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Abstract—In this paper, for the first time, we introduce a
Belief Propagation (BP)-based distributed trust and reputation
management algorithm. The proposed algorithm can be utilized
in many distributed systems from Peer-to-peer (P2P) networks
to social and mesh networks. In this work, we focus on P2P
networks and explore the application of BP-based trust and
reputation management in a decentralized environment in the
presence of malicious peers. In a typical P2P trust and reputation
management system, after each transaction, the client peer (who
receives a service) provides its rating about the quality of the
service provided by the server peer for that transaction. In such a
system, we view the problem of trust and reputation management
as to compute two sets of variables: 1. the reputation parameters of
peers based on their quality of service, and 2. the trustworthiness
parameters of peers based on the ratings they provide after each
transaction. We distinguish between these two parameters as a
peer might provide high quality service as a server while providing
malicious ratings as a client. The proposed scheme, referred
to as BP-P2P, relies on the BP algorithm in an appropriately
chosen factor graph representation of the P2P network. The
reputation and trustworthiness parameters are computed by a BP-
based distributed message passing algorithm between the peers
on the factor graph. We provide a detailed evaluation of BP-
P2P via analysis and computer simulations. We show that BP-
P2P is very robust in computing trustworthiness values and
filtering out malicious ratings. Specifically, we prove that BP-P2P
iteratively reduces the error in the reputation values of peers
due to the malicious ratings with a high probability. Further,
comparison of BP-P2P with some well-known and commonly
used P2P reputation management techniques (e.g., EigenTrust and
Bayesian Framework) indicates the superiority of the proposed
scheme in terms of robustness against malicious behavior. We
also show that the computational complexity of BP-P2P grows
only linearly with the number of peers and the communication
overhead of BP-P2P is lower than the well-known EigenTrust
algorithm.

I. INTRODUCTION

Peer-to-peer (P2P) networks [1] are commonly defined as
distributed architectures in which the workload is partitioned
between the peers and each peer is equally privileged. As
opposed to traditional client-server networking (in which cer-
tain peers are responsible for providing resources while other
peers only consume), every peer plays the role of both a client
and a server in the P2P networks [2]. In other words, each
peer provides access to its resources (e.g., processing power,
storage) as a server without the need for a central authority.
P2P networks have especially became popular as distributed
file sharing systems in which peers exchange files between each
other (such as Gnutella or Napster).

Due to their size and the distributed architecture, P2P systems
are highly vulnerable to attacks by the malicious peers. The
most common attack to P2P systems is in the form of inject-
ing inauthentic files (or introducing viruses) to the network.
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Malicious behavior in P2P networks is mainly confronted by
utilizing trust and reputation management systems in which
peers (as clients) get to rate the peers (acting as servers)
based on the quality of the transactions. A trust and reputation
management mechanism is a promising method to protect
the client peer by forming some foresight about the server
peers before using their resources. Using a distributed trust
and reputation management mechanism, reputation values of
the servers and the trustworthiness values of the clients (on
their ratings) can be computed by the peers without needing a
central authority. As a result of this, malicious behavior can
be detected and honest behavior can be encouraged in the
network. However, this rating mechanism puts the server peers
in a vulnerable position as the malicious peers may undermine
(or boost) the reputation values of certain peers by providing
incorrect ratings. Hence, building a resilient trust and reputation
management system that is robust against malicious activities
becomes a challenging issue. Despite recent advances in trust
and reputation management in P2P networks, there is yet a
need to develop reliable, scalable and dependable schemes that
would also be resilient to various ways a distributed trust and
reputation system can be attacked.

In this paper we introduce the first application of the Belief
Propagation (BP), an iterative probabilistic algorithm, in the de-
sign and evaluation of distributed trust and reputation manage-
ment systems. Belief Propagation [3], [4] is a message passing
algorithm for performing inference on graphical models. It is a
method for computing marginal distributions of the unobserved
nodes conditioned on the observed ones. BP has demonstrated
empirical success in numerous applications including decoding
of LDPC codes [5], recommender and reputation systems [6]–
[8] and ad-hoc networks [9]. In our previous work, we devel-
oped the general theory of BP-based reputation management
algorithms for centralized environments [10]. However, in a
distributed infrastructure, trust and reputation management is
more complicated than in the centralized solutions. Hence,
using the basic theory in our previous work [10], in this paper,
we focus on P2P networks and explore the application of
BP-based trust and reputation management in a decentralized
environment in the presence of malicious peers. We note
that the proposed algorithm can also be utilized in various
distributed systems such as mesh and social networks. In mesh
networks, the proposed algorithm can be used to evaluate the
types and behaviors of the nodes, while in social networks, it
can be used to evaluate the behaviors and trustworthiness values
of the peers.

We introduce the “Belief Propagation-Based Trust and Repu-
tation Management for P2P Networks” (hereafter referred to as
BP-P2P). Our objective is to compute both the reputation values
of the peers as servers and their trustworthiness values as clients
(based on the ratings they provide for the servers). We view this
problem as an inference problem which involves computing



the marginal probability distributions of the reputation values
from the global joint probability distribution function of many
variables. This problem, however, cannot be solved directly
in a large-scale system, because the number of terms grow
exponentially with the number of peers in the network. The
key role of the BP algorithm is that we can use it to compute
those marginal distributions in the complexity that grows only
linearly with the number of peers. BP-P2P describes the P2P
network on a factor graph; allowing the peers to compute the
reputation and trustworthiness values by distributed message
passing between each other. The main contributions of our work
are summarized in the following.

1) We introduce the first application of the Belief Propa-
gation (BP) algorithm in the design and evaluation of
distributed trust and reputation management systems for
P2P networks. We introduce a graph-based mechanism
which relies on a factor graph to compute the reputation
of each peer (as a server) and its trustworthiness value (as
a client) by a BP-based iterative and distributed message
passing algorithm.

