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Abstract—Trust and reputation play critical roles in most en-
vironments wherein entities participate in various transactions
and protocols among each other. The recipient of the servicehas
no choice but to rely on the reputation of the service provider
based on the latter’s prior performance. This paper introduces
an iterative method for trust and reputation management referred
as ITRM. The proposed algorithm can be applied to centralized
schemes, in which a central authority collects the reports and forms
the reputations of the service providers as well as report/rating
trustworthiness of the (service) consumers. The proposed iterative
algorithm is inspired by the iterative decoding of low-density
parity-check codes over bipartite graphs. The scheme is robust in
filtering out the peers who provide unreliable ratings. We provide a
detailed evaluation of ITRM via analysis and computer simulations.
Further, comparison of ITRM with some well-known reputation
management techniques (e.g.,Averaging Scheme, Bayesian Approach
and Cluster Filtering) indicates the superiority of our scheme
both in terms of robustness against attacks (e.g., ballot-stuffing,
bad-mouthing) and efficiency. Furthermore, we show that the
computational complexity of the proposed ITRM is far less than the
Cluster Filtering; which has the closest performance (to ITRM) in
terms of resiliency to attacks. Specifically, the complexity of ITRM
is linear in the number of clients, while that of the Cluster Filtering
is quadratic.

I. I NTRODUCTION

Trust and reputation systems have found widespread adoption
in online communities, web services, ad-hoc networks, P2P com-
puting, and in e-commerce communities. In most environments,
the consumer of the service (e.g., the buyer) has no choice
but to rely on the reputation of the service provider (e.g., the
seller) based on the latter’s prior performance. Hence, theservice
recipient should take a prior risk before receiving the actual
service. This risk puts the recipient into an unprotected position
since he has no opportunity to try the service before he receives
it. A reputation-management mechanism is a promising method
to protect the consumers against deceitful service providers. By
using a reputation-management scheme, an individual service
provider’s reputation can be formed by the combination of
received reports (ratings). Hence, after each transaction, a party
who receives the service (referred to as the rater) provides, to
the central authority, its rating about the quality of the service
provided for that transaction. The central authority collects the
ratings and estimates the reputation of the service provider
as well as the rating trustworthiness of the raters. The rating
mechanism puts the service providers in a vulnerable position as
malicious raters may give unfair ratings. Hence, the success of a
reputation scheme depends on the robustness of the mechanism
to accurately evaluate the service providers’ reputationsand
the trustworthiness of the raters. Despite the past progress on
reputation systems, there is still a need to develop reliable,
scalable, and dependable schemes that would be resilient tothe
various ways a reputation system can be compromised.

Focusing mainly on centralized reputation systems, the ulti-
mate objective of our work is to develop a trust and reputation
management scheme that not only provides immunity against
malicious ratings but also discourages the service providers from
any unfair and discriminating behaviors. Our work on reputation
systems stems from our prior success in the use of iterative
algorithms, such as message passing techniques and belief prop-
agation [1], [2] in the decoding of Low-Density Parity-Check
(LDPC) codes in erasure channels [3], [4]. These algorithms
rely on graph-based representations of codes, where decoding
can be viewed as message passing between nodes in the graph.
Moreover, they are shown to perform at error rates near what
can be achieved by the optimal scheme, maximum likelihood
decoding, while requiring far less computational complexity (i.e.,
linear in the length of the code). We believe that these significant
benefits offered by iterative algorithms can be tapped in to benefit
the field of reputation systems. To achieve this, we propose the
Iterative Trust and Reputation Mechanism (ITRM).

The main strengths of the ITRM scheme are summarized in
the following.

1) The proposed algorithm computes the reputations of the
service providers accurately (with a small error) in a short
amount of time in the presence of attackers.

2) ITRM is a robust and efficient methodology for detecting
and filtering out unreliable ratings (from malicious raters)
in a short amount of time.

3) ITRM detects the malicious raters with a high accu-
racy, and updates their trustworthiness accordingly. Hence,
ITRM enforces the malicious raters to execute low grade
attacks in order to remain undercover.

4) The proposed ITRM algorithm has the computational
complexity which is linear with the number of raters.
Hence, ITRM is scalable and suitable for large scale
implementations.

