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Abstract—Privacy is a critical service in node-to-node communica-
tions when sensor networks are deployed in adversarial environments.
However, providing this service is a nontrivial task because of the lack
of infrastructure and node limitations. Existing techniques distribute
secret keys to the network users through a trusted third party or using
computationally-complex public-key methods. An alternative approach is
pre-distributing keying material to the nodes prior to the network deploy-
ment. Exploiting the mathematical properties of symmetricpolynomials,
we propose a multivariate key pre-distribution scheme (MKPS) in this
paper. In this scheme, using uniquely assigned IDs, shares of d-variate
polynomials are stored into the memory of every sensor. After the network
deployment, every two neighbor nodes at the unit Hamming distance of
each other establish exactlyd− 1 common keys without any interaction
with a third party in the network. The final secret key used by these nodes
is a symmetric combination of all the common keys. We will show that
this feature significantly improves the security of the MKPSover previous
schemes. The proposed method is in the category of thresholdschemes,
i.e., it remains perfectly secure up to the capture of a certain fraction
of sensor nodes. We also propose a location-aware MKPS in which,
by taking advantage of the location information, perfect connectivity is
achieved. The new location-aware scheme is a cell-based method in which
nodes are randomly deployed within hexagonal cells. Nodes are unaware
of their exact locations. Nevertheless, they know the coordinates of their
residing cells. One MKPS is used to secure communications within every
cell and one to secure communications between cells. This location-based
scheme significantly improves the resiliency of the networkagainst the
node capture.

I. I NTRODUCTION

In the era of information technology and with the advent of
micro-electro-mechanical systems and low power highly integrated
electronic devices, wireless sensor networks (WSNs) are expected to
play key roles in many applications such as managing energy plants,
logistics and inventory, battlefields, and medical monitoring [1]. A
typical sensor network may consist of hundreds to several thousands
of sensor nodes that are low cost and battery powered, and have
limited computation power and memory. Sensor nodes are either
randomly or manually scattered in a field. They form an unattended
wireless network that collects information about the field such as
temperature, illumination, motion, some chemical material, etc. The
collected data is partially aggregated and forwarded to a central
processing unit, called the sink, that is responsible for interpreting
the data and taking appropriate actions (e.g., sending personnel for
precise measurements).

In hostile environments, security services are critical for a WSN
to function healthy. However, the security of such networksposes
new challenges because of the sensor constraints and networking
features. Neighboring nodes in the sensor networks often experience
correlated events. Thus, to conserve the transmission energy, sensor
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networks require in-network processing, aggregation, andduplication
elimination. This imposes the need for a trusted connectionbetween
neighboring nodes, which are not considered in ad-hoc networks.

Since sensor nodes are power- and memory-starved devices, only
a fraction of memory and computational power can be devoted to
cryptographic algorithms to provide secure communication. Because
of the computational cost of public-key systems, symmetric-key
schemes become the tools of choice in sensor networks to provide
data confidentiality and authentication at the link layer. Afundamen-
tal open research problem is to set up (pairwise) secret keysamong
the communicating nodes, referred to askey establishment, that is
required for symmetric cryptographic schemes.

A classical solution is using a key-distribution center (KDC) to
distribute the secret keys. A KDC, if employed in a network, has to
directly communicate with all users. However, the massive number
of sensors deployed in a field would introduce so much traffic at the
KDC. Moreover, the short communication range of sensor nodes and
also their widespread distribution makes direct communication with
the KDC impossible. Hence, this solution is infeasible in WSNs.

Another solution is pre-distributing the keys among the sensor
nodes in the network; hence, so called key pre-distributionschemes
(KPSs). Although this solution seems feasible at the first glance, its
realization is not trivial because of the massive number of nodes in the
network and their resource limitations. A naive approach isusing a
single key to secure the communication traffic in the entire network.
Nevertheless, this approach must be avoided since capturing only
one node compromises the entire network to the adversary. Another
approach, in a network of sizen, is storing n − 1 pairwise keys
in every node, each for communicating with one other node in the
network. However, in a typical sensor network with thousands of
sensor nodes, the storage requirement for this approach is beyond the
memory limitations of sensors. Moreover, not every two sensors are
in the communication range of each other. If the neighbor sensors
of every sensor in the field are known prior to the deployment,
then it suffices to store only pairwise keys for the communication
with neighbor sensors. However, such information are unavailable in
typical sensor networks.

