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Abstract—Trust and reputation play critical roles in most en-
vironments wherein entities participate in various transations
and protocols among each other. The recipient of the servichas
no choice but to rely on the reputation of the service provide
based on the latter's prior performance. This paper introduces
an iterative method for trust and reputation management retrred
as ITRM. The proposed algorithm can be applied to centralize
schemes, in which a central authority collects the reportsrad forms
the reputations of the service providers as well as reportéting
trustworthiness of the (service) consumers. The proposedeirative
algorithm is inspired by the iterative decoding of low-dengy
parity-check codes over bipartite graphs. The scheme is ralst in
filtering out the peers who provide unreliable ratings. We provide a
detailed evaluation of ITRM via analysis and computer simuations.
Further, comparison of ITRM with some well-known reputation
management techniques (e.gAveraging Scheme, Bayesian Approach
and Cluster Filtering) indicates the superiority of our scheme
both in terms of robustness against attacks (e.g., ballottsffing,
bad-mouthing) and efficiency. Furthermore, we show that the
computational complexity of the proposed ITRM is far less ttan the
Cluster Filtering; which has the closest performance (to ITRM) in
terms of resiliency to attacks. Specifically, the complexjt of ITRM
is linear in the number of clients, while that of the Cluster Hitering
is quadratic.

I. INTRODUCTION

Trust and reputation systems have found widespread adoptio 2)

in online communities, web services, ad-hoc networks, R2R-c

puting, and in e-commerce communities. In most environsjent

the consumer of the service (e.g., the buyer) has no cho
but to rely on the reputation of the service provider (e.ge t
seller) based on the latter’s prior performance. Henceséneice
recipient should take a prior risk before receiving the aktu
service. This risk puts the recipient into an unprotectesitjzm
since he has no opportunity to try the service before hevesei
it. A reputation-management mechanism is a promising nieth
to protect the consumers against deceitful service prosidgy
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Focusing mainly on centralized reputation systems, thie ult
mate objective of our work is to develop a trust and reputatio
management scheme that not only provides immunity against
malicious ratings but also discourages the service prosiiem
any unfair and discriminating behaviors. Our work on repata
systems stems from our prior success in the use of iterative
algorithms, such as message passing techniques and belgef p
agation [1], [2] in the decoding of Low-Density Parity-Clec
(LDPC) codes in erasure channels [3], [4]. These algorithms
rely on graph-based representations of codes, where degodi
can be viewed as message passing between nodes in the graph.
Moreover, they are shown to perform at error rates near what
can be achieved by the optimal scheme, maximum likelihood
decoding, while requiring far less computational compgietiie.,
linear in the length of the code). We believe that these Saarit
benefits offered by iterative algorithms can be tapped ireteefit
the field of reputation systems. To achieve this, we propbse t
Iterative Trust and Reputation Mechanism (ITRM).

The main strengths of the ITRM scheme are summarized in
the following.

1) The proposed algorithm computes the reputations of the
service providers accurately (with a small error) in a short
amount of time in the presence of attackers.

ITRM is a robust and efficient methodology for detecting
and filtering out unreliable ratings (from malicious rajers

in a short amount of time.

ITRM detects the malicious raters with a high accu-
racy, and updates their trustworthiness accordingly. Henc

ITRM enforces the malicious raters to execute low grade
attacks in order to remain undercover.

The proposed ITRM algorithm has the computational
complexity which is linear with the number of raters.

Hence, ITRM is scalable and suitable for large scale
implementations.

ices)

4)

o

using a reputation-management scheme, an individual Grvi The rest of this paper is organized as follows. In the resisf t
provider's reputation can be formed by the combination @fction, we summarize the related work and present majskatt

received reports (ratings). Hence, after each transacigrarty
who receives the service (referred to as the rater) proyies
the central authority, its rating about the quality of theviame

models considered in this study. In Section Il we descritieNIT
in detail. Next, in Section lll, we evaluate our proposedesnk
by conducting computer simulations and a detailed analysis

provided for that transaction. The central authority atiethe Fyrthermore, we compare ITRM with some existing schemes.
ratings and estimates the reputation of the service prov@qna”y, we provide the concluding remarks in Section IV.