The rest of this paper is organized as follows. In the rest of this
section, we summarize the related work and present major attack
models considered in this study. In Section II we describe ITRM
in detail. Next, in Section III, we evaluate our proposed scheme
by conducting computer simulations and a detailed analysis.
Furthermore, we compare ITRM with some existing schemes.
Finally, we provide the concluding remarks in Section IV.

A. Related Work
Several works in the literature have focused on building

reputation-management mechanisms. We may classify reputation
mechanisms for centralized systems as i) global reputation
systems, where the reputation of a service provider is based
on the ratings from general users [5], [6], and ii) personalized
reputation systems, where the reputation of a service provider is
determined based on the ratings of a group of particular users,



which may be different in the eyes of different users [5], [7]. We
note that our work falls under the category of global reputation
systems. The most famous and primitive global reputation system
is the one that is used in eBay. Other well-known web sites
such as Amazon, Epinions , and AllExperts use a more advanced
reputation mechanism than eBay. Their reputation mechanisms
mostly compute the average (or weighted average) of the ratings
received for a product (or a peer) to evaluate the global reputation
of a product (or a peer) [5]. Hence, these schemes are vulnerable
to collaborative attacks by malicious peers. Use of the Bayesian
Approach is also proposed in [6], [8]. In these systems, thea
posteriori reputation value of a peer is computed combining its
a priori reputation values with the new ratings received for the
peer. Finally, [7] proposed to use theCluster Filtering method [9]
for reputation. Different from the existing schemes, the proposed
ITRM algorithm is a graph based iterative algorithm motivated
by our previous success on message passing techniques and
belief propagation algorithms.

B. Attack models

We consider two major attacks that are common for any trust
and reputation management mechanisms. Further, we assume
that the attackers may collude and collaborate with each other:
Bad-mouthing: Malicious raters collude and attack the service
providers with the highest reputation by giving low ratings.
In addition to the malicious raters, in some applications, bad-
mouthing may be originated by a group of selfish raters who
attempt to weaken high-reputation providers in the hope of
improving their own chances as providers.
Ballot-stuffing: Malicious raters collude to increase the reputa-
tion value of peers with low reputations. Just as in bad-mouthing,
in some applications, this could be mounted by a group of selfish
consumers attempting to favor their allies.

II. D ESCRIPTION OF THEPROPOSEDALGORITHM

As in every trust and reputation management mechanism,
we have two main goals: 1. Computing the service quality
(reputation) of the peers who provide a service (henceforth
referred to as Service Providers or SPs) by using the ratings
from the peers who used the service (referred to as the raters),
and 2. Determining the trustworthiness of the raters by analyzing
their past ratings. We letTRj be the global reputations of the
SPs. Further,TRij represents the rating that the rateri reports
about thejth SP whenever a transaction is completed between
the two peers. Finally,Ri denotes the (rating) trustworthiness of
the ith rater-peer. All of these parameters may evolve with time.
However, for simplicity, we omitted time dependencies fromthe
notation.

A. Iterative Trust and Reputation Management Mechanism
(ITRM)

Our proposed iterative algorithm is inspired by our earlier
work on the improved iterative decoding algorithm of LDPC
codes in the presence of stopping sets [3], [4]. In iterativedecod-
ing of LDPC, every check-vertex (in the graph representation of
the code) has some opinion of what the value of each bit-vertex
should be. The iterative decoding algorithm would then analyze
the collection of these opinions to decide, at each iteration, what
value to assign for the bit-vertex under examination. Once the
values of the bit-vertices are estimated, in the next iteration, those
values are used to determine the satisfaction of the check-vertex
values. The novelty of this work stems from the observation that
a similar approach can be adapted to determine SPs’ reputation
values as well as the trustworthiness of the raters. Furthermore,

the analysis of reputation systems resembles that of the code
design problem. In LDPC, one of the goals is to find the decoding
error for the a fixed set of check constraints. Similarly, in ITRM,
our goal is to specify the regions of trust for the set of the
system parameters. A region of trust is the range of parameters
for which we can confidently determine the reputation values
within a given error bound. We acknowledge, however, that we
have a harder problem in the case of reputation systems as the
adversary dynamics is far more complicated to analyze than the
channel noise in the coding problem.