A. Related Work

The first practical KPS for sensor networks is the Eschenauer–
Gligor (EG) scheme [2]. In this scheme, a large pool of keys is
generated at the server prior to the network deployment. Forevery
sensor node, a small fraction of keys, called the key ring, israndomly
selected from the key pool and is stored in the sensor memory.Every
two sensor nodes that happen to have at least one common key in
their key rings are able to establish a secure communicationlink.
In order to improve the resiliency of this scheme against thenode



capture, many modifications have been suggested in [3]–[7].One of
the modifications to the EG scheme is theq-composite scheme of
[3]. In this scheme, every two nodes are enforced to have at least q
common keys in their key rings to establish a secure link. Thefinal
common secret key is a symmetric combination of theq common
keys.

The application of threshold cryptography in the KPSs for general
networks was first proposed in [8] and further studied in [9].In
the simplest form of such schemes, every sensor stores a share
of a symmetric bivariate polynomial. The symmetry propertyof
polynomials allows obtaining the same key by two sensors that have
shares of the same bivariate polynomial. The adversary, whodoes
not know the bivariate polynomials, has to capture at least acertain
number of sensors to reconstruct a bivariate polynomial from its
shares. A random KPS is proposed in [6] based on this idea.

One problem with the random KPS is that they do not guarantee
key establishment between any two nodes even if their commu-
nication ranges are assumed unlimited. To solve this problem, a
deterministic hypercube-based scheme (HBS) is proposed in[6]. This
scheme improves the network connectivity by uniquely assigning
points on a hypercube to all the sensor nodes as their IDs, which
are used to distribute shares of multivariate polynomials.When the
communication ranges of all sensor nodes are assumed unlimited, this
KPS guarantees the establishment of a link between any two nodes.

B. Outline of Our Scheme

In this paper, we propose a multivariate key pre-distribution scheme
(MKPS). In this scheme, a large set of symmetric multivariate
polynomials is generated by the sink prior to the network deployment.
Every sensor node is uniquely assigned an ID that is ad tuple
consisting of nonnegative integers. These IDs are used to assign d
d-variate polynomials to every node. For every node, the shares of
these polynomials are stored in its memory. We will show thatin
this setting every two nodes with IDs at the Hamming distanceof
one from each other have shares of the samed − 1 multivariate
polynomials. Using these shares, these nodes can establishd − 1
common keys. We note that this feature is obtained for free without
any payoffs such as additional memory. The final secret key between
these two nodes, called a link key, is a symmetric combination of
all thesed − 1 common keys. This feature significantly adds to the
security of the proposed KPS since an adversary has to compromise
all the d − 1 common keys in order to compromise a link key.

Taking advantage of the deployment knowledge, we propose a
location-aware KPS that provides perfect connectivity. Inthis scheme,
the entire terrain is divided into non-overlapping hexagonal cells. Two
layers of MKPS provide connectivity to the network for the inner and
intra-cell communications. The resiliency of this scheme against the
node capture is better than the previously proposed schemes.

In brief, the contributions of this paper are:

1) We propose a novel KPS for sensor networks using multi-
variate polynomials that significantly increase the security of
the scheme without increasing the size of the required node
memory. Moreover, since every node in this scheme is assigned
a unique ID, node-to-node authentication is obtained for free.
The proposed scheme is scalable, i.e., the addition of new nodes
to the network after its deployment is possible.

2) The ID of every node is ad tuple of nonnegative integers.
Every two nodes with IDs at the Hamming distance of one
from each other can establish exactlyd − 1 common keys.
The final secret key between these nodes, called a link key,
is a symmetric combination of all thed − 1 common keys.

This interesting feature, gained by employing multivariate
polynomials, is obtained for free. In addition, it considerably
improves the security in our scheme since an adversary has to
compromise all thed − 1 common keys to compromise a link
key.

3) Taking advantage of the deployment knowledge, where this
information is available, we modify the proposed MKPS to
a double-layered KPS that provides perfect connectivity tothe
network. The new location-aware scheme, similar to its random
counterpart, has a threshold effect that significantly improves
the resiliency of the network against the node capture.

