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Abstract—In this paper, we introduce the first application of the belief propagation algorithm in the design and evaluation of trust and

reputation management systems. We approach the reputation management problem as an inference problem and describe it as

computing marginal likelihood distributions from complicated global functions of many variables. However, we observe that computing

the marginal probability functions is computationally prohibitive for large-scale reputation systems. Therefore, we propose to utilize the

belief propagation algorithm to efficiently (in linear complexity) compute these marginal probability distributions; resulting a fully

iterative probabilistic and belief propagation-based approach (referred to as BP-ITRM). BP-ITRM models the reputation system on a

factor graph. By using a factor graph, we obtain a qualitative representation of how the consumers (buyers) and service providers

(sellers) are related on a graphical structure. Further, by using such a factor graph, the global functions factor into products of simpler

local functions, each of which depends on a subset of the variables. Then, we compute the marginal probability distribution functions of

the variables representing the reputation values (of the service providers) by message passing between nodes in the graph. We show

that BP-ITRM is reliable in filtering out malicious/unreliable reports. We provide a detailed evaluation of BP-ITRM via analysis and

computer simulations. We prove that BP-ITRM iteratively reduces the error in the reputation values of service providers due to the

malicious raters with a high probability. Further, we observe that this probability drops suddenly if a particular fraction of malicious

raters is exceeded, which introduces a threshold property to the scheme. Furthermore, comparison of BP-ITRM with some well-known

and commonly used reputation management techniques (e.g., Averaging Scheme, Bayesian Approach, and Cluster Filtering) indicates

the superiority of the proposed scheme in terms of robustness against attacks (e.g., ballot stuffing, bad mouthing). Finally, BP-ITRM

introduces a linear complexity in the number of service providers and consumers, far exceeding the efficiency of other schemes.

Index Terms—Trust and reputation management, belief propagation, iterative algorithms, bad mouthing, ballot stuffing, online

services, e-commerce.
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1 INTRODUCTION

TRUST and reputation are crucial requirements for most
environments wherein entities participate in various

transactions and protocols among each other. In most
online service systems, the consumer of the service (e.g., the
buyer) has no choice but to rely on the reputation of the
service provider (e.g., the seller) based on the latter’s prior
performance. A reputation management mechanism is a
promising method to protect the consumer (buyer) of the
service by forming some foresight about the service
providers (sellers) before using their services (or purchas-
ing their products). By using a reputation management
scheme, an individual peer’s reputation can be formed by
the combination of received reports (ratings). Hence, after
each transaction, a party who receives the service or
purchases the product (referred to as the rater) provides
(to the central authority) its report about the quality of the
service provided (or the quality of the product purchased)
for that transaction. The central authority collects the
reports and updates the reputations of the service providers
(sellers). Therefore, the main goal of a reputation mechan-
ism is to determine the service (product), qualities of the

service providers (sellers), and the trustworthiness of the
raters based on their reports about the service qualities.
Hence, the success of a reputation scheme depends on the
robustness of the mechanism to accurately evaluate the
reputations of the service providers (sellers) and the
trustworthiness of the raters.

Trust and reputation mechanisms have various applica-
tion areas from online services to mobile ad-hoc networks
(MANETs) [1], [2], [3], [4]. Most well-known commercial
websites such as eBay, Amazon, Netflix, and Google use
some types of reputation mechanisms. Hence, it is foresee-
able that the social web is going to be driven by these
reputation systems. Despite recent advances in reputation
systems, there is yet a need to develop reliable, scalable, and
dependable schemes that would also be resilient to various
ways a reputation system can be attacked. Moreover, new
and untested applications open up new vulnerabilities, and
hence, requiring specific solutions for reputation systems.

As in every security system, trust and reputation
management systems are also subject to malicious beha-
viors. Malicious raters may attack particular service
providers (sellers) in order to undermine their reputations
while they help other service providers by boosting their
reputations. Similarly, malicious service providers (sellers)
may provide good service qualities (or sell high-quality
products) for certain customers (buyers) in order to keep
their reputations high while cheating the other customers.
Moreover, malicious raters (or service providers) may
collaboratively mount sophisticated attacking strategies by
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exploiting their prior knowledge about the reputation
mechanism. Hence, building a resilient trust and reputation
management system that is robust against malicious
activities becomes a challenging issue.

In this paper, we introduce the first application of the
belief propagation algorithm in the design and evaluation of
trust and reputation management systems. In our previous
work, inspired by our earlier work on iterative decoding of
error-control codes in the presence of stopping sets [5], [6],
[7], we proposed an algebraic iterative algorithm [8] for
reputation systems (referred to as ITRM) and showed the
benefit of using iterative algorithms for trust and reputation
management. Here, we expand this work and introduce a
fully probabilistic approach based on the belief propagation
algorithm. Different from our previous work [8], in this
paper, we view the reputation management problem as an
inference problem and describe it as computing marginal
likelihood distributions from complicated global functions
of many variables. Further, we utilize the belief propagation
algorithm to efficiently (in linear complexity) compute these
marginal probability distributions. The work is inspired by
earlier work on graph-based iterative probabilistic decoding
of turbo codes and low-density parity-check (LDPC) codes,
the most powerful practically decodable error-control codes
known. These decoding algorithms are shown to perform at
error rates near what can be achieved by the optimal scheme,
maximum likelihood decoding, while requiring far less
computational complexity (i.e., linear in the length of the
code). We believe that the significant benefits offered by the
iterative probabilistic algorithms can be also tapped in to
benefit the field of reputation systems. In iterative decoding
of LDPC, every check vertex (in the graph representation of
the code) has some opinion of what the value of each bit
vertex should be. The iterative decoding algorithm would
then analyze the collection of these opinions to decide, in
each iteration, what value to assign for the bit vertex under
examination. Once the values of the bit vertices are
estimated, in the next iteration, those values are used to
determine the satisfaction of the check vertex values. The
contribution of our research stems from the observation that
a similar approach can be adapted to determine the
reputations of the service providers (sellers) as well as the
trustworthiness of the raters. Furthermore, the analysis of
reputation systems resembles that of the code design
problem. In LDPC, one of the goals is to find the decoding
error for a fixed set of check constraints. Similarly, in the
reputation system, our goal is to specify the regions of trust
for the set of the system parameters. A region of trust is the
range of parameters for which we can confidently determine
the reputation values within a given error bound. We
acknowledge, however, that we have a harder problem in
the case of reputation systems as the adversary dynamics is
far more complicated to analyze than the erasure channel in
the coding problem.

