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Abstract—This paper introduces the first application of Belief
Propagation (BP) in reputation systems. We view the reputation
management as an inference problem, and hence, describe the
reputation management problem as computing marginal likeli-
hood distributions from complicated global functions of many
variables. However, we observe that computing the marginal
probability functions of the reputation variables is computation-
ally prohibitive for large scale reputation systems. Therefore,
we propose to utilize the BP algorithm to efficiently (i.e., in
linear complexity) compute these marginal probability distri-
butions; leading to a fully iterative probabilistic and BP-based
approach (referred to as BP-ITRM). BP-ITRM describes the
reputation system on a factor graph, using which we can obtain
a qualitative representation of how the service providers (sellers)
and consumers (buyers) are related. Further, by using such
a graph representation, we compute the marginal probability
distribution functions of the variables representing the global
reputation values via an iterative message passing algorithm. We
show that BP-ITRM significantly outperforms the well-known
and commonly used reputation management schemes such as
the Averaging Scheme, Bayesian Approach and Cluster Filtering
in the presence of attackers. Further, its complexity is linear in
the number of service providers and consumers, far exceeding
the efficiency of other schemes.

I. INTRODUCTION

Trust and Reputation are crucial requirements for most en-
vironments wherein entities participate in various transactions
and protocols among each other. The recipient of the service
often has insufficient information about the service quality
of the service provider before the transaction. Hence, the
service recipient should take a prior risk before receiving the
actual service. This risk puts the recipient into an unprotected
position since he has no opportunity to try the service before
he receives it. This problem gives rise to the use of reputation
systems in which reputations are determined by rules that
evaluate the evidence generated by the past behavior of an
entity within a protocol. Hence, after each transaction, a party
who receives the service (referred to as the rater) provides (to
the central authority) its report about the quality of the service
provided for that transaction. The central authority collects the
reports and updates the reputations of the service providers.
Reputation systems have found widespread adoption in online
communities, web services, ad-hoc networks, P2P computing,
and e-commerce.

Reputation management systems are subject to various
manipulations, launched by the malicious participants. Thus,
the success of a reputation scheme depends on the robustness
of the mechanism to accurately evaluate the service providers’
service qualities (i.e., reputations) and the trustworthiness of
the raters based on their reports about the service providers.
Further, the emergence of large-scale online services and

networks calls for efficient and scalable algorithms to solve for
the reputation management problem. Hence, there is a need to
develop reliable, scalable and dependable reputation schemes
that would also be resilient to various ways a reputation system
can be attacked.

In this work, for the first time, we view the reputation
management problem as an inference problem and describe the
reputation management problem as computing marginal likeli-
hood distributions from complicated global functions of many
variables. To solve this problem whose complexity grows
exponentially, we resort to use Belief Propagation (BP) [1]
whose computational efficiency (i.e., linear in the number of
service providers or consumers) is driven by exploring the way
in which the global functions factors into a product of simpler
local functions. Thus, we introduce the Belief Propagation
based Iterative Trust and Reputation Management scheme
(BP-ITRM). The work is inspired by earlier work on graph-
based iterative probabilistic decoding of low-density parity-
check codes [2], the most powerful practically decodable error-
control codes known. We believe that the significant benefits
offered by the BP algorithms can be tapped in to benefit the
field of reputation systems.

In BP-ITRM, the sellers (i.e., service providers) and buyers
(i.e., consumers or raters) are represented via a factor graph
on which they are arranged as two sets of variable and factor
nodes that are connected via some edges. The reputation values
of the service providers can be computed by message passing
between nodes in the graph. In each iteration of the algorithm,
all the variable vertices (service providers) and subsequently
all the factor vertices (the raters) pass new messages to their
neighbors until convergence. We show that the proposed iter-
ative scheme is reliable (in filtering out malicious/unreliable
ratings) while being computationally efficient (i.e., linear in
the number of variables). Thus, it can be used as an effective
and scalable reputation system in many applications such as
online services.

