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Abstract—Delay Tolerant Networks (DTNs) have been identified
as one of the key areas in the field of wireless communications.
They are characterized by large end-to-end communication latency
and the lack of end-to-end path from a source to its destination.
These characteristics pose several challenges to the security of
DTNs. Especially, Byzantine attacks give serious damages to the
network in terms of latency and data availability. Using reputation-
based trust management systems is shown to be an effective way
to handle the adversarial behavior in Mobile Ad-Hoc Networks
(MANETs). However, because of the unique characteristics of
DTNs, the techniques to build a trust mechanism for MANETs do
not apply to DTNs. Our main objective in this paper is to develop
a robust trust mechanism and an efficient and low cost malicious
node detection technique for DTNs. Inspired by our recent results
on reputation management for online systems and e-commerce,
we developed an iterative malicious node detection mechanism for
DTNs which is far more effective than existing techniques. Our
results indicate the proposed scheme provides high data availability
and packet-delivery ratio with low latency in DTNs under adversary
attacks.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) are relatively new class of
networks [1], wherein sparseness and delay are particularly high.
In conventional Mobile Ad-hoc Networks (MANETs), the exis-
tence of end-to-end paths via contemporaneous links is assumed
in spite of node mobility. In contrast, DTNs are characterized
by intermittent contacts between nodes. In other words, DTNs’
links on an end-to-end path do not exist contemporaneously, and
hence, intermediate nodes may need to store, carry, and wait for
opportunities to transfer data packets towards their destinations.
Therefore, DTNs are characterized by large end-to-end latency,
opportunistic communication over intermittent links, error-prone
links, and (most importantly) the lack of end-to-end path from
a source to its destination. By the above discussion, it can be
argued that MANETs are a special class of DTNs.

As in MANETs, adversary may mount several threats against
DTNs to reduce the network performance. The most serious
attacks are due to the Byzantine (insider) adversary. A Byzantine
adversary (i.e., a physically captured and controlled legitimate
node) can do serious damage to the network in terms of
data availability, latency, and throughput. Optimal attacks for a
Byzantine node are to: 1. Drop (or modify) the legitimate packets
it receives from legitimate nodes, and 2. Inject its own packets
to use the network resources and deny the network operation.

In MANETs, reputation-based trust management systems are
shown to be an effective way to cope with adversary. Despite
all the progress for securing MANETs, achieving the same for
DTNs leads to additional challenges. The special constraints
posed by DTNs make existing security protocols impractical
in such networks. Common techniques to build reputation in
MANETs are based on the direct measurements of a suspicious

This material is based upon work supported partially by the Army Research
Office (ARO) under grant 49586CI.

node [2], acknowledgement (ACK) messages from the destina-
tion [3], and indirect measurements of the suspicious nodes [4].
However, these techniques are not applicable in DTNs due to
opportunistic communication during contact times, the lack of
feedback, and the lack of end-to-end paths.

Our main objective in this paper is to develop a security
mechanism for DTNs which enables us to detect misbehavior
due to Byzantine adversaries. To achieve this goal, we aim at
obtaining a reputation-based trust management system and an
iterative malicious node detection mechanism for DTNs. Our
work on global reputation systems stems from the prior success
in the use of iterative algorithms, such as message passing
techniques [5] in the decoding of Low-Density Parity-Check
(LDPC) codes in erasure channels. We believe that the significant
benefits offered by iterative algorithms can be tapped in to
benefit the field of global reputation systems. To achieve this, we
proposed the Iterative Trust and Reputation Mechanism (ITRM)
[6], and in this work, we explore its application on DTNs.
We develop a distributed malicious node detection mechanism
for DTNs using ITRM which enables every node to evaluate
other nodes based on their past behavior. We will show that the
resulting scheme effectively provides high data availability and
low latency in the presence of Byzantine attackers. We will also
show that the proposed iterative mechanism is far more effective
than the voting-based techniques in detecting Byzantine nodes.

The main contributions of our work are as follows.

1) We propose a novel iterative scheme for trust management
and malicious node detection.

2) The overall scheme provides high data availability with
low latency in the presence of Byzantine attackers.