We introduce the “Belief Propagation-based Iterative
Trust and Reputation Management Scheme” (BP-ITRM).
Belief propagation [9], [10], [11] is a message passing
algorithm for performing interface on graphical models
such as Bayesian networks or Markov random fields. It is
used for computing marginal distributions of the unob-
served nodes conditioned on the observed ones. Computing
marginal distributions is hard in general as it might require
summing an exponentially large number of terms. Hence,

the belief propagation algorithm is usually described in
terms of operations on factor graphs. The factor graph
representation of the reputation systems turned out to be a
bipartite graph, where the service providers (sellers) and
consumers (buyers) are arranged as two sets of variable and
factor nodes that are connected via some edges. The
reputation can be computed by message passing between
nodes in the graph. In each iteration of the algorithm, all the
variable nodes (sellers), and subsequently all the factor
nodes (buyers), pass new messages to their neighbors until
the reputation value converges. We note that in the rest of
this paper, we use the word “message” as virtual term. The
exchange of messages are not between the actual sellers and
buyers; all messages between the nodes in the graph (i.e.,
between the variable and factor nodes) are formed by the
algorithm that is ran in the central authority. We show that
the proposed iterative scheme is reliable (in filtering out
malicious/unreliable reports). Further, we prove that BP-
ITRM iteratively reduces the error in the reputation values
of service providers due to the malicious raters with a high
probability. We observe that this probability suddenly
drops if the fraction of malicious raters exceeds a threshold.
Hence, the scheme has a threshold property.

The proposed reputation management algorithm can be
utilized in well-known online services such as eBay or
Epinions. In eBay, each seller-buyer pair rate each other after
a transaction. Thus, BP-ITRM can be used in eBay to
compute the reputation values of the sellers and buyers
along with the trustworthiness values of the peers in their
ratings. Epinions, on the other hand, is a product review site
in which users can rate and review items. Users can also give
ratings to the reviews. Hence, the ratings of members on a
review and on a product are considered separately. BP-ITRM
can be utilized in such an environment to compute the
reputations of the reviewers based on the ratings given by
the users on the reviews. Although we present the proposed
algorithm as a centralized approach, it can also be applied to
decentralized systems such as ad hoc networks and P2P
systems to compute the reputations of the nodes in the
network. As an example, we applied ITRM, our algebraic but
iterative reputation management system, to delay tolerant
networks [12] in a decentralized environment.

The rest of this paper is organized as follows: in the rest of
this section, we summarize the related work, list the
contributions of this work and describe the belief propagation
algorithm. In Section 2, we describe the proposed BP-ITRM in
detail. Next, in Section 3, we mathematically model and
analyze BP-ITRM. Further, we support the analysis via
computer simulations, compare BP-ITRM with the existing
and commonly used trust management schemes, and discuss
the computational complexity of the proposed scheme.
Finally, in Section 4, we conclude our paper.

1.1 Related Work

Several works in the literature have focused so far on building
reputation-management mechanisms [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25]. We may classify
reputation mechanisms for centralized systems as 1) global
reputation systems, where the reputation of a service
provider (seller) is based on the reports form general users
[26], [27], and 2) personalized reputation systems, where the
reputation of a service provider (seller) is determined based
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on the reports of a group of particular users, which may be
different in the eyes of different users [28], [29]. We note that
our work falls under the category of global reputation
systems. The most famous and primitive global reputation
system is the one that is used in eBay. In eBay, each seller-
buyer pair rate each other after a transaction, and the total
rating of a peer is the sum of the individual ratings it received
from the other peers. It is shown in [30] that, even this simple
reputation mechanism provides the sellers with high
reputation to sell their items more than the other sellers. On
the other hand, since eBay’s reputation scheme weights all
individual ratings equally, the unfair ratings (the ones
coming from the unreliable peers) are not filtered, effecting
the reputation values of the sellers significantly. Other well-
known web sites such as Amazon, Epinions, and AllExperts
use a more advanced reputation mechanism than eBay. Their
reputation mechanisms mostly compute the average (or
weighted average) of the ratings received for a product (or a
peer) to evaluate the global reputation of a product (or a peer).
Hence, these schemes are vulnerable to collaborative attacks
by malicious peers. Google’s PageRank algorithm [26] can
also be considered as a global reputation systems. This
algorithm does not require the participation of the users to
rank the web pages. Basically, the web page with more back
links (links that point to it) is considered to be more important
(has higher rank) than the one with fewer back links.
PageRank algorithms is also modified and used in social
networks for the reputation of the peers [31], [32]. Use of the
Bayesian Approach is also proposed in [27], [33]. In these
systems, the a posteriori reputation value of a peer is
computed combining its a priori reputation values with the
new ratings received for the peer. Further, a threshold
method is used to determine and update the report reliability
of the rater peers. Finally, [29] proposed to use the Cluster
Filtering method [34] for reputation systems to distinguish
between the reliable and unreliable raters. We compare our
proposed scheme with the existing schemes (in Section 3.3)
and show its superior performance (i.e., accuracy and
robustness against attacks).

Personalized reputation systems are also widely studied
for different purposes. In Histos [28], the central node
(server) keeps all the ratings between the peers and generates
a graph to calculate the ratings of each peer for the other
peers. However, each update of this graph requires a lot of
computations. Hence, this scheme has high-computational
complexity. The most well-known method that is used to
build personal reputations is the Collaborative Filtering [35],
[36]. Using this method, the predicted rating of a peer i for
another peer j (that i has not directly rated) is calculated by
the main server using a memory-based algorithm (such as
similarity testing [37]) or a model-based algorithm (such as
matrix factorization [38]). However, these types of systems
have cold start and data sparseness problems which cause
them to be vulnerable against malicious behavior.

1.2 Contributions of the Paper

The main contributions of our work are summarized in the
following.

1. We introduce the first application of the belief
propagation algorithm on trust and reputation
management systems.

2. As the core of our trust and reputation management
system, we use the belief propagation algorithm
which is proven to be a powerful tool on decoding of
turbo codes and LDPC codes. Therefore, we intro-
duce a graph-based trust and reputation manage-
ment mechanism that relies on an appropriately
chosen factor graph and computes the reputation
values of service providers (sellers) by a message
passing algorithm.

3. The proposed iterative algorithm computes the
reputation values of the service providers (sellers)
accurately (with a small error) in a short amount of
time in the presence of attackers. The scheme is also
a robust and efficient methodology for detecting
and filtering out malicious ratings. Further, the
scheme detects the malicious raters with a high
accuracy, and updates their trustworthiness accord-
ingly enforcing them to execute low-grade attacks to
remain undercover.

4. The proposed BP-ITRM significantly outperforms
the existing and commonly used reputation manage-
ment techniques such as the Averaging Scheme,
Bayesian Approach as in [27] and [33], and Cluster
Filtering in the presence of attackers.

1.3 Belief Propagation

Belief propagation [9], [10], [11] is a message passing
algorithm for performing interface on graphical models
(Bayesian networks, Markov random fields). It is a method
for computing marginal distributions of the unobserved
nodes conditioned on the observed ones. Computing
marginal distributions is hard in general as it might require
summing an exponentially large number of terms. Hence,
belief propagation algorithm is usually described in terms
of operations on a factor graph. A factor graph is a bipartite
graph containing nodes corresponding to variables and
factors with edges between them. A factor graph has a
variable node for each variable, a factor node for each
function, and an edge connecting a variable node to a factor
node if and only if the variable is an argument of function
corresponding to the factor node. The marginal distribution
of an unobserved node can be computed accurately using
the belief propagation algorithm if the factor graph has no
cycles. However, the algorithm is still well defined and
often gives good approximate results even for the factor
graphs with cycles (as it has been observed in decoding of
LDPC codes).