The rest of this paper is organized as follows. In the rest of
this section, we summarize the related work. In Section II, we
describe the proposed BP-ITRM in detail. Next, in Section III,
we evaluate BP-ITRM via computer simulations and compare
BP-ITRM with the existing and commonly used reputation
management schemes. Further, we analyze BP-ITRM using a
mathematical model for the users. Finally, in Section IV, we
conclude our paper.

A. Related Work

Several works in the literature have focused on building
reputation-management mechanisms [3]. The most famous



and primitive reputation system is the one that is used in
eBay. Other well-known web sites such as Amazon, Epinions,
and AllExperts use a more advanced reputation mechanism
than eBay. Their reputation mechanisms mostly compute the
weighted average of the ratings received for a product (or a
peer) to evaluate the reputation of a product (or a peer). Hence,
these schemes are vulnerable to collaborative attacks by ma-
licious peers. Use of the Bayesian Approach is also proposed
in [4]. Finally, [5] proposed to use the Cluster Filtering method
to distinguish between the reliable and unreliable raters. As we
will illustrate via computer simulations, all existing methods
are vulnerable to sophisticated attacks such as RepTrap [6]
since none of these schemes are designed considering the
noise and the incomplete information in the system. Inspired
by the earlier work on iterative decoding of error-control
codes in the presence of stopping sets, we developed an
algebraic iterative algorithm for reputation management [7]
and adversary detection [8]. Here, we propose a new scheme
based on the key observation that the reputation management
problem can be formulated as solving for marginal likelihood
functions of many variables by using the BP algorithm. As we
will illustrate, comparison with the existing schemes suggests
that the proposed BP-ITRM has superior performance (i.e.,
accuracy, scalability and robustness against attacks).

II. BELIEF PROPAGATION BASED ITERATIVE TRUST AND

REPUTATION MANAGEMENT

In the reputation management problem, we wish to make
statistical inference about the reputations of service providers
based on past observations. That is, given the past data
evidence, what is the likelihood (probability) of the reputation
values being “good” or “bad”? Here, the interpretation of prob-
ability is a Bayesian one. We formulate this problem as finding
the marginal probability distributions problem. Unfortunately,
computing such probability distributions is computationally
prohibitive for large-scale systems. However, the proposed
algorithm (referred to as BP-ITRM) shows that this problem
can be solved, fortunately, by applying the Belief Propagation
(BP) algorithm (in linear complexity).

We assume two different sets in the reputation system: i) the
set of service providers, S, and ii) the set of service consumers
(raters), U. We note that these two sets are not necessarily
disjoint. Transactions occur between service providers and
consumers, and consumers (raters) provide feedbacks in the
form of ratings about service providers after each transaction.
As in every reputation management mechanism, we have two
main goals: 1. computing the service quality (reputation) of the
peers who provide a service (henceforth referred to as Service
Providers or SPs) by using the feedbacks from the peers who
used the service (referred to as the raters), and 2. determining
the trustworthiness of the raters by analyzing their feedback
about SPs. Let Gj be the reputation value of the SP j (j ∈ S)
and Tij be the rating that the rater i (i ∈ U) reports about the
SP j (j ∈ S), whenever a transaction is completed between
the two peers. Moreover, let Ri denote the trustworthiness of
the peer i (i ∈ U) as a rater. In other words, Ri represents the
amount of confidence that the reputation system has about the
correctness of any feedback/rating provided by the rater i. We
assume there are u raters and s SPs in the system (i.e., |U| = u
and |S| = s). We let G = {Gj : j ∈ S} and R = {Ri : i ∈ U} be
the collection of variables representing the reputations of the
SPs and the trustworthiness values of the raters, respectively.

Further, let T be the s×u SP-rater matrix that stores the rating
values (Tij), and Ti be the set of ratings provided by the rater i.
For simplicity of presentation, we assume that the rating values
are from the set Υ = {0, 1}. The extension in which rating
values can take any real number can be developed similarly.