as well as the rating trustworthiness of the raters. Thengati

mechanism puts the service providers in a vulnerable pos#s A. Related Work

malicious raters may give unfair ratings. Hence, the sicoés

Several works in the literature have focused on building

reputation scheme depends on the robustness of the methaméputation-management mechanisms. We may classify riquta

to accurately evaluate the service providers’ reputatiand

mechanisms for centralized systems as i) global reputation

the trustworthiness of the raters. Despite the past pregoas systems, where the reputation of a service provider is based

reputation systems, there is still a need to develop rajab
scalable, and dependable schemes that would be resili¢hé to
various ways a reputation system can be compromised.

bn the ratings from general users [5], [6], and ii) persaeali
reputation systems, where the reputation of a service peovs

determined based on the ratings of a group of particularsyser



which may be different in the eyes of different users [5], M the analysis of reputation systems resembles that of the cod
note that our work falls under the category of global repatat design problem. In LDPC, one of the goals is to find the deapdin
systems. The most famous and primitive global reputatistesy error for the a fixed set of check constraints. Similarly, TiRM,
is the one that is used in eBay. Other well-known web siteair goal is to specify the regions of trust for the set of the
such as Amazon, Epinions , and AllExperts use a more advansgdtem parameters. A region of trust is the range of paramete
reputation mechanism than eBay. Their reputation mectremnisfor which we can confidently determine the reputation values
mostly compute the average (or weighted average) of thegsti within a given error bound. We acknowledge, however, that we
received for a product (or a peer) to evaluate the globaltegjmn have a harder problem in the case of reputation systems as the
of a product (or a peer) [5]. Hence, these schemes are vileeradversary dynamics is far more complicated to analyze than t
to collaborative attacks by malicious peers. Use of the Bi@ye channel noise in the coding problem.
Approach is also proposed in [6], [8]. In these systems,a&he The first step in developing ITRM is to interpret the colleati
posteriori reputation value of a peer is computed combining itsf the raters and the SPs together with their associatetiorega
a priori reputation values with the new ratings received for thes a bipartite graph, as in Fig. 1(a). In this representatach
peer. Finally, [7] proposed to use tléuster Filtering method [9] rater-peer corresponds tocheck vertex in the graph, shown as
for reputation. Different from the existing schemes, thegmsed a square and each SP is represented Iyt aertex shown as
ITRM algorithm is a graph based iterative algorithm motadht a hexagon in the graph. Assume that the graph haheck-
by our previous success on message passing techniques antices andN bit-vertices. If a rateri has a rating about the
belief propagation algorithms. j'" SP, we place an edge with vala&;; from thei'® check-
vertex to thej*" bit-vertex. As time passes, we use the age-
B. Attack models factored values as the edge values instead. To each {gdge
We consider two major attacks that are common for any trustvalueW R;; = w;; T R;; is assigned, wher®/ R;; is the age-
and reputation management mechanisms. Further, we asst@eeoredT R;; value. The factorw;;(t) is used to incorporate
that the attackers may collude and collaborate with eactroththe time-varying aspect of the reputation of the SPs (iime+
Bad-mouthing: Malicious raters collude and attack the servicearying service quality). We use a known factoy; (t) = \i~%ii
providers with the highest reputation by giving low ratingsvhere A\ andt;; are the fading parameter and the time when
In addition to the malicious raters, in some applicatiorsg-b the last transaction between the rateand the SPj occurred,
mouthing may be originated by a group of selfish raters whespectively. If any new rating arrives from the rateabout the
attempt to weaken high-reputation providers in the hope ¢ SP, our scheme updates the new value of the ddge by
improving their own chances as providers. averaging the new rating and the old value of the edge migitipl
Ballot-stuffing: Malicious raters collude to increase the reputawith the fading factor.
tion value of peers with low reputations. Just as in bad-miogt  We consider slotted time throughout this discussion. Aheac
in some applications, this could be mounted by a group ofséelfitime-slot (or epoch), ITRM will be executed using the input

consumers attempting to favor their allies. parametersk; and W R;; to obtain the reputation parameters
Il D P A (e.9.,TR;) and the list of malicious raters (referred to as the
- DESCRIPTION OF THEFROPOSEDALGORITHM blacklist). Initially, the blacklist is set empty. Detaits ITRM