3) The proposed algorithm computes the reputations of the
network nodes accurately in a short amount of time in the
presence of attackers without any central authority.

4) The proposed algorithm has a computational complexity
that is linear with the number of nodes in the network.
Hence, it is scalable and suitable for large scale imple-
mentations.

The rest of this paper is organized as follows. In the rest of this
section, we summarize the related work. In Section II, we briefly
describe ITRM. Then, in Section III, we present the application
of ITRM to DTNs and the proposed security mechanism in
detail. Moreover, we evaluate the proposed scheme via computer
simulations. Finally, in Section IV, we conclude the paper.

A. Related Work

Several works in the literature have focused on securing
DTNs. In [7], the challenges of providing secure communication
(i.e., confidentiality) in DTNs is discussed and the use of IBC
[8] is suggested. In [9], source authentication and anonymous
communication as well as message confidentiality are provided
using IBC. We note that the existing techniques to secure DTNs



are aimed to provide data confidentiality and authentication only.
On the other hand, our proposed scheme provides malicious node
detection and high data availability with low latency.

The most famous and primitive global reputation system is
the one that is used in eBay. Other well-known websites such as
Amazon, Epinions, and AllExperts use more advanced reputation
mechanisms than eBay. Their reputation mechanisms compute
the average (or weighted average) of the received ratings to
evaluate the global reputation of a product (or a peer) [10].
Hence, these schemes are vulnerable to collaborative attacks by
malicious peers. Use of the Bayesian Approach is also proposed
in [11]. Finally, [12] proposed to use the Cluster Filtering method
[13] for reputation. Different from the existing schemes, ITRM
algorithm [6] is a graph based iterative algorithm motivated by
the previous success on iterative message passing techniques.

II. ITERATIVE TRUST AND REPUTATION

MANAGEMENT MECHANISM (ITRM)

We initially describe ITRM [6] and its security evaluation
briefly. Then, we will utilize it for DTNs. As in every trust and
reputation management mechanism, we have two main goals:
1. Computing the service quality (reputation) of the peers who
provide a service (henceforth referred to as Service Providers or
SPs) by using the feedbacks from the peers who used the service
(referred to as the raters), and 2. Determining the trustworthiness
of the raters by analyzing their feedback about SPs. We assume
two different sets in the system: i) The set of SPs, and ii) The
set of service consumers. Transactions occur between SPs and
consumers, and consumers provide feedbacks in the form of
ratings about SPs after each transaction. We denote the global
reputation of the jth SP and the rating that the rater i reports
about the SP j as TRj and TRij , respectively. Moreover, we
let Ri denote the (rating) trustworthiness of the ith rater. We
consider the following major attacks that are common for any
trust and reputation management mechanisms: i) Bad-mouthing,
in which malicious raters collude and attack the SPs with the
highest reputation by giving low ratings in order to undermine
them, and ii) Ballot-stuffing, in which malicious raters collude
to increase the reputation values of peers with low reputations.

The first step of ITRM is to interpret the collection of the
raters and the SPs together with their associated relations as
a bipartite graph, as in Fig. 1(a). In this representation, each
rater corresponds to a check vertex in the graph, shown as a
square. Further, each SP is represented by a bit vertex shown as
a hexagon in the graph. Furthermore, each rating is represented
by a directed edge from the check-vertex to the bit-vertex.

In ITRM, prior to the start of the iterations, we compute the
initial value of each bit-vertex j based on the weighted average
of the edge values incident to it. Equivalently, we compute

TRj =

∑
i∈A Ri × TRij
∑

i∈A Ri

, (1)

where A is the set of check-vertices connected to the bit-vertex
j. It is interesting to note that the initial values resemble the
received information from the channel in the channel coding
problem. Then, the first iteration starts. We first compute the
average inconsistency factor Ci of each check-vertex i using
the values of the bit-vertices that it is connected to. That is,
we compute Ci = [1/|Υ|]

∑
j∈Υ

d(TRij , TRj) where Υ is the

set of bit vertices connected to the check-vertex i and d(·, ·)
is a distance metric used to measure the inconsistency. Then,
the check-vertex i with the highest inconsistency is selected
and placed in the blacklist if its inconsistency is greater than
or equal to a definite threshold τ . Once the check-vertex i is
blacklisted, we delete its ratings (TRij) for all the bit-vertices j it
is connected to. Then, we update the values of all the bit-vertices
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Fig. 1: Illustrative example of ITRM.

using (1). The iterative procedure proceeds to other rounds
exactly in the same way as the first round. We stop the iterations
when the inconsistencies of all check-vertices (excluding the
blacklisted ones) fall below τ and update the Ri values of the
raters based on a Beta distribution [14].