Belief propagation is commonly used in artificial intelli-
gence and information theory. It has demonstrated empiri-
cal success in numerous applications including LDPC
codes, turbo codes, free energy approximation, and satisfia-
bility. In iterative decoding of LDPC, for example, every
check vertex (in the graph representation of the code) has
some opinion of what the value of each bit vertex should be.
The iterative decoding algorithm would then analyze the
collection of these opinions to decide, in each iteration, what
value to assign for the bit vertex under examination. Once
the values of the bit vertices are estimated, in the next
iteration, those values are used to determine the satisfaction
of the check-vertex values. While the optimal decoding
technique of LDPC codes, maximum likelihood (ML)
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decoding, is an NP problem, belief propagation algorithm
provides a very efficient decoding that gets close to the
bit error rate (BER) performance of the ML decoding when
the code length becomes large. In other words, belief
propagation performs at error rates near what can be
achieved by the optimal scheme while requiring far less
computational complexity. Here, we propose to exploit such
benefits in trust and reputation management systems.

2 BELIEF PROPAGATION FOR ITERATIVE TRUST AND

REPUTATION MANAGEMENT

As in every reputation management mechanism, we have
two main goals: 1) computing the service quality (reputa-
tion) of the peers who provide a service (henceforth referred
to as Service Providers or SPs) by using the feedbacks from
the peers who used the service (referred to as the raters),
and 2) determining the trustworthiness of the raters by
analyzing their feedback about SPs. We assume two
different sets in the system: a) the set of service providers,
S and b) the set of service consumers (hereafter referred as
raters), U. We note that these two sets are not necessarily
disjoint. Transactions occur between SPs and raters, and
raters provide feedbacks in the form of ratings about SPs
after each transaction.

Let Gj be the reputation value of SP j (j 2 S) and Tij be
the rating that rater i (i 2 U) reports about SP j (j 2 S),
whenever a transaction is completed between the two peers.
Moreover, let Ri denote the trustworthiness of the peer i
(i 2 U) as a rater. In other words, Ri represents the amount
of confidence that the reputation system has about the
correctness of any feedback/rating provided by rater i. All
of these parameters may evolve with time. However, for
simplicity, we omitted time dependencies from the nota-
tion. We assume there are u raters and s SPs in the system
(i.e., jUj ¼ u and jSj ¼ s). Let G ¼ fGj : j 2 Sg and R ¼
fRi : i 2 Ug be the collection of variables representing the
reputations of the SPs and the trustworthiness values of the
raters, respectively. Further, let T be the s� u SP-rater
matrix that stores the rating values (Tij), and Ti be the set of
ratings provided by rater i. We consider slotted time
throughout this discussion. At each time-slot (or epoch), the
iterative reputation algorithm is executed using the input
parameters R and T to obtain the reputation parameters
(e.g., G). After completing its iterations, the BP-ITRM
scheme outputs new global reputations of the SPs as well
as the trustworthiness (R values) of the raters. For
simplicity of presentation, we assume that the rating values
are from the set � ¼ f0; 1g. The extension in which rating
values can take any real number can be developed similarly
(we implemented the proposed scheme for both cases and
illustrate its performance in Section 3.3).

The reputation management problem can be viewed as
finding the marginal probability distributions of each
variable in G, given the observed data (i.e., evidence).
There are s marginal probability functions, pðGjjT;RÞ, each
of which is associated with a variable Gj; the reputation
value of SP j. Loosely speaking, the present Bayesian
approaches [27], [33] solve for these marginal distributions
separately, leading to poor estimates as they neglect the
interplay of the entire evidence. In contrast, we formulate
the problem by considering the global function pðGjT;RÞ,
which is the joint probability distribution function of the

variables in G given the rating matrix and the trustworthi-
ness values of the raters. Then, clearly, each marginal
probability function pðGjjT;RÞ may be obtained as follows:

pðGjjT;RÞ ¼
X

GnfGjg
pðGjT;RÞ; ð1Þ

where the notation GnfGjg implies all variables in G except
Gj.

Unfortunately, the number of terms in (1) grows exponen-
tially with the number of variables, making the computation
infeasible for large-scale systems even for binary reputation
values. However, we propose to factorize (1) to local
functions fi using a factor graph and utilize the belief
propagation algorithm to calculate the marginal probability
distributions in linear complexity. A factor graph is a
bipartite graph containing two sets of nodes (corresponding
to variables and factors) and edges incident between two sets.
Following [10], we form a factor graph by setting a variable
node for each variable Gj, a factor node for each function fi,
and an edge connecting variable node j to the factor node i if
and only if Gj is an argument of fi. We note that computing
marginal probability functions is exact when the factor graph
has no cycles. However, the belief propagation algorithm is
still well defined and empirically often gives good approx-
imate results for the factor graphs with cycles.

To describe the reputation system, we arrange the
collection of the raters and the SPs together with their
associated relations (i.e., the ratings of the SPs by the
raters) as a bipartite (or factor) graph, as in Fig. 1. In this
representation, each rater peer corresponds to a factor node
in the graph, shown as a square. Each SP is represented by a
variable node shown as a hexagon in the graph. Each
report/rating is represented by an edge from the factor
node to the variable node. Hence, if a rater i (i 2 U) has a
report about SP j (j 2 S), we place an edge with value Tij
from the factor node i to the variable node representing
SP j. We note that the Tij value between rater i and SP j is
the aggregation of all past and present ratings between
these two peers as described in the following. If any new
rating arrives from rater i about SP j, our scheme updates
the value Tij by averaging the new rating and the old value
of the edge multiplied with the fading factor. The factor
�ijðtÞ is used to incorporate the fading factor of the SPs’
reputation (service quality). We use a known factor �ijðtÞ ¼
#t�tij where # and tij are the fading parameter and the time
when the last transaction between rater i and SP j occurred,
respectively. The parameter # is chosen to be less than one
to give greater importance to more recent ratings.
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Next, we suppose that the global function pðGjT;RÞ
factors into products of several local functions, each having
a subset of variables from G as arguments as follows:

pðGjT;RÞ ¼ 1

Z

Y
i2U

fiðGi;Ti; RiÞ; ð2Þ

where Z is the normalization constant and Gi is a subset of
G. Hence, in the graph representation of Fig. 1, each factor
node is associated with a local function and each local
function fi represents the probability distributions of its
arguments given the trustworthiness value and the existing
ratings of the associated rater. As an example, the factor
graph in Fig. 1 corresponds to

pðGa;Gb;GcjT;RÞ ¼
1

Z
fkðGa;Gb;Gc; Tka; Tkb; Tkc; RkÞ

� fmðGa;Gb; Tma; Tmb; RmÞ
� fnðGa;Gc; Tna; Tnc; RnÞ:

ð3Þ

We note that using (3) in (1), one can attempt to compute
the marginal distributions. However, as discussed before,
this can get computationally infeasible. Instead, we utilize
the belief propagation algorithm to calculate the marginal
distributions of the variables in G.