The reputation management problem can be viewed as
finding the marginal probability distributions of each variable
in G, given the observed data (i.e., evidence). There are
s marginal probability functions, p(Gj |T,R), each of which
is associated with a variable Gj ; the reputation value of
SP j. We formulate the problem by considering the global
function p(G|T,R), which is the joint probability distribution
function of the variables in G given the rating matrix and
the trustworthiness values of the raters. Then, clearly, each
marginal probability function p(Gj |T,R) may be obtained as

follows1:

p(Gj |T,R) =
∑

G\{Gj}

p(G|T,R). (1)

Unfortunately, the number of terms in (1) grows exponen-
tially with the number of variables, making it infeasible for
large-scale systems. However, we propose to factorize (1) to
local functions fi using a factor graph and utilize the BP
algorithm to calculate the marginal probability distributions
in linear complexity. A factor graph is a bipartite graph
containing two sets of nodes (corresponding to variables and
factors) and edges incident between two sets. Following [9],
we form a factor graph by setting a variable node for each
variable Gj , a factor node for each function fi, and an edge
connecting variable node j to the factor node i if and only if
Gj is an argument of fi.
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Fig. 1: Factor graph between the
SPs and the raters.

Therefore, we arrange
the collection of the raters
and the SPs together with
their associated relations
(i.e., the ratings of the SPs
by the raters) as a bipar-
tite (or factor) graph, as in
Fig. 1. In this representa-
tion, each rater peer cor-
responds to a factor node
in the graph, shown as a
square. Each SP is repre-
sented by a variable node shown as a hexagon in the graph.
Each report/rating is represented by an edge from the factor
node to the variable node. Hence, if a rater i (i ∈ U) has a
report about the SP j (j ∈ S), we place an edge with value Tij
from the factor node i to the variable node representing the
SP j.

Next, we assume that the global function p(G|T,R) factors
into products of several local functions, each having a subset
of variables from G as arguments as follows:

p(G|T,R) =
1

Z

∏

i∈U

fi(Gi,Ti, Ri), (2)

where Z is the normalization constant and Gi is a subset of G.
Hence, in the graph representation of Fig. 1, each factor node
is associated with a local function and each local function
fi represents the probability distributions of its arguments

1The notation G\{Gj} implies all variables in G except Gj .



given the trustworthiness value and the existing ratings of the
associated rater.

We now introduce the messages between the factor and the
variable nodes to compute the marginal distributions using BP.
To that end, we choose an arbitrary factor graph as in Fig. 1
and describe message exchanges between rater k and SP a.
We represent the set of neighbors of the variable node (SP)
a and the factor node (rater) k as Na and Nk, respectively2.
Further, let Ξ = Na\{k} and ∆ = Nk\{a}. The BP algorithm
iteratively exchanges the probabilistic messages between the
factor and the variable nodes in Fig. 1, updating the degree of
beliefs on the reputation values of the SPs as well as the confi-
dence of the raters on their ratings (i.e., trustworthiness values)

at each step, until convergence. Let G
(ν) = {G

(ν)
j

: j ∈ S}

be the collection of variables representing the values of the
variable nodes at the iteration ν of the algorithm. We denote
the messages from the variable nodes to the factor nodes
and from the factor nodes to the variable nodes as µ and λ,

respectively. The message µ
(ν)
a→k

(G
(ν)
a ) denotes the probability

of G
(ν)
a = ℓ, ℓ ∈ {0, 1}, at the νth iteration. On the other

hand, λ
(ν)
k→a

(G
(ν)
a ) denotes the probability that G

(ν)
a = ℓ, for

ℓ ∈ {0, 1}, at the νth iteration given Tka and Rk.
The message from the factor node k to the variable node a

at the νth iteration is formed using the principles of the BP as

λ
(ν)
k→a

(G
(ν)
a ) =

∑

G(ν−1)\{G
(ν−1)
a }

fk(Gk,Tk, R
(ν−1)
k

)
∏

x∈∆

µ
(ν−1)
x→k

(G
(ν−1)
x ),

(3)
where Gk is the set of variable nodes which are arguments

of the local function fk at the factor node k. Further, R
(ν−1)
k

(the trustworthiness of rater k calculated at the end of (ν −
1)th iteration) is a value between zero and one and can be
calculated as follows:

R
(ν−1)
k

= 1−
1

|Nk|

∑

i∈Nk

∑

x∈{0,1}

|Tki − x|µ
(ν−1)
i→k

(x). (4)

The above equation can be interpreted as one minus the
average inconsistency of rater k calculated using the messages
it received from its neighbors. Using (3), it can be shown that

λ
(ν)
k→a

(G
(ν)
a ) ∝ p(G

(ν)
a |Tka, R

(ν−1)
k

), where

p(G
(ν)
a |Tka, R

(ν−1)
k

) =

[

(R
(ν−1)
k

+
1−R

(ν−1)
k

2
)Tka +

1−R
(ν−1)
k

2
(1− Tka)

]

G
(ν)
a +

[1−R
(ν−1)
k

2
Tka + (R

(ν−1)
k

+
1−R

(ν−1)
k

2
)(1− Tka)

]

(1−G
(ν)
a ).

(5)

This resembles the belief/pleusability concept of the Dempster-

Shafer Theory [10]. Given Tka = 1, R
(ν−1)
k

can be considered

as the belief of the kth rater that the G
(ν)
a value is one

(at the νth iteration). In other words, in the eyes of rater

k, the G
(ν)
a value is equal to one with probability R

(ν−1)
k

.

Thus, (1−R
(ν−1)
k

) corresponds to the uncertainty in the belief
of rater k. In order to remove this uncertainty and express

p(G
(ν)
a |Tka, R

(ν−1)
k

) as the probabilities that G
(ν)
a is zero and

2Neighbors of a SP are the set of raters who rated the SP while neighbors
of a rater are the SPs whom it rated.

one, we distribute the uncertainty uniformly between two out-

comes (one and zero). Hence, in the eyes of the kth rater, G
(ν)
a

value is equal to one with probability (R
(ν−1)
k

+(1−R
(ν−1)
k

)/2),

and zero with probability ((1 − R
(ν−1)
k

)/2). We note that a
similar statement holds for the case when Tka = 0. The above
computation must be performed for every neighbors of each
factor nodes. This finishes the first half of the νth iteration.

During the second half of the νth iteration, the variable
nodes generate their messages (µ) and send to their neigh-

bors. Variable node a forms µ
(ν)
a→k

(G
(ν)
a ) by multiplying all

information it receives from its neighbors excluding the factor
node k. Hence, the message from variable node a to the factor
node k at the νth iteration is given by

µ
(ν)
a→k

(G
(ν)
a ) =

1
∑

h∈{0,1}

∏

i∈Ξ
λ
(ν)
i→a(h)

×
∏

i∈Ξ

λ
(ν)
i→a(G

(ν)
a ) (6)

This computation is repeated for every neighbors of each
variable node. The algorithm proceeds to the next iteration
in the same way as the νth iteration. We note that the iterative

algorithm starts its first iteration by computing λ
(1)
k→a

(G
(1)
a ) in

(3). However, instead of calculating in (4), the trustworthiness
value Rk from the previous execution of BP-ITRM is used as
initial values in (5).

The iterations stop when all variables in G converge. There-
fore, at the end of each iteration, the reputations are calculated

for each SP. To calculate the reputation value G
(ν)
a , we first

compute µ
(ν)
a (G

(ν)
a ) using (6) but replacing Ξ with Na, and

then we set G
(ν)
a =

∑1
i=0 iµ

(ν)
a (i).

