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Abstract—In a typical reputation management system, after each
transaction, the buyer (who receives a service or purchases a
product) provides its report/rating about the quality of the seller
for that transaction. In such a system, the problem of reputation
management is to compute two sets of variables: 1. the (global)
reputation parameters of entities who act as sellers, and 2. the
trustworthiness parameters of the entities who act as the raters
(i.e., buyers). In this paper, for the first time, we introduce an
iterative probabilistic method for reputation management. The
proposed scheme, referred to as RPM, relies on a probabilistic
message passing algorithm in the graph-based representation of
the reputation management problem on an appropriately chosen
factor graph. In the graph representation of the problem, the sellers
and buyers are arranged as two sets of variable and factor nodes,
respectively, that are connected via some edges. Then, the reputation
and trustworthiness parameters are computed by a fully iterative
and probabilistic message passing algorithm between these nodes in
the graph. We provide a detailed evaluation of RPM via computer
simulations. We observe that RPM iteratively reduces the error in
the reputation estimates of the sellers due to the malicious raters.
Finally, comparison of RPM with some well-known and commonly
used reputation management techniques (e.g., Averaging Scheme,
Bayesian Approach and Cluster Filtering) indicates the superiority
of the proposed scheme both in terms of robustness against attacks
(e.g., ballot-stuffing, bad-mouthing) and computational efficiency.

I. INTRODUCTION

Reputation management is a crucial requirement for most envi-

ronments wherein entities participate in various transactions and

protocols among each other. The consumer (buyer) of the service

(or product) often has insufficient information about the service

quality of the service provider (seller) before the transaction.

Hence, the consumer should take a prior risk before receiving the

actual service. This risk puts the consumer into an unprotected

position since he has no opportunity to try the service before he

receives it. A reputation management mechanism is a promising

method to protect the consumer by forming some foresight about

the providers before using their services. By using a reputation

management scheme, an individual peer’s reputation can be

formed by the combination of received reports (ratings). After

each transaction between the service providers and consumers,

the consumers provide (to the central authority) feedbacks in

the form of ratings about the service providers. The central

authority collects the reports and updates the reputations of the

service providers. Reputation management mechanisms, on the

other hand, open up new vulnerabilities as the consumers may

provide unreliable or malicious feedbacks, demonizing the repu-

tations of the service providers unfairly. Therefore, a reputation

management mechanism has two main goals: 1. computing the

quality of the peers (referred to as the service providers or SPs

hereafter) who provide a service or sell a product by using the

feedbacks from the peers (referred to as the raters hereafter) who

used the service or purchased the product, and 2. determining the

trustworthiness of the raters by analyzing their feedback about

the SPs. Hence, the success of a reputation scheme depends

on the robustness of the mechanism to accurately evaluate the

reputations of the SPs and the trustworthiness of the raters.

Current reputation management schemes are vulnerable to

sophisticated attacks since none of these schemes are designed

considering the noise and the incomplete information in the

system. The objective of this work is to introduce the first

application of iterative probabilistic algorithms in the design

and evaluation reputation management systems. Our work on

the reputation systems is inspired by earlier work on graph-

based iterative probabilistic decoding of turbo codes and low-

density parity-check codes, the most powerful error-control

codes known. These probabilistic and iterative decoding algo-

rithms are shown to perform at error rates near what can be

achieved by the optimal scheme, maximum likelihood decoding,

while requiring far less computational complexity (i.e., linear in

the length of the code). We believe that the significant benefits

offered by the probabilistic message passing algorithms [1] can

be tapped in to benefit the field of reputation systems. The

reputation management problem can be viewed as finding the

marginal probability distributions of the variables representing

the global reputations of the SPs, given the observed data

(i.e., evidence). This problem, however, cannot be solved in

a large-scale reputation systems, because the number of terms

grow exponentially with the number of raters and SPs. The

key role of the probabilistic message passing algorithm is that

we can use it to compute those marginal distributions in the

complexity that grows only linearly with the number of nodes.

Therefore, we introduce the “Robust Reputation Management

Using Probabilistic Message Passing” (RPM).

The proposed RPM relies on a graph-based representation of

an appropriately chosen factor graph for reputation systems. In

this representation, SPs and raters (consumers) are arranged as

two sets of variable and factor nodes that are connected via

some edges. The reputation values of the SPs are computed by

message passing between nodes in the graph until the scheme

converges. We show that RPM iteratively reduces the error in the

reputation values of SPs due to the malicious raters with a high



probability. Although we present the proposed algorithm as a

global reputation system, it can be applied to various applications

from personalized reputation systems to ad-hoc networks. The

main contributions of our work are summarized in the following.