2) The proposed distributed algorithm enables the peers to
compute the reputation values (of other peers) with a
small error in the presence of attackers. Further, it also
allows the peers to obtain the trustworthiness values (of
other peers) by analyzing the ratings provided, which
enables them detect and filter out malicious ratings ef-
fectively.

3) The computational complexity of BP-P2P is at most
linear in the number of peers in the network, making
it very attractive for large-scale systems. Further, its
communication overhead is lower than the well-known
EigenTrust algorithm which is particularly designed for
P2P networks.

4) The proposed BP-P2P outperforms the existing and com-
monly used P2P reputation management techniques such
as the EigenTrust algorithm [11] and the Bayesian Ap-
proach [12] (which is also proposed as the reputation
management system of the well-known CONFIDANT
protocol [13]) in the presence of attackers.

The rest of this paper is organized as follows. In the rest of
this section, we summarize the related work. In Section II, we
describe the proposed BP-P2P in detail. Next, in Section III,
we analyze BP-P2P using a mathematical model for the peers.
Further, we evaluate BP-P2P via computer simulations and
compare BP-P2P with the existing and commonly used P2P
reputation management schemes. Finally, in Section IV, we
conclude the paper.

A. Related Work and Their Shortcomings

Trust and reputation management systems for P2P networks
and online systems received a lot of attention [11], [12], [14]–
[21]. In [14] and [15], authors provide a good survey of the
work on the use of trust and reputation management systems
for P2P networks. Most proposed P2P trust and reputation
management mechanisms utilize the idea that a peer can
monitor others and obtain direct observations [16] or a peer
can enquire about the reputation value of another peer (and
hence, obtain indirect observations) before using the service
provided by that peer [17], [18]. EigenTrust [11] is one of
the most popular reputation management algorithms for P2P
networks. However, the EigenTrust algorithm is constrained
by the fact that trustworthiness of a peer (on its feedback) is
equivalent to its reputation value. However, trusting a peer’s
feedback and trusting a peer’s service quality are two different
concepts. As we will discuss in Section III-A, a malicious peer,
by providing incorrect or malicious ratings, may attack the

reputation management system while providing a high quality
service. In other words, a node may have high reputation but
low trustworthiness value. Thus, equating the two will affect
the performance of the reputation management. Further, the
EigenTrust algorithm relies on the presence of pre-trusted peers
in the network which is either impractical or limiting in most
networks. Most importantly, the EigenTrust algorithm computes
the global reputation values by a simple iterative weighted av-
eraging mechanism which is vulnerable to collaborative attacks
from the malicious peers. Use of the Bayesian Framework
is also proposed in [13]. In the Bayesian Framework, each
reputation value is computed independent of the other nodes’
reputation values. However, the ratings provided by the nodes
induce a probability distribution on the reputation values.
These distributions are correlated because they are induced
by the overlapping set of nodes. Therefore, ignoring these
dependencies could affect the performance dramatically. The
strength of BP-P2P stems from the fact that it captures this
correlation in analyzing the ratings and computing the trust
and reputation values. Different from the existing schemes, BP-
P2P algorithm is a graph based iterative algorithm motivated
by the previous success on message passing techniques and
BP algorithms on various applications such as inference and
decoding error correcting codes.

II. BELIEF PROPAGATION-BASED TRUST AND REPUTATION

MANAGEMENT FOR P2P NETWORKS

We assume two different sets in the system: i) the set of
servers, S and ii) the set of clients, U. We further assume
that every peer in the network plays the role of both a client
and a server. In other words, each peer provides access to its
resources (e.g., provides files) as a server. On the other hand,
each peer also uses the resources of other servers as a client.
Therefore, sets S and U are not disjoint and each peer i is
represented both in set S (as a server) and in set U (as a client).
Transactions occur between the servers and clients, and clients
provide feedbacks in the form of ratings about servers after each
transaction (based on the service quality of the transaction).
First, for the simplicity and clarity of the presentation, we will
describe the fundamental scheme assuming that each peer com-
putes its own reputation value (as a server) and trustworthiness
value (as a client) via distributed message passing and report
these values to other peers when they are queried. However,
this fundamental scheme is not completely secure as malicious
peers may report incorrect values for their own reputation and
trustworthiness values upon an inquiry. Then, in Section II-A,
we will describe how we make this scheme completely secure
by allowing different groups of peers (referred as the score
managers) to compute the reputation and trustworthiness values
of individual peers.

Let Gj be the reputation value of server j (j ∈ S) and Tij be
the rating that client i (i ∈ U) reports about server j (j ∈ S),
whenever a transaction is completed between the two peers.
Moreover, let Ri denote the trustworthiness of the peer i (i ∈
U) as a client. In other words, Ri represents the amount of
confidence on the correctness of any rating provided by client
i. We assume there are u clients and s servers in the system
(i.e., |U| = u and |S| = s)1. Let G = {Gj : j ∈ S} and
R = {Ri : i ∈ U} be the collection of variables representing
the reputations of the servers and the trustworthiness values
of the clients, respectively. Further, let T be the s× u server-
client matrix that stores the rating values (Tij), and Ti be the
set of ratings provided by client i. We consider slotted time

1Since each peer is both a server and a client, u = s in a typical P2P
network.



throughout this discussion. At each time-slot (or epoch), BP-
P2P algorithm is executed using the input parameters T and the
present R to obtain the reputation parameters and the updated
trustworthiness values at each peer. We note that each peer
has only a part of the input parameters based on its previous
transactions. More specifically, we assume that every peer i
knows the ratings it previously provided as a client (i.e., Ti) and
the set of servers for whom it provided these ratings. Moreover,
every peer i knows the ratings it previously received from other
peers as a server and the set of clients who provided these
ratings (similar to [11]). After BP-P2P completes its iterations,
each peer computes its new reputation value as a server as well
as its updated trustworthiness value as a client. For simplicity
of presentation, we assume that the rating values are from the
set Υ = {0, 1}. The extension in which rating values can take
any real number can be developed similarly.

