ′{ } ≈ ′v t v t v tb w wj,  j, j,z z n z( , ) ( , ) ( , , )0 (5)

in which ...{ } denotes the width-averaging operation. Together with Eq. (4), this leads to:

′ ≈ ′{ } ≈ ′{ }v t v t v tw wj, j, jn z z z( , , ) ( , ) ( , ) (6)

whence

′ = ′{ } + ′v t v t v tbj j j,n z z n z( , , ) ( , ) ( , , ) (7)

This provides an easily applicable method for first-order decomposition of the velocity
fluctuations.
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4.3 Bulk-oscillation of the pattern of circulation cells

We assume that the slow width-coherent fluctuations represent a bulk-oscillation of the
pattern of circulation cells with migration speed  

r
V t V V tosc osc osc( ) , ( )= ( )s, n, . In the

following, some experimental observations are presented that are in agreement with this
assumption.

In an Eulerian framework, a rigid transverse displacement of the pattern of circulation
cells over a distance ∆n(t) replaces the fluid particle at the position n by the particle that
originates from the position n-∆n(t), thus generating the slow Eulerian velocity variation:

r r rv t v t v∗ = −( , , ) ( ( ), ) ( , )n z n - n z n z∆ (8)

An illustration for vn
∗  is given in Fig. 7. Similar variations induced by the downstream

migration are assumed to be small, since the velocity field presumably hardly varies in
downstream direction; they are ignored by lack of information (measurements taken in
one cross-section only). The slow velocity variations corresponding to such a bulk-
oscillation can thus be written as:

′ = +∗r r r
v t v t V tw osc( , , ) ( , , ) ( )n z n z (9)

Combining Eq. (6) and Eq. (9) gives:

′{ } ≈ { } +∗r r r
v t v t V tosc( , ) ( , ) ( )z z (10)

At about mid-depth, vn and its radial derivative are small (Fig. 7). Accordingly, vn
∗  is also

small, whence ′{ } ≈v V oscn n, . In the upper part of the water column, vn
∗  and Vn,osc have the

same sign whereas they are of opposite sign in the lower part (see Fig. 7). Thus, if a bulk-
oscillation of the pattern of circulation cells exists, ′{ }vn  must have the following

property:

′{ } >v Voscn

2 2
in the upper part of the water column (11)

′{ } ≈v Voscn

2 2
at about mid-depth (12)

′{ } <v Voscn

2 2
in the lower part of the water column (13)

In the next section, we will show that the measured profile of ′{ } ∗v un

2
60

2
, has this

property, indeed.

As vn
∗{ }(z,t), and thus ′{ }vn (z,t), are mainly generated by the transversal component of the

bulk-oscillation, they should have the same skewness Skn= ′{ } ′{ }( )v vn n

3 2
3

2

and kurtosis

(also called flatness) Fln= ′{ } ′{ }( )v vn n

4 2 2
 as Vn,osc(t), which means that they should be

rather uniform over the depth. Fig. 8 shows that this is indeed the case: the skewness of
′{ }vn  is nearly constant at Skn = –0.4, except near the water surface and the bottom. This

indicates that the width-coherent transversal fluctuations are nearly symmetrical. The
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kurtosis is nearly constant at Fln=3, which corresponds to the value for a Gaussian
distribution. Fig. 8 also shows the skewness and the kurtosis of the width-coherent
downstream oscillations ′{ }vs . The skewness is nearly constant at Sks ≈ 0, indicating

symmetrical fluctuations, and the kurtosis is nearly constant at Fls =3.

vn(n-∆n) =-2cm/s
vn(n)       =-4cm/s

v*n(n) =2cm/s

vn(n-∆n) =2cm/s
vn(n)       =4cm/s

v*n(n) =-2cm/s
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4.4 Decomposition of the turbulent stresses

The kinetic energy content of the width-coherent fluctuations and the background-
turbulence is analysed by decomposing the turbulent normal stresses in similar way as the
turbulent fluctuations (cf. Eq. 7):

′ = ′{ } + ′ + ′{ } ′v v v v vb bj j j, j j,n z z n z n z2 2 2 2( , ) ( ) ( , ) ( , )             (j=s,n) (14a)

Fig. 9 shows the results:

� the turbulent normal stresses due to the total velocity fluctuations, ′v j
2  (Figs. 9a,b);

� the turbulent normal stress contributions due to the background turbulence, ′v bj,
2  (Figs.

9c,d); both the downstream and the normal component are high in the outer-bank
shear layer, decrease to a minimum near the edge of the outer-bank region, and then
increase towards the inner bend;

� the turbulent normal stress contributions due to the width-coherent fluctuations, ′{ }v j

2

(Fig. 9e), which are of the same order of magnitude as those due to the background
turbulence.

Note that the contribution due to the interaction between the background turbulence and
the width-coherent fluctuations, 2 ′{ } ′v v bj j, n z( , ) (to be evaluated from Eq. 14a and Fig. 9),

is not negligible and takes positive as well as negative values on the measuring grid. For
further details on the distributions of the total normal stress components ′v j

2 , we refer to

Blanckaert and Graf (2001).
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′vs
2 ′vn

2

′v bs,
2 ′v bn,

2

′{ }vs

2

′{ }vn

2 u∗,60
2

As stated before (Eq. 12), the normal stress contribution due to the transversal bulk-
oscillation V n,osc( t )  at about mid-depth can be approximated by

V u v uoscn n, , ,
2

60
2

60∗ ∗≈ ′{ } ≈ 0.4 (Fig. 9e), i.e. V voscn n,
2 2≈ ′{ } ≈ 0.02 m/s. Fig. 9e shows

that the downstream component of the width-coherent fluctuations is considerably larger

than the transversal one: ′{ } ∗v us

2
60, ≈0.6. This high value suggests that ′{ }vs

2  is not

primarily induced by the transversal displacement of the pattern of circulation cells, but
that the bulk-oscillation has an important downstream component. More extensive
measurements, simultaneously covering more than one cross-section, will  be needed to
investigate this.

The shear stress ′ ′v vs n  is decomposed in line with Eq. (7):

′ ′ = ′{ } ′{ } + ′ ′ + ′{ } ′ + ′ ′{ }v v v v v v v v v vb b b bs n s n s, n, s n, s, nn z z n z n z n z( , ) ( ) ( , ) ( , ) ( , ) (14b)
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Fig. 10a shows the normalized total shear stress − ′ ′ ∗v v us n ,60
2 , Fig. 10b the normalized

shear stress, − ′{ } ′{ }
< ∗v v u

Hzs n f 3 60
2

[ ] , , generated by the width-coherent velocity

fluctuations. In the latter, the high-frequency contributions for f > 3 Hz have been filtered
out, because they are considered to be parasitic (see below, Fig. 11a). Comparison with
the normalized total shear stress shows that the width-coherent fluctuations have a
relatively small contribution to the shear stress.
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In summary, when treated as turbulence, the width-coherent fluctuations contribute
significantly to the normal stresses, but much less to the shear stress. Velocity fluctuations
that do not generate shear are not representative of developed turbulence, but rather
indicate a wave-like motion. This will further be investigated in the following by means
of a spectral analysis of the velocity fluctuations.

4.5 Spectral analysis of the structure of turbulence

A spectral analysis of the width-coherent fluctuations ′{ }v j  and of the background

turbulence ′v bj,  is performed to investigate their structure. The fluctuating signals are

decomposed into their discrete Fourier-components, as:

′ = ( )
=

∑x t a t
N

j j jf +( ) cos, ,α α α
α

π φ2
1

                (j=s,n) (15)

xj’ stands for ′{ }v j  or ′v bj, , aj,α and φj,α are the amplitude and phase of the component with

frequency fα = αf1, f1 is the basic frequency and fN is the Nyquist frequency, i.e. half the
sampling frequency.
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The power spectral density function, F(f), and its cumulative power spectral density
function, ℑ(f),  indicate the contribution of each frequency range to the intensity of the
fluctuating signal:

ℑ = ′ < = ∫( ) ( ˆ ) ( ˆ ). ˆf f f f f
f

x F d2

0

(16)

These continuous functions of f are approximated by their discrete Fourier-series
counterpart (for simplification of the notation, the same notations have been used for the
continuous functions and the discrete approximations):

ℑ = ′ < = −( )−
=

∑( ) ( ) ( )f f f f fm m

m

x f F2
1

1
α α α

α

              (m=1,…,N) (17)

Equation (16) can also be written as:

ℑ = ∫ ∫( ) ( ˆ ). ˆ ˆ ( ˆ ). (ln ˆf f f = f f f)
f f

m F d F d
m m

0 0

                     (m=1,…,N) (18)

indicating that in a graphical representation with a logarithmic frequency scale, the
contribution of each frequency range is visualized by the area under the graph of f.F(f), or
fαF(fα) (α=1,…,N) for the discrete approximation.

Similar F-functions (spectra) of the width-coherent fluctuations were found at each
measured elevation. Therefore, and to reduce scatter, only the vertical mean, f F , is

shown in Fig. 11a. The main contribution to ′{ }vs

2  lies in the frequency range f < 1 Hz,

with a maximum around f = 0.1 Hz, whereas the main contribution to ′{ }vn

2  is found

around f = 2 Hz. This indicates that the pattern of circulation cells does not oscillate with
a characteristic dominant frequency, but rather in a range of low frequencies, 0.1 Hz < f <
2 Hz. The F-functions of ′{ }vs  and ′{ }vn  both contain a high-frequency tail which does not

refer to a low-frequency width-coherent motion. Based on our results (further see Fig.
12b), we assume that frequencies above 3Hz are parasitical. The ℑ-function shows that

this parasitical tail represents less than 10% of ′{ }vs

2  and less than 20% of ′{ }vn

2 . This

does not alter our previous conclusion that the width-coherent fluctuations contribute
significantly to the turbulent normal stresses.

Fig. 11b also shows the F-and ℑ-functions of the transversal background-turbulence
fluctuations v’n,b for the points at of 8, 12.5 and 17 cm from the outer bank, respectively,
at 9.85 cm below the water surface. These points are chosen in regions with low and high
level of background-turbulence (see Figs. 9c,d). The maximum contributions to the
background-turbulence are found around f = 4 Hz. An inertial subrange - corresponding to
a slope of –2/3 (–5/3 in a loglog F(f)-plot) is discernable in Fig. 11b. Towards higher
frequencies, a stronger decrease with slope -4/3 (–7/3 in a loglog F(f)-plot), is observed.
The observed F- and ℑ-functions of the background-turbulence fluctuations have a form
typical of developed turbulence. Similar F-and ℑ -functions were found for the
downstream background-turbulence fluctuations, v’s,b. Especially the F- and ℑ-functions
of the downstream width-coherent fluctuations, ′{ }vs , are different.
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It was shown in the foregoing that the width-coherent fluctuations significantly contribute
to the normal stresses, but generate little shear stress. The efficiency at which fluctuating
velocities generate turbulent shear stresses for a given turbulent kinetic energy is an
important characteristic of the turbulence structure. In the following, it will be analysed
by computing the turbulent shear stresses and the turbulent normal stresses from the
Fourier-series representations of the fluctuating velocities, as:

′ ′ = ( )








 ( )










= =

∑ ∑∫x x
T

a t a t dt
s

N NTs

j k j j k kf + f +
1 2 2

1 10
, , , ,cos . cos .α α α

α
β β β

β

π φ π φ       (j,k=s,n) (19)

in which Ts is the sampling time. Using the orthogonality characteristic of the Fourier
components,

1 2 2 1
20T

t t dt
s

Ts

cos .cos . cos( ) ., , , ,π φ π φ φ φ δα α β β β α αβf + f +s n n s( ) ( ) = −∫ (20)

which is valid for long sampling periods, Ts >> 1 1
f fα β

,

the shear stresses and the normal stresses can be expressed as:

′ ′ = ( )
=

∑x x a a
N

s n s n n s-
1
2 1

, , , ,cosα α α α
α

φ φ (21)

′ =
=

∑x a
N

j j
2 2

1

1
2 ,α

α

                                                (j=s,n) (22)
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The efficiency by which the turbulent fluctuations at the frequency fα generate shear
stresses can be quantified by the ratio,

′ ′
′ ′

= ( )x x

x x
s n

s n
n sf -

2

2 2
2( ) cos , ,α α αφ φ (23)

which means that it only depends on the
phase lag, φ φα αn s-, , . These phase lags

enable to distinguish between developed
turbulence and wave-like motion (McBean
and Miyake, 1972; Komori et al., 1983).
The efficiency of shear stress generation is
high for developed turbulence, with phase
lags typically around i.π  (i=-1,0,1),
whereas wave-like velocity fluctuations
hardly generate shear stresses and have
phase lags typically around ±  π/2.
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Fig. 12: Phase lags φ φα αn s-, ,  between (a) width-coherent fluctuations ′{ }vs  and ′{ }vn  for
profile at 9.85 [cm] below water surface; (b) width-coherent fluctuations ′{ }vs  and ′{ }vn

averaged over measuring grid; (c) background-turbulence fluctuations ′vs b,  and ′vn b,

averaged over measuring grid.

As shown before, the width-coherent velocity fluctuations ′{ }vs  and ′{ }vn  are inefficient in

generating shear stress. Fig. 12a shows the phase lags at each frequency between the
components of ′{ }vs  and ′{ }vn  for the profile at 9.85cm below the water surface. For f <
1.5 Hz, these phase lags are largely scattered around values of φ φα αn s-, , ≈ π/2. Because of

the large scatter in this figure, the same data are presented in an alternative way. The
phase lags for the width-coherent fluctuations have been calculated at each measured
elevation, and those for the background turbulence have been calculated in each measured
point. For each frequency, fα, the percentage of all phase lags found around ±π/2
(0.3π≤ ≤φ φα αn s-, , 0.7π) and around ±iπ  φ φα αn s-, , ≤( 0.2π  or 0.8π≤ )φ φα αn s-, ,   is
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shown in Figs. 12b and c for the width-coherent fluctuations and the background
turbulence, respectively. The phase lags of the width-coherent fluctuations (Fig. 12b)
show a different behaviour in the low and high-frequency ranges, separated at about 1.5
Hz. In the low-frequency range, at least in the range that contributes most to the width-
coherent normal stresses (f ≈ 0.4 ÷ 1 Hz; Fig.11a), they are mainly found around ± π/2. In
the high-frequency range they mainly occur around 0 and ±π. It is on the basis of this
result that we have chosen to consider the contributions with f > 3 Hz as fast parasitical
fluctuations. The phase lags of the background-turbulence fluctuations (Fig. 12c) are
mainly found around 0 and ±π in the low-frequency range and tend to be more randomly
distributed at higher frequencies.

Thus, the decomposition of the velocity fluctuations into width-coherent fluctuations and
background turbulence seems to be physically meaningful, since they have a
fundamentally different turbulence structure. The width-coherent fluctuations seem to
represent a bulk-oscillation of the pattern of circulation cells with the characteristics of a
wave-like motion, i.e. with a low efficiency in shear generation. The background
turbulence has the characteristics of developed turbulence and is much more efficient in
shear generation. All departures from the turbulence structure in straight uniform shear
flow are directly or indirectly due to the streamline curvature of the mean flow.
Blanckaert and de Vriend (2002a) have shown that the departures of the measured
turbulence structure from its counterpart in straight uniform shear flow seem to be
correlated with a curvature-flux-Richardson number Rf that reflects the streamline
curvature. The relation between the experimentally observed turbulence characteristics
and the streamline curvature will be further elaborated in the next section.