The first step in developing ITRM is to interpret the collection
of the raters and the SPs together with their associated relations
as a bipartite graph, as in Fig. 1(a). In this representation, each
rater-peer corresponds to acheck vertex in the graph, shown as
a square and each SP is represented by abit vertex shown as
a hexagon in the graph. Assume that the graph hask check-
vertices andN bit-vertices. If a rateri has a rating about the
jth SP, we place an edge with valueTRij from the ith check-
vertex to thejth bit-vertex. As time passes, we use the age-
factored values as the edge values instead. To each edge{ij},
a valueWRij = wijTRij is assigned, whereWRij is the age-
factoredTRij value. The factorwij(t) is used to incorporate
the time-varying aspect of the reputation of the SPs (i.e., time-
varying service quality). We use a known factorwij(t) = λt−tij

where λ and tij are the fading parameter and the time when
the last transaction between the rateri and the SPj occurred,
respectively. If any new rating arrives from the rateri about the
jth SP, our scheme updates the new value of the edge{ij} by
averaging the new rating and the old value of the edge multiplied
with the fading factor.

We consider slotted time throughout this discussion. At each
time-slot (or epoch), ITRM will be executed using the input
parametersRi and WRij to obtain the reputation parameters
(e.g., TRj) and the list of malicious raters (referred to as the
blacklist). Initially, the blacklist is set empty. Detailsof ITRM
may be described by the following procedure at theLth time-
slot. LetRi andTRij be the parameter values prior to the present
execution (theLth execution) of ITRM algorithm. Let alsoTRν

j

andTRν
ij be the values of the bit-vertex and the{ij}th edge at

the iterationν of the ITRM algorithm. Prior to the start of the
iteration (ν = 0), we setTRν=0

ij = TRij and compute the initial
value of each bit-vertex (referred to as the initial guessTRν=0

j )
based on the weighted average of the age-factored edge values
(WRν

ij) of all the edges incident to the bit-vertexj. Equivalently,
we compute

TRν
j =

∑
i∈A Ri × WRν

ij∑
i∈A Ri × wij(t)

, (1)

where A is the set of all check-vertices connected to the bit-
vertex j. It is interesting to note that the initial guess-values
resemble the received information from the channel in the
channel coding problem. Then, the first iteration starts (i.e.,
ν = 1). We first compute the average inconsistency factorCν

i

of each check-vertexi using the values of the bit-vertices (i.e.,
TRν−1

j ) for which it is connected to. That is, we compute
Cν

i = [1/
∑

j∈B λt−tij ]
∑

j∈B d(TRν−1
ij , TRν−1

j ) where B is
the set of bit vertices connected to the check-vertexi andd(·, ·)
is a distance metric used to measure the inconsistency. We use
the L1 norm (absolute value) as the distance metric. Hence,
d(TRν−1

ij , TRν−1
j ) = |TRν−1

ij −TRν−1
j |λt−tij . After computing

the inconsistency factor for every check-vertex, we order them by
rank. Then, the check-vertexi with the highest inconsistency is
selected and placed in the blacklist if its inconsistency isgreater
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Fig. 1: Illustrative example of ITRM

than or equal to a definite thresholdτ (whose choice will be
discussed later). If there is no check-vertex with inconsistency
greater than or equal toτ , the algorithm stops its iterations. Once
the check-vertexi is blacklisted, we delete its ratingTRν

ij for all
the bit-verticesj it is connected to. Then, we update the values of
all the bit-vertices using (1). This completes the first iteration of
ITRM. The iterative algorithm proceeds to other rounds exactly
in the same way as the first round, updating the values of the bit-
vertices and blacklisting some other check-vertices as a result.
However, once a check-vertex is placed in the blacklist, forthe
remaining iterations it is neither used for the evaluation of TRjs
nor for the inconsistency measure of the check-vertices. Westop
the iterations when the inconsistencies of all the check-vertices
(excluding the ones already placed in the blacklist) fall below τ .