C. Notation

For any d ∈ N, we define[ d ] := {x ∈ Z : 0 ≤ x ≤ d − 1 }.
For any ordered tupleI = (i0, . . . , id−1) and an arbitrary subset
J  [ d ], we define the reduced ordered-tupleI 〈J〉 := (ij : j ∈
[ d ]\J), which is an ordered tuple with coordinate indices in the setJ

removed. For simplicity, we use the short formsI 〈j〉 := I 〈{ j }〉 and
I 〈j, ℓ〉 := I 〈{ j, ℓ }〉. For an arbitrary setA, the Hamming distance
between twod-tuples I, I ′ ∈ A

d is a mappingdh : A
d × A

d →
{ 0, 1, . . . , d } such thatdh(I, I ′) is the number of coordinates in
which I andI ′ are different. The Galois field with prime orderp is
denoted byFp.

II. M ULTIVARIATE KEY PRE-DISTRIBUTION

Prior to introducing the proposed KPS, we define ad-conference
t-securescheme as follows [9].

Definition 2.1: Let U be a set ofn users, andd, t ∈ N such that
d ≤ n. A KPS for U is d-conferencet-secure if:

1) Every subsetV ⊆ U of d users can compute a group key by
cooperating with each other (e.g., exchanging their IDs).

2) The coalition of every setA ⊂ U \ V of |A| ≤ t users reveals
no information about the group key established by thed users
in V.

Consider a network with the user setU = {U0, . . . , Un−1 } in
which every user has an ID that is an integer in[ n ]. The server
generates a symmetric polynomialf(x0, . . . , xd−1) in d ≤ n
variables of degreet in each variable with coefficients from the
finite field Fp. The polynomialf is symmetric in the sense that
f(xσ(0), . . . , xσ(d−1)) = f(x0, . . . , xd−1) for any permutationσ on
d elements. The server assigns the coefficients of the polynomial
fi(x1, . . . , xd−1) := f(i, x1, . . . , xd−1) to userUi for all i ∈ [ n ].
Since each polynomialfi has at most

(

t+d−1
d−1

)

monomials, the max-
imum storage-memory requirement for each user is

(

t+d−1
d−1

)

log2 p
bits. This scheme is optimal in the sense that the amount of infor-
mation stored in each user is minimal [9].

Any set of at leastd users are able to establish a common key
using the polynomials in their memories. To see how, consider the
set of users{Ui : i ∈ I }, whereI ⊆ [ n ] is an arbitrary subset of
sized. The users in this set, first, exchange their IDs. Then, each user
Ui evaluates its polynomialfi at I 〈i〉. By the symmetry property of
f , the group key iskI = f(I).

Along the lines of this idea, we present the MKPS that consists
of two main phases. Thesetupphase, performed by the sink before
the network deployment, is the one in which the IDs of sensor nodes
are assigned. The other phase,link-key establishment, is performed
by the nodes after the network deployment.

A. Setup

Let n be the maximum number of sensor nodes in the network.
The first task is to assign a unique ID to every sensor node. A node



ID is a d tuple I = (i0, . . . , id−1), wherei0, . . . , id−1 ∈ [ m ] and
m := ⌈ d

√
n⌉. The sink randomly generatesdm symmetricd-variate

polynomialsf j
i (x0, . . . , xd−1t) ∈ Fp[x0, . . . , xd−1], wherei ∈ [ m ]

and j ∈ [ d ], with degreet in each variable. For the node with ID
I = (i0 . . . , id−1), the sink forms the set

PI :=
{

f j
ij

(I 〈j〉 , xd−1) ∈ Fp[xd−1] : ∀j ∈ [ d ]
}

. (1)

The following example illustrates how the setPI is formed.
Example 2.1:Let d = 3. For a node with IDI = (i0, i1, i2), the

setPI consists of the polynomialsf0
i0

(i1, i2, x2), f1
i1

(i0, i2, x2), and
f2

i2
(i0, i1, x2).

The coefficients of all polynomials inPI are stored in the nodeI
along with its ID. Since|PI | = d, the required storage memory
for every node isd(t + 1) log2 p + d log2 m, which is the same as
the memory requirement in the HBS [6]. We note that the sets of
polynomials assigned to the nodes are deterministically selected in
our scheme. Hence, from this view point, our scheme is deterministic
comparing to the EG andq-composite schemes in which the key rings
are randomly selected from the key pool.

