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Abstract—In this paper we introduce the first application of
the Belief Propagation (BP) algorithm in the design of recom-
mender systems. We formulate the recommendation problem
as an inference problem and aim to compute the marginal
probability distributions of the variables which represent the
ratings to be predicted. However, computing these marginal
probability functions is computationally prohibitive for large-
scale systems. Therefore, we utilize the BP algorithm to efficiently
compute these functions. Recommendations for each active user
are then iteratively computed by probabilistic message passing.
As opposed to the previous recommender algorithms, BPRS does
not require solving the recommendation problem for all the users
if it wishes to update the recommendations for only a single
active. Further, BPRS computes the recommendations for each
user with linear complexity and without requiring a trainin g
period. Via computer simulations (using the 100K MovieLens
dataset), we verify that BPRS iteratively reduces the errorin
the predicted ratings of the users until it converges. Finally, we
confirm that BPRS is comparable to the state of art methods
such as Correlation-based neighborhood model (CorNgbr) and
Singular Value Decomposition (SVD) in terms of rating and
precision accuracy. Therefore, we believe that the BP-based
recommendation algorithm is a new promising approach which
offers a significant advantage on scalability while providing
competitive accuracy for the recommender systems.

I. I NTRODUCTION

Today, the quantity of available information grows rapidly,
overwhelming consumers to discover useful information and
filter out the irrelevant items. Thus, the user is confronted
with a big challenge of finding the most relevant information
or item in the short amount of time. Recommender systems
are aimed at addressing this overload problem, suggesting to
the users those items that meet their interests and preferences.
More generally, recommender systems can learn about user
preferences and profile over time, based on data mining
algorithms, and automatically suggest products (from a large
space of possible options) that fit the users’ needs. Hence, it is
foreseeable that the social web is going to be driven by these
recommender systems.

However, there are certain challenges to design scalable,
accurate and dependable recommender systems. The available
data for the recommender systems is incomplete, uncertain,
inconsistent and/or intentionally-contaminated. Further, since
new data (ratings) becomes available continuously, recom-
mendations need to be updated in frequent intervals causing
computational limitations for large-scale systems. Latent factor
models (such as Matrix Factorization) have proven to be the

most accurate method in the Root Mean Square Error (RMSE)
sense. However, most existing and highly popular Matrix
Factorization-based recommender algorithms are shown to be
prone to malicious behavior [1] and they have scalability
issues. In other words, they fall short of incorporating the
attack profiles and the extra noise generated by the malicious
users. Further, each new update (using the most recent data or
ratings) for a particular active user requires to solve the entire
problem for every user in the system. Hence, new research
needed to focus on algorithms which meet these challenges
and provide scalable, accurate and dependable recommender
systems.

In this paper we introduce the first application of Belief
Propagation (BP), an iterative probabilistic algorithm, to solve
the recommendation problem. We have applied BP to trust and
reputation systems in our previous work [2]. In such systems,
BP is used to solve the inference problem for finding the
global reputation of service providers in a network based on
the previous ratings of the users. The main difference between
trust and reputation systems and recommender systems is that
in the former one the inference problem has to be solved
globally but in the latter one, the inferences are local and
specific for each user.

The key observation we make is that recommender systems
deal with complicated global functions of many variables (e.g.,
users and items). By using a factor graph, we can obtain
a qualitative representation of how the users and items are
related on a graphical structure. Therefore, we propose to
model the recommender system on a factor graph using which
our goal is to compute the marginal probability distribution
functions of the variables representing the ratings to be pre-
dicted for the users. However, we observe that computing the
marginal probability functions is computationally prohibitive
for large-scale recommender systems. Therefore, we utilize the
BP algorithm to efficiently compute these marginal probability
distributions. The key role of the BP algorithm is that we can
use it to compute the marginal distributions in a complexity
that grows linearly with the number of nodes (i.e, users/items).

Hereafter, we refer to our scheme as the “Belief Propaga-
tion Based Iterative Recommender System” (BPRS). BPRS
has several prominent features. First, it does not require to
solve the problem for all users if it wishes to update the
predictions for only a single active user and it does not require
a training period to utilize the most recent data (ratings).



Second, its complexity remains linear per single user, making
it very attractive for large-scale systems. Therefore, it can
update the recommendations for each active (online) user
instantaneously using the most recent data (ratings). Further,
we show that BPRS provides comparable usage prediction
and rating prediction accuracy to other popular methods such
as the Correlation-based neighborhood model (CorNgbr) and
Singular Value Decomposition (SVD). Therefore, we are very
optimistic that this work promises a new direction for the
recommender systems which will be scalable, accurate, and
resilient to attacks.