5 The influence of streamline curvature

Bradshaw (1969, 1973) has shown that the structure of turbulence is sensitive to
streamline curvature and stipulated that the influence of streamline curvature is analogous
to the influence of buoyancy in a density-stratified flow. The analysis that is generally
used to derive buoyancy parameters from the equations of motion can be used to derive
equivalent parameters for streamline curvature, such as:

ω ∂
∂BV

v

r

rv= 2 2
s s

n
          [Hz] (24)

S
v

r

v= s s

n

∂
∂

(25)
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

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∂
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∂
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with vs approximating the velocity along the streamline and r the radius of curvature of
the streamline. This derivation is limited to two-dimensional flows. The frequency ωBV

was first derived by Von Karman (1934) from a simple linear stability analysis. He
showed that when an element of fluid is transversally displaced in a plane frictionless
curved (or rotating) flow, it will either move further away from its original position or
return towards it and oscillate about it. If ωBV is real, it represents the frequency of this
oscillation. An imaginary ωBV indicates exponential growth or decay. The frequency ωBV

is similar to the Brünt-Vaïsälä frequency in density-stratified flow. The dimensionless
curvature parameter S (Eq. 25) derived by Prandtl (1930) represents the ratio of the
curvature-induced extra strain-rate to the inherent strain-rate. Dividing the square of ωBV

by (∂vs/∂n)2, which is a typical frequency scale of a shear flow, the curvature-gradient-
Richardson number Ri (Eq. 26) is obtained. Whilst ωBV, S and Ri are related to static
stability and do not involve turbulence, the curvature-flux-Richardson number Rf (Eq. 27),
is derived from the Reynolds stress equations. It is interpreted as minus the ratio of the

′vn
2 -production due to streamline curvature to the total ′vs

2 -production. It is
positive/negative for stabilizing/destabilizing curvature. According to Eqs. 24-27, S, Ri
and Rf are closely related:

Rf=Ri/(1+S)2=2S/(1+S)         whence       Rf≈Ri≈2S     for small S (28)
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Fig. 13: (a) Flux-curvature-Richardson number,
Rf; (b) Depth-averaged flux-curvature-

Richardson number, Rf , and ratio, k K

(copied from Fig. 4c).

Blanckaert and de Vriend (2002a)
show that in the present strongly
three-dimensional flow, the
reduction of turbulence activity in
the deepest part of the cross-
section is correlated with the
curvature-flux-Richardson number
Rf. Their findings are briefly
summarized here. Fig. 13a shows
the experimental distributions of Rf

and Fig. 13b compares the
distributions of its depth-averaged
value Rf  with that of k K

(copied from Fig. 4c). In most of
the area, Rf and Rf  are positive

and increase in outward direction
from small values near the
centreline to maximum values
O(2). In the outer-bank shear
layer, where Rf  and Rf  are

negative, the influence of the bank
proximity dominates over the
influence of the streamline
curvature.
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There seems to be a rather strong negative correlation between the distributions of Rf

and k K . Near the centreline, where Rf ~0, k K  approaches  its straight-

uniform-flow value of 0.03. The outward reduction of k K  is accompanied by

increasing values of Rf , and the maximum of Rf  coincides with the minimum of

k K . In the outer-bank shear layer, Rf <0 and k K  strongly increases. Like in

two-dimensional flows, high positive values of Rf in curved flow goes with a reduction of
the turbulent kinetic energy.

Fig.14 shows the distribution of the frequency ωBV (Eq. 24). The calculated values are
rather uniform over most of the flow depth, except close to the bottom. Near the outer
bank, where the curvature has a destabilising effect, ωBV is imaginary. Values of the order
of 0.3 Hz  are found in the region where the ratio k K  is minimum, and gradually

increase to values of about 1 Hz in the innermost part of the measuring section. Near the
centreline, where the ratio k K  strongly increases, ωBV also shows a stronger increase,
up to values of about 1.5 Hz. These frequencies ωBV are of comparable magnitude to the
observed dominant frequency ranges of the width-coherent wave-like velocity
fluctuations ′{ }vs  and ′{ }vn  shown in Fig.11a.
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Fig. 14: Theoretical frequency, ωbv [Hz], of a transversally displaced fluid element.

Thus, both the bulk-oscillation of the pattern of circulation cells and the reduction of
turbulence activity are correlated with parameters representative of the streamline
curvature. The derivation of the curvature parameters ωBV and Rf is based on a linear
analysis for small streamline curvatures in two-dimensional curved flow in the s,n-plane
(Bradshaw, 1969). Our experiment concerns highly three-dimensional strongly curved
flow, with complicating factors such as a relatively strong cross-stream motion, the
proximity of the banks and a non-trivial bottom topography. It is remarkable that even in
such a complicated flow, the reduction of turbulence and its tendency towards wave-like
motion seem to be correlated with simple streamline-curvature parameters such as ωBV

and Rf.
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Strong turbulence damping and the reduction of low-frequency turbulence to a wave-like
motion have been reported in the literature for different configurations. So and Mellor
(1973) investigated turbulent boundary layers along a convex surface of varying curvature
in a wind tunnel. In a region of stabilizing curvature, S ≈ 0.3, they measured small
turbulent normal stresses and nearly zero shear stresses. They speculate that this
represents linear internal waves. Irwin and Smith (1974) derived a model of streamline
curvature effects from the simplified Reynolds stress equations, and tested it against
experimental data from curved wall jets in still air. The model predicts that turbulence
reduces to wave-like motion for S ≈ 0.1. Holloway and Tavoularis (1992) did experiments
on the effects of curvature on sheared turbulence in a wind tunnel, relatively isolated from
wall and entrainment effects. They found that turbulence approaches wave-like motion
for S ≈ 0.33. McBean and Miyake (1972) took measurements in density-stratified
atmospheric boundary layersand found that the shear stress generation decreases with
increasing stability and that internal waves appear. Komori et al. (1983) experimentally
investigated stably density-stratified open-channel flow and found that turbulent motion
approaches wave-like motion with increasing Richardson number, Ri≈0.3 to 1. Our
observation of a reduced turbulence activity and a tendency to wave-like motion complies
qualitatively with these observations.

Blanckaert and de Vriend (2002a) show that for the accurate simulation of turbulence in
sharp open-channel bends it is not sufficient for the turbulence closure model to include
the transport equation for k. It should also represent the turbulence structure. Turbulence
closures based on a scalar eddy viscosity concept are inherently unable to represent this
turbulence structure. Yet, their capabilities can probably be improved on the basis of the
correlations between the turbulence structure and parameters for the streamline curvature,
such as ωbv or Rf. Examples are reported in literature and discussed in Blanckaert and de
Vriend (2002a). However, such semi-empirical extensions not derived from first physical
principles have to be based on a large amount of detailed experimental data, beyond those
presented herein.

6 Discussion and conclusions

Non-intrusive three-dimensional mean flow and turbulence measurements were made in
the outer half of one cross-section of an open-channel bend, using an Acoustic Doppler
Velocity Profiler (ADVP). This instrument simultaneously measures the three
instantaneous velocity components in a line perpendicular to the outer sidewall. This
enables to derive the mean velocity vector rv v v v= ( , , )s n z , the fluctuating velocity vector
r′ = ′ ′ ′v v v v( , , )s n z  and turbulence correlations, such as the six turbulent stress components
′ ′v vj k . In this paper, we exploit the profiling capacity of the ADVP, which enables tracing

coherent flow structures.

The downstream mean velocity vs increases towards the outer bend and the maximum
velocities are found in the lower part of the water column. A bi-cellular pattern of cross-
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stream circulation exists: besides a centre-region cell (the classical helical motion), a
weaker and counter-rotating outer-bank cell occurs near the water surface adjacent to the
outer bank. The turbulence activity is rather strongly reduced in most of the outer bend, as
compared to straight uniform shear flow.

In a complementary paper, Blanckaert and de Vriend (2002a) present some turbulence-
structure parameters indicating that, given the amount of turbulent kinetic energy,
turbulent eddies in curved flow are less efficient in producing shear stress than those in
straight uniform flow. They show that this change in the turbulence structure is at the
basis of the observed turbulence characteristics, especially the reduced turbulence activity
in the outer bend, and that it is correlated with the curvature-flux-Richardson number Rf

that parameterises streamline curvature.

The analysis presented herein gives more physical insight into the turbulence dynamics,
which can speculatively be described as follows. Similar to the influence of buoyancy,
streamline curvature leads to turbulence damping. This phenomenon is characterised by
parameters such as Rf  or ωbv . Whereas increasing Reynolds numbers favour the
turbulence activity, increasing streamline curvatures seem to suppress it. This damping
occurs basically through a change in the turbulence structure, which goes with a less
effective shear production. The velocity fluctuations are a-typically coherent over the
width and the decreased shear-efficiency can be explained by decomposing the velocity
fluctuations into slow width-coherent fluctuations and rapidly varying background
turbulence. The coherent fluctuations seem to represent a bulk-oscillation of the pattern of
circulation cells in the downstream and transversal directions, which is significant in
magnitude, nearly symmetrical and Gaussian. When treated as turbulence, it contributes
significantly to the turbulent normal stresses (and thus also to the turbulent kinetic
energy), but it contributes little to the turbulent shear stresses. The structures of the width-
coherent velocity fluctuations and of the background turbulence are fundamentally
different. The former have the characteristics of a wave-like motion (linear internal
waves), with little shear stress generation, whereas the latter has the characteristics of
developed turbulence with efficient generation of shear stresses. Obviously, due to the
organisation of part of the turbulence into a coherent wave-like motion, the efficiency of
shear generation, given the total kinetic energy of the velocity fluctuations, will be
reduced.

These results are comparable to the reduced levels of turbulence activity and the tendency
to wave-like motion reported in literature for the cases of curved wind tunnels and
density-stratified flows. Our measurements show that this suppression of turbulence
activity, in favour of a coherent wave-like motion, is a potentially important phenomenon
in curved open-channel flows. To our knowledge, observations of this phenomenon in
open-channel flows have not been reported before.
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PART III

FUNDAMENTAL RESEARCH

III.5 Conclusions

Valuable information has been obtained on the physical mechanisms and processes
underlying the observations reported in part II:

-  In chapter III.1, it is found that advective momentum transport by the secondary
circulation is a dominant mechanism with respect to the downstream velocity
distribution. Advective momentum transport by the center-region cell causes the
observed increase of vs in outward direction and the flattening (increasing/decreasing
velocities in the lower/upper part of the water column) of the vertical vs-profiles.
Based on these results, chapter IV.1 will propose a non-linear model for the center-
region cell and its effect on the downstream velocity distribution. The outer-bank cell
prevents this outward increase to persist onto the outer bank. It stabilizes a region in
between the outer bank and the center-region cell and thereby keeps the core of high
velocity at some distance from the outer bank. The outer-bank cell thus has a
protective effect on the stability of the outer bank.

-  In chapter III.2, it is found that the center-region cell of secondary circulation is
mainly generated by the vertical gradient of the centrifugal force, (∂/∂z)(vs

2/R). The
non-uniform outward centrifugal force and the nearly-uniform inward pressure
gradient, due to the superelevation of the water surface, are on the average in
equilibrium. Their local non-equilibrium, however, gives rise to the center-region cell.
An important negative feedback exists between the strength of the center-region cell
and the vertical profile of vs. As mentioned above, the vs-profiles flatten under the
influence of the center-region cell. The resulting centrifugal force, vs

2/R, gets more
uniform over the depth, which results in a weaker center-region cell. In chapter IV.1,
a non-linear model for the center-region cell and the downstream velocity profile will
be proposed that takes due account of this negative feedback. By incorporating the
effects of the center-region cell with such a model, reasonably accurate simulations of
moderately curved flows can be obtained with depth-integrated flow models. For
strong curvatures, however, a fully three-dimensional flow description is required.

-  The mechanisms underlying the outer-bank cell of secondary circulation are
investigated by means of a term-by-term analysis of the downstream vorticity
equation based on the experimental data. Similar outer-bank cells exist in straight
turbulent flow as well as in curved laminar flow. In straight turbulent flow, they are
induced by the anisotropy of turbulence, and they cannot be simulated with standard
k-ε turbulence closures. In curved laminar flow, they come into existence when the
curvature exceeds a critical value: the flattening of the vs-profiles gets so pronounced
that the gradient of the centrifugal force changes sign near the water surface,
(∂/∂z)(vs

2/R)<0, provocating the generation of the outer-bank cell. In chapter III.2, it
is found that both mechanisms have a comparable contribution to the generation of
the outer-bank cell in curved turbulent flow and strengthen each other, whence the
outer-bank cell is stronger in a curved turbulent flow than in a curved laminar or a
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straight turbulent flow. Furthermore, it is found that the restitution of kinetic energy
from the turbulence to the mean flow plays an important role in the generation of the
outer-bank cell, and that the deficiency of standard k-ε turbulence closures is due to
their inherent incapability to account for such kinetic-energy restitution. A successful
numerical simulation of the outer-bank cell with a non-linear k-ε turbulence closure,
based on these indications, will be reported in chapter IV.2.

- In chapter III.3, it is found that the reduced turbulence activity in the investigated
outer bend may be attributed to a change in turbulence structure as compared to a
straight uniform open-channel flow: the a1 turbulence-structure parameter and the
mixing coefficients indicate that given the amount of turbulent kinetic energy, there is
less shear in a curved flow. The departures from the turbulence structure in straight
uniform flow are correlated with a curvature-Richardson number Rf that parameterizes
the streamline curvature. Such correlations may help to improve the capabilities of
two-equation turbulence closures for three-dimensional curved open-channel flow. In
chapter IV.1, it will be shown that the strength of the center-region cell of secondary
circulation depends on the same curvature-Richardson number, which must be an
important scaling parameter in curved open-channel flow.

- An analysis of the instantaneous behavior of the flow gave more physical insight into
the dynamics underlying this change in turbulence structure. The results of Chapter
III.4 suggest that the influence of streamline curvature leads to turbulence damping,
similar to the influence of buoyancy, and can be described with similar parameters
such as the curvature-Richardson number Rf or the curvature-Brunt-Väisälä frequency
ωbv. The streamline curvature imposes a kind of transversal stratification to the
turbulence structure. The velocity fluctuations are a-typically coherent over the width
and can be decomposed into slow width-coherent fluctuations and a rapidly varying
background signal. The slow coherent fluctuations represent a bulk-oscillation of the
pattern of circulation cells with the characteristics of a wave-like motion (low shear
stress generation) whereas the background signal has the characteristics of developed
turbulence (efficient shear stress generation). Obviously, the reduction of part of the
turbulence into wave-like motion reduces the efficiency of shear generation. Similar
observations on reduced turbulence activity and tendency to wave-like motion have
been reported in literature for flow in curved wind tunnels and density-stratified
flows. To our knowledge, these potentially important phenomena have not been
reported in literature before for the case of open-channel flow. As concluded in
chapter III.3, correlations between the turbulence structure and curvature parameters
such as Rf and ωbv may help to improve the capabilities of two-equation turbulence
closures for three-dimensional curved open-channel flow, although this would require
more experimental data.

As mentioned, some of these results will be applied in numerical-simulation techniques in
part IV. Note that this part on fundamental research makes uniquely use of the small-
flume experiments. Based on these results, the large-flume experiments have been
designed, and their analysis will be reported in the future.
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IV.0 Introduction

The knowledge acquired in parts II and III is applied in an engineering sense, mainly by
trying to evaluate, improve or develop numerical-simulation techniques.

Due to the integration over the flow depth, all information related to the vertical structure
of the flow field, and especially to the secondary circulation, is lost in depth-integrated
flow models, and has to be provided. Chapters II.2 and II.3 have shown that linear models
for this purpose are inadequate. Chapters III.1 and III.2 indicated as cause their neglect of
the feedback between the downstream velocity profile and the secondary circulation.
Chapter IV.1 proposes a non-linear model for the center-region cell of secondary
circulation that accounts for this feedback. The non-linear model is derived, validated
with experimental data from the large-flume experiments and analyzed. Furthermore, the
relevance of the differences between the linear and the non-linear model is estimated for
some natural rivers. Previous versions of this non-linear model have been presented in
two papers that are not included in this dissertation:

Blanckaert K. (2001) “A model for flow in strongly curved channel bends.” Proc. JF Kennedy student
paper comp., 29th-IAHR congr., Beijing, China, 42-50

Blanckaert, K. & Graf, W. H. (2001) “Non-linear model for secondary circulation and transversal bottom slope
in sharp bends.” Proc. 2th RCEM-congr., Obihiro, Japan, 791-800.