As an example, ITRM is illustrated in Fig. 1 for 7 raters, 3 SPs,
and τ = 0.7. It is assumed that the ratings are integers from 1
to 5 and the actual reputations, ˆTRj , are equal to 5. Further,
we use the L1 norm (absolute value) as the distance metric
to calculate the inconsistencies of the raters. For simplicity,
we assumed Ri’s to be equal for all raters. Furthermore, we
assumed that the raters 1, 2, 3, 4, and 5 are reliable, but 6 and
7 are malicious. The malicious raters are mounting the “bad-
mouthing” attack by rating the same set of SPs as one. Fig. 1(a)
shows the TRij values (illustrated by different line-styles) prior
to the execution of the algorithm. The TRj values and the
individual inconsistencies of the raters after each iteration are
also illustrated in Fig. 1(c). We note that the algorithm stops at
the third iteration when all the raters have inconsistencies less
than τ . Fig. 1(c) indicates how the iterative algorithm gives better
estimates of TRj’s compared to the weighted averaging method
(which corresponds to iteration zero). Fig. 1(b) illustrates the
graph after the final iteration and shows that the malicious raters
(6 and 7) are blacklisted and isolated. Moreover, rater 3, although
reliable, is also blacklisted at the third iteration. We note that this
situation is possible when a reliable but faulty rater’s ratings have
a large deviation from the other reliable raters.

A. Security Evaluation of ITRM

Here, we briefly discuss the security evaluation of ITRM [6].

We let T̂Rj be the actual reputation value of the jth SP. We
assumed that the ratings are integers from 1 to 5, rating given
by a reliable rater is a random variable with folded normal distri-

bution (mean ˆTRj and variance 0.5), and the number of newly
generated ratings, per time-slot, by a reliable rater is a random
variable with Yule-Simon distribution (with ρ = 1), which is
commonly used in modeling online systems. We further assumed
that the malicious raters initiate bad-mouthing. Moreover, they
collude and attack the same set Γ of SPs at each time-slot. Hence,
at each time-slot, the malicious raters choose the SPs from Γ
(whose actual reputation values, ˆTRj , are 5) and rate them as 4.
The malicious raters do not deviate very much from the actual
reputation values to remain undercover as many time-slots as
possible. We used the following parameters for the rest of this
section to illustrate our results: 200 raters, 100 SPs, |Γ| = 5 and
τ = 0.4 (the choice of τ is based on analytical results in [6]).
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Fig. 2: Probability that ITRM is a τ -
eliminate-optimal scheme versus fraction of
malicious raters for τ = 0.4.

A τ -eliminate-optimal
Scheme: We declare a
reputation scheme to be
τ -eliminate-optimal if
it can eliminate all the
malicious raters whose
inconsistency (measured
from the averaging
scheme) exceeds the
threshold τ . In Fig. 2, we
illustrated the probability
for ITRM to be a τ -
eliminate-optimal scheme
based on analytical
results. We designed the scheme to tolerate up to 30% malicious
raters (W = 0.3). As shown in Fig. 2, for W lower than 0.3,
the waiting time becomes shorter to have a τ -eliminate-optimal
scheme with a high probability.
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We further compared
the performance of ITRM
with three well-known
and commonly used
reputation management
schemes: 1) The
Averaging Scheme, 2)
Bayesian Approach, and
3) Cluster Filtering. We
obtained the performance
of ITRM, at each
time-slot, as the mean
absolute error (MAE)
|TRj − T̂Rj |, averaged
over all the SPs that are
under attack. Figure 3 illustrates the comparison of ITRM with
the other schemes for the bad-mouthing attack when the fraction
of malicious raters (W ) is 0.3. The lags in the plot of ITRM
correspond to waiting times to execute ITRM, computed based
on our analytical results presented in Fig. 2. On the other hand,
we executed the other three schemes starting from the first time-
slot, since we observed that their performances were better that
way. From these results, we concluded that ITRM significantly
outperforms the Averaging Scheme and the Bayesian Approach
in the presence of attacks. We identified that the reputation
management scheme with the closest performance to ITRM
is Cluster Filtering. However, the computational complexity
of Cluster Filtering is much higher than ITRM. We calculated
that Cluster Filtering introduces quadratic complexity while the
computational complexity of ITRM is linear with the number
of raters. As a result, ITRM is more scalable and suitable for
large scale systems.