The rest of this paper is organized as follows. In the rest of
this section, we summarize the related work. In Section II, we
describe the proposed BPRS in detail. Next, in Section III, we
evaluate BPRS via computer simulations using the MovieLens
dataset. Finally, Section IV concludes the paper.

A. Related Work

Recommender systems [3] can be classified into two main
categories: i) content-based filtering [4] in which the system
uses behavioral data about a user to recommend items similar
to those previously consumed by the user, and ii) collaborative
filtering [5] in which the system compares one user’s behavior
against the other users’ behaviors and identifies items which
were preferred by similar users. Collaborative filtering algo-
rithms fall further into two general classes: memory-based[6]
and model-based algorithms [7], [8]. Model-based algorithms
include methods exploiting Singular Value Decomposition
(SVD), Principal Component Analysis (PCA) and Maximum
Margin Matrix Factorization (MMMF) techniques [9], [10].

The application of Bayesian networks and message passing
algorithms for recommender systems is also studied in the
past [11], [12]. In [11], the message passing technique is used
to determine the latent factors of the users and items (as an al-
ternative to SVD). In [12], because of the fuzziness associated
with the ambiguity in the description of the ratings, a (non-
iterative) inference is proposed among the users to remove
this ambiguity. The key difference between our approach and
the other message passing-based methods is that, we describe
the recommendation problem as computing marginal likeli-
hood distributions from complicated global functions of many
variables and to use Belief Propagation (BP) to find them.
This is inspired by successful applications of BP algorithms in
various fields such as decoding of error correcting codes [13],
Artificial Intelligence [14], and reputation systems [2].

II. B ELIEF PROPAGATION FOR

RECOMMENDERSYSTEMS

Belief Propagation (BP) [13], [14] is a message passing
algorithm for performing interface on graphical models (e.g.,
factor graphs, Bayesian networks, Markov random fields). It
has demonstrated empirical success in numerous applications
including LDPC codes, turbo codes, free energy approxima-
tion, and satisfiability. BP is a method for computing marginal
distributions of the unobserved nodes conditioned on the
observed ones.

Our objective is to formulate the recommendation problem
as making statistical inference about the ratings of users for
unseen items based on observations. That is, given the past
data evidence, what would be the likelihood (probability) that
the rating takes a particular value? Here, the probability is
the degree of belief to which the prediction of the rating is
supported by the available evidence. This requires finding the
marginal probability distributions of the variables representing
the ratings of the items to be predicted conditioned on some
observed preferences.

We assume two different sets in the system: i) the set of
usersU and ii) the set of items (products)I. Users provide
feedbacks, in the form of ratings, about the items for which
they have an opinion. The main goal is to provide accurate
recommendations for every user by predicting the ratings of
the user for the items that he/she has not rated before (unseen
item). Here, we consider an arbitrary userz (referred as the
active user) and compute the prediction of ratings for userz
for unseen items. We assumeu users ands items in the system
(i.e., |U| = u and |I| = s). Let Gz = {Gzj : j ∈ I} be the
collection of variables representing the ratings of the items to
be predicted for the active userz. Note that a subset of these
variables are already known as the corresponding items were
rated by userz. Hence, they do not require any prediction. Let
alsoRz = {Rzi : i ∈ U} be the confidence of the system on
the users for their ratings’ reliability, given the active user is
z. Further, we letTij represent the rating provided previously
by useri about the itemj. We denoteT as thes×u item-user
matrix that stores these ratings, andTi as the set of ratings
provided by the useri. We note that some rating entries could
be missing (attributed to unseen items). To be consistent with
the most of existing recommender systems, we assume that
the rating values are integers from the setΥ = {1, 2, 3, 4, 5}.

The recommendation problem can be viewed as finding
the marginal probability distributions of each variable in
Gz, given the observed data (i.e., existing ratings and the
confidence of the system for the user’s ratings). There ares
marginal probability functions,p(Gzj |T,Rz), each of which
is associated with a variableGzj ; the predicted rating of item
j for user z. We formulate the problem by considering the
global functionp(Gz|T,Rz), which is the joint probability
distribution function of the variables inGz given the rating
matrix and the confidence of the system for the user’s ratings.
Then, clearly, each marginal probability functionp(Gzj |T,Rz)
may be obtained as follows:

p(Gzj |T,Rz) =
∑

Gz\{Gzj}

p(Gz|T,Rz), (1)

where the notationGz\{Gzj} implies all variables inGz

exceptGzj .
Unfortunately, the number of terms in (1) grows expo-

nentially with the number of variables, making the direct
computation infeasible for large-scale systems. However,we
propose to factorize (1) to local functionsfi using a factor
graph and utilize the BP algorithm to calculate the marginal



probability distributions in linear complexity. A factor graph is
a bipartite graph containing two sets of nodes (corresponding
to variables and factors) and edges incident between two sets.
Following [13], we form a factor graph by setting a variable
node for each variableGzj , a factor node for each function
fi, and an edge connecting variable nodej to the factor node
i if and only if Gzj is an argument offi.