III. EVALUATION OF BP-ITRM

Here, we wish to evaluate the proposed BP-ITRM using a
mathematical model for the users. We consider slotted time
throughout this discussion. For each time-slot (or epoch),
the iterative reputation algorithm is executed using the input
parameters R and T to output the reputation values after
convergence. We assumed that the rating values are either 0
or 1. We let Ĝj denote the actual value of the reputation of

the SP j (j ∈ S), where Ĝj ∈ {0, 1} (1 represents a good
service quality). Further, the quality of each service provider
remains unchanged during time-slots. Ratings generated by
the non-malicious raters are uniformly distributed among the
SPs (i.e., their ratings/edges in the graph representation are
distributed uniformly among SPs). We also assume the rating
rh (provided by a non-malicious rater) is a random variable
with Bernoulli distribution, where Pr(rh = Ĝj) = pc and

Pr(rh 6= Ĝj) = (1 − pc). To facilitate future references,
frequently used notations are listed in Table I.

UM : The set of malicious raters

UR: The set of non-malicious raters

rh: Report (rating) given by a non-malicious rater

rm: Report (rating) given by a malicious rater

d: Total number of newly generated ratings, per time-slot, per non-malicious rater

b: Total number of newly generated ratings, per time-slot, per malicious rater

TABLE I: Notations and definitions.

A. Malicious User Model

We consider two major attacks that are common for any
reputation management mechanisms:
Bad mouthing: Malicious raters collude and attack the service
providers with the highest reputation by giving low ratings
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Fig. 2: MAE performance of BP-ITRM versus
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cious in RepTrap [6].
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Fig. 3: Average trustworthiness of malicious
raters versus time for BP-ITRM when W of the
existing raters are malicious in RepTrap [6].
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Fig. 4: MAE performance of various schemes
when 30% of the existing raters become mali-
cious in RepTrap [6].

in order to undermine them. It is also noted that in addition
to the malicious peers, in some applications, bad mouthing
may be originated by a group of selfish peers who attempt
to weaken high-reputation SPs in the hope of improving their
own chances as providers.
Ballot stuffing: Malicious raters collude to increase the
reputation values of peers with low reputations. In some
applications, this could be mounted by a group of selfish
consumers attempting to favor their allies.

We make the following assumptions for modeling the
adversary which is also known as the RepTrap attack [6].
RepTrap is believed to be a strong attack against the reputation
management system. We assumed that the malicious raters
initiate bad mouthing3. Further, all the malicious raters collude
and attack the same subset Γ of SPs in each time-slot (which
represents the strongest attack), by rating those SPs as rm = 0.
In other words, we denote by Γ the set of size b in which
every victim SP has one edge from each of the malicious
raters. The subset Γ is chosen to include those SPs who have
the highest reputation values but received the lowest number
of ratings from the non-malicious raters (assuming that the
attackers have this information). To the advantage of malicious
raters, we assumed that a total of T time-slots had passed
since the initialization of the system and a fraction of the
existing raters change behavior and become malicious after
T time-slots. In other words, malicious raters behaved like
reliable raters and increased their trustworthiness values before
mounting their attacks at the (T + 1)th time-slot. We will
evaluate the performance for the time-slot (T + 1).

B. Simulations

We compared the performance of BP-ITRM with three well-
known and commonly used reputation management schemes:
1) The Averaging Scheme (which is widely used in eBay or
Amazon), 2) Bayesian Approach [4], and 3) Cluster Filter-
ing [5]. Further, we compared BP-ITRM with our previous
method [7] (referred to as ITRM).