The reputation management problem can be viewed as
finding the marginal probability distributions of each variable
in G, given the observed data (i.e., evidence). There are s
marginal probability functions, p(Gj |T,R), each of which is
associated with a variable Gj ; the reputation value of server j.
We formulate the problem by considering the global function
p(G|T,R), which is the joint probability distribution function
of the variables in G given the rating matrix and the trust-
worthiness values of the clients. Then, clearly, each marginal
probability function p(Gj |T,R) may be obtained as follows:

p(Gj |T,R) =
∑

G\{Gj}

p(G|T,R), (1)

where G\{Gj} implies all variables in G except Gj .
Unfortunately, the number of terms in (1) grows exponen-

tially with the number of variables, making the computation in-
feasible for large-scale systems. Further, (1) can only be solved
in a centralized environment in which all the evidence T and R

is available at a central unit. On the other hand, P2P networks
are typically distributed environments, and hence, solving (1)
at each peer is not feasible in such networks in which each
peer has only a part of the evidence. Thus, we propose to
factorize (1) to local functions fi using a factor graph and
utilize the Belief Propagation (BP) algorithm to calculate the
marginal probability distributions in linear complexity and in
a distributed environment. A factor graph is a bipartite graph
containing two sets of nodes (corresponding to variables and
factors) and edges incident between two sets. Following [4],
we form a factor graph by setting a variable node for each
variable Gj , a factor node for each function fi, and an edge
connecting variable node j to the factor node i if and only
if Gj is an argument of fi. We note that computing marginal
probability functions is exact when the factor graph has no
cycles. However, the BP algorithm still gives good approximate
results for the factor graphs with cycles.

k
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Fig. 1: Setup of the scheme.

First, we arrange the
collection of the clients
and the servers together
with their associated re-
lations (i.e., the ratings)
as a factor graph, as
in Fig. 1. In this rep-
resentation, each client
corresponds to a factor
node shown as a square
and each server is repre-
sented by a variable node shown as a hexagon in the graph.
Each rating is represented by an edge from the factor node to
the variable node. Hence, if a client i (i ∈ U) has a rating
about server j (j ∈ S), we place an edge with value Tij from

the factor node i to the variable node representing server j. We
note that if any new rating arrives from client i about server
j, the Tij value is updated by averaging the new rating and
the old value of the edge multiplied with the fading factor
γij(t) = ϑt−tij (where ϑ and tij are the fading parameter and
the time when the last transaction between client i and server
j occurred, respectively).

Next, we suppose that the global function p(G|T,R) factors
into products of several local functions, each having a subset
of variables from G as arguments as follows2:

p(G|T,R) =
1

Z

∏

i∈U

fi(Gi,Ti, Ri), (2)

where Z is the normalization constant and Gi is a subset of
G. Hence, in the graph representation of Fig. 1, each factor
node is associated with a local function and each local function
fi represents the probability distributions of its arguments
given the trustworthiness value and the existing ratings of the
associated client.

We now introduce the messages between the factor and the
variable nodes (i.e., between the servers and the clients) to
compute the marginal distributions at each server using BP.
To that end, we describe the message exchange between peer k
(as a client) and peer a (as a server) in Fig. 1. We represent the
set of neighbors of the variable node (server) a and the factor
node (client) k as N

s

a
and N

c

k
, respectively (neighbors of a

server are the set of clients who rated the server while neighbors
of a client are the servers whom it rated). Superscripts in the
representation of the neighbors denote whether the neighbors
of a peer are determined considering the peer as a client (c) or
as a server (s). We note that neighbors of a peer as a server
(or variable node) do not need to be the same as its neighbors
as a client (or factor note). We further let Ξ = N

s
a\{k} and

∆ = N
c

k
\{a}. Factor and variable nodes in Fig. 1 iteratively

exchange probabilistic messages following the BP algorithm,
updating the degree of beliefs on the reputation values of the
servers as well as the trustworthiness values of the clients at
each step, until the iterations stop. Let G(ν) = {G

(ν)
j : j ∈ S}

be the collection of variables representing the values of the
variable nodes at the iteration ν of the algorithm. We denote the
messages from the variable nodes to the factor nodes and from
the factor nodes to the variable nodes as µ and λ, respectively.

The message µ
(ν)
a→k(G

(ν)
a ) denotes the probability of G

(ν)
a = ℓ,

ℓ ∈ {0, 1}, at the νth iteration. On the other hand, λ
(ν)
k→a(G

(ν)
a )

denotes the probability that G
(ν)
a = ℓ, for ℓ ∈ {0, 1}, at the νth

iteration given Tka and Rk.
The message from the factor node k to the variable node a

at the νth iteration is formed using the principles of the BP as

λ
(ν)
k→a(G

(ν)
a ) =

∑

G
(ν)
k

\{G
(ν)
a }

fk(G
(ν)
k ,Tk, R

(ν−1)
k )

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

x ),

(3)
where Gk is the set of variable nodes which are the arguments of
the local function fk at the factor node k. This message transfer

is illustrated in Fig. 2. Further, R
(ν−1)
k (the trustworthiness of

client k calculated at the end of (ν − 1)th iteration) is a value
between zero and one and can be calculated as follows:

R
(ν−1)
k = 1−

1

|Nc

k
|

∑

i∈Nc
k

∑

x∈{0,1}

|Tki − x|µ
(ν−1)
i→k (x). (4)

The above equation can be interpreted as one minus the average
inconsistency of client k calculated by using the messages it

2It is shown that such a factorization eventually gives the marginal probability
distributions via the BP algorithm [4].



received from all its neighbors. The above computation must
be performed for every neighbors of each factor nodes. This
finishes the first half of the νth iteration.