Chapters II.1 and III.1 have shown that the weak outer-bank cell is important since it has
a protective effect on the outer bank. Chapter III.2 has indicated that turbulence
anisotropy and the restitution of kinetic energy from the turbulence to the mean flow play
an important role in the generation of the outer-bank cell, and that the standard k-ε
turbulence closure model cannot account for these underlying physical mechanisms.
Based on the acquired knowledge, chapter IV.2 tempts to simulate numerically the outer-
bank cell observed in the small-flume experiments with a non-linear k-ε turbulence
closure. These simulations were done in collaboration with the National Center for
Computational Hydroscience and Engineering (Univ. Mississippi, Prof. Wang and Prof.
Jia).

Part IV ends with a summary of the main conclusions.
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IV.1 Non-Linear Modeling of Secondary Flow and Vertical Flow

Structure in Open-Channel Bends

(in preparation for submission to Water Resources Rersearch, Am. Geoph. Un.)

Abstract

River problems concerning the flow field and the morphology are often investigated by
means of depth-integrated flow-sediment models, in which the vertical structure of the
flow is accounted for by a closure submodel; this is similar to the turbulence-closure
submodels that have to be provided to the Reynolds-averaged flow equations. The
required closure for the vertical flow structure mainly has to account for the secondary
circulation, which is a characteristic feature of curved open-channel flow that (i)
redistributes the flow, the boundary shear stresses and the sediment transport by advecting
flow momentum; (ii) causes the direction of the bottom shear stress to deviate from the
direction of the depth-averaged velocity and thereby influences the bottom topography;
(iii) gives rise to additional friction losses as compared to a straight-uniform flow. The
commonly used linear closure models are shown to fail in reproducing essential features,
because they neglect the feedback between the downstream velocity and the secondary
circulation. A non-linear closure model taking this feedback into account is shown to
yield results that compare well with experimental data. The feedback effects turn out to be
controlled almost exclusively by a single parameter, which enables their parameterization
in a relatively simple way. This control parameter also helps to objectively distinguish
weak, moderate and strongly curved flows. This non-linear closure model clearly
indicates the relevant flow mechanisms and the sensitivity to the hydraulic parameters.
The linear model corresponds to its asymptotic solution for vanishing curvature. An
analysis of a velocity-redistribution model for two natural rivers shows that differences
between the linear and the non-linear-model closures are relevant with respect to the
simulation of the flow and the bottom morphology. The proposed non-linear closure
model has the potential of improving the performance of depth-integrated flow-sediment
models without much extra computational effort.

Keywords

Open-channel flow, channel bends, meanders, velocity distribution, secondary

circulation, helical motion, laboratory experiments, dispersion, flow-sediment modeling

1 Introduction
Rivers typically wind in their alluvial planes through a succession of bends, thereby
shaping irregular courses that vary in time. The secondary circulation (cf. Fig. 1, also
called helical motion or spiral flow), which is characteristic for flow in bends, is known to
play a dominant role in the river mechanics: it redistributes the velocities, the boundary
shear stresses and the sediment transport and thereby shapes the river morphology.
Furthermore, it plays an important role in the spreading and mixing of dissolved or
suspended matter.

Koen Blanckaert
A shortened version of this paper (downloadable from 
ftp://lrhmac15.epfl.ch/Pub/Thesis/Blanckaert/) has been published:

Blanckaert, K. & de Vriend, H. J. (2003). “Non-linear modeling of mean flow redistribution in curved open channels.” Water Resources Res., AGU, 39(12), 1375. (doi:10.1029/2003WR002068)
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In the past, numerous river canalization works have been undertaken that confined the
river to a given prescribed planform, in order to improve navigation or use the alluvial
plane. Recently, there is a tendency to renaturalize rivers, e.g. by giving them more
freedom to shape their course in the alluvial plane, which is recognized as a rich biotope
and as an important buffer in the flood defense system. Moreover, natural rivers are
preferable from a landscape point of view.

The design of river renaturalization works, flood protection schemes or navigation
improvement works, as well as the investigation of matter-spreading problems require
accurate predictions of the flow field and the river morphology. This is commonly done
by means of depth-integrated flow models coupled to sediment- transport models and/or
matter-spreading models. The use of more accurate three-dimensional flow models is not
always feasible due to limitations in computing capacity. Moreover, given the inaccuracy
of the sediment-transport models and the uncertainty in the driving factors (e.g. the
discharge hydrograph), it is questionable whether a detailed 3-D flow description adds
value to the prediction.

The information related to the vertical structure of the flow field - and especially to the
secondary circulation – is lost to a large extent by depth-integrating the flow equations.
The remaining information has to be introduced via closure submodels. This is similar to
the turbulence-closure submodels that have to be provided to the Reynolds-averaged flow
equations. Flokstra (1977), Johannesson & Parker (1989b), Finnie et al. (1999),
Blanckaert (2001a) and Blanckaert & Graf (2002) have shown the importance of this
closure, especially if it comes to including the feedback effects between the secondary
circulation and the main flow. This paper proposes a non-linear model for the vertical
structure of the flow field that, contrary to the commonly used linear models, takes due
account of the feedback between the secondary circulation and the main flow. Previous
versions of this non-linear model have briefly and incompletely been introduced by
Blanckaert (2001b) and Blanckaert & Graf (2001b and 2002).

Besides its role as closure model in depth-integrated flow-sediment models, the proposed
non-linear model improves the insight in the mechanisms underlying the curvature-
induced secondary circulation and its interaction with the flow.

The required closure submodel for the vertical structure of the flow, and its close relation
with the secondary circulation, are elaborated in section 2. The approach of the closure
submodels is introduces in section 3. Section 4 presents experimental data on strongly-
curved open-channel flow that are subsequently used for validation of the linear and non-
linear models. Section 5 illustrates the failure of the commonly used linear models and
identifies its causes. Section 6 proposes and analyses a non-linear model that compares
well with experimental data. Differences between the linear and the non-linear models are
discussed in section 7. The relevance of these differences with respect to the flow field
and the morphology are discussed and estimations are made for bends on 2 natural rivers
in section 8. All mathematics that are non-essential for the comprehension of the paper
have been grouped in Annexes at the end of the paper.
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2 Mathematical framework
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Fig. 1: Definition sketch of curved open-channel flow and decomposition of transversal velocity (cf. Eq. 1).

The main structure of the 3-D flow field in a curved open channel is outlined in Fig. 1.
Furthermore, it defines the (s,n,z)-reference system, the centerline radius of curvature, R,
the flow depth h=zS-zb where zS and zb are the elevations of the water surface and the
bottom above a horizontal datum, and the bottom shear stress vector rτ τ τb b bs n,( ) . The

overall mean water depth H can be confounded with the centerline water depth, h(s,0).

The local instantaneous velocity components are split into a turbulent and a turbulence-
averaged part, and the latter into a depth-averaged and a depth-varying part:

v t v v v tj j j j( ) ( )= + + ′∗              (j=s,n) (1)

in which t is time, the overbars indicate turbulence-averaging and the brackets    depth-

averaging. Hence, by definition:

′ = = =∗v t v and v Uj j j j( )  ,       0 0 (2)

in which Uj is the relevant depth-averaged velocity component. Especially for the
transversal velocity component, vn, the decomposition according to Eq. 1 has an
important physical meaning: v Un n=  represents the cross-flow, whereas vn

∗  represents

the transversal component of the secondary circulation (see Fig. 1). The former is mainly
induced by downstream variations in the bottom topography, whereas the latter is a
characteristic feature of curved open-channel flow.

The Reynolds and depth-integrated velocity correlations v t v ti j( ) ( )  that appear in depth-

integrated flow models can be decomposed according to Eq. 1, to yield

v t v t U U v v v vi j i j i j i j( ) ( ) = + + ′ ′∗ ∗ (3)

For simplicity, the overbar is omitted henceforth, except in the instantaneous velocity
correlations, such as the last term in Eq. 3, the Reynolds stress.
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Mass conservation equation

Momentum conservation equations
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Panel 1: Depth-integrated flow model; the marked terms require a closure submodel.

Introducing these definitions into the 3-D flow equations and averaging the result over
turbulence and depth yields a set of equations like that in Panel 1. In principle, these
equations can be solved for the depth-averaged velocities 

r
U U Us n= ( , )  and the flow depth

h after providing appropriate boundary conditions. But first the residual non-linear terms,
such as v vi j

∗ ∗  and ′ ′v vi j , need to be expressed in terms of the turbulence- and depth-

averaged dependent variables. The depth-averaged Reynolds stresses, − ′ ′ρ v vi j , are

related to 
r

U U Us n( , ) and h by means of a turbulence closure submodel. Similarly, a
closure submodel has to be provided that relates the so-called dispersion stresses,
−ρ v vi j

∗ ∗ , to 
r

U U Us n( , ) and h.

Depth-integrated turbulence closure models have amply been published in the literature
(Rodi 1984, chapter 2.6.e, Booij 1989, Nezu & Nakagawa 1993, chapters 6.2.2 and 6.5.2,
etc.) and will not be discussed herein. The dispersion stresses are typically larger than the
depth-averaged Reynolds stresses. Their role has also been investigated extensively
(Flokstra 1977, Kalkwijk & de Vriend 1980, Olesen 1987, Johannesson & Parker 1989b,
Nezu & Nakagawa 1993, Yulistiyanto et al. 1998, Finnie et al. 1999, Lien et al. 1999,
Blanckaert & Graf 2002, etc):

-  the velocity correlation vs
∗2

, which is related to the shape of the downstream

velocity profile, does not play an important role (Olesen 1987, p.49), so it will be
ignored henceforth;

-  the correlation v vs n
∗ ∗  is associated with the advective transport of downstream

momentum vs
∗  by the secondary circulation vn

∗; this is a dominant mechanism in the
(re)distribution of the downstream velocity and boundary shear stress and needs to be
modeled accurately in depth-integrated flow models (Johannesson & Parker 1989b,
Finnie et al. 1999, Blanckaert & Graf 2002);

- the quantity vn
∗2

 is a measure of the strength of the secondary circulation.
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Apart from the turbulence- and depth-averaged velocity correlations, also the bottom
shear stress vector 

rτ τ τb b bs n,( )  appears as an additional unknown in the depth-integrated
flow equations and has to be related to 

r
U U Us n( , )  and h:

- The bed shear stress direction τ τb bn s  is determined by the direction of the near-bed
velocity vector and thus deviates from the direction Un/Us of the depth-averaged
velocity vector in the presence of secondary circulation (Olesen, 1987, Eq. 2.42 and
Eq. 2.54; see Fig. 1):

τ
τ

τ
τ

ατ
b

b

n

s

b
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This deviation angle of the bottom shear stress due to the secondary circulation,
τ τb bn s

∗ =ατ(H/R), affects the direction qbn/qbs of the sediment transport vector, and thus
has an important influence on the bottom topography. Olesen (1987, Eq. 3.18) explains
this as follows:
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Over a transversally inclined bottom, ∂zb/∂n, the sediment-transport direction qbn/qbs

deviates from the bottom-shear-stress direction τ τb bn s  due to the downslope
gravitational pull on the sediment particles. Olesen (1987, chapter 3.3) summarized
different models for this gravitational pull G, written in general form as G=G0(θ/θ0)

-a.
θ and θ0 are the Shields parameter (the non-dimensional bottom shear stress) and its
centerline value, respectively; G0 is a function of θ0, and a=0, 1/2 or 1 for different
models proposed in the literature. For the case of fully-developed curved flow, where
the flow and the sediment transport occur parallel to the centerline (Un=0 and qbn=0
and indicated by the subscript ∞; see Eq. A4 in Annex 1), Eqs. 4-5 indicates that the
transversal bottom slope becomes proportional to the deviation angle of the bottom
shear stress τ τb bn s
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The normalized fully-developed transversal bottom slope ST∞ will be named the scour
factor further on. Obviously, the transversal bottom slope in the developing reach of
the curved flow, ST=(∂zb/∂n)/(H/R) will also be influenced by the deviation angle of
the bottom shear stress, although S GT ≠ ατ .

- the magnitude of the bed shear stress, 
rτ b , is related to the magnitude of the depth-

averaged velocity in straight uniform flow through a flow-resistance equation, such as
τ ρbs s fU C2

0= , (the subscript 0 refers to straight uniform flow). The friction factor Cf0

relates to the Chezy coefficient C via Cf = g/C2. Given the depth-averaged velocity, the
bottom shear stress in a curved flow is higher than in the equivalent straight uniform
flow. Firstly, there is an additional transversal bottom shear stress component, τ bn

∗ , due
to the secondary circulation. Secondly, due to the advective momentum transport by
the secondary circulation, the velocity profiles in a curved flow are typically flatter
than in a straight flow (Blanckaert & Graf 2002). Since the bottom shear stress is
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determined by the near-bed velocity gradients, this will cause an increase of 
rτ b  for

the same depth-averaged velocity 
r

U . This is expressed by multiplying the flow

resistance as in straight uniform flow by the amplification factor y, yielding:

r r r
τ ρ ψ ρb f fC U C U= =

2
0

2
   or   ψ

τ
τ

τ τ

ρ
= = = +r

r r
b

b

f

f f

bs bnC
C C U0 0 0

2 2

2
1 (7)

The remainder of this paper focuses on the closure submodels for the dispersion stresses,
the bed shear stress direction and the shear stress amplification factor. Note that these
quantities are all closely related to the secondary circulation, which underlines the
dominant role of the secondary circulation in the river mechanics and underscores the
importance of accurately modeling the secondary-circulation effects in the depth-
integrated flow equations.

3 Approaches of model closure

The flow field in a bend is described rather well by the three-dimensional hydrostatic
flow equations, Eqs. A1-3 in Annex 1. From the 3-D solutions for vs and vn, the
normalized dispersion terms

f f v v U H
Rs n = ∗ ∗

s n
2    and   f v U H

Rn
2 2= ∗

n (8)

could be evaluated. U=Q/(BH) is the overall mean velocity and fs=vs/U and fn= vn
∗ /(UH/R)

represent the form of the vertical profiles of vs and vn
∗ , respectively. Similarly, the 3-D

solution defines the relation between the bottom shear stress vector rτ τ τb b bs n,( ) and the

dependent variables 
r

U U Us n( , )  and h of the depth-integrated flow model. It is therefore
logical to derive a closure model for these quantities from the 3-D hydrostatic flow
equations. This can be done in a number of steps:

(1) The 3-D hydrostatic flow equations are simplified to the simplest form that still
represents all essential mechanisms. This simplification is briefly described below,
but explained in detail in Annex 1. Firstly, fully-developed curved flow - defined by
∂/∂s=0, Un=0 – is considered at the centerline of the river, where n=0, h≈H, Us≈U and
vz≈0. Subsequently, an order-of-magnitude analysis is made by means of a
normalization in order to identify the dominant terms/mechanisms in the flow
equations (see Panel A1 in Annex 1).

(2) Various approaches can be taken to simplify the normalized flow equation in order to
derive the vertical structure of the velocity components in fully-developed curved
flow. A formal first-order perturbation approach with H/R as a perturbation parameter
leads to the commonly used linear model approach (see Section 5). This will be
compared with a more physics-based non-linear approach that includes the feedback
between the secondary flow and the main flow (see Section 6).

(3) The closure model needs to provide the vertical structure of the flow all around bends
of varying curvature, not only in fully-developed curved flow. Therefore, a semi-
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heuristic relaxation model is adopted that describes the inertial adaptation of the
vertical flow structure to curvature changes:

λ ∂
∂φ
Y Y

Y in bend
in straight outflow

+ =




∞   
   0 (9)

where Y f f f or= s n n,  ,     2 ψ ατ  and φ=s/R (bend) or s /B (straight) is the

normalized downstream coordinate. This relaxation model expresses that the solution
Y in the developing region of the flow lags behind its target value (Y∞ in a bend, 0 in
a straight reach). The relaxation factor λ indicates how strong this inertial lag effect is
in terms of normalized downstream distance. Various models have been proposed in
the literature (Rozovskii 1957, Yen 1965, de Vriend 1981a, Kitanidis & Kennedy
1984, Kalkwijk & Booij 1986, Odgaard 1986; Ikeda & Nishimura 1986, Olesen
1987; Johannesson & Parker 1989a, etc.). Their main differences lie in the definition
of the relaxation factor. Although fn

2  and ατ have different relaxation factors

according to de Vriend (1981a) and Kalkwijk & Booij (1986), hereafter the
relaxation factor proposed by Johannesson & Parker (1989a) will be adopted:
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(4) The closure model is now defined at the centerline of rivers of varying curvature.
However, the closure models need to provide the vertical structure of the flow
throughout the flow domain. Ikeda et al. (1990) propose a semi-heuristic width-
extension, but measured distributions over the width remain to be published. This
paper will therefore abstain from any width-extension.