We assumed that d (in Table I) is a random variable
with Yule-Simon distribution, which resembles the power-
law distribution used in modeling online systems, with the
probability mass function fd(d; ρ) = ρB(d, ρ+ 1), where B is
the Beta function. Further, we set T = 50, b = 5, pc = 0.8,
ρ = 1, |U| = 100 and |S| = 100. We assumed the adversary
model in Section III-A. In the following, we measured the

3It is worth nothing that even though we use the bad-mouthing attack,
similar counterpart results hold for ballot stuffing and combinations of bad
mouthing and ballot stuffing.

performance of BP-ITRM, for each time-slot, as the mean
absolute error (MAE) |Gj − Ĝj |, averaged over all the SPs
that are under attack. The time-slots in all the plots are shown
after subtracting the offset-time T = 50.

First, we evaluated the MAE performance of BP-ITRM
for different fractions of malicious raters (W = UM

UM+UR
),

at different time-slots in Fig. 2. We observed that BP-ITRM
provides significantly low errors for up to W = 40% malicious
raters. Next, in Fig. 3, we show the change in the average
trustworthiness (Ri values) of malicious raters with time.
We conclude that the trustworthiness values of the malicious
raters decrease over time, and hence, the impact of the
malicious ratings vanishes over time. Further, Fig. 4 illustrates
the comparison of BP-ITRM with the other well-known and
commonly used reputation systems for bad mouthing when
the fraction of malicious raters (W ) is 30%. It is clear that
BP-ITRM outperforms all the other techniques significantly.
In all these simulations, the average number of iterations for
BP-ITRM is around 10 and it decreases with time and with
decreasing fraction of malicious raters.

In most reputation systems, the adversary causes the most
serious damage by introducing newcomer raters to the sys-
tem. Since it is not possible for the system to know the
trustworthiness of the newcomer raters, the adversary may
introduce newcomer raters to the systems and attack the
SPs using those raters. To study the effect of newcomer
malicious raters to the scheme, we introduced 100 more raters
as newcomers. Hence, we had |U| = 200 raters and |S| = 100
SPs in total. We assumed that the rating values are either
0 or 1, rh is a random variable with Bernoulli distribution
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Fig. 5: MAE performance of various schemes
when 30% of the newcomer raters are malicious.

as before, and
malicious raters
choose SPs from
Γ and rate them
as rm = 0 (this
particular attack
scenario does
not represent the
RepTrap attack).
In Fig. 5 we
observed that BP-
ITRM still provides
significantly low
MAE and preserves
its superiority over the other schemes.

From these simulation results, we conclude that BP-ITRM
significantly outperforms the Averaging Scheme, Bayesian



Approach and Cluster Filtering in the presence of attack-
ers. We identify that our non-probabilistic iterative scheme
ITRM [7] is the closest in performance to BP-ITRM. This
emphasizes the robustness of using iterative algorithms for
reputation management. Finally, assuming u raters and s SPs,
we obtained the computational complexity of BP-ITRM as
max(O

(

cu
)

,O
(

cs
)

) in the number of multiplications, where c
is a small number representing the average number of rating
edges per rater. In contrast, Cluster Filtering suffers quadratic
complexity versus number of raters (or SPs).

C. The ǫ-Optimal Scheme

Using the adopted models for various peers, it is natural
to ask if BP-ITRM maintain any optimality in any sense.
We declare a reputation scheme to be ǫ-optimal if the mean
absolute error (MAE) (|Gj − Ĝj |) is less than or equal to ǫ for
every SP j. Thus, for a fixed ǫ, we wish to obtain the conditions
for an ǫ-optimal scheme. It can be shown that, equivalently, we
require BP-ITRM to iteratively reduce the impact of malicious
raters and decrease the error in the reputation values of the SPs
below ǫ until it converges.

Lemma 1: (Sufficient Condition): The error in the reputa-
tion values of the SPs decreases with each successive iterations
(until convergence) if G

(2)
a > G

(1)
a is satisfied with high

probability for every SP a (a ∈ S) with Ĝa = 14.