As an example, ITRM is illustrated in Fig. 1 fork = 7 raters,
N = 3 SPs, andτ = 0.7. It is assumed that the rates are integer
values from{1, . . . , 5} and the actual reputations,̂TRj, are equal
to 5. For simplicity, we assumedwi’s to be equal to 1 andRi’s to
be equal for all raters. Furthermore, we assumed that the peers
1, 2, 3, 4, and 5 are honest but6 and 7 are malicious raters.
It is expected that (as we have assumed) the raters, although
honest, may have different ratings about a particular SP. Hence,
we choose rater3 to be honest but giving incorrect (unreliable)
ratings. The malicious raters (6 and 7) are mounting the bad-
mouthing attack in this example. Fig. 1(a) shows theTRij values
(illustrated by different line-styles) prior to the execution of
ITRM. The TRj values and the individual inconsistencies of
the raters after each iteration are also illustrated in Fig.1(c).
We note that the algorithm stops at the third iteration when all
the raters have inconsistencies less thanτ . Fig. 1(c) indicates
how ITRM gives better estimates ofTRj ’s compared to the
weighted averaging method (which is correspond to the zero
iteration). Fig. 1(b) illustrates the edges after the final iteration
of ITRM. It is worth noting that the malicious raters6 and7 are
blacklisted and their ratings are accordingly deleted. Moreover,
rater3, although honest, is also blacklisted at the third iteration.
We note that this situation is possible when an honest but faulty
rater’s rating have a large deviation from the other honest raters.

B. Raters’ Trustworthiness

We now explain how theRi values are to be updated using the
check vertices that are placed in the blacklist. The idea is to use
the set of all past blacklists together in a Beta distribution [6].
Initially, prior to the first time-slot, for each rater-peeri, theRi

value is set to0.5 (αi = 1 andβi = 1). Then, if the rater-peer
i is blacklisted,Ri is decreased by settingβi(t + 1) = λ̂βi(t) +

(Ci + 1− τ)δ, otherwise,Ri is increased by settingαi(t + 1) =
λ̂αi(t) + 1, whereλ̂ is the fading parameter andδ denotes the
penalty factor for the blacklisted raters. We note that updating
Ri values via the Beta distribution has one major disadvantage.
An existing malicious rater with lowRi could cancel its account
and sign in with a new ID. This problem may be prevented by
updatingRi’s using the method proposed in [5].

III. SECURITY EVALUATION OF ITRM

In order to facilitate future references, frequently used nota-
tions are listed below.
D Number of malicious raters
H Number of honest raters
N Number of service providers
m Rating given by an honest rater
n Rating given by a malicious rater
X Total number of malicious ratesTRij per a victim SP
d Total number of newly generated outgoing edges, per time-slot,

by an honest rater
b Total number of newly generated outgoing edges, per time-slot,

by a malicious rater
b̂ Total number of newly generated attacking edges, per time-slot,

by a malicious rater
∆ b̂/b (i.e., fraction of attacking edges per time-slot)
µ Total number of un-attacked SPs rated by an honest rater

A. Analytic Evaluation

We adopt the following models for various peers involved in
the reputation system. We acknowledge that although the models
are not inclusive of every scenario, they are good illustrations
to present our results. We assume that the quality of service
providers remains unchanged during time-slots. We providethe
evaluation for the bad-mouthing attack only, as similar results
hold for ballot-stuffing. Hence, without loss of generality, we
will assume thatTRj = 5 for all the SPs. Moreover, we assume
that ratings (i.e.,TRij) generated by the non-malicious raters are
distributed uniformly among the SPs. Furthermore, we assume
that the ratingm (provided by the non-malicious raters) is a
random variable with folded normal distribution (mean5 and
variance0.5), however, it takes only discrete values from5
to 1. Moreover, we assume that the values ofRi for all the
raters are set to the highest value (i.e.,Ri = 1) for simplicity
(which reflects the worst case). Finally, we assume thatd is a
random variable with Yule-Simon distribution, which resembles
the power-law distribution used in modeling online systems, with
the probability mass function (PMF)fd(d; ρ) = ρB(d, ρ + 1),
whereB(., .) is the Beta function. For modeling the adversary,
we make the following assumptions. We assume that the ma-
licious raters initiate bad-mouthing and collude while attacking
the SPs. Further, the malicious raters attack the same setΓ of
SPs at each time-slot. In other words, we denote byΓ the set
of size b̂ in which every attacked SP has one edge from each
of the malicious raters. The following discussions are developed
for the time-slott.

