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1INTRODUCTION TO MULTI-LAYER PERCEPTRONS

• Multi-layer perceptrons (MLP) constitute the 
most famous and most employed type of neural 
networks [1].

• At first, they were introduced in the context of 
classification, and it was soon recognized that 
they had the property of universal approximation 
capability.

• The introduction of the back-propagation 
algorithm made them flexible enough for many 
applications.
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2MLP AND PREDICTION (1)

• Their basic structure for prediction is:
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3MLP AND PREDICTION (2)

• The output of the ith neuron in the intermediate
(hidden) layer is:

with f(.) a sigmoidal function such as f(u) = 
tanh(au).

• The final output is a weighted sum of the outputs 
in the hidden layer.
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4MLP AND PREDICTION (3)

• As for the polynomial predictor, one considers a 
NAR formulation:

xn = g(xn-1,…, xn-p) + εn

and one estimates g(.) in the least-square sense using
the data at hand. That is, one uses the universal
approximation capability of MLPs.

• Of course, the input vector to predict xn is
xn = [xn-1, xn-2,…, xn-p]. 
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5MLP AND PREDICTION (4)

• It is possible to show that, when p increases, the size of 
the MLP increases more slowly than that of a 
polynomial predictor. But:
– It is almost impossible to relate the values of the 

MLP parameters to the characteristic of the predicted 
signal (black box effect).

– Convergence of the back-propagation algorithm is 
sometimes problematic.

– Adaptive prediction is not very efficient.
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6MLP AND PREDICTION (5)

• Example: prediction of RR intervals (p = 3, 5 
neurons in the hidden layer). ESR: - 16 dB
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7MLP AND PREDICTION (6)

• Generalization: prediction on another part of the 
signal. ESR = -13 dB
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8INTRODUCTION TO RBFs

• Radial basis functions (RBF) constitute another
type of neural networks, issued from interpolation 
theory.

• By some aspects, RBF combine the advantages of 
polynomial models and MLP:
– Universal approximation property,
– Estimation of parameters is simple,
– There is a physical interpretation of these

parameters.
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9RBF AND INTERPOLATION (1)

• Let us suppose we have N pairs {xi, yi=g(xi)}, i = 
1, …, N, with xi p-dimensional vectors,  yi

scalars, and g(.) a continuous function.
• the interpolation of g(.) from these N pairs is an 

ill-posed one, because there is usually no 
information on g(.) between these pairs.

• A sensible approach, called regularization, has 
been developed to tackle this type of problem.
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10RBF AND INTERPOLATION (2)

• In this approach, one hypothesizes that g(.) 
should not oscillate erraticaly , and should
present some degree of smoothness. This 
translates into defining an interpolating function
G(.) minimizing a composite criterion:

with P a differential operator.
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11RBF AND INTERPOLATION (3)

• Parameter ρ balances the relative influence of the 
two terms. The first one deals with the fidelity
with respect to the data, the second with
interpolation smoothness.

• It is possible to show that, if P is an infinite sum
of differential operators of increasing degree, and 
rotation and translation invariant, then G(.) is:
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12RBF AND INTERPOLATION (4)

• Parameter β must be specified with respect to the 
regularization parameter ρ. If there is a true
interpolation then one must have:

G(xi) = yi, i = 1, …, N
and one must solve the following linear system:
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13RBF AND INTERPOLATION (5)

Thus a matrix equation:
Aw = y

• It is possible to show that if all vectors {xi} are 
different, matrix A is always invertible, and it
will always be possible to determine the 
coefficients {wi} of w.

• The value of β defines the behavior of G(.) 
between the {xi}. The larger it is, the smoother
G(.) is.
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14RBF AND INTERPOLATION (6)

• Example
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15RBF AND APPROXIMATION (1)

• This approach of interpolation presents some
limitations:
– The fact that the interpolating function must 

include all pairs {xi, yi=g(xi)} makes the approach
highly sensitive to noise (erroneous values) and 
thus prone to overfitting.

– When the number of pairs increases G(.) becomes
soon complex.
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16RBF AND APPROXIMATION (2)

• The idea that has been proposed to create a new type 
of neural networks is quite simple. One considers a 
slightly different formulation:

with M < N, and vectors {cj} called centers, which are 
not constrained to be a subset of the {xi}. Function
G(.) will now approximate g(.), typically in the least-
square sense.
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17RBF AND APPROXIMATION (3)

• To sum up, the RBF network approximates
locally g(.) in the neighborhood of each center, 
and merges these local approximations to create a 
global one.