As in every trust and reputation management mechanismay be described by the following procedure at ffé time-
we have two main goals: 1. Computing the service qualilot. LetR; andT R;; be the parameter values prior to the present
(reputation) of the peers who provide a service (hencefoRecution (thel'" execution) of ITRM algorithm. Let als@' RY
referred to as Service Providers or SPs) by using the ratingsy7rv be the values of the bit-vertex and thej 1t edge at
from the peers who used the service (referred to as the yatefige jterationv of the ITRM algorithm. Prior to the start of the
and 2. Determining the trustworthiness of the raters byyaay jteration ¢ = 0), we setT’'RY=0 = TR;; and compute the initial
their past ratings. We Ief'R; be the global reputations of the, . .« of each bit-vertex (rgferred to as the initial guegs; =)
SE S Flﬁrtht%'TRij rhepresents the rating that the rlatengpt?rts based on the weighted average of the age-factored edgesvalue
about the;"™ SP whenever a transaction is completed betwegfy, pu y of gl the edges incident to the bit-vertgxEquivalently,
the two peers. FinallyR?; denotes the (rating) trustworthiness of, o CoJmpute
theit" rater-peer. All of these parameters may evolve with time.
However, for simplicity, we omitted time dependencies friira TRY —
notation. /

Dica i x WRY,
Dica Ri xwi(t)’

A. lterative Trust and Reputation Management Mechanism where A is the set of all check-vertices connected to the bit-
(ITRM) vertex j. It is interesting to note that the initial guess-values

Our proposed iterative algorithm is inspired by our earlidfSeémble the received information from the channel in the
work on the improved iterative decoding algorithm of LDPc¢hannel coding problem. Then, the first iteration starts. (i.
codes in the presence of stopping sets [3], [4]. In iterafiweod- ¥ = 1)- We first compute the average inconsistency facigr
ing of LDPC, every check-vertex (in the graph representatib of eya_clh check—\_/ertgx using the values of the blt—veruces (i.e.,
the code) has some opinion of what the value of each bitxerte ;) for which it is connected to. That is, we compute
should be. The iterative decoding algorithm would thenyael C/ = [1/> ez A7 g d(T R, TRY ™) where B is
the collection of these opinions to decide, at each itematichat the set of bit vertices connected to the check-veitardd(-, -)
value to assign for the bit-vertex under examination. O tis a distance metric used to measure the inconsistency. ¥e us
values of the bit-vertices are estimated, in the next ii@nathose the £' norm (absolute value) as the distance metric. Hence,
values are used to determine the satisfaction of the chedews d(TR}; ', TR} ') = |[T R} '=TR!~!|X'""is. After computing
values. The novelty of this work stems from the observati@i t the inconsistency factor for every check-vertex, we orflent by
a similar approach can be adapted to determine SPs’ reputatiank. Then, the check-vertéxwith the highest inconsistency is
values as well as the trustworthiness of the raters. Furihex, selected and placed in the blacklist if its inconsistenayresater

(1)
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tteration | TR, | TR, | TR,
0 48 | 3 | 275
1 48 | 35 | 333
2 48 | 433 | 45

3 4.75 5 4.5

Iteration|C1| C2|C3|C4[C5|C6 |C7
0 1.1{.72|.101.52/1.1 [1.87}1.87
.85|.43.35|1.23.85 2.42| -

1
2 43| .35(.77|.65|.43| - | -
3 12|.38| - |.63]|.12] - | -

(b) (c)

Fig. 1: llustrative example of ITRM

QCi +1—1)9, othe[wise,Ri is increased by setting; (t + 1) =
Aa;(t) + 1, where ) is the fading parameter anddenotes the
penalty factor for the blacklisted raters. We note that tipda

R; values via the Beta distribution has one major disadvantage
An existing malicious rater with low?; could cancel its account
and sign in with a new ID. This problem may be prevented by
updatingR;'s using the method proposed in [5].

IIl. SECURITY EVALUATION OF ITRM

In order to facilitate future references, frequently usetan
tions are listed below.