4 The experiments
Further on in this paper, the linear and non-linear model results will be compared to
experimental data gathered in the laboratory flume shown in Fig. 2. This section uniquely
aims at introducing the data that will be used for validation further in the paper.

The laboratory flume has a 9 m long straight inflow reach followed by a 193° bend with a
constant centerline radius of curvature of R=1.7m and a 5m long straight outflow reach.
The width is B=1.3m and the vertical banks are made of Plexiglas. The horizontal bottom
was covered by nearly uniform sand with diameters in the range, 1.6mm < d < 2.2mm; it
was fixed by spraying a paint on it, thus preserving the grain roughness.

Measurements were made for 3 subcritical hydraulic conditions, summarized in Fig. 2.
Increasing the discharge Q mainly resulted in an increasing water depth H and curvature
ratio H/R, whereby the friction factor varied between 10.2 < 1 Cf  = 1 0ψCf  < 11.2.

The curvature ratios indicate very sharp bends that will rarely be encountered in natural
open-channel flows. These experimental conditions are a severe test for the proposed
non-linear model.
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Fig. 2: Laboratory flume, measuring sections and grid, Acoustic Doppler Velocity Profiler (ADVP) and
hydraulic conditions.

The linear and non-linear models depend on the equivalent-straight-uniform-flow
roughness factor Cf0. The equivalent-straight-uniform flow is defined as the straight-
uniform flow that would exist for vanishing curvature, with the same velocity U and the
same water depth H and over a bottom with the same granulometry. The bottom-friction
characteristics are determined by the equivalent sand roughness, which has been
estimated as ks=3d≈0.006m (van Rijn 1984), and Cf0 is estimated from (Graf & Altinakar
1998, Eq. 2.64):

1 1 6 25
0C
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kf s

=
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





 +

κ
ln . (11)

where κ=0.4 is the Karman constant. In hydraulic engineering, often use is made of the
Manning friction factor, n=H1/6(Cf/g)1/2, which is nearly constant at n0=1/61. This agrees
well with the Strickler formula (Graf & Altinakar 1998, Eq.3.18), n0=d1/6/21.1≈1/59.5.

Measurements with high spatial and temporal resolution of the three-dimensional flow
and turbulence fields were made with an Acoustic Doppler Velocity Profiler (ADVP),
developed in our laboratory (Lemmin & Rolland 1997, Hurther & Lemmin 1998 and
2001, Blanckaert & Graf 2001a). Vertical profiles were first measured at the centerline
every 15° in the bend and every 0.25m in the straight reaches. Subsequently,
measurements on the fine grid shown in Fig. 2 were made in the reference-straight-flow
cross-section 2.5m upstream of the bend as well as in the bend cross-section characterized
by the strongest secondary circulation, which was found at 135° for Q56, at 90° for Q89
and at 75° for Q104 (cf. Fig. 5). For the Q89-experiment, the 12 cross-sections along the
flume, indicated in Fig. 2, were measured in detail.
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The centerline evolutions of fn
2  and f fs n  are shown in Fig. 5 and will be discussed

further in the paper. Fig. 3a compares some vertical fs(η)-profiles (averages of the profiles
measured from 0-60º, 60-120º and 120-193º in the bend; η=z/h) measured at the
centerline in the Q89-experiment with a logarithmic straight-flow profile based on
1 Cf =10.8 (cf. Fig. 2). Near the bend entrance, the measured profiles agree rather well

with the logarithmic profile. As the flow proceeds through the bend, fs gradually flattens
by decreasing/increasing in the upper/lower part of the water column and it attains a non-
monotonic form (∂fs/∂η<0 in the upper part of the water column) that is typical for
strongly-curved open-channel flow.
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Fig. 3 (a) Vertical profiles of downstream velocity, fs=vs/U, on centerline for Q89-experiment;
(b) Width distribution of downstream velocity around the bend, parameterized by αs (cf. Eq. 12).

In section 6, it will be shown that the width-distribution of the downstream velocity plays
an important role in the non-linear model and especially with respect to this flattening of
the fs-profiles. It will be parameterized by the normalized transversal gradient at the
centerline of the depth-averaged downstream velocity:
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which has been proposed by Einstein & Harder (1954). According to Bradshaw (1969),
Prandtl (1930) already proposed this parameter to investigate the influence of curvature
on turbulent flows. The measured values of αs for the 3 experimental conditions are
shown in Fig. 3b. For the Q89-experiment, it could be estimated in all 12 cross-sections
along the flume, whereas it could only be estimated in the cross-sections with the
strongest secondary circulation at 135° for Q56 and at 75° for Q104. For Q89, the
experimental αs-values sharply decrease from 0 in the straight inflow reach to about –1
near the bend entry. Around the bend, αs gradually increases onto about 0.5. Near the
bend exit, it sharply increases to about 1 before recovering slowly to 0 far downstream of
the bend. The experimental points for Q56 and Q104 indicate a similar evolution.
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Authors like de Vriend (1981, p29-30, p213), Steffler (1984, p30-33) or Odgaard (1986,
Eq. 18) state that for flow over a horizontal bed, the transversal velocity distributions are
often approximated by a “free-vortex” or “potential-vortex”-distribution near the bend
entry and by a “forced-vortex”-distribution near the bend exit. In the adopted reference
system, the “potential-vortex” distribution is defined by, Us(n)=Us(n=0)(1+n/R)−1, giving
αs=(∂Us/∂n)/(Us/R)=−1, whereas the “forced-vortex” distribution is defined by,
Us(n)=Us(n=0)(1+n/R), giving αs=(∂Us/∂n)/(Us/R)=1. Our experimental data thus
confirm these approximations, as used in the literature. The two types of vortices are
schematically illustrated in Fig. 3b. In section 6, it will be shown that the parameter αs+1
plays an important role in the non-linear model; it can be interpreted as the deviation from
the “potential-vortex” velocity distribution. In nature, the change in curvature is gradual
and αs will rarely attain values as low as −1. Furthermore, over a developed bar-pool
bottom topography αs will be larger than over a horizontal bottom due to the increasing
flow depth in outward direction (see Eq. 24 and field examples in section 8). αs=−1 is
thus a reasonable lower bound of the αs-range. A reasonable upper bound is αs=2R/B,
where B is the channel width: this corresponds to a linear velocity increase from 0 at the
inner bank to twice the centerline velocity, 2Us(n=0), at the outer bank.

5 Linear approach of closure

The linear approach of the closure problem is summarized in Panel 2. It is based on the
normalized equations for fully-developed curved flow at the centerline and a formal
perturbation analysis with the curvature ratio, H/R, as a perturbation parameter. The
equations shown in Panel 2 correspond to the zero-order system of equations, which
includes only the terms in Panel A1 (Annex 1) that remain if H/R↓0. The solutions of this
linear closure submodel will be given the suffix 0.
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Panel 2: Linear model equations for fully-developed flow. Inertia effects are included by means of Eq. 9.
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The linear model consists of six coupled equations, including the two integral conditions
fs0 1=  and fn0 0= . They can be solved for the six variables, fs0, fn0, Ss0, Sn0, ατ0 and

ψ0. The downstream momentum equation, Eq. 13a, is identical to the one in straight
uniform flow and will yield the corresponding profile of the downstream velocity,
fs0(η;Cf0), in which Cf0 is the only control parameter. The additional condition fs0 1=
determines the normalized downstream water surface slope as Ss=1, due to the chosen
normalization. The transversal momentum equation, Eq. 14a, expresses the local
imbalance between the centrifugal force and the transversal pressure gradient that is
known to give rise to the curvature-induced secondary circulation. The solution of the
normalized horizontal component of the secondary flow velocity, fn, is completely
determined by the downstream velocity profile, fs, and the corresponding eddy viscosity
profile fν0: inserting fs0 and fν0 and applying the condition fn0 0=  yields the solutions for
fn0(η;Cf0) and Sn0.

Since fs0 and fν0 depend uniquely on Cf0, this will also be the only control parameter in fn0,
Sn0, fn

2
0
 and f fs n 0 . The deviation angle τ τbn bs

∗  of the bottom shear stress is

proportional to the curvature ratio, with the factor of proportionality, ατ0, also depending
uniquely on Cf0. Furthermore, at zeroth-order, ψ0=1.

This closure submodel is called linear, because all resulting (dimensional) variables, viz.
v v vs n n

* * ,  ,  ∗ 2 ατ , increase linearly with the curvature ratio H/R.

Various linear-model solutions have
been proposed in the literature (e.g.
Engelund 1974, Kikkawa et al. 1976,
de Vriend 1977, Odgaard 1986,
Johannesson & Parker 1989a, etc.).
They mainly differ in the choice of the
eddy viscosity profile, fν0, and the
resulting downstream velocity profile,
fs0. Here we adopt the model proposed
by de Vriend (1977), which is based
on a parabolic eddy viscosity profile,
fν0=κν(1-η), resulting in a logarithmic

fs0; the solutions for fn
2

0
, f fs n 0

and ατ0 are shown in Fig. 4.
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Fig. 4: Normalized linear model solutions.

These fully-developed solutions are extended in the developing flow region according to
Eq. 9, and compared in Fig. 5 with the measured centerline evolution of fn

2  and f fs n .
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Fig. 5: Comparison of linear-model results (full lines) with data (symbols) measured at the centerline.

The graphs and the table included in Fig. 5 show that the linear model fails to represent
the observed behavior at various points:
- according to the model, the non-dimensional quantities only depend on Cf0, not on

H/R, whereas the experimental data show a decreasing tendency with H/R;
- the model generally overestimates the experimental data;
- the model results increase monotonically towards their fully-developed values and

remain constant after having reached those, only to decrease in the straight reach
downstream of the bend, whereas the experimental data reach a maximum in the
bend and then decrease considerably in the second part of the bend.

As stated above, the linear model solution is completely determined by the assumed eddy
viscosity profile and the corresponding downstream velocity profile. De Vriend (1981a)
already indicated that the neglected feedback between fs and fn might be responsible of the
poor linear-model predictions. His three-dimensional simulations for laminar curved flow
indicate that advective momentum transport by the secondary circulation, fsfn, reduces fs

near the water surface and increases it near the bottom. These flattened fs-profiles lead to
a reduction of the force imbalance that drives the secondary circulation. The mechanisms
for the flattening of the fs-profile and the subsequent reduction of fn

2  have been

investigated experimentally by Blanckaert & Graf (2002) and Blanckaert & de Vriend
(2002), respectively, for turbulent curved flow.

Yet, this feedback mechanism between fs and fn has not been quantified before and it is
not clear to what extent it is responsible of the poor performance of the linear model.
These questions will be addressed in the next section, where a non-linear model will be
proposed that accounts for this feedback mechanism.
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6 Non-linear approach of closure

6.1 Existing non-linear models

Closure submodels that account for the feedback between fs and fn are called non-linear.
Non-linear submodels have been proposed by Jin & Steffler (1993) and Yeh & Kennedy
(1993). They adopt predefined profiles of the downstream velocity and the secondary
circulation, both with one degree of freedom representing their modification due to
curvature influences. This degree of freedom is determined from two equations
expressing the depth-integrated conservation of moment-of-momentum, which are added
to the system of depth-integrated flow equations. These models simulate the flattening of
the fs-profiles and the reduction of the secondary circulation in the second part of the
bend. Moreover, they partially account for the bed shear stress amplification factor, ψ.

However, these models are not quite transparent, as they do not clearly indicate the
relative importance of the various mechanisms, nor the sensitivity to certain parameters.
For example, the influences of the friction factor Cf, the curvature ratio H/R and the
transversal velocity distribution αs (cf. Eq. 12), are accounted for in these models, but are
not discernable in the sophisticated mathematical formulation. In the following, a non-
linear closure model is proposed that aims at improving and extending these models.
Instead of using predefined velocity profiles with one degree of freedom, it will calculate
the entire vertical profiles of the downstream velocity and the secondary circulation.

6.2 Non-linear-model equations

The proposed non-linear model is based on the flow equations for fully-developed flow at
the centerline, brought to their simplest form that still includes all essential mechanisms
(Panel 3). Whereas in the linear model a formal perturbation approach was taken and all
terms multiplied by a power of H/R in Panel A1 (Annex 1) were neglected, the non-linear
model equations are based on a more physical approach. Although formally of the order
(H/R)2, the terms representing the advective transport of downstream momentum by the
secondary circulation are retained in the downstream momentum equations, for the
following reasons:

- The ratio of the advective momentum transport terms and the driving gravity term is
of order (H/R)2/Cf0, and thus increasing with increasing curvature and decreasing
roughness. Whereas it is negligible for weak curvatures and rough boundaries,
(H/R)2/Cf0~(1/100)2/(0.01)~0.01, it cannot be neglected anymore for sharp bends
and/or smooth boundaries, (H/R)2/Cf0~(1/20)2/(0.0025)~1.

-  Blanckaert & Graf (2002) made a term-by-term analysis of the downstream
momentum equations (three dimensional as well as depth-integrated), based on
experimental data for flow in an open-channel bend with (H / R)2/Cf0

~(0.11/2)2/0.008~0.38. They found that, when averaged over the flow depth, the
advective momentum transport terms were of the same order of magnitude as the
driving gravity term. Locally, however, they were an order of magnitude larger,
especially near the center of the secondary circulation cell. This shows that the
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advective-momentum-transport terms are more important than indicated by an order-
of-magnitude analysis, and that they might even play an important role in weakly
curved flows with (H /R)2/Cf0<<1. Furthermore, Blanckaert & Graf (2002)
demonstrated that the advective transport of momentum by the secondary flow is the
main cause of the flattening of the fs-profiles.
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Panel 3: Non-linear model equations for fully-developed flow. Inertia effects are included by means of Eq. 9.

The simple eddy-viscosity concept that underlies the linear model is maintained: the
shape is kept parabolic throughout the bend, and the magnitude is taken proportional to

the local shear velocity, τ ρb n( )  and local water depth, h(n). At the centerline, this

leads to (also see Eq. A5 in Annex 1):

ν τ ρ ψν νt fb Hf C UHf= =  0 0 0 (17)

Since the non-linear model equations are applied at the centerline, they cannot solve for
the transversal gradients (the shaded ∂/∂ξ-terms in Panel 3), which therefore have to be
modeled. The effect of these transversal gradients is incorporated as follows:

Since the non-linear model will serve as a closure submodel in the depth-integrated
flow equations, information on transversal gradients of depth-averaged quantities
becomes available when solving the combined model. Since the transversal gradients
in the closure model are somehow related to the transversal gradients of the depth-
averaged quantities, the closure model and the depth-integrated flow model get
intrinsically coupled. This is similar to most turbulence closures, where the turbulent
stresses are related to gradients of the to-be-computed mean flow field.
The transversal gradient of the depth-averaged downstream velocity at the centerline
is represented by the non-dimensional parameter αs (cf. Eq. 12). Annex 2 shows that
the transversal gradients in the non-linear model can be expressed in terms of αs via:

∂
∂ξ αf

fs
s s=      and     ∂

∂ξ αf f h f f hs n s s n
ˆ ( ) ˆ( ) = −1 (18)

This yields the non-linear closure model summarized in Panel 4, where the transversal
momentum equation is given in its integral form. Like in the linear model, the inertial lag
effects in zones of varying curvature are included using a linear relaxation model (Eq. 9).
Note that by parameterizing the transversal gradients, the original partial differential
equations reduce to ordinary differential equations.
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Panel 4 : Modeled non-linear model equations for fully-developed flow. For H/R �0, the linear-model
equations are found. Inertia effects are included by means of Eq. 9.