• We introduce the first application of graph-based iterative prob-

abilistic algorithms in the design and evaluation of reputation

management systems. We use an iterative and probabilistic

message passing algorithm as the core of our proposed scheme.

• The proposed iterative algorithm computes the reputation values

of the SPs with a small error in a short amount of time in

the presence of attackers. Thus, it is a robust and efficient

methodology for detecting and filtering out malicious ratings.

• The proposed RPM significantly outperforms the existing and

commonly used reputation management techniques in the pres-

ence of attackers.

The rest of this paper is organized as follows. In the rest

of this section, we summarize the related work. In Section II,

we describe the proposed RPM in detail. Next, in Section III,

we evaluate RPM via computer simulations and compare RPM

with the existing and commonly used reputation management

schemes. Finally, in Section IV, we conclude our paper.

A. Related Work

Several works in the literature have focused so far on building

reputation management mechanisms [2]–[5]1. The most famous

and primitive global reputation system is the one that is used in

eBay. Other well-known web sites such as Amazon, Epinions,

and AllExperts use a more advanced reputation mechanism than

eBay. Their reputation mechanisms mostly compute the average

(or weighted average) of the ratings received for a product (or a

peer) to evaluate the global reputation of a product (or a peer).

Hence, these schemes are vulnerable to collaborative attacks by

malicious peers. Use of the Bayesian Approach is also proposed

in [6]. In these systems, the a posteriori reputation value of a peer

is computed combining its a priori reputation values with the

new ratings received for the peer. In [7], authors proposed to use

the Cluster Filtering method for reputation systems to distinguish

between the reliable and unreliable raters. Finally, in our previous

work, we proposed an algebraic iterative algorithm [8] for

reputation systems (referred to as ITRM) and showed the benefit

of using iterative algorithms for reputation management. Here,

we expand this work and introduce a fully probabilistic, message

passing based approach. We compare our proposed scheme with

the existing schemes (including ITRM [8]) in Section III-B and

show its superior performance (i.e., accuracy and robustness

against attacks).

II. ROBUST REPUTATION MANAGEMENT USING

PROBABILISTIC MESSAGE PASSING

We assume two different sets2 in the system: i) the set of SPs,

and ii) the set of raters. We let TRj be the global reputations

of the SPs. Further, TRij represents the ith rater’s rating about

the jth SP, and Ri denotes the (rating) trustworthiness of the ith

rater (i.e., the amount of confidence that the central authority has

about the correctness of any rating provided by the rater i).

1The list of references is not exhaustive due to the page limit.
2Sets are not necessarily disjoint.

To describe the reputation system, we arrange the collection

of raters and SPs together with their associated relations (i.e.,

the ratings) as a bipartite (or factor) graph, as in Fig. 1. In

this representation, each rater corresponds to a check vertex (or

factor node), shown as a square and each SP is represented by a

bit vertex (or variable node) shown as a hexagon. Further, each

rating is represented by an edge from a check-vertex to a bit-

vertex. Hence, if a rater i has a rating about the jth SP, we

place an edge with value TRij
3 from the ith check-vertex to the

bit-vertex representing the jth SP.
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Fig. 1: Setup of the scheme.

In each iteration, the probabilities are exchanged over the

edges of the bipartite graph in Fig. 1, estimating probabilistically

the reputation values of the SPs as well as the confidence (i.e.,

trustworthiness) on the raters. For simplicity of presentation, we

assume that the rating values are either 0 or 1. The extension in

which rating values can take any real number can be developed

similarly (we implemented RPM for both cases and illustrate its

performance in Section III-B). We consider slotted time through-

out this discussion. At each time-slot, the iterative algorithm is

executed using the input parameters Ri and TRij to obtain the

global reputation values of the SPs (e.g., TRj).

Details of RPM may be described by the following procedure

at the Lth time-slot. Let TR
(ν)
j be the value of the bit-vertex at

the iteration ν of the RPM algorithm. For simplicity, we consider

the network in Fig. 1 and describe message exchange between

rater k and SP a. We represent the set of neighbors of SP a and

rater k as Na and Nk, respectively (neighbors of a SP are the

raters who rated it and neighbors of a rater are the SPs whom

it rated). Further, let Ξ = Na\{k} and ∆ = Nk\{a}, where

Ξ = {ξ1, ξ2, . . . , ξ|Ξ|} and ∆ = {δ1, δ2, . . . , δ|∆|} (the notation

Na\{k} denotes the set of all neighbors of SP a except the

neighbor k).