III. TRUST MANAGEMENT AND ADVERSARY DETECTION IN

DTNS

A. Adversary Models and Security Threats

As discussed in Section I, we consider the challenging prob-
lem of countering Byzantine attacks. We note that the security
issues such as source authentication and data authentication have
been considered for disconnected networks in [7], [9]. Hence,
they are not explicitly considered in this paper.
Packet drop and packet injection attack: An insider adversary
drops legitimate packets it has received. This behavior of the
malicious nodes has a serious impact on the data availability and
the total latency of the network. Moreover, a malicious node may
also generate its own flow to deliver to another (malicious) node
via the legitimate nodes. As a result, bogus flows compete with
legitimate traffic for the scarce network resources.

Bad-mouthing (ballot-stuffing) on the trust management: As
it will be discussed, a legitimate node needs feedbacks from
a subset of nodes to determine its trust on a specific node.
When a malicious node is an element of this subset, it gives
incorrect feedback to undermine the trust management system.
Bad-mouthing and ballot-stuffing attacks attempt to reduce the
trust on a victim node and boost the trust value of a malicious
ally, respectively.
Random attack on trust management: A Byzantine node may
adjust its packet drop rate (on the scale of zero-to-one) to stay
under cover making it harder to detect.
Collaborative bad-mouthing (ballot-stuffing) on the detection
scheme: As it will be discussed, every legitimate node, in order
to detect the nature of every network node, creates its own trust
entries in a table (referred to as the node’s rating-table) for
a subset of network nodes for which the node has collected
sufficient feedbacks. Further, each node also collects rating-
tables from other nodes. When the Byzantine nodes pass their
tables to a legitimate node, they may collaboratively victimize
the legitimate nodes (i.e., bad-mouthing) or help their malicious
allies (i.e., ballot-stuffing) in their rating-table entries. This
effectively reduces the detection performance of the system.

B. Network/Communication Model

Mobility model: We use a contact-based mobility model for
our study [15], where the contact time between two nodes is
modeled as a random variable with exponential distribution.
Packet format: We require that each packet contains its two hop
history in its header. That is, when node B receives a packet from
node A, it learns from which node A received that packet. This
is useful for the feedback mechanism as discussed later.
Routing and packet exchange protocol: We assume that
messages at the source are packetized. Further, the source
never transmits multiple copies of the same packet. We assume
only single-copy routing since reliable single-copy routing with
packetization is achieved by encoding the data packets using
rateless codes [16] at the source node. The use of rateless coding
improves reliability and latency in DTNs even when there is no
adversary. Furthermore, exchange of packets between two nodes
follows a back-pressure policy. To illustrate this, assume node
A and B have x and y packets belonging to the same flow f ,
respectively (where x > y). Then, if the contact duration permits,
node A transfers (x−y)/2 packets to node B belonging to flow
f . The nodes in contact pursue this policy for all different flows
they have in their buffer. As a result of the mobility model, each
node has the same probability to meet with the destination of
a specific flow. Hence, by using the back-pressure policy we
equally share the resources (e.g., contact time) among the flows.

The packet exchange protocol also enforces fairness among
multiple nodes that forwarded the same flow to a node. To
clarify, let us assume that node A needs to transfer some packets
belonging to flow f to node B based on the back-pressure policy.
In this situation, node A must fairly select the packets based on
their previous hops (which is available via the packet format).
That is, each packet that is received from a different node has
the same probability to be selected for transfer. This mechanism
is useful for the feedback mechanism as discussed later.