B. Link-Key Establishment

Every two nodes at the Hamming distance of one from each other
are able to establish a shared key. Consider two nodesI andI ′ that
differ only at thej-th coordinate, i.e.,dh(I, I ′) = 1. These nodes
can establish the followingd − 1 common keys.

kI,I′,ℓ = fℓ
iℓ

(I 〈j, ℓ〉 , ij , i
′

j)

= fℓ
iℓ

(I ′ 〈j, ℓ〉 , i′j , ij), ∀ℓ ∈ [ d ] \ { j }
(2)

The final secret key established between these two nodes, referred to
as thelink key, is

kI,I′ = µ(kI,I′,ℓ : ∀ℓ ∈ [ d ] \ { j }) , (3)

whereµ(x0, . . . , xd−2) := h(x0|| · · · ||xd−2) and h is a pre-image
resistant hash function. The following example shows how a link key
is established.

Example 2.2:Let d = 3. Consider the two nodesI =
(i0, i1, i2) and I ′ = (i0, i1, i

′

2). They can establish exactly two
common keys kI,I′,0 = f0

i0
(i1, i2, i

′

2) = f0
i0

(i1, i
′

2, i2) and
kI,I′,1 = f1

i1
(i0, i2, i

′

2) = f1
i1

(i0, i
′

2, i2). The link key iskI,I′ =
h(kI,I′,0||kI,I′ ,1).

We note that usingd-variate polynomials in our scheme has created
the condition that every two nodes at the Hamming distance ofone
from each other can establish exactlyd−1 common keys. Hence, our
scheme is in some sense(d − 1) composite. As we will show later,
this feature greatly lowers the probability of the link-keycompromise.
Fortunately, this feature is obtained for free without any payoffs.
This can be compared to the originalq-composite scheme obtained
from the EG scheme by requiring that every two nodes share at
least q keys in their key rings to establish a link key. Although
this restriction decreases the probability of link-key compromise for
small numbers of captured nodes, it has the opposite effect when the
number of captured nodes increases. This is because theq-composite
scheme is probabilistic, and to increase the probability ofsharingq
keys between any two nodes, the size of the key pool must shrink.
Thus, capturing a large number of nodes compromises more links
than capturing a small number of nodes. However, our scheme is
deterministic, and sharingd − 1 keys between any two nodes with
Hamming distance of one from each other is guaranteed by the
structure of our scheme.

III. E VALUATION OF THE MKPS

In this section, we evaluate the proposed MKPS in terms of the
network connectivity and the probability of the link-key compromise.
Throughout the section, we assume thatn is the actual number of
the sensor nodes in the network andm = ⌈ d

√
n⌉.

A. Network Connectivity

The network is connected if there exists a link or a path connecting
any two nodes. Since a path is a sequence of nodes that are
consecutively connected with links, the probability of thenetwork
connectivity depends on the average probability of the link-key
establishment denoted byPlk. As explained before, in the MKPS,
every two nodes at the Hamming distance of one from each other
can establish a link key. Hence, the average probability of the link-key
establishment is1

Plk ≈ [d(m − 2) + ν] (m − 1)d

n(n − 1)

+
θmd+1

[

d − 2 + νθν−1 + (2 − d − ν)θν
]

n(n − 1)

≤ d(m − 1)

n − 1
,

(4)

where

θ := 1 − 1/m ν :=

⌊

log
(

1 + θd − nm−d
)

log θ

⌋

. (5)

This probability is plotted in Figure 1 versus the total number of
nodesn and the dimensionalityd. The abrupt changes in this figure
are due to the ceiling function⌈·⌉ in the definition ofm. As the
figure shows, for a fixed dimensiond, the average probability of
link-key establishmentPlk decreases by increasing the number of
nodesn in the network. However, by fixingn and increasingd, the
probability Plk is globally decreasing, but it has linearly increasing
segments. It globally decreases becausem exponentially decreases
with d although there is a linear coefficient ofd in the first term
of Plk in (4). The linear increasing segments ofPlk correspond to
the range ofn for which m is constant and henceforth, the linear
coefficient ofd has the dominant effect.

Similar to the previous work [2], [3], [5], [6], we have used
the random graph modelG(n, Plk) in the derivation of (4). In this
model, the communication radius of every node is assumed unlimited.
However, in practice, every node has only a limited communication

1Because of the space limitation, details of the derivation of this equation
are omitted here.
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range. The relationship between the actual communication radius of
the sensor nodes required for connectivity and the probability of the
link-key establishment in theG(n, Plk) model is studied in [10]. As
proved here, the minimum communication radius required to have a
connected network isR =

√

(ln n + ζ) / (πnPlk), whereζ > 0 is
a constant.