We now introduce the messages between the factor and
the variable nodes to compute the marginal distributions
using belief propagation. We note that all the messages
are formed by the algorithm that is ran in the central
authority. To that end, we choose an arbitrary factor graph
as in Fig. 2 and describe message exchanges between rater
k and SP a. We represent the set of neighbors of the
variable node (SP) a and the factor node (rater) k as Na

and Nk, respectively (neighbors of a SP are the set of raters
who rated the SP while neighbors of a rater are the SPs
whom it rated). Further, let � ¼ Nanfkg and � ¼ Nknfag.
The belief propagation algorithm iteratively exchanges the
probabilistic messages between the factor and the variable
nodes in Fig. 2, updating the degree of beliefs on the
reputation values of the SPs as well as the confidence of
the raters on their ratings (i.e., trustworthiness values) at
each step, until convergence. Let Gð�Þ ¼ fGð�Þj : j 2 Sg
be the collection of variables representing the values of
the variable nodes at the iteration � of the algorithm. We
denote the messages from the variable nodes to the factor
nodes and from the factor nodes to the variable nodes as �
and �, respectively. The message �

ð�Þ
a!kðGð�Þa Þ denotes the

probability of Gð�Þa ¼ ‘, ‘ 2 f0; 1g, at the �th iteration. On
the other hand, �

ð�Þ
k!aðGð�Þa Þ denotes the probability that

Gð�Þa ¼ ‘, for ‘ 2 f0; 1g, at the �th iteration given Tka and Rk.

The message from the factor node k to the variable node
a at the �th iteration is formed using the principles of the
belief propagation as

�
ð�Þ
k!a
�
Gð�Þa

�
¼

X
Gð��1ÞnfGð��1Þ

a g

fk
�
Gk;Tk; R

ð��1Þ
k

�Y
x2�

�
ð��1Þ
x!k

�
Gð��1Þ
x

�
; ð4Þ

where Gk is the set of variable nodes which are the
arguments of the local function fk at the factor node k.
This message transfer is illustrated in Fig. 3. Further, R

ð��1Þ
k

(the trustworthiness of rater k calculated at the end of
ð� � 1Þth iteration) is a value between zero and one and can
be calculated as follows:

R
ð��1Þ
k ¼ 1� 1

jNkj
X
i2Nk

X
x2f0;1g

jTki � xj�ð��1Þ
i!k ðxÞ: ð5Þ

The above equation can be interpreted as one minus the
average inconsistency of rater k calculated by using the
messages it received from all its neighbors. Using (4) and
the fact that the reputation values in set G are indepen-
dent from each other, i t can be shown that
�
ð�Þ
k!aðGð�Þa Þ / pðGð�Þa jTka; R

ð��1Þ
k Þ, where

p
�
Gð�Þa jTka; R

ð��1Þ
k

�
¼

R
ð��1Þ
k þ 1�Rð��1Þ

k

2

 !
Tka þ

1�Rð��1Þ
k

2
ð1� TkaÞ

" #
Gð�Þa þ

1�Rð��1Þ
k

2
Tka þ R

ð��1Þ
k þ 1�Rð��1Þ

k

2

 !
ð1� TkaÞ

" #
�
1�Gð�Þa

�
:

ð6Þ

This resembles the belief/plausibility concept of the Demp-
ster-Shafer Theory [39], [40]. Given Tka ¼ 1, R

ð��1Þ
k can be

viewed as the belief of the kth rater that Gð�Þa is one (at the
�th iteration). In other words, in the eyes of rater k, Gð�Þa is
equal to one with probability R

ð��1Þ
k . Thus, ð1�Rð��1Þ

k Þ
corresponds to the uncertainty in the belief of rater k. In
order to remove this uncertainty and express pðGð�Þa jTka;
R
ð��1Þ
k Þ as the probabilities that Gð�Þa is zero and one, we

distribute the uncertainty uniformly between two outcomes
(one and zero). Hence, in the eyes of the kth rater,Gð�Þa is equal
to one with probability (R

ð��1Þ
k þ ð1�Rð��1Þ

k Þ=2), and zero
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with probability (ð1�Rð��1Þ
k Þ=2). We note that a similar

statement holds for the case when Tka ¼ 0. It is worth noting
that, as opposed to the Dempster-Shafer Theory, we do not
combine the beliefs of the raters. Instead, we consider the
belief of each rater individually and calculate probabilities
thatGð�Þa being one and zero in the eyes of each rater as in (6).
The above computation must be performed for every
neighbors of each factor nodes. This finishes the first half of
the �th iteration.

During the second half, the variable nodes generate their
messages (�) and send it to their neighbors. Variable node a
forms �

ð�Þ
a!kðGð�Þa Þ by multiplying all information it receives

from its neighbors excluding the factor node k, as shown in
Fig. 4. Hence, the message from variable node a to the factor
node k at the �th iteration is given by

�
ð�Þ
a!k
�
Gð�Þa

�
¼ 1X

h2f0;1g

Y
i2�

�
ð�Þ
i!aðhÞ

�
Y
i2�

�
ð�Þ
i!a
�
Gð�Þa

�
: ð7Þ

This computation is repeated for every neighbors of each
variable node. The algorithm proceeds to the next iteration
in the same way as the �th iteration. We note that the
iterative algorithm starts its first iteration by computing
�
ð1Þ
k!aðGð1Þa Þ in (4). However, instead of calculating in (5), the

trustworthiness value Rk from the previous execution of
BP-ITRM is used as initial values in (6).

The iterations stop when all variables in G converge.
Therefore, at the end of each iteration, the reputations
are calculated for each SP. To calculate the reputation value
Gð�Þa , we first compute �ð�Þa ðGð�Þa Þ using (7) but replacing �
with Na, and then we set Gð�Þa ¼

P1
i¼0 i�

ð�Þ
a ðiÞ.

3 SECURITY EVALUATION OF BP-ITRM

In this section, we mathematically model and analyze BP-
ITRM. Moreover, we support the analysis via computer
simulations and compare BP-ITRM with the existing and
commonly used trust management schemes. In order to
facilitate future references, frequently used notations are
listed in Table 1.

3.1 Attack Models

We consider two major attacks that are common for any
trust and reputation management mechanisms. Further, we
assume that the attackers may collude and collaborate with
each other:

. Bad mouthing. Malicious raters collude and attack
the service providers with the highest reputation by
giving low ratings in order to undermine them. It is
also noted that in addition to the malicious peers, in
some applications, bad mouthing may be originated
by a group of selfish peers who attempt to weaken
high-reputation providers in the hope of improving
their own chances as providers.