We arrange the collection of the users and items together
with the ratings provided by the users as a factor graphg(U, I).
Then, since we consider the particular active userz, the factor
graph is reduced tog(Û, I) (as in Fig. 1) by only keeping the
users that are connected toz via a path of length at most two
in g(U, I) (i.e., the users who rated at least one item that is also
rated byz) and removing all the other user nodes from the
graph together with their edges. In this representation, each
user corresponds to a factor node in the graph, shown as a
square and each item is represented by a variable node shown
as a hexagon. Further, each rating is represented by an edge
from the factor node to the variable node. Hence, if a useri
(i ∈ Û) has a rating about itemj (j ∈ S), we place an edge
with value Tij from the factor nodei to the variable node
representing itemj. Eventually, theg(Û, I) graph has|Û| = û
users and|I| = s items.
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Fig. 1. Graphical representation of the scheme from userz’s point of view.

Next, we suppose that the global functionp(Gz|T,Rz)
factors into products of several local functions, each having
a subset of variables fromGz as arguments as follows:

p(Gz|T,Rz) =
1

Z

∏

i∈Û

fi(Gzi,Ti, Rzi), (2)

whereZ is the normalization constant andGzi is a subset of
Gz. Hence, in the graph representation of Fig. 1, each factor
node is associated with a local function and each local function
fi represents the probability distributions of its arguments
given the confidence of the system for the associated user and
the existing ratings of the associated user.

We now describe the message exchange between a userk
and an itema (in Fig. 1) provided that the active user isz
in BPRS. We clarify that all the messages are formed by the
algorithm that is ran in the central authority. We represent
the set of neighbors of the variable nodea and the factor
nodesk and z (in g(Û, I)) asNa, Nk, andNz, respectively

(neighbors of an item are the set of users who rated the
item while neighbors of a user are the items which it rated).
Further, letΞ = Na\{k} and ∆ = Nk\{a}. Let G(ν)

zj and

R
(ν)
zi be the value of variableGzj and system’s confidence

on useri at the iterationν of the algorithm, respectively. The
messageλ(ν)

k→a(G
(ν)
za ) (from factor nodek to the variable node

a) denotes the relative probabilities thatG(ν)
za = ` (` ∈ Υ)

at the νth iteration, givenTka and R
(ν−1)
zk . On the other

hand,µ(ν)
a→k(G

(ν)
za ) (from variable nodea to the factor node

k) denotes the probability thatG(ν)
za = ` (` ∈ Υ) at theνth

iteration.

The message from the factor nodek to the variable nodea
at theνth iteration is formed using the principles of the BP
as

λ
(ν)
k→a(G

(ν)
za ) =

∑

G
(ν)
zk

\{G
(ν)
za }

fk(G
(ν)
zk ,Tk, R

(ν−1)
zk )

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

zx ),

(3)

whereGzk is the set of variable nodes which are the arguments
of the local functionfk at the factor nodek. This message
transfer is illustrated in the right half of Fig. 2. Further,R

(ν−1)
zk

is a value between zero and one and can be calculated as
follows:

R
(ν−1)
zk = 1−

1

ρ|Nk|

∑

i∈Nk

∑

x∈Υ

|Tki − x|µ
(ν−1)
i→k (x). (4)

The above equation can be interpreted as one minus the
average inconsistency of userk calculated by using the mes-
sages it received from all its neighbors. Further,ρ, which is
the highest possible deviation of a user, is set to4 in this
particular rating system, where the rating values are integers
from the setΥ. Thus, the reliability of users (in their ratings)
is measured based on the messages formed by the algorithm.
Using (3) and assuming that the predicted ratings in setGzk

are independent from each other at each intermediate step (to
reduce the computational complexity), it can be shown that

fk(G
(ν)
zk ,Tk, R

(ν−1)
zk ) =

∏

i∈Nk

fk(G
(ν)
zi ,Tk, R

(ν−1)
zk ). (5)

Thus, the message in (3) becomes

λ
(ν)
k→a(G

(ν)
za ) = fk(G

(ν)
za ,Tk, R

(ν−1)
zk )×

{

∑

G
(ν)
zk

\{G
(ν)
za }

[

∏

i∈Nk\{a}

fk(G
(ν)
zi ,Tk, R

(ν−1)
zk )

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

zx )
]}

.