Let the random variableΘ be the number of unique raters who
rated a specific SP int elapsed time-slots. Also letQ be a random
variable denoting the exponent of the fading parameterλ at the
tth time-slot. It can be shown that the probability distribution
of both of these random variables can be easily obtained from
the distribution of the number of ratings received by a SP in
t elapsed time-slots. Using this, we can establish the following
results.
A τ -eliminate-optimal Scheme:We declare a reputation scheme
to be τ -eliminate-optimal if it can eliminate all the mali-
cious raters whose inconsistency (measured from the averaging
scheme) exceeds the thresholdτ . Hence, such a scheme would



compute the reputations of the SPs by just using the honest
raters. Naturally, we need to answer two questions: First, for
a fixedτ , what are the conditions to have aτ -eliminate-optimal
scheme? Second, among all the eliminate-optimal schemes,
which scheme (i.e., which value ofτ ) should we choose for the
best performance? In the following discussion, we try to answer
these two questions.

At each iteration, ITRM blacklists the rater-peeri with the
highest inconsistencyCi if Ci ≥ τ . Obviously, the blacklisted
rater should be a malicious one in all iterations. This criteria is
given by the following lemma:

Lemma 1: Let Θj be the number of unique raters for thejth

SP. Then, a sufficient condition for the inconsistencyCi, at the
first iteration, to exceed the thresholdτ for all malicious raters
is given by ∑

r∈Λ

Ψr ≥ (b̂m + bτ) (2)

Here,Ψr = mX+nΘrλQ

X+ΘrλQ for r ∈ Λ, whereΛ is the index set of
the setΓ.
Given Ci ≥ τ for a malicious rateri, for a τ -eliminate-optimal
scheme, we require that the inconsistency of the malicious rater
exceeds the inconsistencies of all of the honest raters.

Lemma 2: (τ -eliminate-optimal condition): Let dt be the
total number of outgoing edges from an honest rater int elapsed
time-slots. Then, provided that Lemma 1 is met, ITRM would
be aτ -eliminate-optimal scheme if the condition

µ

dt

> 1 −
ΘλQ∆

D
(3)

is satisfied with high probability at thetth time-slot.
The design parameterτ should be selected based on the

highest fraction of malicious raters to be tolerated. To determine
which scheme (i.e., which value ofτ ) we should choose for the
best performance among all the eliminate-optimal schemes,we
start with Lemma 2. We use a waiting timet such that (3) is
satisfied with high probability. Then, among allτ values that
satisfy (2) with high probability, we select the highestτ . In the
following example, we designed the scheme to tolerate up to
W = 0.3 (i.e., 30% malicious raters). For the given parameters
D+H = 200, N = 100, ∆ = 1, ρ = 1 andλ = 0.9, we obtained
the optimalτ = 0.4. As shown in Fig. 2, forW lower than0.3,
the waiting time becomes shorter to have aτ -eliminate-optimal
scheme forτ = 0.4. However, the scheme may also blacklist
a few non-malicious raters in addition to all the malicious ones
when W is actually less than0.3. This is because the optimal
value ofτ is higher for aτ -eliminate-optimal scheme whenW
is actually less than0.3.
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B. Simulations

We have evaluated the performance of ITRM in the presence
of bad-mouthing and ballot-stuffing. Here, we provide an eval-
uation of the bad-mouthing attack only, as similar results hold
for ballot-stuffing. We compared the performance of ITRM with
three well-known and commonly used reputation management
schemes: 1)The Averaging Scheme, 2) Bayesian Approach, and
3) Cluster Filtering. The Averaging Scheme is widely used
in well-known web sites such Amazon and AllExperts. The
Bayesian Approach [6] updates theTRj values using a Beta
distribution. For this scheme, we assumed a deviation threshold
of 0.4 and a trustworthiness threshold of0.4, which is consistent
with our τ selection (for details refer to [6]). Cluster Filtering
[7], [9] performs a dissimilarity test among the raters and then
updates theTRj values using only the honest raters.

In all simulations, we considered the worst-case scenario in
which the victims are chosen among the newcomer SPs in order
to have the most adverse effect. We assumed that there were
already100 rater-peers and50 SPs. Moreover, a total of50 time-
slots had passed since the initialization of the system, andratings
generated during those time-slots were distributed among the SPs
in proportion to their reputation values (SPs with high quality of
service made more transactions). After this initialization process,
at time-slot zero, we introduced100 more rater-peers as well as
50 more SPs as newcomers. Hence, we hadk = D + H = 200
raters andN = 100 SPs in total. Further, we assumed thatd is
a random variable with Yule-Simon distribution as discussed in
the analysis. At each time-slot, the newly generated ratings from
honest raters are assigned to the SPs in proportion to the present
estimate of their reputation values,TRj. Let T̂Rj be the actual
value of the reputation. Then, we obtained the performance of
ITRM, for each time-slot, as the mean absolute error (MAE)
|TRj − T̂Rj |, averaged over all the SPs that are under attack.
We used the following parameters throughout our simulations:
b = b̂ = 5, ρ = 1, λ = λ̂ = 0.9, the penalty factorδ = 10, and
τ = 0.4 (the choice ofτ is based on our analytical results).