• The nice feature of RBF networks is that,  once 
the centers and β have been defined, 
determination of coefficients {wj} is simple, since
G(.) depends linearly on them.
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18RBF AND APPROXIMATION (4)

• If least-square estimation is used, one must solve:

that is Aw = y + e. A is now an N × M matrix.
• One may add a column of "1" to A if y is significantly

non zero-mean.
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19RBF AND APPROXIMATION (5)

• When minimizing ||Aw - y||, one performs of course 
an orthogonal projection of vector y on the subspace
generated by the columns of A.

• Since matrix A may be ill-conditioned it is better to 
use a robust estimation scheme, typically SVD. 

• But of course centers should not be too close to each
other.
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20CENTER SELECTION (1)

• Note first there is no really optimal way to select the 
centers. Also, we will come back later to the 
problem of determining the number of centers. 

• One of the firts methods proposed consisted in 
selecting centers randomly (uniformly), in the 
hypercube defined by the {xi}. This is not very
efficient, because the spatial distribution of the {xi} 
is not taken into account.
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21CENTER SELECTION (2)

• A second approach consists in selecting randomly
the centers among the {xi}. This is already better, 
since statistically those centers are represntative
of the spatial distribution of the {xi}. That is, 
there are more centers in the regions of space
where the {xi} are clustered. However, the 
constraint remains that the centers are a subset of 
the {xi}.
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22CENTER SELECTION (3)

• A solution yielding better performance is to select 
centers using learning vector quantization (LVQ), 
which is used in other contexts too to find
representatives of vector sets. LVQ works as follows:

1. The initial centers are chosen {cj} at random in the 
hypercube defined by the {xi}.
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23CENTER SELECTION (4)

2. Vectors {xi} are presented, generally for several
epochs. At iteration k, the following correction si 
applied to center cj:

with x(k) the vector presented at iteration k. the net 
effect is to draw cj closer to x(k), and thus possibly
to a cluster.
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24CENTER SELECTION (5)

Parameter α(k) must decrease with k, generally
using:

K total number of iterations, and α0 a constant 
(typically α0 = 0.05).

• It is to be noted that LVQ is sensitive to the initial 
center selection.
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25CENTER SELECTION (6)

• Example: LVQ for M = 5 centers, vectors {xi} drawn
from two bi-dimensional Gaussian pdf.
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26CENTER SELECTION (7)

• Another scheme, less sensitive to intial center 
choice, is Lloyd-Max vector quantization algorithm.

• Centers {cj} (sometimes called in this context
centroids) are chosen such that they minimize a 
distortion criterion:
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27CENTER SELECTION (8)

• Subsets Vj contain vectors xj such that cj is the center 
closest to them. So to speak, cj must be a good 
representative of Vj. Lloyd-Max algorithm works as 
follows

1. Initial random selection of {cj} among the {xi}
2. Update: 

cj → cj = mean(xi ∈ Vj)
3. If  distortion D stabilizes, stop, otherwise back to 2.
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28CENTER SELECTION (9)

• Example: Lloyd-Max for M = 5 centers, vectors
{xi} drawn from two bi-dimensional Gaussian
pdf.

• data
• centroids
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29DETERMINATION OF β

• Once the centers {cj} have been chosen, parameter β
can be determined.

• This is the same as for interpolation: too large a β
means too strong an interaction (overlap) between the 
local approximations. Too small a β means a ˝bumpy ˝
approximation.

• A good empirical rule is:
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30MULTIPLE β

• Nothing imposes to use the same value for β for each
RBF.

• It is even intuitevly appealing that β be smaller in 
regions with many centers, since the spatial influence 
of the RBFs corresponding to these centers should be
smaller

• A good empirical rule for βj corresponding to center cj
is:
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31RBF AND PREDICTION / MODELING (1)

• As for MLP, one considers a NAR formulation:
xn = g(xn-1,…, xn-p) + εn

and one estimates g(.) in the least-square sense
using the data at hand. That is, one uses the 
universal approximation capability of RBF 
networks.

• Of course, the input vector to predict xn is
xn = [xn-1, xn-2,…, xn-p]. 
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32RBF AND PREDICTION / MODELING (2)

• Example: prediction of RR intervals (p = 3, 20 
RBF, multiple β). ESR: - 10 dB

Signal
Prediction
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33RBF AND PREDICTION / MODELING (3)

• Generalization: prediction on another part of the 
signal. ESR = -4 dB

Signal
Prediction

failure to
generalize
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34ORTHOGONAL  LEAST SQUARES AND RBF (1)

• Center selection, which conditions the choice of  
parameter β also, has an important role in RBF network 
performance.