C. Iterative Detection for DTNs

In this section, we will describe how ITRM is adapted in
DTNs as an iterative malicious node detection mechanism in
which every node is able to decide on the faithfulness of all
the nodes in the network. We will pick an arbitrary node in the
network and present the algorithm from its point of view. We
denote this node as a judge for clarification of our presentation.
Further, the counterpart to the quality of a SP in the discussion of



ITRM is the reliability of the node in DTN in faithfully following
the network (routing) protocols to deliver the packets.

Since direct monitoring is not an option in DTNs (as explained
in Section I), a judge node creates its own rating about another
network node by collecting indirect measurements (feedbacks)
and aggregating them. Each judge node has a table (referred
to as a Rating Table) whose entries (which are obtained using
the feedback mechanism described in Section III-D) are used
for storing the ratings of the network nodes. In DTNs, due to
intermittent contacts, a judge node has to wait for a very long
time to issue its own ratings for all the nodes in the network.
However, it is desirable for a judge node to have a fresh estimate
of the reputations of all the nodes in the network in a timely
manner, mitigating the effects of malicious nodes immediately.
To achieve this, we propose an iterative detection mechanism
which operates by using the rating tables formed by other nodes
(acting as judges themselves). The rating table of a judge node
can be considered as a bipartite graph consisting one check-
vertex (the judge node) and some bit-vertices (i.e., a subset
of all the nodes in the network for which the judge node has
received sufficient number of feedbacks to form a rating with
high confidence). Besides, by collecting sufficient number of
rating tables from other nodes, a judge node can generate a
bipartite graph as in Section II; which includes all the network
nodes as bit-vertices. In other words, assuming N nodes in the
network, a judge node may create a bipartite graph with N bit-
vertices by collecting rating tables from k−1 nodes each with at
least s non-empty entries. Hence, the resulting graph would have
k check-vertices (the kth check vertex belongs the judge node).
The parameters s and k are to be determined for high probability
of detection while minimizing detection latency. Clearly, higher
s and k reduces the detection error but increases the delay. We
will discuss this issue via simulations in Section III-E. Hence,
when two nodes establish a contact, they exchange their rating
tables. Once a judge node collects sufficient number of tables
each with sufficient number of non-empty entries, it can then
proceed with the iterative algorithm to specify the reputation
values for all the nodes.

To adapt the ITRM scheme for DTNs, we will present ratings
(feedbacks) as “0” or “1”, which results in binary reputation val-
ues. In this special case, the iterative reputation scheme becomes
a detection scheme. That is, a node with a reputation value of
zero would be interpreted as a malicious node. Moreover, in this
work, we set all Ri values to one for simplicity.

D. Trust management scheme for DTNs

In the proposed scheme, the authentication mechanism for the
packets generated by a specific source is provided by a Bloom
filter [17] and ID-based signature (IBS) [8]. Whenever a source
node sends some packets belonging to the flow that is initiated by
itself, it creates a Bloom filter output from those packets, signs
it using IBS and sends it to its contacts. The Bloom filter output
provides an authentication mechanism for the packets generated
by a specific source. We note that whenever an intermediate node
forwards packets belonging to a specific flow to its contact, it
also forwards the signed Bloom filter output belonging to those
packets for packet level authentication at each intermediate node.
We do not give further details of the authentication mechanism
as source and data authentication for DTNs have been considered
before [7], [9] and they are out of the scope of this paper.

Our proposed feedback mechanism to determine the entries in
the rating table is based on a 3-hop loop. We will describe this
scheme by using a toy example between 3 nodes A, B, and C.
We denote the node that is evaluating as the judge (A), the node
that is being evaluated as the suspect (B), and the direct contact
of the suspect as the witness (C). The basic working principle
of the mechanism is that after the judge has a transaction (in the

form of passing packets) with a suspect, the judge waits to make
contacts and receive feedback about the suspect from every node
that has been in direct contact (witnesses) with the suspect.