We assumed that the malicious raters attack the same setΓ
of SPs in each time-slot. Hence, at each time-slot, the malicious
raters choose SPs fromΓ and rate them as4. The malicious
raters do not deviate very much from the actual̂TRj = 5
values to remain undercover as many time-slots as possible
(while still attacking). Note that we also tried higher deviations
from the ˆTRj value and observed that the malicious raters were
easily detected by ITRM in fewer time-slots. In Figure 3, the
performance of ITRM is illustrated against the “bad mouthing”
for W = D

D+H
= 0.10 (10% malicious peers). The graph is

obtained for different∆ = b̂/b values. We observe that as the
malicious peers attack with small number of edges (for low
values ofb̂), it requires more time slots to have negligibly low
error values. On the other hand, when theb̂ values becomes very
small (̂b = 1, 2), it is hard to detect the malicious peers, which
is consistent with our analytical results. Although the malicious
peers stay undercover when they attack with very small number
of edges, this type of an attack limits the malicious peers’ ability
to make a serious impact (they can only attack to a small number
of SPs). We note that throughout the remaining simulations,we
set∆ = 1.

In Figure 4, we show the performance of ITRM for different
W values when the malicious peers are employing the “bad
mouthing”. We note that ITRM guarantees significantly low
errors regardless of the fraction of the malicious consumers. As
W becomes larger, it takes more time to get negligibly small
error values (which is consistent with our analysis).
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Figures 5 and 6 illustrate the comparison of ITRM with the
other schemes for the bad-mouthing attack when the fraction
of malicious raters are0.10 and 0.30, respectively. However,
it is worth noting that for different values of∆,we observed
that ITRM still keeps its superiority over the other schemes.
The lags in the plots of ITRM in Figs. 5 and 6 correspond
to waiting times to include the newcomer SPs into the ex-
ecution of ITRM, computed based on our analytical results
presented in Fig. 2. On the other hand, we executed the other3
schemes starting from the first time-slot, since we observedthat
their performances were better that way. From these simulation
results, we conclude that ITRM significantly outperforms the
Averaging Scheme and the Bayesian Approach in the presence
of attacks. We identify that the reputation management scheme
with the closest performance to ITRM is Cluster Filtering.
However, as illustrated in Figs. 5 and 6, the error obtained
by using Cluster Filtering is significantly high for the firstset
of time-slots (which is undesirable because it would introduce
error into the SP selection). More importantly, the compu-
tational complexity of Cluster Filtering is much higher than

ITRM Cluster Filtering

Addition O(k) O(k2)

Multiplication O(k) O(k2)

TABLE I: Complexity of Cluster Filter-
ing and ITRM.

ITRM. Specifically, as-
suming k rater-peers in
the system, the number
of operations required in
both methods is illus-
trated in Table I. There-
fore, while Cluster Filter-
ing introduces quadratic complexity, the computational complex-
ity of ITRM is linear with the number of raters. As a result, our
proposed scheme is more scalable and suitable for large scale
reputation systems.

IV. CONCLUSIONS

In this paper, we introduced an “Iterative Trust and Reputation
Management Scheme” (ITRM). Our work is a graph based
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iterative algorithm motivated by prior success on message pass-
ing techniques and belief propagation algorithms for decoding
LDPC codes. The proposed ITRM is a robust mechanism to
evaluate the quality of the service of the service providersfrom
the ratings received from the recipients of the service (raters).
Moreover, it effectively evaluates the providers’ reputations and
the trustworthiness of raters while introducing a linear compu-
tational complexity with respect to the number of raters. We
studied ITRM by a detailed analysis, and showed the robustness
using computer simulations. Besides, we compared ITRM with
some well-known reputation management schemes and showed
the superiority of our scheme both in terms of robustness and
efficiency.
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