B. Resilience Against Node Capture

The adversary may attempt to disrupt the network connectivity
by splitting the network into small components. This goal can be
achieved by physically capturing some nodes in the network and
deriving information about the secret keys used to secure communi-
cations between un-captured nodes. Adversary has to compromise all
the d − 1 common keys established between two arbitrary nodes to
compromise the link key established between them. A common key is
obtained by evaluating shares of multivariate polynomialsat the node
IDs. We note that these shares are stored only in the memoriesof the
two nodes establishing the common keys. Thus, without capturing
these nodes, the adversary has to recover some variables of the
multivariate polynomials, generating these shares, by capturing other
nodes in the network that store the shares. The parameters ofthe
scheme determine the minimum number of variables that can be
recovered and, consequently, the minimum number of nodes that must
be captured. This produces a threshold effect, i.e., prior to capturing
a least number of nodes, the adversary is unable to compromise any
link keys. In the following, we determine the security threshold of the
proposed MKPS. Using this threshold, we calculate the probability
of the link-key compromise and compare it to other schemes.

Consider the two nodesI and I ′ that differ only in the j-th
coordinate, i.e.,dh(I, I ′) = 1. These nodes can establish a link key.
By (3), the link keykI,I′ is a function ofd−1 common keyskI,I′,ℓ.
Hence, the adversary has to compromise all thesed−1 keys generated
by the polynomialsfℓ

iℓ
(I 〈ℓ〉 , xd−1) andfℓ

iℓ
(I ′ 〈ℓ〉 , xd−1) as in (2).

However, these polynomials are stored only in the memories of I and
I ′ that are unavailable to the adversary. Thus, for everyℓ ∈ [ d ]\{ j },
the adversary has to recover the polynomial

fℓ(xd−r−1, . . . , xd−1)

= fℓ
iℓ

(̂ı0, . . . , ı̂d−r−2, xd−r−1, . . . , xd−1) (6)

from its shares distributed in the network for some integer1 ≤ r ≤
d−1, where(̂ı0, . . . , ı̂d−2) = I 〈ℓ〉. The shares of this polynomial are
fℓ(̂ıd−r−1, . . . , ı̂d−2, xd−1), where ı̂d−r−1, . . . , ı̂d−2 ∈ [ m ]. These
shares are accessible to the adversary upon capturing othersensor
nodes. There are at mostmr shares of this polynomial available in
the network. The minimum number of shares required to recover this
polynomial is given by the following lemma.

Lemma 3.1:To recover the polynomialfℓ in (6) from its shares,
the minimum number of required shares is

λ(r, t) =

(

t + r

r

)

, 1 ≤ r ≤ d − 1. (7)

Proof: We note that fℓ(xd−r−1, . . . , xd−1) =
∑t

i=0
fℓi(xd−r−1, . . . , xd−2) xi

d−1, where each coefficient
fℓi(xd−r−1, . . . , xd−2) is an r-variate symmetric polynomial
of degreet in each variable that has

(

t+r

r

)

coefficients. Hence,
λ(r, t) shares are required.
If mr < λ(r, t) for somer, then there are not enough shares of
the polynomial in the network to recoverr variables. Therefore, it
is impossible for an adversary to obtain the polynomial in (6) for
the given value ofr. We note that the inequalitymr < λ(r, t)

does not implymr+1 < λ(r + 1, t). In other words, we might have
mr+1 ≥ λ(r + 1, t) in which case there exist enough shares off to
recoverr + 1 variables. Hence, the security threshold is determined
by the number of variables for which there exist enough shares in the
network to recover that many variables. This result is summarized in
the following corollary.

Corollary 3.1: Let I :=
{

i ∈ { 1, 2, . . . , d − 1 } : mi ≥ λ(i, t)
}

and r := min I. Then, the MKPS is
(

λ(r, t) − 1
)

-secure in the
network.

The probability of compromising the link key established between
any two nodes depends on the security threshold of the scheme.
Assume that a fraction ofpnc nodes in the network is captured and
r is given as in Corollary 3.1. By Lemma 3.1, the adversary has to
obtain at leastλ(r, t) shares of any polynomial to recoverr variables
of that polynomial. Since the number of shares of a polynomial is a
binomially-distributed random variable, the probabilityof polynomial
recovery is

Ppr =

mr
∑

i=λ(r,t)

(

mr

i

)

pi
nc (1 − pnc)

mr
−i. (8)

To compromise a link key, all thed − 1 common keys must be
compromised. Hence, the probability of the link-key compromise is

Plkc = P d−1
pr . (9)

The probability of link-key compromise versus the fractionof
captured nodes is plotted in Figure 2 for different values ofd. The
degreet of the polynomials used in the scheme is adjusted with
respect to the dimensiond, by fixing the node memory to30, to have a
fair comparison. As the figure shows, by increasing the dimension, the
scheme becomes more resistant against node capture. This isbecause
the number of common keys constructing a link key increases.