(6)

Since the second part of (6) is a constant,
λ
(ν)
k→a(G

(ν)
za ) ∝ fk(G

(ν)
za ,Tk, R

(ν−1)
zk ), and hence,

λ
(ν)
k→a(G

(ν)
za ) ∝ p(G

(ν)
za |Tka, R

(ν−1)
zk ), where



p(G(ν)
za = `|Tka, R

(ν−1)
zk ) =























[

R
(ν−1)
zk + (1 −R

(ν−1)
zk )×

|κz
a(`)|+1∑

h∈Υ

[|κz
a(h)|+1]

]

if Tka = `

[

(1−R
(ν−1)
zk )×

|κz
a(Tka)|+1∑

h∈Υ

[|κz
a(h)|+1]

]

if Tka 6= `.

(7)

Here,κa denotes the genre (i.e., type) or the set of genres of
item a. Further,|κz

a(h)| is the number of items in the same
genre asκa which are previously rated ash by the active user
z. The way we compute the probabilities in (7) resembles
the belief/plausibility concept of the Dempster-Shafer The-
ory [15]. GivenTka = 1, R(ν−1)

zk can be viewed as the belief
of userk thatG(ν)

za is one (at theνth iteration). In other words,
in the eyes of userk, G(ν)

za is equal to one with probability
R

(ν−1)
zk . Thus,(1−R

(ν−1)
zk ) corresponds to the uncertainty in

the belief of userk. In order to remove this uncertainty and
expressp(G(ν)

za |Tka, R
(ν−1)
zk ) as the probabilities thatG(ν)

za is
` (` ∈ Υ), we distribute the uncertainty among the possible
outcomes (one to five) in proportion to the histogram of the
ratings provided by the active userz for the items in the same
genre asκa. That is, if the active user previously provided
high ratings for the items in the same genre asκa, then
we distribute most of the uncertainty to the higher ratings
in proportion to the rating histogram of the active user for
the items in the same genre asκa. Similarly, if the active
user previously provided low ratings for the items in the same
genre asκa, we distribute most of the uncertainty to the lower
ratings. Therefore, from userk’s point of view,Gza is equal
to one with probabilityR(ν−1)

zk +(1−R
(ν−1)
zk )×

|κz
a(1)|+1∑

h∈Υ

[|κz
a(h)|+1] .

On the other hand, it is equal tò (` 6= 1) with probability
(1−R

(ν−1)
k )×

|κz
a(`)|+1∑

h∈Υ

[|κz
a(h)|+1] . We note that the above discus-

sion assumedTka = 1 and similar statements hold for the
cases whenTka = 2, 3, 4, 5. It is worth clarifying that, as
opposed to the Dempster-Shafer Theory, we do not combine
the beliefs of the users. Instead, we consider the belief of
each user individually and calculate probabilities thatG

(ν)
za

being ` (` ∈ Υ) in the eyes of each user as in (7). We
note that if the active userz did not rate any items from
this particular genre (κa), we distribute the uncertainty in
proportion to the average rating of userz (for the items it
previously rated) (Az =

∑
i∈Nz

Tzi

|Nz|
). The above computation

in (7) must be performed for every neighbors of each factor
node. This finishes the first half of theνth iteration.

In the second half of theνth iteration, we calculate the mes-
sageµ(ν)

a→k(G
(ν)
za ) by multiplying all probabilities the variable

nodea received from its neighbors excluding the one from
the factor nodek, as shown in the left half of Fig. 2. We note
that the previous ratings of the active user play a key role
in the algorithm. Hence, the values of those variables inGz

which are associated with the items already rated by the active
userz are set to the corresponding ratings (i.e.,Gzj = Tzj if
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Fig. 2. Message exchange between the factor nodek and variable nodea.

j ∈ Nz). Thus, if a ∈ Nz, the messages generated from the
variable nodea do not vary with iterations since the value of
this variable node (Gza) is fixed based on the ratings of the
active user. Therefore, the message from the variable nodea
to the factor nodek at theνth iteration is given by