The non-linear model consists of six coupled equations, including the two integral
conditions fs = 1 and fn = 0 . They can be solved for the six variables, fs, fn, Ss, Sn, ατ

and ψ. These variables are strongly coupled, as illustrated schematically by Figure 10,
which makes the solution procedure rather intricate, as discussed briefly in Annex 3. The
solution depends on three parameters (marked gray in Panel 4): the friction factor, Cf0, the
curvature ratio, H/R, and the deviation from the potential-vortex distribution, αs+1. Note
that for vanishing curvature ratio, H/R �0, the dependence on αs+1 vanishes, as well, and
the linear model equations emerge. For αs+1=0, the advective momentum transport terms
vanish; however, the non-linear model differs (slightly) from the linear one through the
bend friction factor, ψ>1.

6.3 Validation

Before further elaborating the non-linear model, it will first be checked against measured
data from the very-strongly-curved Q89-experiment. The fully-developed non-linear
model solutions fn

2  and f fs n  for the estimated straight-uniform-flow friction factor

1 0Cf =14.4 (cf. Fig. 2) are shown in Fig. 6a as a function of the two remaining non-

linear-model parameters H/R and αs+1. The non-linear-model solutions for the
experimental curvature ratio H/R=0.094 and for the experimental centerline evolution of
αs+1 (cf. Fig. 3b) are read from Fig. 6a and indicated in Fig. 6b by the subscript ∞. The
final non-linear-model solutions, shown in Fig. 6b, are found after applying the inertia-
extension, Eq. 9. The linear model solutions fn

2
0
 and f fs n 0

 are also shown for

comparison.
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Fig. 6: (a) Non-linear-model solution for 1/√Cf0=14.4 as a function of H/R and αs; (b) Comparison of data
measured at the centreline (symbols) with the linear model solution (0), non-linear model solution for fully-

developed flow (∞), and non-linear model solution.

The non-linear model performs considerably better than the linear one at various points:

-  The linear-model’s overestimations and its failure to account for the decrease of
fn

2  and f fs n  with H/R (cf. Fig. 5) are explained by the fact that the linear model

is an asymptotic solution of the non-linear one for vanishing curvature. The non-
linear model solution shows a significant decrease with increasing H/R and predicts
the correct order of magnitude.

- The linear model failed to account for the decreasing tendencies of fn
2  and f fs n

in the second part of the bend, since it exclusively depends on Cf0, which does not
vary around the bend. The non-linear model includes the interaction between the
main and the secondary flow and therefore reproduces the decrease, via its
dependence on αs+1, the only non-linear model parameter that varies around the
bend. The importance of αs+1 will be discussed in further depth in Section 7.
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Note also that the experimental data lag behind the fully developed non-linear-model
solution (subscript ∞) and reach a lower maximum. If inertial lag effects are
included, however, the agreement between model results and data is rather good (cf.
Fig. 6b). This indicates that the linear relaxation model for the inertial lag effects is
adequate.

- When averaged over the bend reach, the shear stress amplification factor, ψ, has a
value of 1.56 (not shown), yielding 1 Cf  =1 0ψCf =11.55, which compares

rather well with the experimental value of 10.8.

In general, the agreement between the non-linear-model results and the measured data is
good, given that the experiment concerns a very strongly curved channel (H/R=0.094 will
rarely occur in natural open-channel bends) and that no calibration parameters are used in
the model. Blanckaert & Graf (2002) reported that the non-linear model also agrees fairly
well with experimental data in one cross-section of a curved flow over a developed
bottom topography, that deviate strongly from linear-model predictions.

6.4 Parameter reduction

In its present form, the fully-developed non-linear closure model presented above is not
quite convenient for practical use. The model requires the solution of six coupled
equations and the results depend on three parameters, viz. Cf0, H/R and α s+1. In the

following, the solutions of f n
2

, f fs n  and ατ will be approximated as functions of the

combined parameter ß = (Cf)
-0.275 (H/R)0.5(αs+1)0.25. These approximate solutions can be

brought into a tabular or graphical form that is convenient to use. The subsequent
extension for the developing region, Eq. 9, is not modified.

The parameters H/R and αs+1 mostly occur in the combination (H/R)2(αs+1) (cf. Panel
4). Only the magnitude of the eddy viscosity, parameterized by ψ, contains a contribution
that depends on the curvature ratio H/R alone. Fig. 7a shows the solutions for fn

2
∞

,

f fs n ∞ , ατ∞  and ψ∞ , normalized by the linear-model solution, as functions of the

combined parameter [(H/R)2(αs+1)]0.25, all for 1 0Cf =14.4. Each of the solutions for

fn
2

∞
, f fs n ∞  and ατ∞  show very little scatter around a single curve, whereas the

solution for ψ∞  shows a somewhat larger scatter, which was to be expected since ψ also

depends on H/R only. Yet, most points fall close to a single curve and scatter mainly
increases at very high H/R-values, which are rare in nature. These single curves therefore
provide a good approximation of the non-linear model solution as a function of the
combined parameter [(H/R)2(αs+1)]0.25, given the value of Cf0.

It is more convenient, however, to have the non-linear-model solution as a function of the
bend friction factor Cf=ψCf0. Since the solution of ψ  is known as a function of
[(H/R)2(αs+1)]0.25 and C f 0, it is straightforward to substitute Cf0 by Cf=ψCf0. The

normalized non-linear model solutions for fn
2

∞
, f fs n ∞ , ατ∞  and ψ∞ , as a function of

[(H/R)2(αs+1)]0.25 and Cf, are given in Fig. 7b.
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Fig. 7a: Non-linear-model solution for fully–developed flow, normalized with the linear-model solution (cf.
Fig. 4) for 1 0Cf =14.4. The abscise is taken to the power 0.25 in order to stretch the low-value range.
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Fig. 7b: Fully-developed non-linear model solution as a function of 1 Cf  and [(H/R)2(αs+1)]0.25. The

solutions are normalized by the fully-developed linear-model solution, shown in Fig. 4.
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Closer inspection of the solutions for fn
2

∞
, f fs n ∞  and ατ∞ , and to a lesser extent that

of ψ∞ , suggests that the parameters [(H/R)2(αs+1)]0.25 and Cf be correlated. In fact, Fig.
8 shows that, when plotted against the parameter (Cf)−0.275(H/R)0.5(αs+1)0.25, the solutions
for fn

2
∞

, f fs n ∞  and ατ∞  each almost collapse on a single curve. The solution for ψ∞

shows a somewhat larger, but still acceptable scatter around a single curve when plotted
against the parameter (Cf)−0.125(H/R)0.5(αs+1)0.25. Thus the parameter ß  =
(Cf)−0.275(H/R)0.5(αs+1)0.25 is identified as a control parameter in curved open-channel
flow. It will henceforth be named the bend parameter. Note that it differs from the

turbulent Dean number, De C H Rf= ( ) ( )−
13

0 5 0 5. .
, that has been used before (de Vriend

1981b) to indicate the stability of curved channel flow.
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Fig. 8: General solution of the non-linear model for fully-developed flow, normalized with the linear-model
solution (cf. Fig. 4), as a function of the bend parameter ß.

The non-linear model accounts for the feedback between the main and the secondary
flow, which – via the reduced imbalance between the centrifugal force and the transversal
pressure gradient - will also affect the secondary flow intensity. Since the linear-model
profiles depend on Cf0 only, the non-linear-model profiles will not depend exclusively on
ß, but also on Cf. Fig. 9 shows the simulated flattening of the fs-profiles and the reduction
of fn for flow over a rough bottom (1 Cf =10) and a smooth one (1 Cf =20) for values

of the bend parameter ß=0, 0.5, 0.65, 0.85, 1 and 1.3.

With increasing ß, the fs-profiles flatten by decreasing/increasing in the upper/lower part
of the water column. For high values of ß, non-monotonic fs-profiles are found (i.e. with
∂fs/∂η<0 in the upper part of the water column), leading to a considerable reduction of fn.

Note that Fig. 8 represents the general fully-developed solution of the non-linear model.
This solution remains to be extended to the developing flow regions by means of the
relaxation equation (Eq. 9). After that operation, the results can be conveniently used as a
closure submodel (e.g. using look-up tables or analytical functions) in depth-integrated
flow models. Moreover, they clearly reflect the relevant flow mechanisms and the
sensitivity to the various model parameters. A discussion of the relevance of the non-
linear-model closure and application examples for two river bends are given in section 8.
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Fig. 9: Non-linear model solution for the fs and fn-profiles for values of the bend parameter of ß = 0; 0.5;
0.65; 0.8 and 1.3 for a rough (1/√Cf=10) and a smooth (1/√Cf=20) bottom.

7 Linear vs. non-linear model
De Vriend (1981a) already indicated that the validity of the linear model is limited to
weak curvatures. Neither the range of validity, however, nor the discrepancies in case of
strong curvatures could be quantified. With the non-linear model, which encompasses the
linear model as a limit case for H/R ↓ 0, this is possible now. Three regions can be
distinguished in the solution domain (see Fig. 8), which can be objectively related to the
notions of weak, moderate and strong curvature:

- for ß < 0.4, the linear model solution is acceptable;

- for 0.4 < ß < 0.8, the ratio of the non-linear to the linear-model solution decreases
strongly and almost linearly;

- for ß > 0.8, the non-linear model solution for f fs n , which is the dominant parameter

with respect to the velocity redistribution, is reduced to less than half the linear one.
Although the ratios still show a pronounced decrease, we have not chosen a higher
discriminator because: (i) the hypothesis at the origin of the non-linear model may no
longer be justified for larger ß values; (ii) otherwise no natural rivers would qualify as
strongly curved.
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The notions of weak, moderate and strong curvature used to be defined in a rather
arbitrary way, mostly in terms of the H/R or B/R-ratio or by means of the Dean number,

De C H Rf= ( ) ( )−
13

0 5 0 5. .
. According to the objective measure provided by the bend

parameter, the degree of the curvature depends on the curvature ratio H/R, the friction
factor Cf and the parameter αs, and via the latter implicitly on the arc-length of the bend,
the channel width B and the bottom topography.

The non-linear model solution (cf. Fig. 8a) clearly indicates that the secondary circulation
becomes self-limited for sharp bends. This idea is not completely new, but the non-linear
model establishes this phenomena clearly and quantifies it.

Although the linear and the non-linear models compute the secondary circulation fn from
the same simplified transversal momentum equation (Eqs. 14a/b in Panels 2/3), the linear
model does not capture all essential mechanisms. In Fig. 10, the mechanisms included in
the linear model are indicated by fine arrows. A given straight-flow fs0-profile yields the
secondary circulation fn0; from the fs0 and fn0-profiles, the depth-averaged advective
momentum transport by the secondary circulation f fs n 0  is computed. Over a mobile

bottom, fs
2

0
 and Sn0 influence the normalized fully developed transversal bottom slope

ST∞0. Both f fs n  and ST∞ are important contributors to the distribution of the downstream
velocity over the width, which is parameterized by α s (see further Eq. 24). The
normalized linear-model solution depends on Cf0 only and is independent of H/R and αs.
Closure models based on the linear approach are therefore static, in that they are
independent of the solution of the depth-averaged flow model. This is equivalent to
saying that the vertical flow structure is imposed, i.e. independent of the depth-averaged
model solution.

f fs n

fs, Ss

fn, Sn

αsψ

 interaction with a mobile-bottom

Eq. 19

Eq. 19

Eq. 19

Eq. 13c

Eq. 14c

Eq. 13cEq. 13c + Eq. 20

Eq. 13c + Eq. 20

Eq. 20

Eq. 20

def.

def.

Eq. 24

Eq. 19

Eq. 24

Eq. 24

ατ

S GT∞ ∞= ( )ατ
Eq. 6

Fig. 10: Schematic representation of the interaction between the components in the linear model (fine
arrows) as well as in the non-linear model (all arrows), based on the equations in Panel 4.
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In Fig. 10, the extra mechanisms that are included in the non-linear model are indicated
by bold arrows. Contrary to the linear model, the various components are now intricately
coupled, as is indicated by the two-way arrows and the multiple loops. Especially
important are the two feedback mechanisms on fs, indicated by the shaded arrows:

(1) fn flattens the fs-profiles by advecting main flow momentum, fsfn, thus yielding a
decrease of fn.

(2) the vertical distribution of vs, represented by fs, is coupled to its distribution over the
width, represented by αs; the larger αs gets, the flatter the fs-profile and the smaller fn;
this leads to a decrease of f fs n  and ST∞, and finally to a reduction of α s.

Note that both feedbacks are negative and thus tend to stabilize their effects. Due to these
feedbacks, the non-linear model depends mainly on the parameter combination ß  =
(Cf)−0.275(H/R)0.5(αs+1)0.25, rather than on Cf only.

Especially αs+1, parameterizing the width-distribution of vs, plays an important role:

-  it accounts for the coupling between the vertical (fs) and the horizontal (α s)
distributions of vs. Closure models based on the non-linear approach are therefore
dynamic, in that they are dependent of the solution of the depth-averaged flow model.
This is equivalent to saying that the vertical flow structure is not imposed, but
computed as part of the solution.

- the αs-dependence explains the decreasing tendencies of fn
2  and f fs n  in the second

part of the bend.

- Bends with a horizontal bottom, with αs usually varying between –1 and +1, are a-
typical of natural rivers, in which αs can reach significantly higher values. The vertical
flow structure expressed by the non-linear model depends on αs and must therefore be
different in either case. This implies that laboratory experiments with a horizontal
bottom may not be representative of the flow in natural river bends.

Thus, the non-linear closure submodel accurately represents the vertical flow structure,
including feedback mechanisms between the main flow and the secondary circulation. It
encompasses the linear model as a limit case for H/R↓0, but remains valid for strong
curvatures. Furthermore, it identifies αs as an important parameter in curved flows and
defines the bend parameter ß = (Cf)

-0.275(H/R)0.5(αs+1)0.25 as a major control parameter in
a curved flow.

8 Relevance of non-linear model and practical application

This section tries to estimate the relevance of differences between the linear and the non-
linear closure submodels with respect to the simulation of the flow field and the river
morphology. The estimations are based on an analytical velocity redistribution model
proposed by Johannesson & Parker (1989b).
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8.1 Theoretical background

Johannesson & Parker (1989b) applied a first-order perturbation approach and a moment-
method to derive a differential equation for the evolution αs around the bend. In the
notations of the present paper, their equation (39) reads:
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where φ=s/R and 0<σ=Rmin/R(s)<1 represents the variation of the centerline radius of
curvature around the bend. σs quantifies the strength of, and the phase shift in, the
secondary circulation due to the changing curvature, whence σ~σs=O(1). The scour
factor S GT∞ ∞= ατ  (cf. Eq. 6), characterizes the fully-developed transversal bottom slope
over a mobile bottom. The factor As represents momentum redistribution by the secondary
circulation and is defined as:
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f
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(22)

In Eq. 21, four mechanisms contribute to the width-distribution of vs. SnFr2 represents the
superelevation (tilting) of the water surface, the factor –1 would lead to a potential-vortex
distribution, ST∞ represents the scour effect (tilting of the bottom) and As represents
advective momentum transport by the secondary circulation. The second of these impels
the locus of high velocity towards the inside of the bend; the remaining three impel the
locus to the outside. Johannesson & Parker identify ST∞ and A s as the dominant
mechanisms: SnFr2=O(Fr2)<<1 whereas ST∞ is typically in the range 2.5~6 for natural
streams (e.g. Odgaard 1981) and As is of comparable magnitude.

An estimation of the relevance of the differences between the linear and the non-linear-
model closures is obtained by replacing the linear-model values for Sn, ST ∞ and As

(indicated by the index 0) by their non-linear-model counterparts in Eqs. 6 and 21:
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The fully-developed transversal bottom slope ST∞ is reduced by a factor (ατ/ατ0)∞, which
will obviously also affect the river morphology in the developing zone of the bend. The
velocity distribution will mainly be affected through the reduction of the transversal
bottom slope with a factor ατ/ατ0 and the advective momentum transport with a factor

f f f fs n s n 0 .