. Ballot stuffing. Malicious raters collude to increase
the reputation value of peers with low reputations.
Just as in bad mouthing, in some applications, this
could be mounted by a group of selfish consumers
attempting to favor their allies.

3.2 Analytic Evaluation

We adopted the following models for various peers involved
in the reputation system. We acknowledge that although the
models are not inclusive of every scenario, they are good
illustrations to present our results. We assumed that the
quality of each service provider remains unchanged during
time slots. Moreover, the rating values are either 0 or 1 where
1 represents a good service quality. Ratings generated by the
nonmalicious raters are distributed uniformly among the SPs
(i.e., their ratings/edges in the graph representation are
distributed uniformly among SPs). We further assumed that
the rating value rh (provided by the nonmalicious raters) is a
random variable with Bernoulli distribution, where Prðrh ¼
ĜjÞ ¼ pc and Prðrh 6¼ ĜjÞ ¼ ð1� pcÞ, and Ĝj is the actual
value of the global reputation of SP j. Even though we
assumed binary values (0 or 1) for the actual reputation
values of SPs, BP-ITRM also performs well and gives accurate
results when the actual reputation values of the SPs are
between 0 and 1. Indeed in Section 3.3, we implemented
BP-ITRM when the rating values are from the set f1; . . . ; 5g
instead of binary values and illustrated the performance of
the proposed scheme.1 To the advantage of malicious raters,
we assumed that a total of T time-slots had passed since the
initialization of the system and a fraction of the existing raters
change behavior and become malicious after T time-slots. In
other words, malicious raters behaved like reliable raters
before mounting their attacks at the ðT þ 1Þth time-slot.
Finally, we assumed that d is a random variable with Yule-
Simon distribution, which resembles the power-law distri-
bution used in modeling online systems [41], with the
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TABLE 1
Notations and Definitions

Fig. 4. Message from the variable node a to the factor node k at the
�th iteration.

1. The performance of BP-ITRM in this nonbinary rating system (in
which the rating values are from the set f1; . . . ; 5g) also illustrates its
performance when the actual reputation values of the SPs are between 0
and 1 in the binary rating system. For example, a reputation value of 4 in the
nonbinary rating system stands for a reputation value of 0.8 in the binary
rating system.



probability mass function fdðd; �Þ ¼ �Bðd; �þ 1Þ, where B is
the Beta function. For modeling the adversary, we made the
following assumptions. We assumed that the malicious
raters initiate bad mouthing and collude while attacking
the SPs (they attack the SPs who have the highest reputation
values by rating them as rm ¼ 0). Further, the malicious
raters attack the same set � of SPs at each time-slot. In other
words, we denote by � the set of size b in which every victim
SP has one edge from each of the malicious raters. We note
that the results we provide in this section are based on the
threat model described above. We wish to evaluate the
performance for the time-slot ðT þ 1Þ. It is worth noting that
even though we discuss the details for bad-mouthing attack,
similar counterpart results hold for ballot stuffing and
combinations of bad mouthing and ballot stuffing as well.
�-Optimal scheme. The performance of a reputation

scheme is determined by its accuracy of estimating the global

reputations of the SPs. We declare a reputation scheme to be

�-optimal if the mean absolute error (MAE) (jGj � Ĝjj) is less

than or equal to � for every SP. This introduces a class of

optimal schemes.
Naturally, we need to answer the following question: for

a fixed �, what are the conditions to have an �-optimal

scheme? In order to answer this question we require two

conditions to be satisfied: 1) the scheme should iteratively

reduce the impact of malicious raters and decrease the error

in the reputation values of the SPs until it converges, and

2) the error on the Gj value of each SP j should be less than

or equal to � once the scheme converges. In the following,

we obtained the condition to arrive at the �-optimal scheme.

Although the discussions of the analysis are based on bad-

mouthing attack, the system designed using these criteria

will be robust against ballot stuffing and combinations of

bad mouthing and ballot stuffing as well.
The bad-mouthing attack is aimed to reduce the global

reputation values of the victim SPs. Hence, Gj value of a

victim SP j should be a nondecreasing function of iterations.

This leads to the first condition on the �-optimal scheme.

Lemma 1 (Condition 1). The error in the reputation values of

the SPs decreases with each successive iterations (until

convergence) if Gð2Þa > Gð1Þa is satisfied with high probability

for every SP a (a 2 S) with Ĝa ¼ 1.2

Proof. Let Gð!Þa and Gð!þ1Þ
a be the reputation value of an

arbitrary SP a with Ĝa ¼ 1 calculated at the ð!Þth and

ð!þ 1Þth iterations, respectively. Gð!þ1Þ
a > Gð!Þa if the

following is satisfied at the ð!þ 1Þth iteration:

Y
j2UR\Na

2pcR
ðwþ1Þ
j þ 1�Rðwþ1Þ

j

�2pcR
ðwþ1Þ
j þ 1þRðwþ1Þ

j

Y
j2UM\Na

1� R̂ðwþ1Þ
j

1þ R̂ðwþ1Þ
j

>
Y

j2UR\Na

2pcR
ðwÞ
j þ 1�RðwÞj

�2pcR
ðwÞ
j þ 1þRðwÞj

Y
j2UM\Na

1� R̂ðwÞj

1þ R̂ðwÞj

;

ð8Þ

where R
ðwÞ
j and R̂

ðwÞ
j are the trustworthiness values of a

reliable and malicious rater calculated as in (5) at the

wth iteration, respectively.

Given Gð!Þa > Gð!�1Þ
a holds at the !th iteration, we

would get R̂
ðwÞ
j > R̂

ðwþ1Þ
j for j 2 UM \Na and R

ðwþ1Þ
j �

R
ðwÞ
j for j 2 UR \Na. Thus, (8) would hold for the

ðwþ 1Þth iteration. On the other hand, if Gð!Þa < Gð!�1Þ
a ,

we get R̂
ðwÞ
j < R̂

ðwþ1Þ
j for j 2 UM \Na and R

ðwþ1Þ
j < R

ðwÞ
j

for j 2 UR \Na. Hence, (8) is not satisfied at the ðwþ 1Þth
iteration. Therefore, if Gð!Þa > Gð!�1Þ

a holds for some

iteration !, then the BP-ITRM algorithm reduces the error

on the global reputation value (Ga) until the iterations

stop, and hence, it is sufficient to satisfy G
ð2Þ
j > G

ð1Þ
j with

high probability for every SP j with Ĝj ¼ 1 (the set of SPs

from which the victims are taken) to guarantee that BP-

ITRM iteratively reduces the impact of malicious raters

until it stops. tu
As we described in Section 2, iterations of BP-ITRM stop

when the Gj values converge for every SP j (i.e., do not
change anymore). The following lemma shows that BP-ITRM
converges to a unique solution given Condition 1 is satisfied.

Lemma 2. Given Condition 1 holds, Gj value of SP j converges
to a unique solution (Gj).