µ
(ν)
a→k(G

(ν)
za = `) =



























1
∑

h∈Υ

∏

i∈Ξ

λ
(ν)
i→a

(h)
×

∏

i∈Ξ

λ
(ν)
i→a(G

(ν)
za ) if a 6∈ Nz

1 if a ∈ Nz andTza = `

0 if a ∈ Nz andTza 6= `.
(8)

The algorithm proceeds to the next iteration in the same
way as theνth iteration. We clarify that the iterative algorithm
starts by computingλ(1)

k→a by using R
(0)
zk = %, where %

(0 < % < 1) is the system’s present confidence on the users
for the reliability of their ratings computed at the previous
execution of the algorithm. At the end of each iteration, the
upper equation in (8), after following modification, is usedto
compute the prediction of ratings of the active userz. That is,
we use the setNa instead ofΞ in (8) to computeµ(ν)

a (G
(ν)
za )

for every itema for which the active userz did not have any
rating. Then, we setG(ν)

za =
∑5

i=1 iµ
(ν)
a (i). The iterations stop

whenGzj values converge for every itemj.

III. E VALUATION OF BPRS

We evaluate the performance of BPRS using the100K
MovieLens dataset. The dataset contains100, 000 ratings from
943 users on1682 items (movies) in which each user has rated
at least20 items. Further, the rating values are integers from1
to 5. We note that based on our simulations, we observed that
BPRS converges, on the average, in10 iterations. Therefore,
for the remaining of this section, we either show our results
during the first10 iterations or after the10th iteration.

A. Prediction Accuracy

We evaluate the rating prediction accuracy of BPRS in terms
of Root Mean Square Error (RMSE) metrics over the predicted
ratings. We note that each test dataset is created by80%/20%
split of the full data into training and test data.Then, we used
the training data (80% of the whole dataset) to predict the
ratings in the test dataset. We computed the RMSE as below:
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Fig. 3. Performance of BPRS in RMSE vs. number of iterations when: (i)
all users and (ii) only the 2-hop neighbors are used.

RMSE =

√

1

|K|

∑

i∈U,j∈I

(Gij − Ĝij)2 (9)

where|K| is the number of ratings (to be predicted) in the test
dataset,Ĝij is the actual value of the rating provided by user
i for the itemj in the test dataset, andGij is the predicted
rating value by the algorithm.

In Figs. 3, we show the RMSE provided by BPRS for two
different scenarios: when all users connected to each active
user via a path are used and when only the 2-hop neighbors
of each active user are used in the algorithm. We observe that
keeping only the 2-hop neighbors of each active user provides
better performance in terms of RMSE. It also reduces the
computational complexity as will be discussed later.

Finally, we evaluated BPRS against some popular recom-
mendation algorithms such as: 1. MovieAvg (which computes
the predicting ratings for the movies by averaging all the
received ratings for each movie) with an RMSE of1.053,
2. Correlation-based neighborhood model (CorNgbr), with an
RMSE of0.9406 [8], and 3. SVD latent factor model, with50
factors and RMSE of0.9046 [8]. We conclude that BPRS is
comparable to existing methods such as CorNgbr and SVD
in terms of rating prediction accuracy. On the other hand,
BPRS generates recommendations in linear complexity for
each active user and updates the recommendations for each
active user instantaneously using the most recent data.

B. Computational Complexity

Assumingu users ands items in the system, we obtained
the computational complexity of BPRS (in the number of
multiplications) asmax(O(cs),O(cu)) per each active user,
wherec is the average number of nonzero elements in each
row of the user-item matrix. We note that due to the sparseness
of the user-item matrix, the coefficientc is a small number.
Further, as we discussed before, BPRS converges, on the
average, in10 iterations. Hence, we did not include the number
of iterations in the complexity measure as it only introduces
a small constant in front of the total complexity. This result
indicates that BPRS can compute the recommendations for
each active user very efficiently using the most recent data

(ratings). Therefore, we claim that the BP-based approach
toward the recommendation problem is very promising and
can result in a new class of accurate and scalable recommender
systems.

IV. CONCLUSION

In this paper, we introduced the Belief Propagation Based
Iterative Recommender System (BPRS). BPRS formulates the
recommendation problem as making statistical inference about
the ratings of users for unseen items based on observations.
BPRS provides a complexity that remains linear per single
active user, making it very attractive for large-scale systems.
Further, it can update the recommendations for each active
user instantaneously using the most recent data (ratings) and
without solving the recommendation problem for all users.
While providing these significant scalability advantages over
the existing methods, we showed that BPRS also provides
comparable usage prediction and rating prediction accuracy
to other popular methods such as Correlation-based neigh-
borhood model (CorNgbr) and Singular Value Decomposition
(SVD).
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