We denote the messages from SPs to raters and from raters

to SPs as µ and λ, respectively. The message µ
(i)
a→k is a vector

[µ
(i)
a→k(0), µ

(i)
a→k(1)] denoting the probability of TRa being zero

or one at the ith iteration. Obviously, µ
(i)
a→k(1) = 1− µ

(i)
a→k(0).

On the other hand, λ
(i)
k→a denotes the belief (confidence) of rater

k (at the ith iteration) that the TRa value is equal to TRka.

This resembles the belief/plausibility concept of the Dempster-

Shafer Theory [9]. For example, given TRka = 1, we denote

λ
(i)
k→a as the belief of the kth rater (at the ith iteration) that the

TRa value is one. Further, since there is no evidence contrary

to the hypothesis TRa = 1, the plausibility that TRa = 1 is

3TRij value between rater i and SP j is the aggregate of all past and present
ratings between these two peers. Further, one may include a fading factor while
updating the values of the edges to account for the freshness of the ratings.



equal to one. Thus, (1 − λ
(i)
k→a) corresponds to the uncertainty

in the belief of rater k. To remove this uncertainty, we distribute

the uncertainty uniformly between two outcomes (one and zero).

Hence, given TRka = 1, in the eyes of the kth rater, TRa value

is equal to one with probability (λ
(i)
k→a+(1−λ

(i)
k→a)/2), and zero

with probability (1−λ
(i)
k→a)/2. We note that a similar statement

holds for the case when TRka = 0.

Therefore, for SP a, we calculate the probability of TRa being

one or zero by multiplying all probabilities it received from its

neighbors excluding the rater k. Hence, the message µ
(j)
a→k from

SP a to rater k at the jth iteration is given by

µ
(j)
a→k(1) =

∏

i∈Ξ

Pr
(

TRa = 1|TRia, λ
(j−1)
i→a

)

∑

ς∈{0,1}

∏

i∈Ξ

Pr
(

TRa = ς |TRia, λ
(j−1)
i→a

) , (1)

where

Pr
(

TRa = 1|TRia, λ
(j−1)
i→a

)

=

TRia

(

λ
(j−1)
i→a +

1− λ
(j−1)
i→a

2

)

+ (1− TRia)

(

1− λ
(j−1)
i→a

2

)

(2a)

Pr
(

TRa = 0|TRia, λ
(j−1)
i→a

)

=

TRia

(

1− λ
(j−1)
i→a

2

)

+ (1− TRia)

(

λ
(j−1)
i→a +

1− λ
(j−1)
i→a

2

)

(2b)

This computation is repeated for every neighbors of each SP.

This finishes the first half of the jth iteration. During the second

half, we compute the messages λ(j) between each rater and its

neighbors. For rater k, we calculate its confidence on its ratings

by calculating the deviation in its ratings TRki (i ∈ ∆) based

on the messages µ
(j)
i→k (i ∈ ∆) it received from its neighbors

except the neighbor a. Thus, the message from rater k to SP a
at the jth iteration is formed (by considering all realizations of

the messages from its neighbors) as

λ
(j)
k→a = 1−

1

|∆|

{

∑

α1∈{0,1}

. . .
∑

α|∆|∈{0,1}

[|TRkδ1 − α1|+

. . .+ |TRkδ|∆|
− α|∆||]

∏

x∈∆

µ
(j)
x→k (h(x))

}

, (3)

where

h(x) = αi if x = δi for δi ∈ ∆. (4)

Equation (3) can be interpreted as one minus the average

inconsistency of rater k obtained using the messages it received

from its neighbors (excluding SP a). The algorithm proceeds

to the next iteration in the same way as the jth iteration. We

clarify that the iterative algorithm starts by computing µ
(1)
a→k in

(1). However, the trustworthiness values Rk from the previous

execution of RPM are used as initial values for λ
(0)
k→a in (1),

(2a), and (2b).

At the end of each iteration the global reputations and the

trustworthiness of raters are calculated using modified (1) and

(3), respectively. That is, we use the set Na instead of Ξ in

(1) to compute µ
(j)
a (1) and µ

(j)
a (0). Then we set TR

(j)
a =

∑1
i=0 iµ

(j)
a (i). Likewise, we use the set Nk instead of ∆ in

(3) to compute λ
(j)
k , and then we set R

(j)
k = λ

(j)
k . We repeat this

to compute the global reputations and trustworthiness of every

SP and rater. The iterations stop when the TRj values converge

for every SP.

III. SECURITY EVALUATION OF RPM

We list the frequently used notations in Table 1.