Probabilities of the link-key compromise in the EG scheme of[2],
theq-Composite of [3], the HBS of [6], and the proposed MKPS are
compared to each other in Figure 3. For a fair comparison, in plotting
all these curves, the node memory and the probability of the link-key
establishment are fixed to50 andPlk ≈ 10−4, respectively. As this
figure shows, the MKPS provides the highest resiliency against the
node capture.

IV. L OCATION AWARE MKPS

There are many different ways to deploy a WSN in a field.
For example, the deployment may be random in which there is
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Fig. 2. Probability of the link-key compromise versus the fraction of captured
nodes in the MKPS. Other parameters aren = 10,000 and t = ⌊30/d − 1⌋.



no prior knowledge as to which sensors will be located at the
vicinity of each other. In practice, usually a systematic deployment
method is employed. For example, a group-based deployment model
is suggested in [11]. In this model, the sensors are divided into groups
of equal sizes. In addition, the field is covered with non-overlapping
cellular areas. Sensors of each group are uniformly deployed in one
cellular area. Using this method, the exact location of a sensor on
the field is not known, but it is known which sensors are located in
the same group. Hence, the deployment distribution is not uniform.
It is possible to use this information toward KPS design to yield
schemes that are more efficient than those designed without the
deployment knowledge. A few location-aware schemes are proposed
in the literature [11]–[13]. Using the MKPS scheme proposedin the
previous section, we propose a location-aware KPS that is referred
to as location-aware MKPS (LA–MKPS).

Usually sensors use omnidirectional antennas [14]. Hence,sim-
ilar to mobile communication systems, a honeycomb-like structure
of communication cells provides the most efficient coverage[15].
Traditionally, square cells are used in WSNs. However, one needs
a larger number of square cells to cover an area as compared to
hexagonal cells. Assuming that the wireless communicationrange
of the sensors isR, we cover the target field by non-overlapping
hexagonal cells with sidesR/2. If the area of the field isA, then there
will be C = ⌈8

√
3A/

(

9R2
)

⌉ ≈ ⌈1.54A/R2⌉ cells. This choice
guarantees that all sensors in a cell are in the communication range
of each other. Letnc be the total number of sensors in each cell. An
MKPS is used to establish keys in each cell. We note that sinceall
sensors in a cell are in the communication range of each other, most
of the sensors in that cell can establish link keys.

To distribute keys required for the secure communication between
adjacent cells, we use a grid-based approach. In this approach, we
assign the points on a two-dimensional grid to the cells. In addition,
we assign a unique symmetric bivariate polynomial to every cell. To
distribute the shares of this polynomial between sensors, we divide
the sensors in every cell into equal-size groups. In every cell, the
shares of the corresponding polynomial are distributed among the
sensors in the groups. Moreover, the sensors of a cell store the shares
of the polynomials corresponding to the neighbor cells. As aresult,
the neighbor cells are able to establish pairwise keys.

The setup algorithm is explained in an algorithmic languagein the
following.

1) If C is the total number of cells, design a two-dimensional grid
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Fig. 3. Probability of the link-key compromise versus the fraction of captured
nodes for different schemes. In these curves,n = 100,000, the node memory
is 50, the dimension isd = 16, andq = 3 in the q-composite scheme.

with sizemc ×mc, wheremc := ⌈
√

C⌉. To every cell, assign
a unique point(i, j) on the grid wherei, j ∈ [ mc ].

2) Design a pool of m2
c symmetric bivariate polynomials

fi,j(x, y) ∈ Fpc [x, y] with degreetc in both variables. For
all i, j ∈ [ mc ], assign the polynomialfi,j(x, y) to the cell
(i, j).

3) Divide the sensors in the cell(i, j) into G almost-equal-size
disjoint groups labeled by(i, j)1, . . . , (i, j)G. Let ng be the
maximum number of sensors in every group. For anyg ∈ [ G ],
store the coefficients of the polynomialfi,j(g, y) in all the
sensors in(i, j)g .