• LVQ and Lloyd-Max algorithms are intuitively
appealing. There are however other interesting schemes
[3].

• Again, we note that solving Aw = y + e in the least 
squares sense means performing an orthogonal
projection of y on the linear subspace generated by the 
columns of A.
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35ORTHOGONAL  LEAST SQUARES AND RBF (2)

• One can apply the same procedure as for term
selection in polynomial prediction, that is a Gram-
Schmidt orthogonalization on selected columns
(orthogonal least squares, OLS). 

• At each iteration, one adds in A the column yielding
maximum erro reduction. This column is defined by a 
pair (cj, βj), and center cj is selected among the vectors
{xi}.
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36ORTHOGONAL  LEAST SQUARES AND RBF (3)

• One proceeds as follows:
1) The first center is selected by examining all the 

{xi}, and keeping the smallest least squares error.
2) Successive centers are chosen among the 

remaining {xi}, with an orthogonalization of 
[φ(x1),…, φ(xN)]T with respect to the terms already
selected. In this way the center giving maximum 
error reduction is spotted. 
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37ORTHOGONAL  LEAST SQUARES AND RBF (4)

• Example: prediction of RR intervals (p = 3, 5 RBF, 
multiple β). ESR: - 11 dB
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38How many RBFs ?

NMNMDL e lnln ⋅+⋅= 2σ

Data Model
linear parameters
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39Clustering of the State Space (Sunspot Series)
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40Mackey-Glass Time Series
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41State-space Quantization
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42The Coding of a Center
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43
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44The Best Subset of Centers (6 bits)
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453-D State Space Quantization (3 bits)
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463-D State Space Quantization (6 bits)
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47MDL-Criterion for RBF Networks

NMNMDL e lnln ⋅+⋅= 2σ + 2ln⋅B( )

B: Number of bits to encode one center
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48Prediction Comparison (Sunspot)
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49Prediction Comparison (Mackey-Glass)
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50LMS AND RBF (1)

• It is of course possible to derive an adaptive version of 
RBF network prediction.

• In what follows, reference to time index k will not be
explicit.

w(i) ith component of coefficient vector w
φ(i) ith RBF
φ RBF vector
• instantaneous square error is thus

ε2 = [y – G(x)]2 = [y – wTφ]2
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51LMS AND RBF (2)

• In LMS, the updates are:
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52LMS AND RBF (3)

• Example: prediction of RR intervals (p = 3, 5 
RBF, unique β). ESR: - 8 dB

Signal
Prediction

Multiple epochs
before convergence
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53LMS AND RBF (4)

• Remarks:
– Better thsn batch algorithm, but not impressive
– Tuning of adaptation parameters is uneasy

(except for w for which it is possible to 
normalize by φTφ)

• But maybe the gradient approach is not suited to 
center and β parameter update. For instance, 
nothing guarantees that the mean suqare error has 
a unique minimum.
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54LMS AND RBF (5)

• Why not decouple the update of w, for which
LMS should work well, from that of the centers
and β?

• One might use an LVQ-style update for the 
centers, then modify β by using the empirical rule
based on the distance between centers.

• But it is necessary to define a link between the 
two update schemes.
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55LMS AND RBF (6)

1. One first computes the modification on ci, the 
center closest to x with LVQ (but α must remain
constant to preserve adaptability):

2. If the maximum distance between centers
changes, β should become β + Δβ, by using the 
empirical rule for unique β.

The output changes from G(x) to G(x) + ΔG(x). 

)(   iiiii cxcccc −+=Δ+→ α



Signal Processing Laboratory
Swiss Federal Institute of Technology, Lausanne

56LMS AND RBF (7)

• But:
• Thus:

• And the instantaneous square error becomes:
ε2 = [y – G(x) – ΔG(x)]2

The coefficient vector w is updated with:
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57LMS AND RBF (8)

• With some computations:
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58LMS AND RBF (9)

• Example: prediction of RR intervals (p = 3, 5 
RBF, unique β). ESR: - 10.7 dB

Signal
Prediction

Multiple epochs
before convergence
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59LMS AND RBF (10)

• Remarques:
– Prediction performance improves in the non-

stationary intervals.
– It is a lot easier to tune μ for w and α for the 

centers.
– This approach is easily modified for the multiple 

β case.
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