Number of malicious raters

Number of honest raters

Number of service providers

Rating given by an honest rater

Rating given by a malicious rater

Total number of malicious ratéBR;; per a victim SP

Total number of newly generated outgoing edges, per time-sl
by an honest rater

ExFI2mT

(=l

than or equal to a definite threshotd(whose choice will be
discussed later). If there is no check-vertex with incdesisy i
greater than or equal tg the algorithm stops its iterations. Once
the check-vertex is blacklisted, we delete its ratifgR?; forall A
the bit-verticeg it is connected to. Then, we update the values gf
all the bit-vertices using (1). This completes the firstatem of

Total number of newly generated outgoing edges, per time-sl
by a malicious rater

Total number of newly generated attacking edges, per tiote-s
by a malicious rater

b/b (i.e., fraction of attacking edges per time-slot)

Total number of un-attacked SPs rated by an honest rater

ITRM. The iterative algorithm proceeds to other rounds édyac A Analytic Evaluation

in the same way as the first round, updating the values of the bi We adopt the following models for various peers involved in
vertices and blacklisting some other check-vertices assaltre the reputation system. We acknowledge that although thestaod
However, once a check-vertex is placed in the blacklisttfier are not inclusive of every scenario, they are good illuisirest

remaining iterations it is neither used for the evaluatibfi'®;s
nor for the inconsistency measure of the check-verticesstfe
the iterations when the inconsistencies of all the checkiogs
(excluding the ones already placed in the blacklist) falbter.

As an example, ITRM is illustrated in Fig. 1 fér= 7 raters,

to present our results. We assume that the quality of service
providers remains unchanged during time-slots. We prothde
evaluation for the bad-mouthing attack only, as similaultss
hold for ballot-stuffing. Hence, without loss of generalitye

will assume thafl"R; = 5 for all the SPs. Moreover, we assume

N =3 SPs, and- = 0.7. It is assumed that the rates are integghat ratings (i._e.TR;j) generated by the non-malicious raters are
values from{1, ..., 5} and the actual reputatiodER;, are equal distributed uniformly among the SPs. Furthermore, we assum

to 5. For simplicity, we assumeg;’s to be equal to 1 an®;’s to

that the ratingm (provided by the non-malicious raters) is a

be equal for all raters. Furthermore, we assumed that thes pg@ndom variable with folded normal distribution (mearand
1, 2, 3, 4, and 5 are honest bué and 7 are malicious raters. variance0.5), however, it takes only discrete values fron
It is expected that (as we have assumed) the raters, althot@H. Moreover, we assume that the values iof for all the
honest, may have different ratings about a particular SRcele raters are set to the highest value (i.B;,= 1) for simplicity
we choose rates to be honest but giving incorrect (unreliable\which reflects the worst case). Finally, we assume that a
ratings. The malicious rater$ (@and 7) are mounting the bad- random variable with Yule-Simon distribution, which redges

mouthing attack in this example. Fig. 1(a) showsThe;; values
(illustrated by different line-styles) prior to the exeiout of

the power-law distribution used in modeling online systewith
the probability mass function (PMFj;(d; p) = pB(d,p+ 1),

ITRM. The TR, values and the individual inconsistencies ovhere B(.,.) is the Beta function. For modeling the adversary,

the raters after each iteration are also illustrated in Eig).

we make the following assumptions. We assume that the ma-

We note that the algorithm stops at the third iteration whién dicious raters initiate bad-mouthing and collude whileaeking
the raters have inconsistencies less tharFig. 1(c) indicates the SPs. Further, the malicious raters attack the samé sét
how ITRM gives better estimates dfR;’s compared to the SPs at each time-slot. In other words, we denote’bhe set
weighted averaging method (which is correspond to the zewbsize b in which every attacked SP has one edge from each

iteration). Fig. 1(b) illustrates the edges after the fitatation
of ITRM. It is worth noting that the malicious rateésand7 are
blacklisted and their ratings are accordingly deleted. ddwer,

of the malicious raters. The following discussions are tgped
for the time-slott.
Let the random variabl® be the number of unique raters who

rater3, although honest, is also blacklisted at the third iteratiorated a specific SP ihelapsed time-slots. Also €} be a random
We note that this situation is possible when an honest biityfauvariable denoting the exponent of the fading paramsatat the

rater’s rating have a large deviation from the other horestrs.