4) As shown in Figure 4, assume the six neighbors of the cell
(i, j) are (iℓ, jℓ) for 1 ≤ ℓ ≤ 6. Store the coefficients of the
six polynomialsfiℓ,jℓ

(g, y) to all the sensors in(i, j)g for all
g ∈ [ G ].

Using this scheme, every sensor stores7(tc + 1) log2 pc bits in
addition to d(t + 1) log2 p bits for the MKPS employed in every
cell.

A. Link-Key Establishment

If there is no captured nodes in the network, every two sensors in
two adjacent cells are able to establish a direct key using the proposed
scheme. Consider two sensorsI andI ′ respectively belonging to two
groups(i, j)g and(i′, j′)g′ in adjacent cells(i, j) and(i′, j′). These
sensors store the following polynomials in their memories.

I : fi,j(g, y), fi′,j′(g, y)

I ′ : fi′,j′(g
′, y), fi,j(g

′, y)

Hence, they are able to calculate the following common keys.

kI,I′,1 = fi,j(g, g′) = fi,j(g
′, g) (10a)

kI,I′,2 = fi′,j′(g
′, g) = fi′,j′(g, g′) (10b)

The direct keykI,I′ between these two sensors is

kI,I′ = h(kI,I′,1||kI,I′,2). (11)

V. EVALUATION OF THE LA–MKPS

Since polynomialsfi,j(x, y) are bivariate, the recovery of a
single polynomial-variable is possible. Therefore, by Lemma 3.1,
the scheme istc-secure, wheretc is the degree of the polynomials
fi,j(x, y) in both variables. Hence, by an analysis similar to the one
performed in Section III, we deduce that the probability of the link-
key compromise is

P c
lkc =

[

1 −
min(tc,G)

∑

i=0

(

G

i

)

pi
cg (1 − pcg)

G−i

]2

, (12)

(i, j)

(i1, j1)

(i2, j2)

(i3, j3)

(i4, j4)

(i5, j5)

(i6, j6)

Fig. 4. A hexagonal cell and its six neighbors



where pcg is the probability of compromising a polynomial share.
Since every polynomial share is distributed among all the sensors in
a group, we have

pcg = 1 − (1 − pnc)
ng , (13)

wherepnc is the fraction of captured nodes in the network. If there
arenc sensors in every cell, thenng = ⌈nc/G⌉.

In Figure 5, we compare the probabilityP c
lkc in the location-

aware bivariate key pre-distribution (LA–BKPS) of [12] andthe
proposed LA–MKPS. In these curves, the assumption is that there
arenc = 100 sensors in every cell. We note that in the LA–BKPS,
every sensor stores five polynomials while in the LA–MKPS, seven
polynomials are stored in every sensor. To take into accountthis
difference, we have adjusted the value oftc in our comparison as
tc = ⌊75/d − 1⌋, whered = 5 in the LA–BKPS andd = 7 in
the LA–MKPS. As these curves show, the LA–MKPS has a lower
probability of the link-key compromise. For example, when20% of
the sensors are captured, about92% of the link keys in the LA–BKPS
are compromised. However, in the LA–MKPS, only10% of the link-
keys are compromised. Another observation is that by increasing the
number of sensorsng in each group, the probabilityP c

lkc further
decreases. This is due to the inverse relationship betweenng andG
that affectsP c

lkc in (12).

VI. CONCLUSION

In this paper, we proposed a threshold key pre-distributionscheme
(KPS) for WSNs. In this scheme, we assignd tuples of nonnegative
integers to the sensor nodes as their IDs that are used to distribute
shares of multivariate polynomials. After the network deployment,
some nodes are able to establishd−1 common keys using the shares
of polynomials stored in their memories. The secret key between
these nodes is a combination of all thesed − 1 keys. Hence, the
proposed scheme is, in a sense, a(d − 1)-composite method. This
feature considerably improves the security in the MKPS. Fortunately,
this feature is obtained for free with no payoffs such as additional
memory. The proposed MKPS has the threshold property, i.e.,it
remains perfectly secure up to the capture of a certain fraction of
sensor nodes.

We also proposed a location-aware version of the MKPS by
dividing the terrain into non-overlapping hexagons and uniformly
at random distributing nodes. One MKPS layer is used to secure
communications inside a cell. For intra-cell communications, a bi-
variate version of the MKPS is used. This scheme provides perfect
connectivity and significantly improves the resiliency of the network
against the node capture.
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