A B

B C

C A

Packets from A’s buffer

Time Stamp signed by B

Receipts  to prove its deliveries

Contact History

Request feedback for B

Feedback for B

( t
0 
)

( t
1 
)

( t
2 
)

Fig. 4: Feedback mechanism between nodes
A (judge), B (suspect) and C (witness).

Let assume that node
A meets B, B meets C
and C meets A at times
t0, t1 and t2, respec-
tively, where t0 < t1 <
t2. Feedback mecha-
nism between nodes A,
B and C is illustrated
in Fig. 4. At time t0,
A and B execute mu-
tual packet exchange
as described in Sec-
tion III-B. When B and
C meet at t1, they first
exchange signed time-stamps. Hence, when C establishes a
contact with A, it can prove that it indeed met B. Then, B
sends the packets in its buffer executing the fairness protocol
as we discussed in Section III-B (the fairness is measured from
C’s point of view). Moreover, node B transfers the receipts it
received thus far to the witness C. Those receipts include the
proofs of B’s deliveries thus far and are signed by the nodes
to which the packets were delivered. We note that the receipts
expire in time and they are deleted from the buffers of the
witnesses. Hence, they are not accumulated in the buffers of
the nodes. At the end of the contact, node C also gives a signed
receipt to node B including the IDs of the packets it received
from B during the contact duration. Finally, when the judge A
and the witness C meet, they initially exchange their contact
histories. Hence, A learns that C has met B and requests the
feedback. The feedback consists of 3 parts: i) Those receipts
of B that are useful for A’s evaluation, ii) If node C received
node A’s packets from node B, it sends the hashes of those
packets to A for the latter’s evaluation (C finds out A’s packets
by examining the headers as explained in Section III-B), and iii)
C gives its own vote (in the form of positive evaluation as 1 or
negative evaluation as 0) about B. C’s vote depends on whether
B followed the packet delivery policy explained in Section III-B.

After getting the feedback, the judge makes its evaluation for
the suspect for this particular transaction. In other words, if A
believes that the suspect node B delivered its packets following
the protocol, it makes a “positive evaluation” as 1. Otherwise,
the evaluation will be “negative” as 0. Each judge node uses
the Beta distribution [14] to aggregate multiple evaluations it
has made about a suspect using the associated feedbacks. The
collection of multiple feedbacks generates the rating (verdict) of
a judge node for a suspect node. We note that the feedbacks from
the witnesses are not trustable. Because of the bad-mouthing and
random attacks (discussed in Section III-A), a judge node waits
for a definite number of feedbacks to give its verdict about a
suspect node with a high confidence. We will discuss this waiting
time, the number of required feedbacks, and their interplay for
different adversarial models in Section III-E.

In the high level description of ITRM, it was implicitly
assumed that the judge has a priori knowledge about the packet
drop rate of the Byzantine nodes. This is unrealistic as the
nodes may apply random attacks as in Section III-A. To remove
this assumption, we propose detection at different levels. We
observed that the sufficient number of feedbacks that is required
to give a verdict with high confidence depends on the packet
drop rate of the Byzantine nodes. In other words, a node with
a higher packet drop rate would require fewer feedbacks than
a node with a lower drop rate. Assume that we desire to
perform detection at level p1 = 0.8. This implies that after
applying ITRM, each judge node would identify and isolate all



the Byzantine nodes whose packet drop rates are p1 or higher.
Further, assume that the detection at level p1 requires at least

M̂1 feedbacks about a suspect node. The number of feedbacks
depends on the confidence we seek at the accuracy of a verdict
(before detection) and the level of confidence is determined by
the detection strategy. Clearly, the number of feedbacks also
depends on the detection level. The lower the detection level, the
higher is the number of required feedbacks to maintain the same
confidence on a verdict. Hence, every judge stores together with
its verdict the lowest level of detection at which the verdict can
be used. Obviously, an entry verdict with lower detection level
is also good for use in a high detection level, but the inverse is
not true. An entry is left empty if the judge does not have the
sufficient number of feedbacks to give any verdict even at the
highest detection level.