NSP The set of service providers (SPs)

NM The set of malicious raters

NR The set of reliable raters

rh Report (rating) given by a reliable rater

rm Report (rating) given by a malicious rater

d
Total number of newly generated ratings, per time-slot,
per a reliable rater

b
Total number of newly generated ratings, per time-slot,
per a malicious rater

b̂
Total number of newly generated attacking/malicious ratings,
per time-slot, by a malicious rater

Λ b̂/b (i.e., fraction of attacking ratings per time-slot)

TABLE I: Notations and definitions.

A. Attack Models

We consider the following two major attacks that are common

for any reputation management mechanisms:

Bad-mouthing: Malicious raters collude and attack the SPs with

the highest reputation by giving low ratings to undermine them.

It is also noted that in some applications, bad-mouthing may be

originated by a group of selfish peers who attempt to weaken

high-reputation providers in the hope of improving their own

chances as providers.

Ballot-stuffing: Malicious raters collude to increase the reputa-

tion value of peers with low reputations. Just as in bad-mouthing,

in some applications, this could be mounted by a group of selfish

consumers attempting to favor their allies.

We make the following assumptions for modeling the ad-

versary. We assumed that the malicious raters initiate bad-

mouthing4. Further, all the malicious raters collude and attack

the same subset Γ of SPs in each time-slot (which represents the

strongest attack), by rating those SPs as rm. In other words, we

denote by Γ the set of size b̂ in which every victim SP has one

edge from each of the malicious raters. The subset Γ is chosen

to include those SPs who have the highest reputation values but

received the lowest number of ratings from the non-malicious

raters (assuming that the attackers have this information)5. We

note that this attack scenario also represents the RepTrap attack

in [10] which is shown to be a strong attack. To the advantage

of malicious raters, we assumed that a total of T time-slots had

passed since the initialization of the system and a fraction of the

existing raters change behavior and become malicious after T
time-slots. In other words, malicious raters behaved like reliable

raters and increased their trustworthiness values before mounting

4Even though we use the bad-mouthing attack, similar counterpart results hold
for ballot-stuffing and combinations of bad-mouthing and ballot-stuffing.

5Although it may appear unrealistic for some applications, availability of such
information for the malicious raters would imply the worst case scenario.
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for convergence versus time when W of the
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Fig. 4: MAE performance of various schemes
when 30% of the existing raters become mali-
cious in RepTrap.

their attacks at the (T + 1)th time-slot. We will evaluate the

performance for the time-slot (T + 1).

B. Simulations

We compared the performance of RPM with three well-

known and commonly used reputation management schemes: 1)

The Averaging Scheme (which is widely used as in eBay), 2)

Bayesian Approach [6], and 3) Cluster Filtering [7]. Further, we

compared RPM with our previous work on iterative trust and

reputation management (referred to as ITRM) [8] to show the

benefit of using probabilistic message passing algorithm.

Throughout the simulations, we adopted the following models

for various peers involved in the reputation system. We ac-

knowledge that although the models are not inclusive of every

scenario, they are good illustrations to present our results. We

assumed that the quality of each SP remains unchanged during

time-slots. Ratings generated by the non-malicious raters are

distributed uniformly among the SPs (i.e., their ratings/edges in

the graph representation are distributed uniformly among SPs).

Further, we assumed that d is a random variable with Yule-

Simon distribution, which resembles the power-law distribution

used in modeling online systems [11], with the probability mass

function fd(d; ρ) = ρB(d, ρ+ 1), where B is the Beta function.

Finally, we assumed the adversary model in Section III-A. The

parameters we used are |NM | + |NR| = 100, |NSP | = 100,

ρ = 1, T = 50 and b = 5. Let ˜TRj be the actual value

of the global reputation of the jth SP. Then, we obtained the

performance of RPM, for each time-slot, as the mean absolute

error (MAE) |TRj − ˜TRj|, averaged over all the SPs that are

under attack. We note that we start our observations at time slot

1 after the initialization period.

Initially, we assumed that the rating values are either 0 or

1 (where 1 represents a good service quality), all the ratings

provided by the malicious raters are malicious (i.e., b̂ = b), and

rm = 0. We further assumed that the rating rh (provided by the

non-malicious raters) is a random variable with Bernoulli distri-

bution, where Pr(rh = ˜TRj) = 0.8 and Pr(rh 6= ˜TRj) = 0.2,

and ˜TRj is the actual value of the global reputation of the jth SP.