During the second half, the variable nodes (servers) generate
their messages (µ) and send to their neighbors. Variable node

a forms µ
(ν)
a→k(G

(ν)
a ) by multiplying all information it receives

from its neighbors excluding the factor node k, as shown in
Fig. 3. Hence, the message from variable node a to the factor
node k at the νth iteration is given by

µ
(ν)
a→k(G

(ν)
a ) =

1
∑

h∈{0,1}

∏

i∈Ξ

λ
(ν)
i→a(h)

×
∏

i∈Ξ

λ
(ν)
i→a(G

(ν)
a ). (5)

This computation is repeated for every neighbors of each
variable node. The algorithm proceeds to the next iteration in
the same way as the νth iteration. It is worth noting that since
each peer is both a server and a client, at the first half of the
iteration, each peer generates messages as a client and in the
second half of the iteration, each peer generates messages as
a server. Further, each peer waits for all the messages from its
neighbors before it creates its new message either as a client or
as a server. We note that the iterative algorithm starts its first

iteration by computing λ
(1)
k→a(G

(1)
a ) in (3). However, instead

of calculating in (4), the trustworthiness value Rk from the
previous execution of BP-P2P is used as initial values in (3).

BP-P2P stops after Ψ iterations (which is a pre-defined
number and its selection will be discussed in Section III-C).
At the end of each iteration, the reputations are calculated

at each server. To calculate the reputation value G
(ν)
a , each

server computes µ
(ν)
a (G

(ν)
a ) using (5) but replacing Ξ with

N
s

a
, and then sets G

(ν)
a =

∑1
i=0 iµ

(ν)
a (i). Thus, after the

last iteration (i.e., Ψth iteration), each server peer obtains
its updated reputation value and each client peer obtains its
updated trustworthiness value.

A. Secure BP-P2P

As we discussed before, the fundamental scheme described
in Section II is not completely secure since each peer computes
and reports (upon an inquiry) its own reputation and trust-
worthiness values. However, it is clear that a malicious peer
would report its own reputation and trustworthiness values to
other peers incorrectly. Therefore, we propose to use a group
of randomly selected peers (referred as the score managers) to
do the message exchange, and hence, compute the reputation
and trustworthiness values on behalf of each peer as in [11]. It
is important to note that the score managers are not trustworthy
peers and they can also be malicious as will be discussed
later. Similar to [11], to assign score managers, we use a
Distributed Hash Table (DHT) [22]. DHTs use a hash function
to deterministically map the unique ID of each peer into the
points in a logical coordinate space. At any time, the coordinate
space is partitioned among the peers in the P2P network such
that every peer covers a region in the coordinate space. Hence,
score manager(s) of an arbitrary peer i is determined by hashing
the unique ID of peer i into a point in the coordinate space
and the peer which currently covers this point as part of its
DHT region is appointed as the score manager of peer i3. Thus,
any peer can easily determine the score manager(s) of peer i
from its unique ID. We assume that the DHT can cope with
the dynamics of the network (e.g., score managers leaving the
system) as in [11]. Since it is not the main contribution of this
paper, we do not give further detail about the selection of the

3If peer i has more than one score managers, the unique ID of peer i can
be concatenated with an integer before hashing.

score managers. As we mentioned before, our main contribution
is the computation of trust and reputation values at the score
managers via the BP-based algorithm. Next, we show how we
modify our fundamental scheme such that it can be executed
by score managers.

Using the DHT, each peer k is assigned with ξ score

managers from the set Hk = {H1
k , H

2
k , . . . , H

ξ
k}. We assume

that each score manager of peer k knows: i) neighbors of peer
k as a server (i.e., N

s

k
), and hence, the score managers of

these neighbors, ii) neighbors of peer k as a client (i.e., Nc

k
),

and hence, the score managers of these neighbors, iii) ratings
previously provided by peer k as a client (i.e., Tk), iv) ratings
previously received by peer k as a server, and v) trustworthiness
value of peer k as a client computed at the previous execution
of the algorithm. The score managers in Hk generate the
BP messages on behalf of peer k both as a server (variable
node) and as a client (factor node). Further, they compute the
reputation value (as a server) and the trustworthiness value (as
a client) of peer k based on the messages they receive from the
score managers of peer k’s neighbors.

We note that since each peer in the network plays the role of
both a client and a server; each score manager also has the same
property. Therefore, at the first half of an iteration, each score
manager generates messages as a client (factor node) and in the
second half of the iteration, the same score manager generates
messages as a server (variable node) on behalf of the peer it is
responsible for. From now on, for the clarity of presentation,
we refer to a score manager as a “client score manager” when it
generates messages as a client, and as a “server score manager”
when it generates messages as a server. Thus, different from
the fundamental scheme described in Section II, BP messages
are now exchanged between the client score managers and the
server score managers. Due to this change, the factor graph in
Fig. 1 is also modified based on the score managers of the peers.
As an example, we illustrate the change in the connectivity of
client k in Fig. 4 assuming ξ = 3. As illustrated in the figure,
instead of connecting client k to the servers it rated (a, b and c),
we connect the score managers of peer k to the score managers
of peers a, b and c in the factor graph.

Messages are exchanged between the score managers of the
peers following the principles of the BP algorithm (as described
in Section II) and the algorithm stops after Ψ iterations (selec-
tion of Ψ will be discussed in Section III-C). We note that
every score manager waits to receive all messages from its
neighbors before it generates its new message. Further, score
managers keep track of the iteration numbers to both remain
loosely synchronized between each other and realize when to
stop the algorithm. When a client i wants to use the service of
a server j, it queries the reputation value Gj from the score
managers of the peer j. Similarly, the trustworthiness value of a
peer (as a client) can also be queried from its score managers.
Once the client i receives all the computed Gj values from
ξ different score managers in Hj , it computes the mean of
the received reputation values to determine the final reputation
value of server j.