B. Raters' Trustworthiness

t*" time-slot. It can be shown that the probability distributio
of both of these random variables can be easily obtained from
the distribution of the number of ratings received by a SP in

We now explain how the; values are to be updated using the elapsed time-slots. Using this, we can establish the fatigw

check vertices that are placed in the blacklist. The idea isse
the set of all past blacklists together in a Beta distributj6].
Initially, prior to the first time-slot, for each rater-pegrhe R;

results.

A r-eliminate-optimal Scheme:We declare a reputation scheme

to be r-eliminate-optimal if it can eliminate all the mali-

value is set t0).5 (a; = 1 and 3; = 1). Then, if the rater-peer cious raters whose inconsistency (measured from the angrag

i is blacklisted,R; is decreased by setting (¢t + 1) = \3;(t) +

scheme) exceeds the thresheldHence, such a scheme would



compute the reputations of the SPs by just using the honBstSmulations

raters. Naturally, we need to answer two questions: Fimst, f \ye have evaluated the performance of ITRM in the presence
a fixed, what are the conditions to haveraeliminate-optimal f had-mouthing and ballot-stuffing. Here, we provide anleva
scheme? Second, among all the eliminate-optimal schemgsiion of the bad-mouthing attack only, as similar resutidh
which scheme (i.e., which value o) should we choose for the fo palot-stuffing. We compared the performance of ITRMwit
best performance? In the following discussion, we try toA&#TS three well-known and commonly used reputation management
these two questions. _ o schemes: 1The Averaging Scheme, 2) Bayesian Approach, and

_At each iteration, ITRM blacklists the rater-peemith the 3) Clugter Filtering. The Averaging Scheme is widely used
highest inconsistencg’; if C; > 7. Obviously, the blacklisted iy well-known web sites such Amazon and AlExperts. The
rater should be a malicious one in all iterations. This catés Bayesian Approach [6] updates tfiéR; values using a Beta
given by the following lemma: _ . distribution. For this scheme, we assumed a deviation hiotds

Lemma 1. Let ©; be the number of unique raters for th¢  of 0.4 and a trustworthiness threshold(#, which is consistent
SP. Then, a sufficient condition for the inconsistedi¢y at the with our 7 selection (for details refer to [6]). Cluster Filtering
first iteration, to exceed the threshotdfor all malicious raters [7], [9] performs a dissimilarity test among the raters ahelrt

is given by A updates thé'R; values using only the honest raters.
Z U, > (bm + br) %) In all simulations, we considered the worst-case scenario i
reA which the victims are chosen among the newcomer SPs in order

to have the most adverse effect. We assumed that there were
Here, ¥, = %@MQ for r € A, whereA is the index set of alreadyl00 rater-peers andl0 SPs. Moreover, a total &0 time-
30,1@ . LS Y .
the setl". slots had passed since the initialization of the system atiniys
Given C; > 7 for a malicious ratet, for a r-eliminate-optimal generated during those time-slots were distributed amoa&Ps
scheme, we require that the inconsistency of the maliciates r in proportion to their reputation values (SPs with high gyadf
exceeds the inconsistencies of all of the honest raters. service made more transactions). After this initializatpvocess,
Lemma 2: (r-eliminate-optimal condition): Let d, be the attime-slot zero, we introducedd0 more rater-peers as well as
total number of outgoing edges from an honest raterdlapsed 50 more SPs as newcomers. Hence, we had D + H = 200
time-slots. Then, provided that Lemma 1 is met, ITRM woulégters andV = 100 SPs in total. Further, we assumed thas

be aq—-e"minate-optimm scheme if the condition a random variable with Yule-Simon distribution as discdsse
the analysis. At each time-slot, the newly generated ratirgm
I ONCA honest raters are assigned to the SPs in proportion to tisergre
d; >1- D (3)  estimate of their reputation valueBR;. Let T R; be the actual
value of the reputation. Then, we obtained the performarice o
is satisfied with high probability at th&" time-slot. ITRM, for each time-slot, as the mean absolute error (MAE)

