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1INTRODUCTION (1)

• Advantages of nonlinear polynomial predictors:
– Linear predictors constitute a subset of polynomial 

predictors
– Linear with respect to their parameters

• Disadvantages
– Non parsimonious
– Their estimation may involve ill-conditioned 

matrices
– Not stable for generation
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2GENERALITIES (1)

• In the most general way, a causal polynomial 
model (also called NARMA, nonlinear ARMA) 
is expressed by [1]:

Where functions fi(.) are ith-order polynomials with
respect to the variables.
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3GENERALITIES (2)

• If the model is stable (in the sense that a bounded
input {εn} induces a bounded output {xn}), it
admits a convergent Volterra expansion 
expressed by:
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4GENERALITIES (3)

• As for linear models, there are recursive realizations
(NARMA) and non-recursive ones (truncated
Volterra expansions).

• Polynomial models are generally used for prediction
only, because they are unstable for inputs with non-
bounded support (such as Gaussian ones). However, 
for the subset of bilinear models, stability conditions 
have been derived in some specific cases.
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5GENERALITIES (4)

• Another subset of simpler models is the LNL 
(linear-nonlinear-linear), which is a cascade:

with L1 and L2 llinear filters and P a memoryless
polynomial function

• Two sub-subsets are the Wiener (LN) and the  
Hammerstein (NL) ones.

L2L1 P
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6GENERALITIES (5)

• Of course, we will focus here on polynomial NAR 
models expressed by:

• In a MMSE setting, we will use the fact that
polynomials have the property of universal
approximation of continuous functions to use them to 
approximate the conditional expectation E[xn|Xn-1].
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7ESTIMATION (1)

• It is of course possible to derive a statistical expression 
of the estimation of a polynomial model, but this
presents little interest. We shall deal only with the 
estimation of a predictor from N samples {xn}, n = 1,
…, N.

• We suppose the maximum degree d, and the maximum 
delay t settled beforehand.
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8ESTIMATION (2)

• Since the polynomial tems are linear with repect to 
their parameters, least-square estimation amounts to 
write the model equation for all possible values of n, 
(i.e. n = t+1 to n = N). This lead to a matrix equation:

Xg = x + e
• Let us illustrate that with a very simple example:

d = 2, t = 1
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9ESTIMATION (3)

Possible terms are 1, xn, xn-1, xn xn-1, xn
2, xn-1

2, and the 
equation to be solved in the LS sense is:
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10ESTIMATION (4)

• Two problems:
– It is the simplest model but it contains 6 terms

already. Some selection must take place.
– Some of the columns of X risk to be almost linearly

dependent. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NN e

e
e

x

x
x

MM
4

3

4

3



6

Signal Processing Institute 
Swiss Federal Institute of Technology, Lausanne

11ESTIMATION (5)

• The classical least-square solution:
g = (XTX)-1XTx

may cause trouble because may be ill-conditioned, i.e., 
its eigenvalue spread may be large due to the 
presence of small eigenvalues.

• It is highly advised to use a robust numerical method
such as Singular Value Decomposition (SVD) to 
solve the polynomial least-square problem.
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12ESTIMATION (6)

• SVD [2]: Any matrix X of size K×M and rank r can
be written as:

X = USVT

with U an orthogonal K×K matrix, V an orthogonal
M×M matrix, and S a K×M matrix with only r non-
zero elements σ1 ≥ σ2 ≥ ... ≥ σr (singular values) on 
its diagonal. The LS solution can be shown to be:
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13ESTIMATION (7)

• In practical problems X is full rank and the M
singular values are non zero. However, some are 
quite small. 

• It can be shown that an efficient solution consists
in considering an effective rank re instead of r, 
chosen as the smallest index i such that:
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14MODEL SELECTION (1)

• An appropriate model can be selected using the MDL 
criterion :

with M the number of terms retained and      the estimate
of the error variance. Note it is a simplified criterion
since encoding of the terms retained should also be
included.

( ) ( )NMN e lnlnMDL 2 += σ̂

2
eσ̂
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15MODEL SELECTION (2)

• From the matrix equation viewpoint, model selection
amounts to selecting columns of X:

One must obviously change the dimension of g also. 
Theoretically, one must apply MDL on all possible 
models (exhautstive search) or use sub-optimal 
empirical procedures.