There is one obvious drawback of using score managers for
BP-P2P algorithm. When a malicious peer becomes the score
manager of a reliable or malicious peer, it may create and send
bogus messages to its neighbors. Therefore, malicious messages
may propagate in the BP algorithm affecting the efficiency
of the algorithm. We describe the attack strategies of such
malicious score managers in Section III-A. Further, we evaluate
BP-P2P under this attack both analytically and via simulations
in Sections III-B and III-C, respectively.
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B. Efficient BP-P2P

In this section, we provide some discussion on the compu-
tational complexity and communication overhead of BP-P2P.

1) Computational Complexity: One can show that the com-
putational complexity of BP-P2P as max(O

(

ξc
)

,O
(

ξv
)

) per
peer in the number of multiplications, where c and v are small
numbers representing the average number of ratings generated
by a client and the average number of ratings received by a
server. Therefore, the computational complexity of BP-P2P is
at most linear in the number of peers in the network, making
it very attractive for large-scale systems.

2) Communication Overhead: In the fundamental scheme
described in Section II, each client (and each server) sends dif-
ferent messages to each of its neighbors at each iteration. This
introduces extra communication overhead to the scheme when
multiple score managers are present for each peer. Therefore, in
the following, we modify the messages in (3) and (5) between
the peers (between the score managers of the peers in the secure
version described in Section II-A) to reduce the communication
overhead due to multiple score managers for each peer.

Before discussing these modifications in the messages be-
tween the score managers, we first approximate and simplify
the message in (3) by assuming that the arguments of a local
function at a factor node are independent from each other
(to reduce the computational complexity at the client peers).

Using this assumption, it can be shown that λ
(ν)
k→a(G

(ν)
a ) ∝

p(G
(ν)
a |Tka, R

(ν−1)
k ), where

p(G(ν)
a |Tka, R

(ν−1)
k ) =

[

(R
(ν−1)
k +

1−R
(ν−1)
k

2
)Tka +

1−R
(ν−1)
k

2
(1 − Tka)

]

G(ν)
a +

[1−R
(ν−1)
k

2
Tka + (R

(ν−1)
k +

1−R
(ν−1)
k

2
)(1− Tka)

]

(1−G(ν)
a ).

(6)

This resembles the belief/pleusability concept of the Dempster-

Shafer Theory [23], [24]. Given Tka = 1, R
(ν−1)
k can be

viewed as the belief of the client k that G
(ν)
a is one (at the

νth iteration). In other words, in the eyes of client k, G
(ν)
a

is equal to one with probability R
(ν−1)
k . Thus, (1 − R

(ν−1)
k )

corresponds to the uncertainty in the belief of client k. In order

to remove this uncertainty and express p(G
(ν)
a |Tka, R

(ν−1)
k ) as

the probabilities that G
(ν)
a is zero and one, we distribute the

uncertainty uniformly between two outcomes (one and zero).

Hence, in the eyes of the client k, G
(ν)
a is equal to one with

probability (R
(ν−1)
k +(1−R

(ν−1)
k )/2), and zero with probability

((1 − R
(ν−1)
k )/2). We note that a similar statement holds for

the case when Tka = 0. It is worth noting that, as opposed
to the Dempster-Shafer Theory, we do not combine the beliefs
of the clients. Instead, we consider the belief of each client

individually and calculate probabilities that G
(ν)
a being one and

zero in the eyes of each client as in (6).

We now describe how we modify the BP messages in (6)
and (5) to reduce the communication overhead caused by
multiple score managers per each peer. Let Hk be the set
of score managers of peer k (in the secure version described
in Section II-A). In principal, at each iteration, we let each
score manager Hi

k in Hk broadcast a single message to all
of its neighbors instead of sending different messages to each
of its neighbors. Then, each neighbor of the score manager
Hi

k computes the actual BP message in (6) or (5) using the
broadcasted message (from Hi

k) and the information it already
possesses. In the following, we discuss the details of this.

Let HNc

k
denote the set of score managers of neighbors of

client k. Instead of computing (6) for all its neighbors sepa-
rately, each client score manager in Hk (in the secure version)
only computes and broadcasts the updated trustworthiness value
of the client k to its neighbors in HNc

k
instead of sending

different messages to each of its neighbors. Since the score
managers in HNc

k
know the rating value given by client k to

the servers they are responsible for, each score manager in HNc

k

computes the actual message itself. For example, since the score
managers of server a know Tka, they compute the message in

(6) by only using the broadcasted R
(ν−1)
k value.

Similarly, all messages from a server score manager (Hj
a) to

its neighbors (in HNs
a
) may be communicated simultaneously

via a single broadcast step to decrease the communication
overhead. The message from Hj

a to one of its neighbors i in
HNs

a
is formed by multiplying all the messages received at Hj

a

excluding the one received from the score manager i (similar
to (5)). Thus, Hj

a can simply broadcast the multiplication of all
received messages to its neighbors, and allow i (and all other
neighbors) to deduce the actual message from this broadcast.
Therefore, at each iteration, a server score manager broadcasts
a single message instead of sending different messages to each
of its neighbors.



We note that we used these modified message formats
for the evaluation of BP-P2P (in Section III). Let Ψ be the
total number of iterations required for a single execution of
the algorithm and ξ be the number of score managers for
each peer. Then, each score manager sends (on the average)
2ξΨ messages during the execution of the BP-P2P algorithm
(Ψ ≤ 10 as will be discussed in Section III-C). On the
other hand, in EigenTrust [11] each score manager sends
(on the average) max(O

(

2ξΨc
)

,O
(

2ξΨv
)

) messages during
the algorithm, where c and v represent the average number
of ratings generated by a client and the average number of
ratings received by a server. Further, Ψ is reported to be (on
the average) 10 for EigenTrust [11]. Therefore, we conclude
that the proposed BP-based algorithm does not introduce a
significant communication overhead to the network.