The design parameter should be selected based on théI'R; — TR;|, averaged over all the SPs that are under attack.
highest fraction of malicious raters to be tolerated. Tedatne We used the following parameters throughout our simulation
which scheme (i.e., which value @} we should choose forthep = 5 =5, p = 1, A = A = 0.9, the penalty factod = 10, and
best performance among all the eliminate-optimal schemes, - = 0.4 (the choice ofr is based on our analytical results).
start with Lemma 2. We use a waiting tintesuch that (3) is  \We assumed that the malicious raters attack the sam® set
satisfied with high probability. Then, among allvalues that of SPs in each time-slot. Hence, at each time-slot, the ioakc
satisfy (2) with high probability, we select the highestin the raters choose SPs frof and rate them ad. The malicious
following example, we designed the scheme to tolerate up tgters do not deviate very much from the act@ak; = 5
W = 0.3 (i.e., 30% malicious raters). For the given parametergalues to remain undercover as many time-slots as possible
D+H =200, N =100,A =1, p=1and\ = 0.9, we obtained (while still attacking). Note that we also tried higher deions
the optimalr = 0.4. As shown in Fig. 2, fol¥" lower than0.3, ~ from the TR, value and observed that the malicious raters were
the waiting time becomes shorter to have-aliminate-optimal easily detected by ITRM in fewer time-slots. In Figure 3, the

scheme forr = 0.4. However, the scheme may also blacklisperformance of ITRM is illustrated against the “bad mougfiin
a few non-malicious raters in addition to all the maliciou®s for v = —2_ — 0.10 (10% malicious peers). The graph is

i o . D+H N
when V" is actually less tha.3. This is because the Optlmalobtained for differentA = b/b values. We observe that as the
value of 7 is higher for ar-eliminate-optimal scheme whéai

is actually less than.3. malicious_ peers at_tack with §mal| number of edge_s.(for low
values ofb), it requires more time slots to have negligibly low
error values. On the other hand, when thealues becomes very
small p = 1,2), it is hard to detect the malicious peers, which
is consistent with our analytical results. Although the iaialis
peers stay undercover when they attack with very small numbe
of edges, this type of an attack limits the malicious peébdits
to make a serious impact (they can only attack to a small numbe
of SPs). We note that throughout the remaining simulatioes,
setA = 1.

In Figure 4, we show the performance of ITRM for different
W values when the malicious peers are employing the “bad
R T A mouthing”. We note that ITRM guarantees significantly low

errors regardless of the fraction of the malicious conssmés
W becomes larger, it takes more time to get negligibly small
error values (which is consistent with our analysis).

probability

Fig. 2: waiting time for 7-eliminate-optimal
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Figures 5 and 6 illustrate the comparison of ITRM with théerative algorithm motivated by prior success on messags-p
other schemes for the bad-mouthing attack when the fracti}§ techniques and belief propagation algorithms for dewd
of malicious raters ar®.10 and 0.30, respectively. However, -DPC codes. The proposed ITRM is a robust mechanism to
it is worth noting that for different values af\,we observed €valuate the quality of the service of the service providens
that ITRM still keeps its superiority over the other schemel1€ ratings received from the recipients of the servicee(sjt
The lags in the plots of ITRM in Figs. 5 and 6 COrrespon[yloreover, it effectlvely evaluates_ th_e prowd_ers repistas and
to waiting times to include the newcomer SPs into the eX2€ trustworthiness of raters while introducing a lineampao-
ecution of ITRM, computed based on our analytical resulfgtional complexity with respect to the number of raters. We
presented in Fig. 2. On the other hand, we executed the 8theytudied ITRM by a detailed analysis, and showed the robsstne
schemes starting from the first time-slot, since we obsetivatl USINg computer simulations. Besides, we compared ITRM with
their performances were better that way. From these sinlatSOMe well-known reputation management schemes and showed
results, we conclude that ITRM significantly outperforme ththe Superiority of our scheme both in terms of robustness and
Averaging Scheme and the Bayesian Approach in the presef&iency.
of attacks. We identify that the reputation managementraehe REFERENCES
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