Proof. From Lemma 1, BP-ITRM iteratively reduces the error
in the reputation values of the SPs provided that
Condition 1 is satisfied. Further, given Condition 1 is
satisfied, the error in the reputation value of an arbitrary
SP j stops decreasing at the �th iteration when
G
ð�Þ
j ¼ G

ð�þ1Þ
j , where the value of � depends on the

fraction of malicious raters. Thus, given that BP-ITRM
satisfies Condition 1, the reputation value of every SP
converges to a unique value. tu

Although because of the Condition 1, the error in the
reputation values of the SPs decrease with successive
iterations, it is unclear what would be the eventual impact
of malicious raters. Hence, in the following, we derive the
probability P for �-optimality.

Lemma 3 (Condition 2). Suppose that the Condition 1 is met.
Let � be the iteration at which the algorithm has converged.
Then, BP-ITRM would be an �-optimal scheme with
probability P , where P is given in (9) as follows:

P ¼
Y
a2S

Pr

�
� � 1 �

� Y
j2UR\Na

�
2pcR

ð�þ1Þ
j þ 1�Rð�þ1Þ

j

� Y
j2UM\Na

�
1� R̂ð�þ1Þ

j

���
� Y

j2UR\Na

�
2pcR

ð�þ1Þ
j þ 1�Rð�þ1Þ

j

� Y
j2UM\Na

ð1� R̂ð�þ1Þ
j Þ

þ
Y

j2UR\Na

�
� 2pcR

ð�þ1Þ
j þ 1þRð�þ1Þ

j

�
Y

j2UM\Na

�
1þ R̂ð�þ1Þ

j

���
:

ð9Þ

Proof. Given Condition 1 is satisfied, Ga value of an arbitrary
SP a (with Ĝa ¼ 1) increases with iterations. Let BP-ITRM
converges at the �th iteration. Then, to have an �-optimal
scheme, Ga value calculated at the last iteration of
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2. The opposite must hold for any SP with Ĝa ¼ 0.



BP-ITRM (Gð�Þa ) should result in an error less than or equal
to � for every SP. That is, the following should hold for
every SP

1�Gð�Þa � �: ð10Þ

Further, if the scheme continues one more iteration
after convergence, it can be shown that

Gð�þ1Þ
a ¼ Gð�Þa : ð11Þ

Thus, combining (10) and (11) leads to (9). tu

We note that Conditions 1 and 2 in Lemmas 1 and 3 are to
give an insight about the performance of the algorithm prior
to the implementation. Hence, these conditions do not need
to be checked at each execution of BP-ITRM in the real-life
implementation of the algorithm.

Finally, the variation of the probability of BP-ITRM being
an �-optimal scheme over time is an important factor
affecting the performance of the scheme. We observed that
given BP-ITRM satisfies Condition 1 (that the error in the
reputation values of the SPs monotonically decreases with
iterations), the probability of BP-ITRM being an �-optimal
scheme increases with time. This criteria is given by the
following lemma:

Lemma 4. Let PTþ1 and PTþ2 be the probabilities that BP-ITRM

is �-optimal at the ðT þ 1Þth and ðT þ 2Þth time-slots,

respectively. Then, given Condition 1 holds at the
ðT þ 1Þth time-slot, we have PTþ2 > PTþ1.

Proof. Due to the fading factor, the contributions of the past
reliable ratings of the malicious raters to their Ri values
become less dominant with increasing time. LetRiðT Þ and
R̂iðT Þ be the trustworthiness of a reliable and malicious
rater at the T th time-slot, respectively. Then, given that
Condition 1 is satisfied at the ðT þ 1Þth time-slot, it can be
shown that RiðT þ 1Þ � RiðT Þ and R̂iðT þ 1Þ < R̂iðT Þ.
Thus, the probability that BP-ITRM satisfies Condition 1
increases at the ðT þ 2Þth time-slot. tu
In the following example, we illustrate the results of our

analytical evaluation. The parameters we used are
jUM j þ jURj ¼ 100, jSj ¼ 100, � ¼ 1, # ¼ 0:9, T ¼ 50, b ¼ 5
and pc ¼ 0:8. We note that there is no motive to select these

parameters. We evaluated BP-ITRM with different para-
meters and obtained similar results. BP-ITRM works
properly when the error in the reputation values of the SPs
decreases monotonically with iterations until convergence.
In other words, Condition 1 (in Lemma 1) is a fundamental
requirement. In Fig. 5, we illustrated the probability of BP-
ITRM to satisfy Condition 1 versus fraction of malicious
raters. We observed that BP-ITRM satisfies Condition 1 with a
high probability for up to 30 percent malicious raters.
Further, we observed a threshold phenomenon. That is, the
probability of BP-ITRM to satisfy Condition 1 suddenly drops
after exceeding a particular fraction of malicious raters.
Next, in Fig. 6, we illustrated the probability of BP-ITRM
being an �-optimal scheme versus fraction of malicious
raters for three different � values. Again, we observed a
threshold phenomenon. As the fraction of adversary exceeds
a certain value, the probability of BP-ITRM being an
�-optimal scheme drops sharply. Moreover, Fig. 7 illustrates
the average � values (�av) for which BP-ITRM is an �-optimal
scheme with high probability for different fractions of
malicious raters. We observed that BP-ITRM provides
significantly small error values for up to 30 percent
malicious raters. We note that these analytical results are
also consistent with our simulation results that are illu-
strated in the next section.
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Fig. 7. The average � values for which BP-ITRM is an �-optimal scheme

with high probability versus fraction of malicious raters.

Fig. 6. Probability that BP-ITRM is an �-optimal scheme versus fraction
of malicious raters for different � values.

Fig. 5. Probability of BP-ITRM to satisfy Condition 1 versus fraction of
malicious raters.



3.3 Simulations

We evaluated the performance of BP-ITRM in the presence
of bad mouthing, ballot stuffing, and combinations of bad
mouthing and ballot stuffing. Here, we provide an evalua-
tion of the bad-mouthing attack only, as similar results hold
for ballot stuffing and combinations of bad mouthing and
ballot stuffing. We compared the performance of BP-ITRM
with three well known and commonly used reputation
management schemes: 1) The Averaging Scheme, 2) Bayesian
Approach, and 3) Cluster Filtering. The Averaging Scheme is
widely used as in eBay or Amazon. The Bayesian Approach
[27], [33] updates Gj using a Beta distribution. We
implemented the Buchegger’s Bayesian approach in [27]
for the comparison with the deviation threshold d ¼ 0:5 and
trustworthiness threshold t ¼ 0:753 (for details refer to [27]).
It is worth noting that since we present evaluate BP-ITRM
in a centralized setting, Buchegger’s work in [27] and
Whitby’s work in [33] can be considered as similar. In [27],
if a rater’s rating deviates beyond the deviation threshold d
from the calculated reputation value, its trustworthiness
value is modified accordingly. Further, if a rater’s trust-
worthiness exceeds a definite threshold t, it is detected as
malicious. Similarly, in [33], instead of using the deviation
threshold, the authors check if the calculated reputation
value for the SP falls between a definite interval for each
rater’s rating distribution. As we will discuss later, both [27]
and [33] have the same problem against colluding malicious
raters. Cluster Filtering [29], [34], on the other hand,
performs a dissimilarity test among the raters and then
updates Gj using only the reliable raters. Finally, we
compared BP-ITRM with our previous work on iterative
trust and reputation management [8] (referred to as ITRM)
to show the benefit of using belief propagation.