III. SECURITY EVALUATION

In order to facilitate future references, frequently used nota-
tions are listed in Table I.

S The set of peers acting as servers
UM The set of malicious clients
UR The set of non-malicious clients
Hi The set of score managers of peer i

rm Rating given by a malicious client

d
Total number of newly generated ratings, per time-slot,
per a non-malicious client

b
Total number of newly generated ratings, per time-slot,
per a malicious client

TABLE I: Notations and definitions.

A. Threat Model

We mainly focus on the malicious behaviors of the clients
and score managers and explore their impact on the proposed
trust and reputation management algorithm.

1) Malicious Clients: There are two major attacks that are
common for any trust and reputation management mechanisms:
i) Bad-mouthing, in which malicious clients attack the servers
with the highest reputation by giving low ratings in order to
undermine them, and ii) Ballot-stuffing, in which malicious
clients try to increase the reputation values of servers with low
reputations. Further, there are opportunities for the malicious
score managers to attack specifically to the BP algorithm by
creating incorrect BP messages. In the following, we describe
how we modeled the adversary considering the aforementioned
threats to evaluate BP-P2P in the most adverse environment.

We assumed that the malicious clients initiate bad-
mouthing4. Further, all the malicious clients collude and attack
the same subset Γ of servers in each time-slot (which represents
the strongest attack), by rating those servers as rm = 0
(assuming the rating values are either 0 or 1). In other words,
we denote by Γ the set of size b in which every victim server
has one edge from each of the malicious clients (in the factor
graph in Fig. 1). The subset Γ is chosen to include those servers
who have the highest reputation values but received the lowest
number of ratings from the non-malicious clients (assuming that
the attackers have this information5). We note that this attack
scenario also represents the RepTrap attack in [25] which is
shown to be a strong attack. To the advantage of malicious
peers, we assumed that a total of T time-slots had passed
since the initialization of the network and a fraction of the
existing peers change behavior and become malicious after
T time-slots. In other words, malicious clients behaved like
non-malicious clients and increased their trustworthiness values

4Even though we use the bad-mouthing attack, similar counterpart results
hold for ballot-stuffing and combinations of bad-mouthing and ballot-stuffing.

5Although it may appear unrealistic for some applications, availability of
such information for the malicious clients would imply the worst case scenario.

before mounting their attacks at the (T + 1)th time-slot. We
will evaluate the performance for the time-slot (T + 1).

2) Malicious Score Managers: As we discussed in Sec-
tion II-A score managers of an arbitrary peer i generate the
BP messages on behalf of the peer i (both as server and as
a client). Therefore, malicious score managers of a peer may
create and send incorrect messages to their neighbors. By doing
so, malicious score managers specifically attack the accuracy
of the BP algorithm. When a malicious peer j is the score
manager of a peer i (i.e., j ∈ Hi) it creates bogus BP messages
depending on the type of peer i as below:

• If i is a non-malicious peer:

– When j creates a message as a server score manager
on behalf of peer i, it reports an incorrect value for the

probability of G
(ν)
i = ℓ (ℓ ∈ {0, 1}) at every iteration

ν (e.g., if normally G
(ν)
i = 1 with high probability,

j creates a message reporting that G
(ν)
i = 0 with a

probability of 1 − ̺, where ̺ is a positive number
close to zero).

– When j creates a message as a client score manager
on behalf of peer i, it reports a low trustworthiness
value for peer i as a client (e.g., j reports the

trustworthiness value of peer i as R
(ν)
i = σ at every

iteration ν, where σ is a positive number close to
zero).

• If i is a malicious peer:

– When j creates a message as a server score manager
on behalf of peer i, it reports a high value for the

probability of G
(ν)
i = 1 at every iteration ν to favor its

ally (e.g., j creates a message reporting that G
(ν)
i = 1

with a probability of 1 − ̺, where ̺ is a positive
number close to zero).

– When j creates a message as a client score manager
on behalf of peer i, it reports a high trustworthiness
value for the malicious peer i as a client (e.g., j

reports the trustworthiness value of peer i as R
(ν)
i =

1−σ at every iteration ν, where σ is a positive number
close to zero).

We note that since the score managers of the peers are assigned
via a DHT, we assume that malicious score managers do not
collaborate. We considered the above threat models for both
our analytical evaluation and simulations.

B. Analytical Evaluation

We adopted the following models for various peers in-
volved in the P2P trust and reputation management system.
We acknowledge that although the models are not inclusive
of every scenario, they are good illustrations to present our
results. We assumed that the service quality of each server
remains unchanged during our evaluation. Moreover, the rating
values are either 0 or 1 where 1 represents a good service
quality (e.g., providing authentic files). Ratings generated by
the non-malicious clients are distributed uniformly among the
servers (i.e., their ratings/edges in the graph representation are
distributed uniformly among the servers). We wish to evaluate
the performance for the time-slot (T + 1) at which malicious
peers change behavior and initiate their attacks as discussed in
Section III-A.

The performance of a reputation management mechanism is
determined by its accuracy of estimating the reputation values
of the servers. Therefore, we evaluate BP-P2P in terms of the
Mean Absolute Error (MAE) (|Gj − Ĝj |) computed at each

non-malicious score manager of every server j, where Ĝj is



the actual value of the reputation of server j. We require two
conditions to be satisfied: 1) the scheme should iteratively
reduce the impact of malicious peers and decrease the error
in the reputation values of the servers (computed at the non-
malicious score managers) until the iterations stop, and 2) the
error on the Gj value of each server j (computed at the non-
malicious score managers) should be less than or equal to ǫ
(where ǫ should be a small value) after the last iteration (i.e.,
Ψth iteration). In the following, we obtained the conditions
and probabilities to arrive at such a scheme. We note that
although the discussions of the analysis are based on RepTrap
attack via bad-mouthing (as described in Section III-A), the
system designed using these criteria will be robust against
ballot-stuffing and combinations of bad-mouthing and ballot-
stuffing as well.