= +g x e
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16MODEL SELECTION (3)

• For instance, one can use a genetic algorithm [3]: 
a population of models (coded with a bit string) 
evolves along the principle of survival of the 
fittest.

• The best individuals (with respect to MDL) are 
allowed to perpetuate, reproduce and mutate in 
the next generation.

• Typically, good solutions appear fast, but 
optimality cannot be guaranteed.
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17SEQUENTIAL MODEL SELECTION (1)

• Another approach, that gives good results in 
practice, is to select the terms sequentially [4].

• At each stage, the term producing maximum error
variance reduction is included. This is the 
principle of Matching Pursuit, which is used for 
instance in some time-frequency techniques.

• This approach is quite attractive from a 
computational viewpoint, but is sub-optimal.
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18SEQUENTIAL MODEL SELECTION (2)

• The equation describing the model can be presented as:

where each pm(.) is a polynomial term (such as xn xn-1 for 
instance), and corresponds this to a column of matrix
X.

• These columns are not orthogonal so sequential
selection imposes orthogonalization.
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19SEQUENTIAL MODEL SELECTION (3)

• Gram-Schmidt orthogonalization

u1

u2

If u1 has already been 
selected, one keeps
from u2 the part orthogonal to u1only. This procedure
is easily generalized to a succession of vectors.
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20SEQUENTIAL MODEL SELECTION (4)

• Gram-schmidt procedure transforms an arbitrary basis 
{ui} into an orthogonal basis {vi} with:
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21SEQUENTIAL MODEL SELECTION (5)

• Building an orthogonal basis avoids to re-compute the 
coefficients already obtained. Projection of vector x on 
the orthogonal basis means for ith coefficient : 

that does not depend on the other ones.
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22SEQUENTIAL MODEL SELECTION (6)

• As a matter of fact solving
Xg = x + e

In the least-square sense amounts to an orthogonal 
projection of x on the subspace generated by the 
columns of X, with e the projection error. 

• Thus one orthogonalizes these columns, so as to 
optimize the projection on a smaller subspace spanned
by the most important orthogonal basis elements.
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23SEQUENTIAL MODEL SELECTION (7)

• Summary
1. Determine vector x of all samples xn for which

prediction is possible. Typically
x = [xt+1, xt+2, …, xN]T

2. Determine all columns pm of X, i.e. all possible 
polynomial terms pm(.). 

3. Find the column k of X minimizing the sum of 
squared errors:
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24SEQUENTIAL MODEL SELECTION (8)

with

[ ] [ ]∑∑
+=+=

=−=−
N

tn
n

N

tn
kknkk enpx

1

2

1

22 )(αα px

[ ]∑

∑

=

=== N

nn
k

N

nn
k

kk
k

k
np

npny

0

0

2)(

)()(

,
,

pp
py

α



13

Signal Processing Institute 
Swiss Federal Institute of Technology, Lausanne

25SEQUENTIAL MODEL SELECTION (9)

3. One sets q1(.) = pk(.), q1 = pk, et a1 = αk. The 
reduction in least-square error is:

4. For the ith term, one finds column pk of X such
that:
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26SEQUENTIAL MODEL SELECTION (10)

Produces maximum LS error reduction: 

4. One increments i to i + 1 and back to step 3. 
Recursion may be stopped if the error norm stops 
decreasing or, preferably, if MDL starts to increase.
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27ADAPTIVE POLYNOMIAL PREDICTION (1)

• Since polynomial predictors are linear with
respect to their coefficients, one may be
interested to perform an adaptive prediction:
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xn

p2(n)

pm(n)

w1(n)

wm(n)

w2(n) + en

p1(n)

yn

Signal Processing Institute 
Swiss Federal Institute of Technology, Lausanne

28ADAPTIVE POLYNOMIAL PREDICTION (2)

• The most popular algorithm is the LMS, which is
a gradient algorithm on E[en

2] with an 
instantaneous estimate en

2:
wn+1 = wn – μ

= wn + 2μe(n)yn

• But LMS convergence is highly influenced by the 
eigenvalue spread of the input vector covariance 
matrix (i.e. correlation between inputs).

n∇̂
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29ADAPTIVE POLYNOMIAL PREDICTION (3)

• Unfortunately polynomial terms are often
correlated, so other approaches:
– Recursive least-squares (RLS)
– Lattice LMS

Are generally more efficient [5]. 
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