We assumed that d is a random variable with Yule-Simon
distribution (with � ¼ 1 throughout the simulations) as
discussed in Section 3.2. Further, the fading parameter is set
as # ¼ 0:94 and number of ratings, per time-slot, by a
malicious rater as b ¼ 5. Let Ĝj be the actual value of the
global reputation of SP j. Then, we obtained the performance
of BP-ITRM, for each time-slot, as the mean absolute error
(MAE) jGj � Ĝjj, averaged over all the SPs that are under
attack.

We assumed that the malicious raters collude and attack
the SPs who have the highest reputation values (assuming
that the attackers knows the reputation values) and
received the lowest number of ratings from the reliable
raters (assuming that the attackers have this information).
We note that this assumption may not hold in practice since
the actual values of the global reputations and number of
ratings received by each SP may not be available to
malicious raters. However, we assumed that this informa-
tion is available to the malicious raters to consider the worst
case scenario. Further, the malicious raters collude and
attack the same set � of SPs in each time-slot (which
represents the strongest attack by the malicious raters). We
further assumed that there are jUj ¼ 100 rater peers and
jSj ¼ 100 SPs. Moreover, a total of T ¼ 50 time-slots had
passed since the lunch of the system, and reliable reports

generated during those time-slots were distributed among
the SPs uniformly. We note that we start our observations at
time slot 1 after the initialization period.

Initially, we assumed that a fraction of the existing raters

change behavior and become malicious after the start of the

system (at time-slot one). The rating values are either 0 or 1.

Using all their edges, the malicious raters collude and

attack the SPs who have the highest reputation values and

received the lowest number of ratings from the reliable

raters, by rating them as rm ¼ 0. We note that this attack

scenario also represents the RepTrap attack in [42] which is

shown to be a strong attack. Since the ratings of the

nonmalicious raters deviate from the actual reputation

values via Bernoulli distribution, our attack scenario

becomes even more severe than the RepTrap [42]. Further,

we assumed that the rating rh (provided by the nonmali-

cious raters) is a random variable with Bernoulli distribu-

tion, where Prðrh ¼ ĜjÞ ¼ 0:8 and Prðrh 6¼ ĜjÞ ¼ 0:2. First,

we evaluated the MAE performance of BP-ITRM for

different fractions of malicious raters (W ¼ jUM j
jUM jþjURj ), at

different time-slots (measured since the attack is applied) in

Fig. 8.5 We observed that the proposed BP-ITRM provides

significantly low errors for up to W ¼ 30% malicious raters.

Moreover, MAE at the first time slot is consistent with our

analytical evaluation which was illustrated in Fig. 7. Next,

we observed the change in the average trustworthiness

(Ri values) of malicious raters with time. Figure 9 illustrates

the drop in the trustworthiness of the malicious raters with

time. We conclude that the Ri values of the malicious raters

decrease over time, and hence, the impact of their malicious

ratings is totally neutralized over time. We further observed

the average number of required iterations of BP-ITRM at

each time-slot in Fig. 10. We conclude that the average

number of iterations for BP-ITRM decreases with time and

decreasing fraction of malicious raters. Finally, we com-

pared the MAE performance of BP-ITRM with the other

schemes. Figure 11 illustrates the comparison of BP-ITRM

with the other schemes for bad mouthing when the fraction
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Fig. 8. MAE performance of BP-ITRM versus time when W of the
existing raters become malicious in RepTrap [42].

3. We note that these are the same parameters used in the original paper
[27].

4. We note that for the Averaging Scheme, Bayesian Approach, and
Cluster Filtering we used the same fading mechanism as BP-ITRM
(discussed in Section 2) and set the fading parameter as # ¼ 0:9.

5. The plots in Figs. 8, 9, 10, 11, 12, and 13 are shown from the time-slot
the adversary introduced its attack.



of malicious raters (W ) is 30 percent. It is clear that BP-

ITRM outperforms all the other techniques significantly.
Next, we simulated the same attack scenario when

ratings are integers from the set f1; . . . ; 5g instead of binary
values. We assumed that the rating rh is a random variable
with folded normal distribution (mean Ĝj and variance 0.5),
however, it takes only discrete values from 1 to 5. Malicious
raters choose SPs from � and rate them as rm ¼ 4. The
malicious raters do not deviate very much from the actual
Ĝj ¼ 5 values to remain undercover (while still attacking)
as many time-slots as possible. We also tried higher
deviations from the Ĝj value and observed that the
malicious raters were easily detected by BP-ITRM. Figure 12
illustrates that BP-ITRM provides significantly low MAE for
up to W ¼ 40% malicious raters. We then compared the
MAE performance of BP-ITRM with the other schemes in
Fig. 13 and observed that BP-ITRM outperforms all the
other techniques significantly.

In most trust and reputation management systems, the
adversary causes the most serious damage by introducing
newcomer raters to the system. Since it is not possible for
the system to know the trustworthiness of the newcomer
raters, the adversary may introduce newcomer raters to the
systems and attack the SPs using those raters. To study the

effect of newcomer malicious raters to the reputation
management scheme, we introduced 100 more raters as
newcomers. Hence, we had jUM j þ jURj ¼ 200 raters and
jSj ¼ 100 SPs in total. We assumed that the rating values are
either 0 or 1, rh is a random variable with Bernoulli
distribution as before, and malicious raters choose SPs from
� and rate them as rm ¼ 0 (this particular attack scenario
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Fig. 10. The average number of iterations versus time for BP-ITRM

when W of the existing raters become malicious in RepTrap [42].

Fig. 11. MAE performance of various schemes when 30 percent of the

existing raters become malicious in RepTrap [42].

Fig. 12. MAE performance of BP-ITRM versus time when W of the
existing raters become malicious and rating values are integers from
f1; . . . ; 5g in RepTrap [42].

Fig. 13. MAE performance of various schemes when 30 percent of the
existing raters become malicious and rating values are from f1; . . . ; 5g in
RepTrap [42].

Fig. 9. Change in average trustworthiness of malicious raters versus
time for BP-ITRM when W of the existing raters become malicious in
RepTrap [42].



does not represent the RepTrap attack). We compared the
MAE performance of BP-ITRM with the other schemes for
this scenario in Fig. 14.6

From these simulation results, we conclude that BP-
ITRM significantly outperforms the Averaging Scheme,
Bayesian Approach, and Cluster Filtering in the presence of
attackers. We identify that the Bayesian Approach performs
the worst against the RepTrap attack and colluding attacks
from malicious raters. Indeed, both [27] and [33] have the
same shortcoming against colluding malicious raters. Both
[27] and [33] first calculate the reputation value of a
particular SP, and then based on the calculated value, they
adjust each rater’s trustworthiness value. On the other
hand, when the malicious raters collude (as in our attack
scenario), it is likely that the majority of the ratings to the
victim SPs will be from malicious raters. In this scenario, the
Bayesian approach not only fails to filter the malicious
ratings but it also punishes the reliable raters which rates
the victim SPs. We also identify that ITRM (i.e., our
algebraic iterative scheme) is the closest in accuracy to BP-
ITRM. This emphasizes the robustness of using iterative
message passing algorithms for reputation management.