The bad-mouthing attack is aimed to reduce the reputation
values of the victim servers. Hence, Ga value of a victim server
a (computed at the non-malicious score managers in set Ha)
should be a non-decreasing function of iterations. This leads to
the below lemma.

Lemma 1: The error in the reputation values of the servers
decreases with each successive iterations (until the iterations

stop) if G
(2)
a > G

(1)
a is satisfied with high probability at the

non-malicious score managers of peer a (Ha ∩ UR) for every

server a (a ∈ S) with Ĝa = 16.

Proof: Let G
(ω)
a and G

(ω+1)
a be the reputation value of

an arbitrary server a with Ĝa = 1 calculated at the (ω)th and
(ω + 1)th iterations at the non-malicious score managers of
peer a (Ha ∩ UR), respectively. Further, let HR

Ns
a

denote the

set of score managers of non-malicious neighbors of server a
(i.e., Ns

a
∩ UR) and HM

Ns
a

denote the set of score managers of

malicious neighbors of server a (i.e., Ns

a ∩ UM ). G
(ω+1)
a >

G
(ω)
a if the following is satisfied at the (ω + 1)th iteration.

∏

j∈HR
Ns

a

∩UR

R
(w+1)
j + 1

1−R
(w+1)
j

∏

j∈HM
Ns

a

∩UR

1− R̂
(w+1)
j

1 + R̂
(w+1)
j

>

∏

j∈HR
Ns

a

∩UR

R
(w)
j + 1

1−R
(w)
j

∏

j∈HM
Ns

a

∩UR

1− R̂
(w)
j

1 + R̂
(w)
j

, (7)

where R
(w)
j and R̂

(w)
j are the trustworthiness values of a

reliable and malicious client calculated at a non-malicious score
manager (as in (4)) at the wth iteration, respectively.

Given G
(ω)
a > G

(ω−1)
a holds at the ωth iteration, we would

get R̂
(w)
j > R̂

(w+1)
j for j ∈ HM

Ns
a

∩UR and R
(w+1)
j ≥ R

(w)
j for

j ∈ HR
Ns

a

∩UR. Thus, (7) would hold for the (w+1)th iteration.

On the other hand, if G
(ω)
a < G

(ω−1)
a , we get R̂

(w)
j < R̂

(w+1)
j

for j ∈ HM
Ns

a

∩ UR and R
(w+1)
j < R

(w)
j for j ∈ HR

Ns
a

∩ UR.

Hence, (7) is not satisfied at the (w+1)th iteration. Therefore,

if G
(ω)
a > G

(ω−1)
a holds for some iteration ω at the peers

in Ha ∩ UR, then the BP-P2P algorithm reduces the error on
the reputation value (Ga) until the iterations stop, and hence,

it is sufficient to satisfy G
(2)
a > G

(1)
a with high probability

at the non-malicious score managers of every server a with

Ĝa = 1 (the set of servers from which the victims are taken)
to guarantee that BP-P2P iteratively reduces the impact of
malicious clients at the non-malicious score managers until the
iterations stop.

6The opposite must hold for any server with Ĝa = 0.

Although because of the Lemma 1, the error in the reputation
values of the servers decrease with successive iterations, it is
unclear what would be the eventual impact of the malicious
peers. Once the condition in Lemma 1 is met and assuming Ψ
be the total number of iterations required for a single execution
of the BP-P2P algorithm, the probability (P ) that BP-P2P
provides an MAE that is less than ǫ for each server at every
non-malicious score managers can be obtained as in (8). In

(8), R
(Ψ+1)
j and R̂

(Ψ+1)
j are the trustworthiness values of a

reliable and malicious client calculated at a non-malicious score
manager, respectively. Further, R̃

(Ψ+1)
j is the trustworthiness

value of a malicious client calculated at a malicious score
manager.

In the following example, we illustrate the results of our
analytical evaluation. The parameters we used are |UM | +
|UR| = 100, |S| = 100, ϑ = 0.9, T = 20, b = 10, ̺ = σ = 0.1,
ξ = 3, and Ψ = 10 (selection of Ψ will be discussed in
Section III-C). Further, we assumed that d is a random variable
with Yule-Simon distribution, which resembles the power-law
distribution used in modeling P2P and online systems [26],
with the probability mass function fd(d; ρ) = ρB(d, ρ+ 1)
(with ρ = 1), where B is the Beta function. Finally, we
assumed the threat model described in Section III-A. We note
that we also evaluated BP-P2P with different parameters and
obtained similar results. In Fig. 5, we illustrated the probability
of BP-P2P providing a MAE that is less than ǫ (at each non-
malicious score manager) versus fraction of malicious peers
for two different ǫ values. We observed that for an acceptable
value of ǫ (ǫ = 0.1), BP-P2P satisfies MAE < ǫ with high
probability for up to 30% malicious peers. Moreover, Fig. 6
illustrates the average MAE values provided by BP-P2P (at
each non-malicious score manager) with high probability for
different fractions of malicious peers. We observed that BP-
P2P provides significantly small error values for up to 30%
malicious peers. We note that these analytical results are also
consistent with our simulation results that are illustrated in the
next section.

C. Simulations

We evaluated the performance of BP-P2P via computer
simulations (via MATLAB) and compared BP-P2P with the
Bayesian reputation management framework in [12] (which
is also proposed as the reputation management system of the
well-known CONFIDANT protocol [13]) and the EigenTrust
algorithm [11] in a distributed P2P network environment.