First, we evaluated the MAE performance of RPM for different

fractions of malicious raters (W = |NM |
|NM |+|NR| ), at different

time-slots (measured since the attack is applied) in Fig. 26. We

6The plots in Figs. 2, 3, 4, 5, 6, 7 and 8 are shown from the time-slot the
adversary introduced its attack.

observed that the proposed RPM provides significantly low errors

for up to W = 30% malicious raters. We further showed the

average number of required iterations of RPM at each time-slot

in Fig. 3. We concluded that the average number of iterations

for RPM decreases with time and with decreasing fraction of

malicious raters. Finally, we compared the MAE performance of

RPM with the other schemes for the RepTrap attack. Figure 4

illustrates the comparison of RPM with the other schemes for

bad-mouthing when the fraction of malicious raters (W ) is

30%. It is clear that RPM outperforms all the other techniques

significantly.

We also evaluated the performance of RPM when the ma-

licious raters provide both reliable and malicious ratings to

mislead the algorithm. We assumed binary rating values (0 and

1) and the adversary model in Section III-A with rm = 0.

In Fig. 5, we illustrate the MAE performance of RPM for

this attack for W = 30% and different Λ = b̂/b values. We

observed that as the malicious raters attack with less number

of edges (for low values of b̂), it requires more time slots to

undo their impact using RPM. Further, in Fig. 6, we show

the change in the average trustworthiness of malicious raters

versus time for varying Λ when W = 30%. We observed

that as Λ decreases, the trustworthiness values of the malicious

raters decrease at slower rates compared to higher values of Λ.

Thus, the malicious raters stay under cover when they attack to

small number of SPs. However, this type of an attack limits the

malicious raters’ ability to make a serious impact. To illustrate

this, we observed the gain and loss of the adversary for different

attack strategies. The gain of an adversary is proportional to the

MAE and the number of victim SPs. Therefore, we defined the

gain of the adversary as (MAE × Λ). On the other hand, we

defined the loss of the adversary as (∆RM/RR), where RR

is the average trustworthiness value of the reliable raters, RM

is the average trustworthiness value of the malicious rates, and

∆RM = RR −RM . Thus, we illustrate the gain and loss of the

adversary in Fig. 7 for varying Λ and various W . We observed

that the adversary only has a positive gain (i.e., gain>loss) for

W = 40%, which is a significantly high adversary level. We note

that for different values of Λ and W , we observed that RPM still

keeps its superiority over the other schemes.

We also simulated the same attack scenario when ratings are

integers from the set {1, . . . , 5} instead of binary values, and

Λ = 1. We assumed that the rating rh is a random variable
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with folded normal distribution (mean ˜TRj and variance 0.5),

however, it takes only discrete values from 1 to 5. The malicious

raters do not deviate very much from the actual ˜TRj = 5 values

to remain undercover (while still attacking) as many time-slots

as possible. Hence, malicious raters choose SPs from Γ and

rate them as rm = 47. We compared the MAE performance of

RPM with the other schemes in Fig. 8 and observed that RPM

outperforms all the other techniques significantly.
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Fig. 8: MAE performance of various schemes when 30% of the existing raters
become malicious and rating values are nonbinary, i.e., from {1, . . . , 5} in
RepTrap.

From these simulation results, we conclude that RPM signif-

icantly outperforms the Averaging Scheme, Bayesian Approach

and Cluster Filtering in the presence of attackers. We identify

that ITRM (i.e., our algebraic iterative scheme) is the closest in

performance to RPM. This emphasizes the robustness of using

iterative algorithms for reputation management. Finally, assum-

ing K = |NM | + |NR| raters and |NSP | SPs, we obtained the

computational complexity of RPM as max(O
(

cK
)

,O
(

cNSP

)

)
in the number of multiplications, where c is a small number

representing the average number of ratings per rater. On the

other hand, Cluster Filtering suffers quadratic complexity versus

number of raters (or SPs).

IV. CONCLUSION

In this paper, we introduced the Robust Reputation Manage-

ment Using Probabilistic Message Passing (RPM). Our work

is motivated by the prior success of the probabilistic message

7We also tried higher deviations from the ˜TRj value and observed that the
malicious raters were easily contained by RPM.

passing algorithms on decoding of low-density parity-check

codes. RPM is a graph-based reputation management system in

which service providers and raters are arranged as two sets of

variable and factor nodes and the reputation values of SPs are

computed by message passing between these nodes in the graph

until the convergence. The proposed RPM is a robust mechanism

to evaluate the quality of the service of the SPs from the ratings

received from the raters. Moreover, it effectively evaluates the

trustworthiness of the raters. We showed the robustness of RPM

using computer simulations. We also compared RPM with some

well-known reputation management schemes and showed the

superiority of our scheme both in terms of robustness against

various attacks and efficiency.
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