Eq. 24 is schematized in Fig. 10 by the arrows that represent the dependence of αs on
f fs n  and on ατ. These arrows close the (fs- f fs n -αs) and the (fs-ατ-αs) loops and thus

provide for the feedback between the horizontal (αs) and the vertical (fs) distribution of vs:
an increase of αs leads to a decrease of ατ/ατ0 and f f f fs n s n 0  (cf. Fig. 8), which

according to Eq. 24 provokes a reduction in αs.
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8.2 Practical application

The non-linear model effects are estimated for two strongly curved rivers, characterized
by a bend factor of about ß≈0.55 on the average. The Desna (Russia, Rozovskii 1957) is a
rather smooth (1/√Cf=14.4) meandering river of medium size, where the curvature ratio in
the considered bend is nearly constant at H/R=1/100. The Dommel (The Netherlands, de
Vriend & Geldof 1983) is a rather rough (1/√Cf=9.5) small river with a varying curvature
ratio in the considered bend that attains maximum values of H/R=1/18.

The river’s planforms, the measuring sections and the relevant geometric and hydraulic
parameters are indicated in Fig. 11. The evolution around the bend of H, R, B and αs has
been estimated from the reported distributions of the velocity and the flow depth in the
measuring sections. From the centerline evolution of the bend factor ß =
(Cf)−0.275(H/R)0.5(αs+1)0.25, the fully-developed non-linear-model solution is derived and
inertia effects are subsequently accounted for by applying the relaxation model, Eq. 9.
The results for ατ and f fs n  are shown in Fig. 11.
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Fig. 11: Geometric and hydraulic characteristics of the Desna and the Dommel rivers. Linear model
solutions α ατ τ0 0,∞ and f f f fs n s n0 0,∞

 (curve 1) and non-linear model solutions α ατ τ0,∞  (curve 2) and

f f f fs n s n 0,∞
 (curve 3).
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The linear-model solutions, α ατ τ0 0 ,∞  and f f f fs n s n0 0 ,∞ , increase monotonically in

the developing reach of the bend before remaining constant at their fully-developed value.
The non-linear-model solutions, α ατ τ0 ,∞  and f f f fs n s n 0 ,∞ , hardly deviate from the

linear ones in the developing reach. The flow redistribution is quickly accomplished in
the Desna, as indicated by the nearly constant values of αs ≈3, α ατ τ0 ,∞ ≈0.85 and

f f f fs n s n 0 ,∞ ≈0.75 through the bend. The flow redistributes more gradually in the

Dommel, as indicated by the gradual increase of αs and the corresponding gradual
decrease of α ατ τ0 ,∞  and f f f fs n s n 0 ,∞  from about 0.9 to about 0.7 and 0.5,

respectively, near the bend exit. The non-linear-model reductions α ατ τ0  and
f f f fs n s n 0  have bend-averaged values of about 0.87 and 0.78 for the Desna and about

0.83 and 0.74 for the Dommel, respectively.

Both examples indicate that the reductions due to the non-linear model might be minor
for short bends, but become more important with increasing bend length, because the
velocity redistribution can get further accomplished, resulting in higher αs-values.

The effect of both non-linear model reductions on the velocity-redistribution, is estimated
from Eq. 24, which reduces for fully-developed flow to:
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Table 1. Estimation of the influence of differences between the linear and non-linear closure models on the
velocity distribution in two natural rivers.

Table 1 summarizes linear and non-linear model estimates of the contributions in the
right-hand-side, and compares the corresponding values of α s∞ with an experimental
estimation. The scour factor S ST T∞ ∞ ∞= ( )α ατ τ0 0  is estimated from the experimental data

and the factor As is computed from the linear-model solution f fs n 0 ,∞ (cf. Eq. 22). For

both rivers, the differences between the linear and the non-linear-model estimations are
relevant. For the Desna, the difference amounts to ∆αs∞~0.5, which is about 17% of
α s∞~3. The difference is almost entirely due to the reduction in the transversal bottom
slope. For the Dommel, ∆αs∞~0.75, which is about 37% of α s∞~2. Here, the difference is
equally due to the reductions in the transversal bottom slope and the advective
momentum transport by the secondary circulation.

These examples indicate that the differences between the linear and the non-linear-model
closures are relevant with respect to the river morphology and the velocity distribution.
The differences might be minor for short bends but grow in importance with bend length.
Both the linear and non-linear-model closures are presently being implemented in a
depth-integrated flow-sediment model in order to confirm univocally the above
indications.
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9 Conclusions
In depth-integrated flow-sediment models of winding rivers, the influence of the vertical
structure of the flow field has to be accounted for by a closure submodel. A non-linear
approach of this closure problem is proposed, which is shown to perform better than the
commonly used linear one.

The required closure mainly has to account for the secondary circulation, which is a
characteristic of curved open-channel flow and has the following effects:
(i) it redistributes the flow, the boundary shear stresses and the sediment transport by

advecting flow momentum, represented by f fs n ;

(ii) it causes the direction of the bottom shear stress to deviate from the direction of the
depth-averaged velocity, given by ατ;

(iii) it causes additional friction losses in a bend, parameterized by ψ.

A non-linear closure submodel representing these effects is derived from the three-
dimensional flow equations, by reducing them to the simplest form that still includes all
essential mechanisms. As a first step, a closure model is derived for the river centerline in
fully developed curved flow. In a subsequent step, the closure model is extended to
regions of varying curvature by applying a linear relaxation model that expresses the
inertial lag effects in the response of the closure variables to the curvature variation. A
last step would be to extend the closure model over the entire river width, but this remains
to be investigated.

The commonly used linear closure models are derived from the 3-D flow equations via a
formal first-order perturbation approach, with the curvature ratio H/R as a perturbation
parameter. They are based on the main flow profile fs0, that follows directly from the
assumed eddy viscosity profile. The results for the strength of the secondary circulation
f fs n 0 , ατ0 , and fn

2
0
 depend exclusively on the friction factor Cf0 in the equivalent

straight uniform flow, whereas ψ0 is identically equal to 1. These linear models fail to
represent the behavior observed in strongly curved flow: they overpredict the secondary
flow and its effects and do not represent any decreasing tendency with increasing H/R, or
a gradual decrease beyond the first part of the bend.

Based on physical arguments, the proposed non-linear model retains the advective
momentum terms in the 3-D flow equations, even though they are of order (H/R)2. Its
results depend on the straight-uniform flow friction factor Cf0, the curvature ratio H/R and
the distribution of the downstream velocity over the width, parameterized by
αs=[(∂Us/∂n)/(Us/R)]n=0. The linear model is found to be the asymptotic case for
vanishing curvature ratio. The non-linear models solution agree well with experimental
data: they are of the correct order of magnitude, correctly represent the decrease with
increasing H/R and the αs-dependence accounts for the occurrence of a maximum in the
first part of the bend.

The non-linear model solution can be expressed in a good approximation as functions of a
single parameter. For the quantities f fs n , fn

2  and ατ  this is the so-called bend

parameter ß = (Cf)
-0.275(H/R)0.5(αs+1)0.25, whereas ψ shows the least scatter against the

parameter ßCf
0.15. This allows for convenient and computationally cheap ways (e.g. using
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look-up tables or analytical functions) to include this closure submodel into a depth-
integrated flow-sediment model. Furthermore, this identifies ß as an important control
parameter in curved open-channel flow. It indicates the validity of the commonly used
linear models and helps to distinguish between weak, moderate and strong curvatures.

As the non-linear model accounts for the feedback between the secondary circulation, fn,
the vertical distribution of the downstream velocity, fs, and its width-distribution, αs, it is
able to reproduce the flattening of the fs-profiles that is typical of curved-channel flow.
Closure models based on the non-linear model are dynamic, in that the vertical flow-
structure is not imposed but computed as part of the solution.

An analysis of two strongly curved natural rivers indicates that the differences between
the linear and the non-linear closure submodels are significant with respect to the bottom
morphology and the flow distribution.

The above conclusions indicate that the proposed non-linear-model closure for the
vertical structure of the flow field, and especially for the effects of the secondary
circulation, has the potential to effectively and efficiently improve the capabilities of
depth-integrated flow-sediment models.
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ANNEX 1:   Derivation of linear and non-linear-model equations

The three-dimensional Reynolds-averaged conservation equations for mass and
momentum in cylindrical co-ordinates are reported in Schlichting & Gersten (2000).
Distinguishing between the cross-flow Un and the secondary circulation vn

∗  according to
Eq. 1, they can be written as:
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The hydrostatic pressure assumption, p=ρg(zS-z), replaces the momentum-conservation
equation for the vertical velocity component vz. The Reynolds stresses are expressed in
terms of the mean velocity components using the eddy viscosity concept - ′ ′ =v v et iji j 2ν
(i,j=s,n,z), where νt is the eddy viscosity and eij are the strain rates. The horizontal s-axis
lies along the channel centerline, the horizontal n-axis is perpendicular to the centerline
and points to the left, and the z-axis is vertically upward (cf. Fig. 1). R is the centerline
radius of curvature (positive/negative for bends turning to the right/left); ρ is the fluid
density; (1+n/R) is a metric factor.

Eqs. A1 to A3 are now simplified by:

1) considering steady and fully-developed curved flow. If a straight channel is followed
by a bend, the flow field and the bottom topography gradually adjust to the change in
curvature. The flow in this adaptation zone is called developing curved flow. After
some distance in the bend, the flow field and the transversal bottom slope will have
adapted to the curvature and no longer vary in the downstream direction. In this so-
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called fully-developed curved flow situation, which will be indicated by the subscript
∞, we have:

∂/∂s=0 (except for gravity term ∂zS/∂s) � Un=0 and vn=vn
∗  (A.4)

whence all terms between square brackets vanish;

2) concentrating on the river centerline, where n=0;

3) assuming that the centerline falls within the central part of the secondary circulation
cell, where vz<<vn. We have verified that vz has a negligible effect on the solution of
the non-linear model, even near important transversal bottom slopes where
vz=−vn∂zb/∂n, and can therefore be neglected;

4) normalizing them in order to identify the dominant terms/mechanisms:

s= Rφ ;   n R= ξ ;   z = Hĥη ,   h n Hh( ) ˆ( )= ξ     with ˆ( )h 0 1=
v n z Ufs s( , ) ( , )= ξ η                                               with fs( )0 1=

v n z U
H

R
fn n

∗ = +( , ) ( , )0 ξ η                                  with fn = 0

ν ψ ξ ξ ξ ηνt fn z f h C UHf( , ) ( ) ( ) ˆ( ) ( )= s 0 0       with  ψ = +1 O H R( / )
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ξz n U
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f s
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      and         
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∂
ξz n H

R
Sb
T

( )
( )

n
= +0 (A5)

H and U are the overall mean values of h(s,n) and Us(s,n). We assume that H and U
can be confounded with the centerline values h(s,0) and Us(s,0). The horizontal
coordinates s and n are normalized with the centerline radius of curvature R, which is
of the same order of magnitude as the channel width B  for sharp bends. The
velocities are normalized with U; the transversal component of the secondary
circulation vn

∗  is furthermore scaled with the curvature ratio H/R.

A simple eddy-viscosity model is adopted, with the same profile shape, fν0(η),
throughout the model domain. Its magnitude is taken proportional to the local water
depth h(n) and the local shear velocity, τ ρ ψb f sn n C U n( ) ( ) ( )= 0 .

The downstream and transversal water-surface gradients scale with the square of the
straight-uniform-flow Froude number, Fr2=U2/(gH). They furthermore scale with the
friction factor Cf0 and the curvature ratio H / R, respectively. The downstream
momentum equation dictates that Ss=1 for straight-uniform flow whereas
Ss=1+O(H/R) in curved flow. The scaling of the transversal water-surface gradients
expresses the near-equilibrium between the inward pressure gradient, g∂zS/∂n, and
the outward centrifugal force, U2/R, whence Sn=O(1).

The normalizations of vn
∗ , ∂zS/∂n and ∂zb/∂n can be interpreted as perturbation

developments in the small parameter H/R.

Panel A1 gives the resulting momentum-conservation equations, whereby Eqs. A8 and
A9 are the corresponding depth-integrated equations (also see Dietrich & Whiting 1989
or Blanckaert & Graf 2001b).
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Three-dimensional downstream and transversal momentum equations:

Depth-integrated downstream and transversal momentum equations:
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Panel A1: Normalized hydrostatic momentum-conservation equations for steady fully-developed flow at the
centerline.

ANNEX 2:   Transversal gradients in non-linear model

Since the non-linear model equations are applied only at the centerline, the transversal
gradients have to be provided. In the following, they will be related to the transversal
gradient of the downstream velocity, parameterized by αs (see Eq. 12).

Definitions

A similarity hypothesis is adopted for the vertical distributions of fs and fn,

f f gj j j( , ) ˆ ( ) ( )ξ η η ξ=     (j=s,n) (A10)

in which f̂ j  represents the shape of the vertical distribution and g j  a gain factor that may

vary over the width. Coefficients are now defined as:

α ∂ ∂ ∂ ∂ξ
ξs s s n s sU n U R g g= ( ) ( )[ ] = ( )[ ]= =

Eq. 12

0 0
(A11)

α ∂ ∂ξ
ξn n ng g= ( )[ ] =0

(A12)

where αn represents the transversal gradient of the magnitude of the secondary
circulation. According to Eq. A5, the transversal gradient of the flow depth, which is due
to the tilting of the water surface and the bottom slope, can be written in a similar form:

α ∂ ∂ξ
ξ

H n Th h Fr S S= ( )[ ] = +
=

ˆ ˆ
0

2 (A13)

If the water depth varies over the width, ξ and η are not mutually orthogonal:
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The transversal gradients of fs and fn can now be parameterized as:
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It has been verified that the depth-varying contribution αj,3D has negligible effect on the
solution of the non-linear model, even for important transversal bottom slopes, whence it
is neglected further on. This simplification eliminates the explicit dependence of the non-
linear model on the transversal bottom slope ST, which occurs in αH (cf. Eq. A13).

The transversal-gradient term in the depth-integrated momentum equations can now be
parameterized as:
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ξ η ξ η ξ η η ∂
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Determination of αn

The principle of mass-conservation
underlies the determination of αn. Since
depth-integration of the 3-D mass-
conservation equation (Eq. A1) removes fn,
the following indirect method is proposed:

The curvilinear control volume, indicated
in Fig. A1, covering the upper half of the
water column in the central part of the
circulation cell is considered. It is assumed
that the fn-profiles are linear and that the
vertical velocity is negligible. The value of
αn is now found by expressing the equality
of the incoming and outgoing mass flux
due to the secondary circulation.

Fr2Sn

ξ

ηST

ˆ( )h ξ

fn(ξ,1)

ˆ( )h ξ ξ+ ∆

fn(ξ+∆ξ,1)

∆
s

(1
+

ξ)
∆

s

(1
+

ξ+
∆

ξ)
∆

s

CL

Fig. A1: Definition sketch of normalized quantities
and derivation of αn

1
4

1 1 1
4

1 1f h s f h sn n( , ) ˆ ( )( ) ( , ) ˆ ( )( )ξ ξ ξ ξ ξ ξ ξ ξ ξ+ = + + + +∆ ∆ ∆ ∆ ∆

Substituting f f gn n n( , ) ˆ ( ) ( )ξ ξ1 1=  gives:

g h g
g

h
h

On n
n( ) ˆ( )( ) ( )
( ) ˆ( )

ˆ( )
( ) ( )ξ ξ ξ ξ ξ ∂ ξ

∂ξ
ξ ξ ∂ ξ

∂ξ
ξ ξ ξ1 1 2+ = +









 +








 + + +∆ ∆ ∆ ∆

0 1 1 2= + + + +








+∆ ∆ξ ∂ ξ

∂ξ
ξ ξ ξ ∂ ξ

∂ξ
ξ ξ ξ ξg

h g
h

g h On
n n

( ) ˆ( )( ) ( )
ˆ( )

( ) ( ) ˆ( ) ( )

0 1 2= + +( ) +∆ ∆ξ α α ξ ξ ξn H ng h O( ) ˆ( ) ( )

α αn H+ + ≈1 0 (A17)

The transversal gradients in the non-linear model equations (cf. Panel 3) are now uniquely
parameterized by αs:

∂
∂ξ αf
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s s=     and     ∂

∂ξ αf f h f f hs n s s n
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(cf. Eq. A16)

1 (A18)
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ANNEX 3: Solution procedure of the non-linear closure submodel

The non-linear model, summarized in Panel 4, consists of six coupled equations in six
dependent variables, viz. fs, fn, Ss, Sn, ατ and ψ. The interdependencies between these six
variables are schematized in Fig. 10. The following summarizes the iterative solution
procedure of the non-linear model.