E. Security Evaluation

In this section, we illustrate our simulation results for the met-
rics of interest. We also show the performance of the proposed
scheme for malicious node detection, availability and packet
delivery ratio via simulations (conducted using MATLAB).
Confidence on a Verdict: We assumed the mobility model of
Section III-B with N nodes in the network. We studied the
effect of random attack on the required number of feedbacks
for a network with N = 100. We denote the percentage of the
Byzantine nodes in the network as W . Figure 5 illustrates the
variation of a (judge) node’s confidence C on its verdict for
a suspect versus different levels of detection p. This is given
for different number of feedbacks (M ) when W = 0.10. As
expected, a node has more confidence at higher detection levels
and for high M values.
Detection Performance: We illustrated the waiting time of a
judge node before executing ITRM and evaluated the effects of
collaborative attacks on the detection scheme for a network of
size N in which the inter-contact time between two particular
nodes is λi. We evaluated the performance of ITRM for different
(k, s) pairs (where k is the number of rating tables collected at
the judge node and s is the minimum number of non-empty
entries in each table). Moreover, we compared ITRM with the
well-known Voting Technique in which a judge node decides on
the type of a suspect based on the majority of the votes for that
node. It is worth noting that we did not compare ITRM with
other trust management schemes such as Weighted Average [4],
Bayesian Approach [11], or Similarity Testing [18] because of
the following reasons: 1. Since the judge node does not have
any previous knowledge about the witness nodes and it trusts
each witness node equally, weighted averaging is not applicable.
2. The purpose of the detection algorithm for the judge node
is to determine the types of the nodes for which there are not
sufficient feedbacks to have an entry in its own rating table.
In this case Bayesian Approach becomes exactly the same as
the Voting Technique (averaging the entries from the collected
tables by weighting them equally). 3. Using a similarity test at
the judge is vulnerable for DTNs because of the sparse rating
tables. A malicious node can easily acquire good credibility in
the eyes of a legitimate node by building its table so as to have
a few common entries with the legitimate node’s table.

We defined the success of a scheme as its capability of
detecting all malicious nodes in the network. In Figs. 6 and 7, we
illustrated the probability of success, S, of ITRM and the Voting
Technique for different (k, s) pairs, and showed the time needed
to obtain such a success probability. In our simulations, the size
of the network (N ) is 100, inter-contact time between two partic-
ular nodes (λi) is 1/500, and the contact duration of two nodes is
an exponentially distributed random variable with rate λc = 3.
Whenever two nodes establish a contact, a transaction occurs
between them in the form of packet exchange. Further, each

judge node starts generating its rating table and each malicious
node starts mounting its attack at time t = 0. We provided the
evaluation for the collaborative bad-mouthing on the detection
scheme only, as similar results hold for ballot-stuffing. In both
figures, time is measured starting from t = 0. We note that these
results also indicate the false positive (labeling a reliable node
as malicious) and false negative (labeling a malicious node as
reliable) probabilities of the proposed scheme as well. In other
words, false positive and false negative probabilities are high
when the probability of success (S) is low in Figs. 6 and 7.
These results provide a good insight for a judge node about the
instant it should apply ITRM. Based on our simulation results,
we conclude that ITRM provides higher success rate in shorter
time which is a very crucial issue in DTNs. We obtained these
results for the fraction of malicious nodes W is 0.10 and for a
detection level of p = 0.8. However, we note that the required
(k, s) pairs to obtain a high success probability do not change
with the detection level. It is worth noting that even though
the time required to get the high success probability increases
with increasing W , the performance gap between ITRM and the
Voting Technique remains similar for different values of W .