3.4 Computational Complexity

In this section, we provide some discussion on the
computational complexity. It can be argued that the
computational complexity of BP-ITRM is quadratic with
the number of raters (or SPs) due to the use of the
probability-domain message passing algorithm. This is
because of multiplications of probabilities in (7) and (4).
However, this quadratic computational complexity can be
further reduced by using similar techniques developed for
message passing decoding of LDPC codes (using belief
propagation) for lower complexity. We used a log-domain
algorithm in our implementation, which is often used for
LDPC codes [43] to reduce the complexity. Specifically,
assuming jUj ¼ u raters and jSj ¼ s SPs in the system, we
obtained the computational complexity of BP-ITRM as
maxðO

�
cu
�
;O
�
cs
�
Þ in the number of multiplications, where

c is a small constant number representing the average
number of ratings (reports) per rater. On the other hand,
Cluster Filtering suffers quadratic complexity versus the
number of raters (or SPs).

4 CONCLUSION

In this paper, we introduced the Belief Propagation-based
Iterative Trust and Reputation Management Scheme (BP-
ITRM). Our work is an iterative probabilistic algorithm
motivated by the prior success of message passing techniques
and belief propagation algorithms on decoding of turbo
codes and low-density parity-check codes. BP-ITRM relies on
a graph-based representation of an appropriately chosen
factor graph for reputation systems. In this representation,
service providers and raters are arranged as two sets of
variable and factor nodes that are connected via some edges.
The reputation values of SPs are computed by message
passing between nodes in the graph until the convergence.
The proposed BP-ITRM is a robust mechanism to evaluate the
quality of the service of the SPs from the ratings received from
the recipients of the service (raters). Moreover, it effectively
evaluates the trustworthiness of the raters. We studied
BP-ITRM by a detailed analysis and showed the robustness
using computer simulations. We proved that BP-ITRM
iteratively reduces the error in the reputation values of SPs
due to the malicious raters with a high probability. Further,
we observed that this probability demonstrates a threshold
property. That is, exceeding a particular fraction of malicious
raters reduces the probability sharply. We also compared BP-
ITRM with some well-known reputation management
schemes and showed the superiority of our scheme both in
terms of robustness and efficiency.
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[31] J.M. Pujol, R. Sangüesa, and J. Delgado, “Extracting Reputation in
Multi Agent Systems by Means of Social Network Topology,”
Proc. First Int’l Joint Conf. Autonomous Agents and Multiagent
Systems (AAMAS ’02), pp. 467-474, 2002.

[32] P. Yolum and P. Singh, “Self-Organizing Referral Networks: A
Process View of Trust and Authority,” First Int’l Workshop Eng.
Self-Organising Applications (ESOA ’03), July 2003.

[33] A. Whitby, A. Josang, and J. Indulska, “Filtering Out Unfair
Ratings in Bayesian Reputation Systems,” Proc. Seventh Int’l
Workshop Trust in Agent Societies (AAMAS ’04), 2004.

[34] P. Macnaughton-Smith, W.T. Williams, M.B. Dale, and L.G.
Mockett, “Dissimilarity Analysis: A New Technique of Hierarch-
ical Sub-Division,” Nature, vol. 202, pp. 1034-1035, 1964.

[35] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, “Using
Collaborative Filtering to Weave an Information Tapestry,” Comm.
ACM, vol. 35, pp. 61-70, Dec. 1992.

[36] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An Open Architecture for Collaborative Filtering of
Netnews,” Proc. ACM Conf. Computer Supported Cooperative Work
(CSCW ’94), pp. 175-186, 1994.

[37] J. Herlocker, J.A. Konstan, and J. Riedl, “An Empirical Analysis of
Design Choices in Neighborhood-Based Collaborative Filtering
Algorithms,” Information Retrieval, vol. 5, no. 4, pp. 287-310, 2002.

[38] B.M. Sarwar, G. Karypis, J.A. Konstan, and J.T. Riedl, “Applica-
tion of Dimensionality Reduction in Recommender System—A
Case Study,” Proc. ACM WebKDD Web Mining ECommerce Work-
shop, 2000.

[39] G. Shafer, A Mathematical Theory of Evidence. Princeton Univ. Press,
1976.

[40] G. Shafer, “The Dempster-Shafer Theory,” Encyclopedia of Artificial
Intelligence, 1992.

[41] F. Slanina and Y.C. Zhang, “Referee Networks and Their Spectral
Properties,” Acta Physica Polonica B, vol. 36, p. 2797, Sep. 2005.

[42] Y. Yang, Q. Feng, Y.L. Sun, and Y. Dai, “RepTrap: a Novel Attack
on Feedback-Based Reputation Systems,” Proc. Fourth Int’l Conf.
Security and Privacy in Comm. Networks (Secure Comm ’08), pp. 1-11,
2008.

[43] J. Chen, A. Dholakia, E. Eleflhetiou, M. Fossotier, and X.-Y. Hu,
“Near Optimum Reduced-Complexity Decoding Algonhm for
LDPC Codes,” Proc. IEEE Int’l Symp. Information Theory, July 2002.

Erman Ayday received the BS degree in
electrical and electronics engineering from the
Middle East Technical University, Ankara,
Turkey, in 2005. He received the MS and
PhD degrees from the School of Electrical and
Computer Engineering (ECE), Georgia Institute
of Technology, Atlanta, Georgia, in 2007 and
2011, respectively. His current research inter-
ests include wireless network security, game
theory for wireless networks, trust and reputa-

tion management, and recommender systems. He is the recipient of
2010 Outstanding Research Award from the Center of Signal and
Image Processing (CSIP) at Georgia Tech and 2011 ECE Graduate
Research Assistant (GRA) Excellence Award from Georgia Tech. He
is a student member of the IEEE.

Faramarz Fekri received the PhD degree from
the Georgia Institute of Technology in 2000.
Since 2000, he has been with the faculty of the
School of Electrical and Computer Engineering
at the Georgia Institute of Technology where he
currently holds a full professor position. He
serves on the editorial board of the IEEE
Transactions on Communications, and on the
Technical Program Committees of several IEEE
conferences. His current research interests

include the area of communications and signal processing, in particular
coding and information theory, information processing for wireless and
sensor networks, and communication security. He received the US
National Science Foundation CAREER Award (2001), and Southern
Center for Electrical Engineering Education (SCEEE) Research Initiation
Award (2003), Outstanding Young faculty Award of the School of ECE
(2006). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

386 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012