The first step in the solution procedure for given parameters Cf0, H/R and αs is to compute
the linear-model solution, corresponding to H/R=0 (see section 5) and indicated by fs

( )0 ,

fn
( )0 , Ss

( )0 1= , Sn
( )0 , ατ

( )0 and ψ ( )0 1= . This solution defines the parameters to be used in

the law-of-the-wall bottom-boundary conditions, viz. the equivalent sand roughness and a
constant for the case of a logarithmic fs

( )0 -profile (cf. Eq. 11). Subsequently, an iterative
procedure is adopted to compute the solution for the given value of H/R:

1) fs
i( )+1 2  is computed from the downstream momentum equation (Eq. 13c) in which fn

i( )

and ψ ( )i  are substituted, and which is supplemented by the law-of-the-wall bottom-
boundary condition and the no-shear condition at the water surface. Furthermore, Ss

i( )+1

is chosen (by iteration) so that fs
i( )+ =1 2 1. For convergence, an under-relaxation had

to be applied:

f f fs
i

s
i

s
i( ) ( ) ( )( )+ += + −1 1 21θ θ (A21)

The feedback between fs and fn is known to be very sensitive. This may explain why
under-relaxation factors as high as θ=0.975 are required.

2) fn
i( )+1  is computed from the transversal momentum equation (Eq. 14c), in which fs

i( )+1

and ψ ( )i  are substituted, and which is supplemented by the law-of-the-wall bottom-
boundary condition and by the no-shear condition at the water surface. Furthermore,
Sn

i( )+1  is chosen so that fn
i( )+ =1 0 .

3) τ bs
i( )+1 , τ bn

i∗ +( )1  and ψ ( )i+1  are computed by substituting fs
i( )+1 , fn

i( )+1 , Ss
i( )+1  and Sn

i( )+1

into Eqs. 15c, 16c and 20.

Since the solution of the non-linear model is completely determined by the solution for fs,

steps 1-3 are repeated until f fs
i

s
i( ) ( )+ −( )1 2

 is smaller than a given tolerance.

In the above solution procedure, it is assumed that the depth-averaged centerline velocity
remains constant: Us(n=0)=U, whence fs = 1. Due to the increased friction in a bend as

compared to the equivalent straight uniform flow, a greater downstream water-surface
gradient Ss>1 is required to maintain U. An alternative solution procedure would be to
maintain Ss=1, which would result in a reduction of the centerline velocity, Us(n=0)<U,
or fs < 1. The real situation is probably in between both extremes: the centerline

velocity somewhat decreases and the water-surface gradient somewhat increases. It has
been verified that both solution procedures yield negligible differences in non-linear-
model results, whence the first procedure has been adopted in the paper.
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IV.2 Simulation of Secondary Flow in Curved Channels
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Besides the center-region cell (helical motion), a weaker counter-rotating outer-bank cell is often
observed in open-channel bends. It could play an important role in the outer bank erosion process
because the near bank sediment transport is related to the flow structure. This outer-bank cell cannot
be simulated with turbulence closures, such as the standard k-ε model, since they fail to generate the
cross-stream turbulence anisotropy. This paper reports simulations of both circulation cells with a
non-linear k-ε closure that compare reasonably well with two sets of experimental data.

1 Introduction

The flow in river bends is characterized by cross-stream circulation cells (secondary
flow). The main flow velocity and the boundary shear stress distribution over the cross-
section, the intensity and the direction of the sediment transport, and the river
morphology are strongly related to the secondary flow.

Besides the classical helical motion – termed here center-region cell – often a smaller
and weaker counter-rotating outer-bank cell is observed in the corner formed by the water
surface and the outer-bank. The well-known center-region cell is attributed to the local
imbalance between the outward centrifugal force and the inward pressure force due to the
super-elevation of the water surface. It has been successfully simulated, even with a zero
equation turbulence closure (Jia and Wang 1992) and a k-ε model (Wu, et al 2000). The
outer-bank cell is known to play an important role with respect to the stability of the
outer bank (Blanckaert and Graf 2001a, Christensen et al. 1999, Bathurst et al. 1979).
Although it has often been observed in the laboratory (among others by Rozovskii 1957,
de Vriend 1979, Blanckaert and Graf 2001a and Tominaga and Nagao 2000) as well as in
the field (among others by Bathurst et al. 1979, Dietrich and Smith 1983 and de Vriend
and Geldof 1983), the mechanism underlying the generation of this cell are not fully
understood. This is partially due to lack of available detailed experimental data on all
mean velocity components and all turbulent stresses (see Blanckaert and Graf 2001a,
Table1).
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Blanckaert and de Vriend (2001) analyzed the mechanics underlying both circulation
cells and concluded that the outer-bank cell is generated by the interplay between two
mechanisms: the anisotropy of the cross-stream turbulence and the deformation of the
vertical profiles of the downstream velocity, which have maximum values well below the
water surface. The anisotropy of the cross-stream turbulence is known to generate the
similar near-bank circulation cells found in straight uniform flow (Nezu and Nakagawa
1993).

Christensen et al. (1999) succeeded in simulating the outer-bank cell in a channel
bend of constant curvature with the standard k-ε turbulence closure as well as the
Reynolds Stress Model (RSM). The RSM model is known to be capable of simulating the
cross-stream turbulence anisotropy. However, reproducing the outer-bank cell with a
standard k-ε model is inconsistent with previous studies (Wu, et al 2000).

Circulation cells induced by the cross-stream turbulence anisotropy have been
simulated successfully with the non-linear k-ε turbulence closure proposed by Speziale
(1987) for the cases of straight uniform flow (Speziale 1987) and flow in straight
compound channels (Pezzinga 1994, Jia and Wang 1998). Such non-linear k-ε turbulence
closures are computationally more efficient than the RSM model.

This paper reports numerical simulations of curved channel flows with a free-surface
three-dimensional model, CCHE3D. This model has been validated extensively for many
different types of open-channel flow with numerous experimental data sets (for instance
Jia and Wang 1992 and 1998). In order to simulate both circulation cells in open-channel
bends, the non-linear k-ε turbulence closure has been adopted. The simulated results are
compared with experimental data for strongly curved flow over a developed bed
topography as well as over a fixed horizontal bed.

2 The mathematical model

The CCHE3D model solves the Reynolds-averaged momentum equations, Eq. (1), and
the incompressible continuity equation, Eq. (2), in a Cartesian coordinate system (xi or
x,y,z),
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using the Efficient Element Method, a collocation approach of the classic weighted
residual method. ui, ′ui  and fxi are the components of the mean velocity, the velocity
fluctuation, and the external force along the i-reference axis, respectively; t is time; p is
pressure; ρ is the water density; the overbar denotes time-averaged values. The elevation
η of the free surface is computed using the free surface kinematic equation:
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The non-linear k-ε turbulence closure proposed by Speziale (1987) is adopted:
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in which the strain rate tensor Sij, the turbulent kinetic energy k, and the eddy viscosity νt

are defined as:
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respectively. δij is the Kronecker delta symbol and ε is the dissipation of turbulent kinetic
energy. k and ε are computed from their transport equations:
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where the production of turbulent kinetic energy, P, is defined as:
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The constants in Eqs. 4-8 take the values: cµ=0.09, σk=1.0, σε=1.3, cε1=1.44, cε2=1.92,
CD=CE=1.67.

The dynamic pressure, which is important in three-dimensional flows with strong
vertical currents, is computed by using a velocity correction method. A Poisson equation
is formulated with the provisional velocities, and the final velocity, satisfying the
divergence-free condition, is obtained via a velocity correction procedure using the
computed pressure. The Eqs. (1), (3), (7) and (8), are integrated in time with a first order
Euler scheme and the system of equations is solved implicitly by using the SIP method.
Wall boundary conditions are used for the momentum equations and the k-ε model. The
boundary condition for the ε  equation at the water surface proposed by Naot and Rodi
(1982) is modified slightly as follows:
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κ=0.41 is the Karman constant, h is the local flow depth and dw is the distance to the wall.
It is found in this study that the numerical simulation is not stable unless the convection
term for the strain rates, r

u Sij⋅ ∇ , in equation (5) is eliminated. The simulations in this
study are therefore conducted without this term.
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3 Physical model data

This paper reports the simulation of two experiments on strongly curved flow: Case 1 is
over an irregular bed topography preformed by erosion on a mobile bed (Blanckaert and
Graf 2001a) while Case 2 is over a fixed horizontal bottom (de Vriend 1979). Their
experimental set-up and hydraulic conditions are shown in Fig. 1. Blanckaert and Graf
(2001a) only measured in one outer half-section at 60° in the bend (Fig. 1). Their
measurements are very detailed and they reported distributions of all mean velocity
components and all Reynolds stresses measured with high temporal (44.6 Hz) and spatial
(1360 measuring points) resolution. De Vriend (1979) measured the flow field all along
the flume in 21 different cross-sections. He only measured the downstream and the
transversal components of the mean velocity and used a rather coarse grid (11 verticals
and 9 points per vertical, see Fig. 1). Both experiments clearly show the existence of a bi-
cellular pattern of cross-stream circulation cells (Fig. 2a, Fig. 3a).
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4 Comparison of measured with computed flow field

The measured and simulated flow fields are compared in a cylindrical reference
system with the s-axis downstream along the centerline, the n-axis perpendicular to it and
the upward z-axis perpendicular to the horizontal (s,n)-plane. Figs. 2a,b show the
measured cross-stream motion (vn,vz) and downstream velocity vs in the investigated
outer-half section at 60° for case 1, whereas Figs. 2c,d show their simulated counterparts
in the entire cross-section. They have been normalized by the overall mean velocity,
U=Q/(BH)=0.38 m/s. The frames indicate the measured zones; the velocities outside it
near the boundaries were extrapolated. Before the non-linear k-ε model is activated, the
linear k-ε model was applied to prepare the initial flow field. This reconfirmed the failure
of the linear k−ε model to reproduce the outer bank cell for both cases.
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Fig. 2: Measured cross-stream motion, (vn,vz)/U (a), and downstream velocity, vs/U (b) and their simulated
counterparts (c) and (d), normalized by the overall mean velocity U=0.38m/s for case 1.
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The main features of the flow field are captured by the simulation. The simulated
cross-stream motion contains both circulation cells and the downstream velocity
increases in outward direction: vs/U<1 in the inner bend and vs/U>1 in the outer bend.
The core of maximum velocities, vs,max/U, is found at the separation between both
circulation cells. The vertical vs-profiles deviate from the logarithmic profile that is
typical for straight uniform flow: the maximum velocity is found in the lower part of the
water column and ∂vs/∂z<0 in the upper part.

Although the flow field is qualitatively well simulated, there are some important
quantitative discrepancies between the measurements and the simulation. The simulation
underestimates the strength of the center-region cell and rather strongly overestimates the
strength of the outer-bank cell, as shown by the maximum transversal velocities in both
cells:
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The simulated width of the outer-bank cell (~14cm) also overestimates the measured one
(~10cm). The outward increase of the downstream velocity is underestimated and the
maximum simulated velocity of vs,max/U≈1.2 is considerably smaller than the measured
one of vs,max/U≈1.5. Furthermore, the simulation rather strongly exaggerates the
deformation of the vs-profiles in the zone covered by the outer-bank cell: the measured vs

only slightly decreases from its maximum in the lower part of the water column towards
the water surface, whereas the simulated ones show a steep descent from their maximum
towards the water surface.

Blanckaert and Graf (2002) have shown that the outward increase of vs and the
deformations of its vertical profiles are mainly the result of advective momentum
transport by the circulation cells. The underestimation of the outward increase of vs is
thus explained by the underestimation of the strength of the center-region cell. More
research is needed to identify the reasons for this inaccurately simulated circulation
strength. The exaggerated deformation of the vertical vs -profiles and the overestimated
strength of the outer-bank cell are closely interrelated because the outer-bank cell advects
low momentum fluid from the near-bank area in inward direction at the water surface.
Blanckaert and de Vriend (2001) have shown that the resulting decreasing velocities
towards the water surface, ∂vs/∂z<0, are an important generation mechanism for the
outer-bank cell. This leads to the following feedback mechanism: the overestimated
strength of the outer-bank cell causes an exaggerated gradient ∂vs/∂z<0, which in turn
further strengthens the outer-bank cell. More research is needed to improve our
understanding of this mechanism and its modeling. Furthermore, there is need for better
experimental data near the free surface and the walls.
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Figs. 3a,b show the measured transversal velocity vn and simulated secondary current
vector field in the cross-section at 90° for case 2. The simulated strength of the center-
region cell agrees reasonably well with the measured one. The two measured profiles on
the right side (outer bank) indicate the existence of an outer-bank cell. In approaching the
outer bank, the flow of the center cell is forced to dive under this outer-bank cell. The
distance of these two profiles to the outer bank is 0.1m and 0.17m. Thus the width of the
outer bank cell is of the order of the flow depth (H=0.2m). The width of the outer-bank
cell in the simulation is found to be almost constant from where this cell appears (0o

section) to the outlet section. The simulated secondary flow velocities are very close to
the observed ones. The simulated outer-bank cell has a width of about 0.75H, very close
to the measured one. In the upstream straight reach, the simulated cell develops similar to
those in the straight channels. In the curved part of the channel, the width of the simulated
cell remains nearly constant and subsequently increases a little in the downstream straight
reach. Its strength, however, decreases gradually towards the outlet section.

5 Conclusions

Flow in open-channel bends is characterized by cross-stream circulation cells which
strongly influence the flow field and the river morphology. Besides the classical center-
region cell, often a smaller and weaker counter-rotating outer-bank cell occurs. Whereas
the standard k-ε turbulence closure is inherently unable to simulate the bi-cellular pattern
of cross-stream circulation cells in open-channel bends, this paper reports on successful
simulations with a computationally inexpensive non-linear k-ε closure. Both flow over a
mobile-bed topography and over a fixed horizontal bed are simulated. The main features
of the flow field are simulated reasonably well although some discrepancies appear. The
preliminary simulations reported indicate the importance of the anisotropy of turbulence
in generating the outer bank cell. Furthermore, they indicate that the non-linear k-ε
turbulence closure has the potential to simulate accurately the complex flow in open-
channel bends. More research, both numerically as well as experimentally, is presently
undertaken in order to further improve the simulations.

b

a

Fig. 3: measured (a) transversal velocity (vn) and simulated (b) transversal vector field (vn–vz)in the
cross-section at 90° for case 2
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PART IV

APPLIED RESEARCH

IV.3 Conclusions

Some improvements to numerical-simulation techniques were made based on the
knowledge acquired in parts II and III.