For the rest of this section, we will illustrate our simulation
results for different network parameters and show the perfor-
mance of the proposed scheme for data availability and packet
delivery ratio. We note that we did not compare the proposed
scheme with existing DTN security schemes such as [9] since
none of the existing schemes is aimed to provide data availability
and malicious node detection as we did in this work. In all
simulations, we assumed N = 100 nodes in the network, inter-
contact time between two particular nodes (λi) is 1/500, and
the contact duration of two nodes is an exponentially distributed
random variable with rate λc = 3. Moreover, the number of
packets delivered during one time unit of the contact is 100. We
assumed that a definite amount of time (2000 time-units) has
passed since the lunch of the system and during this initialization
period, nodes kept generating new messages and sending them
to their destinations following a Poisson distribution with rate
λm = 1/100. Further, during the initialization period, rating
tables were being created at the judge nodes and attackers were
mounting their attacks. Then, at time t = 0 (after the initializa-
tion period), we let the legitimate nodes start new flows to their
destinations (while the previous flows still exist). Therefore, at
time t = 0, we assumed each legitimate source node has 1000
information packets which are encoded via a rateless code for
transmission. Hence, the number of encoded packets required
by each destination to recover a message is roughly 1000 [16].
We evaluated the data availability and packet delivery ratio since
time t = 0. Thus, for all simulations, the plots are shown from
time t = 0. The percentage of the Byzantine nodes in the
network is denoted as W . We ran each simulation 100 times
to get an average. We note that there is no motive to select
these simulation parameters. We simulated the proposed scheme
with different simulation parameters (for different network and
mobility models) and obtained similar trends.

Availability and Packet Delivery Ratio: We defined the avail-
ability as the percentage of recovered messages (by their final
destinations) in the network at a given time. We note that there
is no other trust management scheme for disconnected networks
to compare our scheme with. Moreover, due to the reasons
described in Section I, we only compared the proposed scheme
with the defenseless scheme. In Figs. 8 and 9, we showed the
percentage of recovered messages versus time for the following
scenarios: i) There is no defense against the malicious nodes
and each malicious node has a packet drop rate of 1, ii) A
detection level of 0.8 (in which each judge node identifies and
isolates all the Byzantine nodes whose packet drop rates are



0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

Detection level (p)

C
o

n
fi

d
e

n
c

e
 (

C
)

M=20

M=40

M=60

M=80

M=100

Fig. 5: Confidence of a judge node on its verdict
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Fig. 8: Fraction of the recovered messages
versus time for W = 10%.
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Fig. 9: Fraction of the recovered messages
versus time for W = 40%.
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Fig. 10: Packet delivery ratio versus time for
W = 40%.

0.8 or higher), and iii) A complete detection (in which all
malicious nodes are detected and isolated regardless of their
packet drop rate). We note that in the second scenario, malicious
nodes have packet drop rates uniformly distributed between 0
and 1 because the proposed trust management scheme forces
them to drop legitimate packets with lower rates rather than
consistently dropping. The plots show that the percentage of
recovered messages at a given time significantly decreases with
increasing W for the defenseless scheme. On the other hand,
we observed a considerable improvement in the percentage of
recovered messages at a given time even after a high level
detection (p = 0.8) using the proposed scheme.

We defined the packet delivery ratio as the ratio of the
number of legitimate packets received by their destinations to
the number of legitimate packets transmitted by their sources.
Therefore, we observed the impact of malicious nodes on the
packet delivery ratio and the progress achieved as a result of
our scheme in Fig. 10. We observed a notable improvement in
the packet delivery ratio as a result of the proposed scheme. As
W increases, the packet delivery ratio of the defenseless scheme
decreases significantly while our proposed scheme still provides
a high packet delivery ratio even at the detection level of 0.8,
which illustrates the robustness of the proposed scheme.

IV. CONCLUSION

In this paper, we introduced a robust and efficient security
mechanism for delay tolerant networks. The proposed security
mechanism consists of a trust management mechanism and an
iterative trust and reputation mechanism (ITRM). The trust man-
agement mechanism enables each network node to determine the
trustworthiness of the nodes that it had a direct transaction. On
the other hand, ITRM takes advantage of an iterative mechanism
to detect and isolate the malicious nodes from the network in a
short time. We studied the performance of the proposed scheme
and showed that it effectively detects the malicious nodes even
in the presence of the attacks on the trust and detection mecha-
nisms. We also illustrated that the proposed scheme is far more
effective than the voting-based techniques in detecting Byzantine
nodes. Moreover, using computer simulations we showed that the
proposed mechanism provides high data availability with low
latency by detecting and isolating the malicious nodes.
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