Proof: Let G
(ω)
a and G

(ω+1)
a be the reputation value of an

arbitrary SP a with Ĝa = 1 calculated at the (ω)th and (ω +

1)th iterations, respectively. G
(ω+1)
a > G

(ω)
a if the following is

satisfied at the (ω + 1)th iteration.

∏

j∈UR∩Na

2pcR
(w+1)
j + 1−R

(w+1)
j

−2pcR
(w+1)
j + 1 +R

(w+1)
j

∏

j∈UM∩Na

1− R̂
(w+1)
j

1 + R̂
(w+1)
j

>

∏

j∈UR∩Na

2pcR
(w)
j + 1−R

(w)
j

−2pcR
(w)
j + 1 +R

(w)
j

∏

j∈UM∩Na

1− R̂
(w)
j

1 + R̂
(w)
j

, (7)

where R
(w)
j and R̂

(w)
j are the trustworthiness values of a

reliable and malicious rater calculated as in (4) at the wth

iteration, respectively.

Given G
(ω)
a > G

(ω−1)
a holds at the ωth iteration, we would

get R̂
(w)
j > R̂

(w+1)
j for j ∈ UM ∩Na and R

(w+1)
j ≥ R

(w)
j for

j ∈ UR ∩Na. Thus, (7) would hold for the (w+1)th iteration.

On the other hand, if G
(ω)
a < G

(ω−1)
a , we get R̂

(w)
j < R̂

(w+1)
j

for j ∈ UM ∩Na and R
(w+1)
j < R

(w)
j for j ∈ UR ∩Na. Hence,

(7) is not satisfied at the (w + 1)th iteration. Therefore, if

G
(ω)
a > G

(ω−1)
a holds for some iteration ω, then the BP-ITRM

algorithm reduces the error on the global reputation value (Ga)
until the iterations stop, and hence, it is sufficient to satisfy

G
(2)
j > G

(1)
j with high probability for every SP j with Ĝj = 1

to guarantee that BP-ITRM iteratively reduces the impact of
malicious raters until it stops.

Once the sufficient condition is met, the probability
for ǫ-optimality can be obtained5. Now, we illustrate per-
formance of our scheme in terms of ǫ for which BP-
ITRM is an ǫ-optimal scheme based on our analyti-
cal results. As before, we assumed that d is a ran-
dom variable with Yule-Simon distribution (with ρ = 1).

4The opposite must hold for any SP with Ĝa = 0.
5We omitted the expression due to page limit.
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Fig. 6: The average ǫ values for which BP-
ITRM is an ǫ-optimal scheme with high proba-
bility versus fraction of malicious raters.

The parameters we
used are |UM | +
|UR| = 100, |S| =
100, ρ = 1, T = 50,
b = 5 and pc =
0.8. In Fig. 6, we
illustrate the average
ǫ (ǫav) for which
BP-ITRM is an ǫ-
optimal scheme with
high probability for
different fractions of
malicious raters. We
observed that BP-
ITRM provides sig-
nificantly small error values for up to 30% malicious raters.

IV. CONCLUSION

In this paper, we introduced the first application of the Belief
Propagation algorithm to solve for the inference problem aris-
ing in reputation systems. We presented the Belief Propagation
based Iterative Trust and Reputation Management Scheme
(BP-ITRM). BP-ITRM is a graph-based reputation manage-
ment system in which service providers and raters are arranged
as two sets of variable and factor nodes and the reputation
values of service providers are computed by message passing
between these nodes in the graph until the convergence. The
proposed BP-ITRM is a robust mechanism to evaluate the
quality of the service of the service providers from the ratings
received from the raters. Moreover, it effectively evaluates the
trustworthiness of the raters. We showed that the complexity
of the proposed scheme grows only linearly with the number
of service providers (or raters) in the system. Further, we
studied BP-ITRM in a detailed analysis and showed the
robustness using computer simulations. We also compared BP-
ITRM with some well-known reputation management schemes
and showed the superiority of our scheme both in terms of
robustness against various attacks and efficiency.
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