Due to the integration over the flow depth, all information related to the vertical structure
of the flow field, and especially to the secondary circulation, is lost in depth-integrated
flow models, and has to be provided. Chapters II.2 and II.3 have shown that linear models
for this purpose are inadequate for moderate to strong curvatures. Chapter IV.1 proposes
a non-linear model that accounts for the feedback between the downstream velocity
profile and the center-region cell of secondary circulation: it simulates the flattening of
the downstream velocity profiles and the corresponding weakening of the center-region
cell with increasing curvature. The non-linear model depends on the curvature ratio H/R,
the flow friction factor and the spanwise-distribution of the downstream velocity, which
can be combined with good approximation into one single newly-defined parameter,
called bend parameter, that allows to distinguish objectively between weak, moderate and
strong curvatures. The commonly used linear models are found as the asymptotic solution
for vanishing curvature. The non-linear model agrees fairly well with experimental data
for strongly curved flow from both the small flume (chapter III.1) and the large flume
(chapter IV.1). Estimations for natural rivers show that differences between the linear and
the non-linear model are relevant. The non-linear model has the potential to improve the
capabilities of depth-integrated flow models at low computational cost: a quasi three-
dimensional flow field is obtained by extending such depth-integrated models with this
non-linear model.

Chapter III.2 has shown that the outer-bank cell of secondary circulation, which has a
protective effect on the outer bank, cannot be simulated with the standard k-ε turbulence
closure model. Chapter IV.2 succeeds in simulating the outer-bank cell observed in the
small-flume experiments with a non-linear k-ε turbulence closure model. These
simulations were done in collaboration with the National Center for Computational
Hydroscience and Engineering (Univ. Mississippi, Prof. Wang and Prof. Jia). Chapter
IV.2 reports the first results of this collaborations that is presently being intensified.
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Due to results beyond all expectations, our research project could not be accomplished
within the framework of this PhD-thesis, and a lot of research is currently still in
progress.

V.1   Experimental observations and fundamental research

The limited series of small-flume experiments yielded results beyond all expectations that
form the core of this dissertation. As a side-effect, the extended series of large-flume
experiments were somewhat postponed. At present, the analysis of the small-flume
experiments is accomplished, but only a basic data analysis has been performed on the
series of large-flume experiments over a horizontal bottom topography – some data are
presented in chapters II.3 and II.4 and exploited in chapter IV.1 – whereas the series of
large-flume experiments over a mobile-bottom topography is only now in its final phase.
The analysis of the large-flume experiments is similar to that of the small-flume
experiments.

First of all, the enormous amount of data from these large-flume experiments will be
reduced into a convenient format. This will constitute an important database for the
validation of numerical models, with the unique property of containing all three mean
velocity components, all six Reynolds stresses and even the higher-order turbulent
correlations. This responds to a need for detailed data on three-dimensional open-channel
flow, which are at present very scarce. Furthermore, the most relevant observations on the
behavior of the flow and the turbulence will be highlighted.

Subsequently, a detailed analysis of the physical mechanisms and processes underlying
these observations will be made, with the aim of confirming the results of the small-flume
experiments and acquiring new knowledge concerning:

- the flow behavior in entire cross-sections instead of only the outer half of the cross-
section.

- the evolution of the flow as it proceeds through the bend.
-  the flow behavior as a function of the degree of curvature, parameterized by the

curvature ratio H/R.
- differences between the flow over a horizontal and a mobile-bottom topography.

Finally, some aspects of the flow that have not been considered in the small-flume
experiments will be investigated in the large-flume experiments, such as coherent
structures in the turbulent flow field (sweeps, ejections, etc.). This has been done with our
ADVP-instrument for straight uniform flow, but to our knowledge no analysis of coherent
structures in three-dimensional open-channel flows has been reported in literature before.
These coherent structures are important with respect to the shear stresses on the
boundaries and the transport of sediments as bedload and in suspension.

Besides, the next phase of experimental research on open-channel bends has been
launched, intending to investigate the dynamics of suspended sediment transport.

At the end of this PhD, a rich amount of experimental data is available that is far from
being exhausted. It is beyond all doubt that its analysis will shed new light on the
dynamics of the mean flow and the turbulence in open-channel bends.
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V.2   Applied research

Also the applied research, reported in part IV, with the aim of evaluating, improving and
developing numerical simulation techniques, is far from being accomplished.

Chapter IV.1 presented a non-linear model for the vertical flow structure that, unlike
commonly used linear models, accounts for the feedback between the downstream
velocity profile and the secondary circulation.

- Predictions by this non-linear model of important differences between the secondary
circulation over a horizontal and a mobile-bottom topography led to the design of the
two series of large-flume experiments over different bottom topographies.
Experimental data from both series will serve to further evaluate, and hopefully
validate, the non-linear model. A companion paper to chapter IV.1 that highlights the
differences between the flow over both bottom topographies and that evaluates the
non-linear model is in preparation.

- A simplified implementation of this non-linear model into the depth-integrated flow-
sediment model developed by WL|Delft Hydraulics (The Netherlands, Prof. de
Vriend) has given promising results. It greatly enhanced the capacity of the depth-
integrated flow-sediment model at low computational cost. Simulations of the flow
over a horizontal bottom topography and simulations of the development of the
bottom topography have already been reported in two congress papers:

Blanckaert K., Glasson L., Altinakar M., Jagers H. R. A. & Sloff C. J. (2003). ‘A quasi-3D model
for flow in sharp open-channel bends’. Proc. 30th IAHR congr., Thessaloniki, Greece (in press).

Blanckaert K., Glasson L., Jagers H. R. A. & Sloff C. J. (2003). ‘Quasi-3D simulation of the
morphology in sharp open-channel bends’. Proc. Int. Symp. Shallow Flows, Techn. Univ. Delft,
Delft, The Netherlands. (in press).

- This non-linear model will now be fully implemented into the depth-integrated flow-
sediment model developed by WL|Delft Hydraulics. The thus obtained quasi-3D
model will be used as a tool for the investigation of river morphodynamics, and
especially for the simulation of meander dynamics in the high-curvature range.

Chapter IV.2 reported simulations of the three-dimensional flow field, including the
outer-bank cell of secondary circulation, with a non-linear k-ε turbulence closure, which
were done in collaboration with the National Center for Computational Hydroscience and
Engineering (Univ. Mississippi, Prof. Wang and Prof. Jia). This collaboration is being
intensified. The question that we aim to address is: “what kind of turbulence closure is
required to simulate a specific phenomenon, such as the outer-bank cell of secondary
circulation or the reduction of turbulence activity under the effect of streamline
curvature” ? Simulations of both the small and large-flume experiments will be done in
order to evaluate different non-standard turbulence closure models. Furthermore, the
numerical simulations will allow to extend our research to a wider range of geometric and
hydraulic parameters. The behavior of the cells of secondary circulation, for example, can
be investigated numerically as a function of the curvature ratio, the aspect ratio, the river
roughness, etc.

Finally, also the turbulence characteristics will further be investigated by means of
numerical simulation techniques. Collaborations have been launched with the Technical
University Delft (The Netherlands, Dr. Booij) and with the University of Karlsruhe (Prof.
Rodi, Dr. Stoesser) with the aim of simulating the flow and the turbulence in open-
channel bends by using Large-Eddy-Simulation (LES) techniques.
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VI.1   Introduction and objectives

Rivers are the arteries of our planet: they shape our landscapes, irrigate our lands, supply
us with drinking water and food and constitute important connecting links. But rivers also
frequently cause devastation: they erode fertile land and endanger property, inundate vast
areas of land and spread disease.

At present, the term “sustainable development” is in vogue. Applied to the river
environment, this means attempting to exploit the river’s resources and to seek protection
against its threats, by preserving its ecological and biological richness.

“Sustainable-development” river projects, such as renaturalization works, flood protection
schemes, navigation improvement works or water quality improvement measures, require
an understanding of the three-dimensional flow and turbulence in complex geometries.

However, hardly any experimental data exists on three-dimensional flow and turbulence
in complex geometries. Furthermore, three-dimensional numerical simulations are mostly
based on “straight-uniform-flow” knowledge.

This PhD investigates, mainly experimentally, the flow and turbulence in open-channel
bends, as a generic case of highly three-dimensional flow, with as principal objectives:

- To provide a high-quality data base on three-dimensional open-channel flow, including
all three mean velocity components and all six Reynolds stresses on a fine grid.

-  To document interesting features of the flow field and the turbulence, such as the
multi-cellular pattern of secondary circulation, the curvature influence on the
turbulence, etc.

- To gain insight in the relevant physical mechanisms and processes underlying these
features.

-  To apply the acquired knowledge in an engineering sense, mainly by evaluating,
improving and developing numerical simulation techniques.

The experimental research is rendered feasible by the availability of a powerful Acoustic
Doppler Velocity Profiler (ADVP), developed in our laboratory. Within the framework of
this PhD, techniques have been developed to improve acoustic turbulence measurements,
mainly by optimizing the ADVP-configuration and by supplying acoustic targets to the
flow in order to increase the signal-noise ratio.

VI.2   Conclusions

The core of this dissertation is structured into three parts, corresponding to the above
defined objectives: Part II “Experimental observations”, Part III “Fundamental research”
and Part IV “Applied research”. At the end of each part, the main conclusions are
summarized. Regrouping these leads to the following main conclusions of this
dissertation:
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Downstream velocity, vs (chapters II.1 and III.1)

The distribution of the downstream velocity vs is strongly determined by the secondary
circulation (see next point). The center-region cell of secondary circulation redistributes
the velocity by advecting flow momentum in outward direction, thereby causing the
observed outward increase of vs. Furthermore, it causes a flattening of the vertical profile
of vs, by increasing/decreasing the velocities in the lower/upper part of the water column.
For strong curvatures, the vs-profile gets non-monotonic, with maximum velocities
occurring in the lower part of the water column.

Although small and weak, the outer-bank cell of secondary circulation plays an important
role. It stabilizes a buffer region that protects the outer-bank against influences of the
center-region cell. Most important, the outward increase of vs does not continue onto the
outer bank, but the core of maximum vs is found at the separation of both circulation cells.

A precise description of the secondary circulation is a prerequisite for the accurate
simulation of the flow field.

Pattern of secondary circulation cells

Besides the classical center-region cell (helical motion), a weaker and smaller counter-
rotating outer-bank cell of secondary circulation is observed in the corner formed by the
outer bank and the water surface. As mentioned above, this outer-bank cell has a
protective effect on the erosional stability of the outer bank and the adjacent bottom.

Center-region cell (chapters II.1, II.4, III.2 and IV.1)

The center-region cell is mainly generated by the vertical gradient of the centrifugal force,
(∂/∂z)(vs

2/R). The non-uniform outward centrifugal force and the nearly-uniform inward
pressure gradient, due to the super-elevation of the water surface, are on the average in
equilibrium. Their local non-equilibrium, however, gives rise to the center-region cell.
An important negative feedback exists between the strength of the center-region cell and
the vertical profile of vs. As mentioned above, the vs-profile flattens under the influence of
the center-region cell. The resulting centrifugal force, vs

2/R, gets more uniform over the
depth, which results in a weaker center-region cell.

In engineering problems concerning the flow and the bottom morphology, often depth-
integrated flow models are used, to which a closure model for the vertical structure of the
flow, and especially for the secondary circulation, has to be provided. Commonly-used
linear closure models that neglect this negative feedback between the downstream
velocity profile and the center-region cell are inaccurate for moderate to strong
curvatures. A non-linear closure model is proposed that accounts for this feedback and
agrees well with experimental data for strongly curved flow. It depends on the ratio
between the flow depth and the bend radius, the flow friction factor and the spanwise
distribution of the downstream velocity, which can be combined with good approximation
into one single newly-defined parameter, called bend-parameter, that allows to distinguish
objectively between weak, moderate and strong curvatures. The commonly used linear
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models are found as the asymptotic solution for vanishing curvature. Evaluations for
natural rivers show that differences between the linear and non-linear models are relevant.
The non-linear model has the potential to improve the capabilities of depth-integrated
flow models at low computational cost: a quasi three-dimensional flow field is obtained
by extending such depth-integrated models with this non-linear model.

Outer-bank cell (chapters II.1-4, III.2 and IV.2)

In all of the small and large-flume experiments, outer-bank cells occurred. They seem to
widen and strengthen considerably with increasing curvature.

Similar outer-bank cells exist in straight turbulent flow as well as in curved laminar flow.
In straight turbulent flow, they are induced by the anisotropy of turbulence, and they
cannot be simulated with the standard k-ε turbulence closure. In curved laminar flow,
they come into existence when the curvature exceeds a critical value. As described above,
the vs-profile flattens under the effect of the center-region cell. At the critical curvature,
the vs-profile gets non-monotonic, the gradient of the centrifugal force, (∂/∂z)(vs

2/R),
changes sign near the water surface, and the outer-bank cell comes into existence.

A term-by-term evaluation of the downstream vorticity equation based on the
experimental data indicates that both mechanisms have a comparable contribution to the
generation of the outer-bank cell in curved turbulent flow. Furthermore, both mechanisms
seem to strengthen each other, whence the outer-bank cell is stronger in a curved
turbulent flow than in a curved laminar or a straight turbulent flow.

The restitution of kinetic energy from the turbulence to the mean flow plays an important
role in the generation of the outer-bank cell. The deficiency of the standard k-ε turbulence
closure is due to its inherent incapability to account for such kinetic-energy restitution.
Based on these indications, successful numerical simulations of the outer-bank cell have
been done with a non-linear k-ε turbulence closure.

Turbulence (chapters II.1 and III.3-4)

The turbulence characteristics are of engineering relevance. The turbulence anisotropy
plays and important role in the generation of the outer-bank cell, which on its turn affects
the velocity distribution, the distribution of the boundary shear stresses, the sediment
transport and ultimately the river morphology. Furthermore, the turbulence characteristics
determine the spreading and mixing of matter, such as pollutants or suspended sediment,
and heat.

The Reynolds stresses have pronounced spatial distributions in curved flow that
considerably differ from their counterparts in straight uniform open-channel flow.
Moreover, the turbulence activity, represented by the ratio of turbulent to mean-flow
kinetic energy, is reduced in the outer half of the cross-section in the investigated open-
channel bend, and presumably increased in the inner half. This reduced turbulence in the
outer bend is attributed to a change in the turbulence structure: given the amount of
turbulent kinetic energy, there is less shear in a curved flow.



VI.4

The underlying turbulence dynamics can, speculatively, be described as follows. Similar
to the influence of buoyancy, streamline curvature leads to turbulence damping, and it can
be described by similar parameters such as the curvature-Richardson number Rf or the
curvature-Brunt-Väisälä frequency ωbv. The influence of the streamline curvature acts
primarily in the horizontal and imposes a kind of spanwise stratification to the turbulence
structure. The damping occurs basically through a change in the turbulence structure: the
velocity fluctuations are a-typically coherent over the width and can be decomposed into
slow width-coherent fluctuations and rapidly varying background turbulence. The
coherent fluctuations represent a bulk-oscillation of the pattern of circulation cells with
the characteristics of a wave-like motion: when treated as turbulence, they contribute
significantly to the turbulent kinetic energy, but little to the turbulent shear stresses. The
background turbulence is characterized by an efficient shear stress generation. Obviously,
the reduction of part of the turbulence into wave-like motion reduces the efficiency of
shear generation. Similar observations on reduced turbulence activity and tendency to
wave-like motion have been reported in literature for flow in curved wind tunnels and
density-stratified flows. To our knowledge, these potentially important phenomena have
not been reported before in literature for the case of open-channel flow.

Consequently, in order to simulate numerically the observed reduced turbulence activity,
it is not sufficient for turbulence closures to incorporate the transport equation for the
turbulent kinetic energy, but they also have to represent the turbulence structure. Two-
equation turbulence models, such as the commonly used k-ε-model, are inherently unable
to do so. Semi-empirical extensions, based on the observed correlations between the
turbulence structure and curvature parameters such as Rf and ωbv, may be used to improve
the capabilities of two-equation turbulence closures for three-dimensional curved flows,
but this requires more experimental data, with a larger spatial coverage and for a wider
range of hydraulic and geometric conditions.

Since the strength of the center-region cell of secondary circulation depends on the same
curvature-Richardson number (it parameterizes the spanwise-distribution of the
downstream velocity, see above), Rf must be an important scaling parameter in curved
open-channel flow.

Our research on flow and turbulence in open-channel bends is not accomplished with this
dissertation. The work in progress, as well as the continuation of the research are
described in Part V “Work in progress”.

The experimental data presented in this dissertation are obtainable from the author.
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