We assumed that d is a random variable with Yule-Simon
distribution (with ρ = 1) as discussed in Section III-B. We set
T = 20, b = 10, ρ = 1, |U| = 100, |S| = 100, ̺ = σ = 0.1,
ξ = 3, and the fading parameter as ϑ = 0.97. Further, we
assumed that rating values are from the set Υ = {0, 1}. Finally,
we assumed the threat model described in Section III-A in
which there are both malicious clients and malicious score
managers. Let Ĝj be the actual reputation value of server j.
We obtained the performance of BP-P2P, at each time-slot, as

the Mean Absolute Error (MAE) |Gj − Ĝj |, averaged over the
reputation values of all victim servers (i.e., the servers that are
under attack) computed at their non-malicious score managers.
For the Bayesian framework [12], we used the parameters
from the original work [12] (deviation threshold d = 0.5
and trustworthiness threshold t = 0.75). Further, in favor of
the Bayesian framework, we assumed that each peer have
access to the server-client matrix T. Therefore, we observed
the reputation values computed at all non-malicious peers and

7We note that for the EigenTrust and the Bayesian framework we used the
same fading mechanism as BP-P2P and set the fading parameter as ϑ = 0.9.
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(8)
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Fig. 6: The average MAE versus fraction of malicious peers.

we averaged the MAE over the reputation values of the victim
servers. For the EigenTrust, we implemented the distributed
algorithm described in [11] (with ξ = 3 score managers for
each peer as in BP-P2P) and observed the reputation values
computed at the non-malicious score managers as we did for
BP-P2P. We note that we did not assume the existence of the
pre-trusted peers for any schemes.

First, we determined the total number of iterations (Ψ)
required for the BP-P2P algorithm. Thus, in Fig. 78, we
observed the average number of required iterations for BP-
P2P to converge at each peer (i.e., computed reputation values
stop changing) for different fractions of malicious peers (W =

|UM |
|UM |+|UR| ), at different time-slots (measured since the attack

is applied). We conclude that the average number of iterations
for convergence is always less than 10 and it decreases with
time and decreasing fraction of malicious peers. Thus, we used
Ψ = 10 for the remaining of this section. Then, we evaluated
the MAE performance of BP-P2P for different fractions of
malicious peers (W ), at different time-slots in Fig. 8. We
observed that BP-P2P provides significantly low errors for up
to about W = 25% malicious peers. Next, we observed the
change in the average trustworthiness (Ri values) of malicious
clients computed at the non-malicious score managers. Figure 9
illustrates the drop in the trustworthiness of the malicious
clients with time. We conclude that the Ri values of the
malicious clients (computed at non-malicious score managers)
decrease over time, and hence, the impact of their malicious
ratings is neutralized over time. Finally, we compared the MAE
performance of BP-P2P with the Bayesian Framework and the
EigenTrust algorithm. Figure 10 illustrates the comparison of
BP-P2P with these schemes for different fractions of malicious
peers at the first time-slot the attack is applied. It is clear that
BP-P2P outperforms the Bayesian Framework and EigenTrust
significantly. We note that at later time-slots, BP-P2P still keeps
its superiority over the other schemes. From this comparison,
we conclude that in EigenTrust, even the non-malicious score
managers compute the reputation values with a large MAE
in the presence of the attackers. Further, when the malicious
nodes collaboratively attack, Bayesian Framework results in

8The plots in Figs. 7, 8 and 9 are shown from the time-slot the adversary
introduced its attack.

a high MAE in the reputation values of the servers. Finally,
we observed the impact of ξ (the number of score managers
for each peer) to the performance of BP-P2P under the same
attack scenario (in which there are both malicious clients
and malicious score managers as described in Section III-A).
In Fig. 11, we illustrated MAE performance of BP-P2P for
different values of ξ and for different fractions of malicious
peers at the first time-slot the attack is applied. As expected,
for small values of ξ (i.e., ξ = 1 and ξ = 2), BP-P2P provides
higher MAE values since the probability that all score managers
of a victim client being malicious increases with decreasing
values of ξ.

Next, we simulated the same attack scenario when ratings
are integers from the set Υ = {1, . . . , 5} instead of binary
values9. Malicious clients choose the victim servers from Γ
and rate them as rm = 4. The malicious clients do not
deviate very much from the actual Ĝj = 5 values to remain
undercover as many time-slots as possible. We also tried higher

deviations from the Ĝj value and observed that the malicious
clients were easily detected by BP-P2P. We compared the MAE
performance of BP-P2P with the other schemes at the first time-
slot the attack is applied in Fig. 12 and observed that BP-P2P
outperforms all the other techniques. We observed that BP-P2P
provides significantly low MAE for up to W = 25% malicious
clients. We further observed that the Bayesian Framework
performs better than EigenTrust for this scenario.

IV. CONCLUSION

In this paper, we introduced the first application of the
Belief Propagation algorithm in the design and evaluation
of distributed trust and reputation management systems for
P2P networks. We presented the general protocol for Be-
lief Propagation-Based Trust and Reputation Management for
P2P Networks (BP-P2P). BP-P2P is a graph-based system in
which the reputation and trustworthiness value of each peer
is computed by distributed message passing among the peers
in the graph. We studied BP-P2P in a detailed analysis and
computer simulations. We showed that proposed BP-P2P is a
robust mechanism to evaluate the reputation values of the peers

9For the attack against the BP algorithm, we assumed a similar scenario to
the binary case as discussed in Section III-A.
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Fig. 12: MAE performance of various
schemes when the rating values are from
Υ = {1, . . . , 5}.

from the received ratings. Moreover, it effectively evaluates
the trustworthiness of the peers (in the reliability of their
ratings). We also compared BP-P2P with some well-known P2P
reputation management schemes and showed the superiority
of the proposed scheme in terms of its robustness against
malicious behavior. Finally, we showed that the computational
complexity of the proposed scheme grows only linearly with
the number of peers in the network while its communication
overhead is lower that the well-known EigenTrust algorithm.
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